niu: panic on reset
[linux/fpc-iii.git] / drivers / net / cxgb3 / cxgb3_offload.c
blobff9c013ce5357114f6aff22456cb45e3e020659b
1 /*
2 * Copyright (c) 2006-2007 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/list.h>
34 #include <net/neighbour.h>
35 #include <linux/notifier.h>
36 #include <asm/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/if_vlan.h>
39 #include <net/netevent.h>
40 #include <linux/highmem.h>
41 #include <linux/vmalloc.h>
43 #include "common.h"
44 #include "regs.h"
45 #include "cxgb3_ioctl.h"
46 #include "cxgb3_ctl_defs.h"
47 #include "cxgb3_defs.h"
48 #include "l2t.h"
49 #include "firmware_exports.h"
50 #include "cxgb3_offload.h"
52 static LIST_HEAD(client_list);
53 static LIST_HEAD(ofld_dev_list);
54 static DEFINE_MUTEX(cxgb3_db_lock);
56 static DEFINE_RWLOCK(adapter_list_lock);
57 static LIST_HEAD(adapter_list);
59 static const unsigned int MAX_ATIDS = 64 * 1024;
60 static const unsigned int ATID_BASE = 0x10000;
62 static inline int offload_activated(struct t3cdev *tdev)
64 const struct adapter *adapter = tdev2adap(tdev);
66 return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
69 /**
70 * cxgb3_register_client - register an offload client
71 * @client: the client
73 * Add the client to the client list,
74 * and call backs the client for each activated offload device
76 void cxgb3_register_client(struct cxgb3_client *client)
78 struct t3cdev *tdev;
80 mutex_lock(&cxgb3_db_lock);
81 list_add_tail(&client->client_list, &client_list);
83 if (client->add) {
84 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
85 if (offload_activated(tdev))
86 client->add(tdev);
89 mutex_unlock(&cxgb3_db_lock);
92 EXPORT_SYMBOL(cxgb3_register_client);
94 /**
95 * cxgb3_unregister_client - unregister an offload client
96 * @client: the client
98 * Remove the client to the client list,
99 * and call backs the client for each activated offload device.
101 void cxgb3_unregister_client(struct cxgb3_client *client)
103 struct t3cdev *tdev;
105 mutex_lock(&cxgb3_db_lock);
106 list_del(&client->client_list);
108 if (client->remove) {
109 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
110 if (offload_activated(tdev))
111 client->remove(tdev);
114 mutex_unlock(&cxgb3_db_lock);
117 EXPORT_SYMBOL(cxgb3_unregister_client);
120 * cxgb3_add_clients - activate registered clients for an offload device
121 * @tdev: the offload device
123 * Call backs all registered clients once a offload device is activated
125 void cxgb3_add_clients(struct t3cdev *tdev)
127 struct cxgb3_client *client;
129 mutex_lock(&cxgb3_db_lock);
130 list_for_each_entry(client, &client_list, client_list) {
131 if (client->add)
132 client->add(tdev);
134 mutex_unlock(&cxgb3_db_lock);
138 * cxgb3_remove_clients - deactivates registered clients
139 * for an offload device
140 * @tdev: the offload device
142 * Call backs all registered clients once a offload device is deactivated
144 void cxgb3_remove_clients(struct t3cdev *tdev)
146 struct cxgb3_client *client;
148 mutex_lock(&cxgb3_db_lock);
149 list_for_each_entry(client, &client_list, client_list) {
150 if (client->remove)
151 client->remove(tdev);
153 mutex_unlock(&cxgb3_db_lock);
156 static struct net_device *get_iff_from_mac(struct adapter *adapter,
157 const unsigned char *mac,
158 unsigned int vlan)
160 int i;
162 for_each_port(adapter, i) {
163 struct vlan_group *grp;
164 struct net_device *dev = adapter->port[i];
165 const struct port_info *p = netdev_priv(dev);
167 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
168 if (vlan && vlan != VLAN_VID_MASK) {
169 grp = p->vlan_grp;
170 dev = NULL;
171 if (grp)
172 dev = vlan_group_get_device(grp, vlan);
173 } else
174 while (dev->master)
175 dev = dev->master;
176 return dev;
179 return NULL;
182 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
183 void *data)
185 int ret = 0;
186 struct ulp_iscsi_info *uiip = data;
188 switch (req) {
189 case ULP_ISCSI_GET_PARAMS:
190 uiip->pdev = adapter->pdev;
191 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
192 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
193 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
195 * On tx, the iscsi pdu has to be <= tx page size and has to
196 * fit into the Tx PM FIFO.
198 uiip->max_txsz = min(adapter->params.tp.tx_pg_size,
199 t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
200 /* on rx, the iscsi pdu has to be < rx page size and the
201 whole pdu + cpl headers has to fit into one sge buffer */
202 uiip->max_rxsz = min_t(unsigned int,
203 adapter->params.tp.rx_pg_size,
204 (adapter->sge.qs[0].fl[1].buf_size -
205 sizeof(struct cpl_rx_data) * 2 -
206 sizeof(struct cpl_rx_data_ddp)));
207 break;
208 case ULP_ISCSI_SET_PARAMS:
209 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
210 break;
211 default:
212 ret = -EOPNOTSUPP;
214 return ret;
217 /* Response queue used for RDMA events. */
218 #define ASYNC_NOTIF_RSPQ 0
220 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
222 int ret = 0;
224 switch (req) {
225 case RDMA_GET_PARAMS: {
226 struct rdma_info *rdma = data;
227 struct pci_dev *pdev = adapter->pdev;
229 rdma->udbell_physbase = pci_resource_start(pdev, 2);
230 rdma->udbell_len = pci_resource_len(pdev, 2);
231 rdma->tpt_base =
232 t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
233 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
234 rdma->pbl_base =
235 t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
236 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
237 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
238 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
239 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
240 rdma->pdev = pdev;
241 break;
243 case RDMA_CQ_OP:{
244 unsigned long flags;
245 struct rdma_cq_op *rdma = data;
247 /* may be called in any context */
248 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
249 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
250 rdma->credits);
251 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
252 break;
254 case RDMA_GET_MEM:{
255 struct ch_mem_range *t = data;
256 struct mc7 *mem;
258 if ((t->addr & 7) || (t->len & 7))
259 return -EINVAL;
260 if (t->mem_id == MEM_CM)
261 mem = &adapter->cm;
262 else if (t->mem_id == MEM_PMRX)
263 mem = &adapter->pmrx;
264 else if (t->mem_id == MEM_PMTX)
265 mem = &adapter->pmtx;
266 else
267 return -EINVAL;
269 ret =
270 t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
271 (u64 *) t->buf);
272 if (ret)
273 return ret;
274 break;
276 case RDMA_CQ_SETUP:{
277 struct rdma_cq_setup *rdma = data;
279 spin_lock_irq(&adapter->sge.reg_lock);
280 ret =
281 t3_sge_init_cqcntxt(adapter, rdma->id,
282 rdma->base_addr, rdma->size,
283 ASYNC_NOTIF_RSPQ,
284 rdma->ovfl_mode, rdma->credits,
285 rdma->credit_thres);
286 spin_unlock_irq(&adapter->sge.reg_lock);
287 break;
289 case RDMA_CQ_DISABLE:
290 spin_lock_irq(&adapter->sge.reg_lock);
291 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
292 spin_unlock_irq(&adapter->sge.reg_lock);
293 break;
294 case RDMA_CTRL_QP_SETUP:{
295 struct rdma_ctrlqp_setup *rdma = data;
297 spin_lock_irq(&adapter->sge.reg_lock);
298 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
299 SGE_CNTXT_RDMA,
300 ASYNC_NOTIF_RSPQ,
301 rdma->base_addr, rdma->size,
302 FW_RI_TID_START, 1, 0);
303 spin_unlock_irq(&adapter->sge.reg_lock);
304 break;
306 default:
307 ret = -EOPNOTSUPP;
309 return ret;
312 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
314 struct adapter *adapter = tdev2adap(tdev);
315 struct tid_range *tid;
316 struct mtutab *mtup;
317 struct iff_mac *iffmacp;
318 struct ddp_params *ddpp;
319 struct adap_ports *ports;
320 struct ofld_page_info *rx_page_info;
321 struct tp_params *tp = &adapter->params.tp;
322 int i;
324 switch (req) {
325 case GET_MAX_OUTSTANDING_WR:
326 *(unsigned int *)data = FW_WR_NUM;
327 break;
328 case GET_WR_LEN:
329 *(unsigned int *)data = WR_FLITS;
330 break;
331 case GET_TX_MAX_CHUNK:
332 *(unsigned int *)data = 1 << 20; /* 1MB */
333 break;
334 case GET_TID_RANGE:
335 tid = data;
336 tid->num = t3_mc5_size(&adapter->mc5) -
337 adapter->params.mc5.nroutes -
338 adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
339 tid->base = 0;
340 break;
341 case GET_STID_RANGE:
342 tid = data;
343 tid->num = adapter->params.mc5.nservers;
344 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
345 adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
346 break;
347 case GET_L2T_CAPACITY:
348 *(unsigned int *)data = 2048;
349 break;
350 case GET_MTUS:
351 mtup = data;
352 mtup->size = NMTUS;
353 mtup->mtus = adapter->params.mtus;
354 break;
355 case GET_IFF_FROM_MAC:
356 iffmacp = data;
357 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
358 iffmacp->vlan_tag &
359 VLAN_VID_MASK);
360 break;
361 case GET_DDP_PARAMS:
362 ddpp = data;
363 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
364 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
365 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
366 break;
367 case GET_PORTS:
368 ports = data;
369 ports->nports = adapter->params.nports;
370 for_each_port(adapter, i)
371 ports->lldevs[i] = adapter->port[i];
372 break;
373 case ULP_ISCSI_GET_PARAMS:
374 case ULP_ISCSI_SET_PARAMS:
375 if (!offload_running(adapter))
376 return -EAGAIN;
377 return cxgb_ulp_iscsi_ctl(adapter, req, data);
378 case RDMA_GET_PARAMS:
379 case RDMA_CQ_OP:
380 case RDMA_CQ_SETUP:
381 case RDMA_CQ_DISABLE:
382 case RDMA_CTRL_QP_SETUP:
383 case RDMA_GET_MEM:
384 if (!offload_running(adapter))
385 return -EAGAIN;
386 return cxgb_rdma_ctl(adapter, req, data);
387 case GET_RX_PAGE_INFO:
388 rx_page_info = data;
389 rx_page_info->page_size = tp->rx_pg_size;
390 rx_page_info->num = tp->rx_num_pgs;
391 break;
392 default:
393 return -EOPNOTSUPP;
395 return 0;
399 * Dummy handler for Rx offload packets in case we get an offload packet before
400 * proper processing is setup. This complains and drops the packet as it isn't
401 * normal to get offload packets at this stage.
403 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
404 int n)
406 while (n--)
407 dev_kfree_skb_any(skbs[n]);
408 return 0;
411 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
415 void cxgb3_set_dummy_ops(struct t3cdev *dev)
417 dev->recv = rx_offload_blackhole;
418 dev->neigh_update = dummy_neigh_update;
422 * Free an active-open TID.
424 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
426 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
427 union active_open_entry *p = atid2entry(t, atid);
428 void *ctx = p->t3c_tid.ctx;
430 spin_lock_bh(&t->atid_lock);
431 p->next = t->afree;
432 t->afree = p;
433 t->atids_in_use--;
434 spin_unlock_bh(&t->atid_lock);
436 return ctx;
439 EXPORT_SYMBOL(cxgb3_free_atid);
442 * Free a server TID and return it to the free pool.
444 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
446 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
447 union listen_entry *p = stid2entry(t, stid);
449 spin_lock_bh(&t->stid_lock);
450 p->next = t->sfree;
451 t->sfree = p;
452 t->stids_in_use--;
453 spin_unlock_bh(&t->stid_lock);
456 EXPORT_SYMBOL(cxgb3_free_stid);
458 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
459 void *ctx, unsigned int tid)
461 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
463 t->tid_tab[tid].client = client;
464 t->tid_tab[tid].ctx = ctx;
465 atomic_inc(&t->tids_in_use);
468 EXPORT_SYMBOL(cxgb3_insert_tid);
471 * Populate a TID_RELEASE WR. The skb must be already propely sized.
473 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
475 struct cpl_tid_release *req;
477 skb->priority = CPL_PRIORITY_SETUP;
478 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
479 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
480 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
483 static void t3_process_tid_release_list(struct work_struct *work)
485 struct t3c_data *td = container_of(work, struct t3c_data,
486 tid_release_task);
487 struct sk_buff *skb;
488 struct t3cdev *tdev = td->dev;
491 spin_lock_bh(&td->tid_release_lock);
492 while (td->tid_release_list) {
493 struct t3c_tid_entry *p = td->tid_release_list;
495 td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
496 spin_unlock_bh(&td->tid_release_lock);
498 skb = alloc_skb(sizeof(struct cpl_tid_release),
499 GFP_KERNEL | __GFP_NOFAIL);
500 mk_tid_release(skb, p - td->tid_maps.tid_tab);
501 cxgb3_ofld_send(tdev, skb);
502 p->ctx = NULL;
503 spin_lock_bh(&td->tid_release_lock);
505 spin_unlock_bh(&td->tid_release_lock);
508 /* use ctx as a next pointer in the tid release list */
509 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
511 struct t3c_data *td = T3C_DATA(tdev);
512 struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
514 spin_lock_bh(&td->tid_release_lock);
515 p->ctx = (void *)td->tid_release_list;
516 p->client = NULL;
517 td->tid_release_list = p;
518 if (!p->ctx)
519 schedule_work(&td->tid_release_task);
520 spin_unlock_bh(&td->tid_release_lock);
523 EXPORT_SYMBOL(cxgb3_queue_tid_release);
526 * Remove a tid from the TID table. A client may defer processing its last
527 * CPL message if it is locked at the time it arrives, and while the message
528 * sits in the client's backlog the TID may be reused for another connection.
529 * To handle this we atomically switch the TID association if it still points
530 * to the original client context.
532 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
534 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
536 BUG_ON(tid >= t->ntids);
537 if (tdev->type == T3A)
538 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
539 else {
540 struct sk_buff *skb;
542 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
543 if (likely(skb)) {
544 mk_tid_release(skb, tid);
545 cxgb3_ofld_send(tdev, skb);
546 t->tid_tab[tid].ctx = NULL;
547 } else
548 cxgb3_queue_tid_release(tdev, tid);
550 atomic_dec(&t->tids_in_use);
553 EXPORT_SYMBOL(cxgb3_remove_tid);
555 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
556 void *ctx)
558 int atid = -1;
559 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
561 spin_lock_bh(&t->atid_lock);
562 if (t->afree &&
563 t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
564 t->ntids) {
565 union active_open_entry *p = t->afree;
567 atid = (p - t->atid_tab) + t->atid_base;
568 t->afree = p->next;
569 p->t3c_tid.ctx = ctx;
570 p->t3c_tid.client = client;
571 t->atids_in_use++;
573 spin_unlock_bh(&t->atid_lock);
574 return atid;
577 EXPORT_SYMBOL(cxgb3_alloc_atid);
579 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
580 void *ctx)
582 int stid = -1;
583 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
585 spin_lock_bh(&t->stid_lock);
586 if (t->sfree) {
587 union listen_entry *p = t->sfree;
589 stid = (p - t->stid_tab) + t->stid_base;
590 t->sfree = p->next;
591 p->t3c_tid.ctx = ctx;
592 p->t3c_tid.client = client;
593 t->stids_in_use++;
595 spin_unlock_bh(&t->stid_lock);
596 return stid;
599 EXPORT_SYMBOL(cxgb3_alloc_stid);
601 /* Get the t3cdev associated with a net_device */
602 struct t3cdev *dev2t3cdev(struct net_device *dev)
604 const struct port_info *pi = netdev_priv(dev);
606 return (struct t3cdev *)pi->adapter;
609 EXPORT_SYMBOL(dev2t3cdev);
611 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
613 struct cpl_smt_write_rpl *rpl = cplhdr(skb);
615 if (rpl->status != CPL_ERR_NONE)
616 printk(KERN_ERR
617 "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
618 rpl->status, GET_TID(rpl));
620 return CPL_RET_BUF_DONE;
623 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
625 struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
627 if (rpl->status != CPL_ERR_NONE)
628 printk(KERN_ERR
629 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
630 rpl->status, GET_TID(rpl));
632 return CPL_RET_BUF_DONE;
635 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
637 struct cpl_rte_write_rpl *rpl = cplhdr(skb);
639 if (rpl->status != CPL_ERR_NONE)
640 printk(KERN_ERR
641 "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
642 rpl->status, GET_TID(rpl));
644 return CPL_RET_BUF_DONE;
647 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
649 struct cpl_act_open_rpl *rpl = cplhdr(skb);
650 unsigned int atid = G_TID(ntohl(rpl->atid));
651 struct t3c_tid_entry *t3c_tid;
653 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
654 if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
655 t3c_tid->client->handlers &&
656 t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
657 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
658 t3c_tid->
659 ctx);
660 } else {
661 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
662 dev->name, CPL_ACT_OPEN_RPL);
663 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
667 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
669 union opcode_tid *p = cplhdr(skb);
670 unsigned int stid = G_TID(ntohl(p->opcode_tid));
671 struct t3c_tid_entry *t3c_tid;
673 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
674 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
675 t3c_tid->client->handlers[p->opcode]) {
676 return t3c_tid->client->handlers[p->opcode] (dev, skb,
677 t3c_tid->ctx);
678 } else {
679 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
680 dev->name, p->opcode);
681 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
685 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
687 union opcode_tid *p = cplhdr(skb);
688 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
689 struct t3c_tid_entry *t3c_tid;
691 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
692 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
693 t3c_tid->client->handlers[p->opcode]) {
694 return t3c_tid->client->handlers[p->opcode]
695 (dev, skb, t3c_tid->ctx);
696 } else {
697 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
698 dev->name, p->opcode);
699 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
703 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
705 struct cpl_pass_accept_req *req = cplhdr(skb);
706 unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
707 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
708 struct t3c_tid_entry *t3c_tid;
709 unsigned int tid = GET_TID(req);
711 if (unlikely(tid >= t->ntids)) {
712 printk("%s: passive open TID %u too large\n",
713 dev->name, tid);
714 t3_fatal_err(tdev2adap(dev));
715 return CPL_RET_BUF_DONE;
718 t3c_tid = lookup_stid(t, stid);
719 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
720 t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
721 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
722 (dev, skb, t3c_tid->ctx);
723 } else {
724 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
725 dev->name, CPL_PASS_ACCEPT_REQ);
726 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
731 * Returns an sk_buff for a reply CPL message of size len. If the input
732 * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
733 * is allocated. The input skb must be of size at least len. Note that this
734 * operation does not destroy the original skb data even if it decides to reuse
735 * the buffer.
737 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
738 gfp_t gfp)
740 if (likely(!skb_cloned(skb))) {
741 BUG_ON(skb->len < len);
742 __skb_trim(skb, len);
743 skb_get(skb);
744 } else {
745 skb = alloc_skb(len, gfp);
746 if (skb)
747 __skb_put(skb, len);
749 return skb;
752 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
754 union opcode_tid *p = cplhdr(skb);
755 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
756 struct t3c_tid_entry *t3c_tid;
758 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
759 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
760 t3c_tid->client->handlers[p->opcode]) {
761 return t3c_tid->client->handlers[p->opcode]
762 (dev, skb, t3c_tid->ctx);
763 } else {
764 struct cpl_abort_req_rss *req = cplhdr(skb);
765 struct cpl_abort_rpl *rpl;
766 struct sk_buff *reply_skb;
767 unsigned int tid = GET_TID(req);
768 u8 cmd = req->status;
770 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
771 req->status == CPL_ERR_PERSIST_NEG_ADVICE)
772 goto out;
774 reply_skb = cxgb3_get_cpl_reply_skb(skb,
775 sizeof(struct
776 cpl_abort_rpl),
777 GFP_ATOMIC);
779 if (!reply_skb) {
780 printk("do_abort_req_rss: couldn't get skb!\n");
781 goto out;
783 reply_skb->priority = CPL_PRIORITY_DATA;
784 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
785 rpl = cplhdr(reply_skb);
786 rpl->wr.wr_hi =
787 htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
788 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
789 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
790 rpl->cmd = cmd;
791 cxgb3_ofld_send(dev, reply_skb);
792 out:
793 return CPL_RET_BUF_DONE;
797 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
799 struct cpl_act_establish *req = cplhdr(skb);
800 unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
801 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
802 struct t3c_tid_entry *t3c_tid;
803 unsigned int tid = GET_TID(req);
805 if (unlikely(tid >= t->ntids)) {
806 printk("%s: active establish TID %u too large\n",
807 dev->name, tid);
808 t3_fatal_err(tdev2adap(dev));
809 return CPL_RET_BUF_DONE;
812 t3c_tid = lookup_atid(t, atid);
813 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
814 t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
815 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
816 (dev, skb, t3c_tid->ctx);
817 } else {
818 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
819 dev->name, CPL_ACT_ESTABLISH);
820 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
824 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
826 struct cpl_trace_pkt *p = cplhdr(skb);
828 skb->protocol = htons(0xffff);
829 skb->dev = dev->lldev;
830 skb_pull(skb, sizeof(*p));
831 skb_reset_mac_header(skb);
832 netif_receive_skb(skb);
833 return 0;
837 * That skb would better have come from process_responses() where we abuse
838 * ->priority and ->csum to carry our data. NB: if we get to per-arch
839 * ->csum, the things might get really interesting here.
842 static inline u32 get_hwtid(struct sk_buff *skb)
844 return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
847 static inline u32 get_opcode(struct sk_buff *skb)
849 return G_OPCODE(ntohl((__force __be32)skb->csum));
852 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
854 unsigned int hwtid = get_hwtid(skb);
855 unsigned int opcode = get_opcode(skb);
856 struct t3c_tid_entry *t3c_tid;
858 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
859 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
860 t3c_tid->client->handlers[opcode]) {
861 return t3c_tid->client->handlers[opcode] (dev, skb,
862 t3c_tid->ctx);
863 } else {
864 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
865 dev->name, opcode);
866 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
870 static int nb_callback(struct notifier_block *self, unsigned long event,
871 void *ctx)
873 switch (event) {
874 case (NETEVENT_NEIGH_UPDATE):{
875 cxgb_neigh_update((struct neighbour *)ctx);
876 break;
878 case (NETEVENT_PMTU_UPDATE):
879 break;
880 case (NETEVENT_REDIRECT):{
881 struct netevent_redirect *nr = ctx;
882 cxgb_redirect(nr->old, nr->new);
883 cxgb_neigh_update(nr->new->neighbour);
884 break;
886 default:
887 break;
889 return 0;
892 static struct notifier_block nb = {
893 .notifier_call = nb_callback
897 * Process a received packet with an unknown/unexpected CPL opcode.
899 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
901 printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
902 *skb->data);
903 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
907 * Handlers for each CPL opcode
909 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
912 * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
913 * to unregister an existing handler.
915 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
917 if (opcode < NUM_CPL_CMDS)
918 cpl_handlers[opcode] = h ? h : do_bad_cpl;
919 else
920 printk(KERN_ERR "T3C: handler registration for "
921 "opcode %x failed\n", opcode);
924 EXPORT_SYMBOL(t3_register_cpl_handler);
927 * T3CDEV's receive method.
929 int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
931 while (n--) {
932 struct sk_buff *skb = *skbs++;
933 unsigned int opcode = get_opcode(skb);
934 int ret = cpl_handlers[opcode] (dev, skb);
936 #if VALIDATE_TID
937 if (ret & CPL_RET_UNKNOWN_TID) {
938 union opcode_tid *p = cplhdr(skb);
940 printk(KERN_ERR "%s: CPL message (opcode %u) had "
941 "unknown TID %u\n", dev->name, opcode,
942 G_TID(ntohl(p->opcode_tid)));
944 #endif
945 if (ret & CPL_RET_BUF_DONE)
946 kfree_skb(skb);
948 return 0;
952 * Sends an sk_buff to a T3C driver after dealing with any active network taps.
954 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
956 int r;
958 local_bh_disable();
959 r = dev->send(dev, skb);
960 local_bh_enable();
961 return r;
964 EXPORT_SYMBOL(cxgb3_ofld_send);
966 static int is_offloading(struct net_device *dev)
968 struct adapter *adapter;
969 int i;
971 read_lock_bh(&adapter_list_lock);
972 list_for_each_entry(adapter, &adapter_list, adapter_list) {
973 for_each_port(adapter, i) {
974 if (dev == adapter->port[i]) {
975 read_unlock_bh(&adapter_list_lock);
976 return 1;
980 read_unlock_bh(&adapter_list_lock);
981 return 0;
984 void cxgb_neigh_update(struct neighbour *neigh)
986 struct net_device *dev = neigh->dev;
988 if (dev && (is_offloading(dev))) {
989 struct t3cdev *tdev = dev2t3cdev(dev);
991 BUG_ON(!tdev);
992 t3_l2t_update(tdev, neigh);
996 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
998 struct sk_buff *skb;
999 struct cpl_set_tcb_field *req;
1001 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1002 if (!skb) {
1003 printk(KERN_ERR "%s: cannot allocate skb!\n", __FUNCTION__);
1004 return;
1006 skb->priority = CPL_PRIORITY_CONTROL;
1007 req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1008 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1009 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1010 req->reply = 0;
1011 req->cpu_idx = 0;
1012 req->word = htons(W_TCB_L2T_IX);
1013 req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1014 req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1015 tdev->send(tdev, skb);
1018 void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
1020 struct net_device *olddev, *newdev;
1021 struct tid_info *ti;
1022 struct t3cdev *tdev;
1023 u32 tid;
1024 int update_tcb;
1025 struct l2t_entry *e;
1026 struct t3c_tid_entry *te;
1028 olddev = old->neighbour->dev;
1029 newdev = new->neighbour->dev;
1030 if (!is_offloading(olddev))
1031 return;
1032 if (!is_offloading(newdev)) {
1033 printk(KERN_WARNING "%s: Redirect to non-offload "
1034 "device ignored.\n", __FUNCTION__);
1035 return;
1037 tdev = dev2t3cdev(olddev);
1038 BUG_ON(!tdev);
1039 if (tdev != dev2t3cdev(newdev)) {
1040 printk(KERN_WARNING "%s: Redirect to different "
1041 "offload device ignored.\n", __FUNCTION__);
1042 return;
1045 /* Add new L2T entry */
1046 e = t3_l2t_get(tdev, new->neighbour, newdev);
1047 if (!e) {
1048 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1049 __FUNCTION__);
1050 return;
1053 /* Walk tid table and notify clients of dst change. */
1054 ti = &(T3C_DATA(tdev))->tid_maps;
1055 for (tid = 0; tid < ti->ntids; tid++) {
1056 te = lookup_tid(ti, tid);
1057 BUG_ON(!te);
1058 if (te && te->ctx && te->client && te->client->redirect) {
1059 update_tcb = te->client->redirect(te->ctx, old, new, e);
1060 if (update_tcb) {
1061 l2t_hold(L2DATA(tdev), e);
1062 set_l2t_ix(tdev, tid, e);
1066 l2t_release(L2DATA(tdev), e);
1070 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1071 * The allocated memory is cleared.
1073 void *cxgb_alloc_mem(unsigned long size)
1075 void *p = kmalloc(size, GFP_KERNEL);
1077 if (!p)
1078 p = vmalloc(size);
1079 if (p)
1080 memset(p, 0, size);
1081 return p;
1085 * Free memory allocated through t3_alloc_mem().
1087 void cxgb_free_mem(void *addr)
1089 if (is_vmalloc_addr(addr))
1090 vfree(addr);
1091 else
1092 kfree(addr);
1096 * Allocate and initialize the TID tables. Returns 0 on success.
1098 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1099 unsigned int natids, unsigned int nstids,
1100 unsigned int atid_base, unsigned int stid_base)
1102 unsigned long size = ntids * sizeof(*t->tid_tab) +
1103 natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1105 t->tid_tab = cxgb_alloc_mem(size);
1106 if (!t->tid_tab)
1107 return -ENOMEM;
1109 t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1110 t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1111 t->ntids = ntids;
1112 t->nstids = nstids;
1113 t->stid_base = stid_base;
1114 t->sfree = NULL;
1115 t->natids = natids;
1116 t->atid_base = atid_base;
1117 t->afree = NULL;
1118 t->stids_in_use = t->atids_in_use = 0;
1119 atomic_set(&t->tids_in_use, 0);
1120 spin_lock_init(&t->stid_lock);
1121 spin_lock_init(&t->atid_lock);
1124 * Setup the free lists for stid_tab and atid_tab.
1126 if (nstids) {
1127 while (--nstids)
1128 t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1129 t->sfree = t->stid_tab;
1131 if (natids) {
1132 while (--natids)
1133 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1134 t->afree = t->atid_tab;
1136 return 0;
1139 static void free_tid_maps(struct tid_info *t)
1141 cxgb_free_mem(t->tid_tab);
1144 static inline void add_adapter(struct adapter *adap)
1146 write_lock_bh(&adapter_list_lock);
1147 list_add_tail(&adap->adapter_list, &adapter_list);
1148 write_unlock_bh(&adapter_list_lock);
1151 static inline void remove_adapter(struct adapter *adap)
1153 write_lock_bh(&adapter_list_lock);
1154 list_del(&adap->adapter_list);
1155 write_unlock_bh(&adapter_list_lock);
1158 int cxgb3_offload_activate(struct adapter *adapter)
1160 struct t3cdev *dev = &adapter->tdev;
1161 int natids, err;
1162 struct t3c_data *t;
1163 struct tid_range stid_range, tid_range;
1164 struct mtutab mtutab;
1165 unsigned int l2t_capacity;
1167 t = kcalloc(1, sizeof(*t), GFP_KERNEL);
1168 if (!t)
1169 return -ENOMEM;
1171 err = -EOPNOTSUPP;
1172 if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1173 dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1174 dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1175 dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1176 dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1177 dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1178 goto out_free;
1180 err = -ENOMEM;
1181 L2DATA(dev) = t3_init_l2t(l2t_capacity);
1182 if (!L2DATA(dev))
1183 goto out_free;
1185 natids = min(tid_range.num / 2, MAX_ATIDS);
1186 err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1187 stid_range.num, ATID_BASE, stid_range.base);
1188 if (err)
1189 goto out_free_l2t;
1191 t->mtus = mtutab.mtus;
1192 t->nmtus = mtutab.size;
1194 INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1195 spin_lock_init(&t->tid_release_lock);
1196 INIT_LIST_HEAD(&t->list_node);
1197 t->dev = dev;
1199 T3C_DATA(dev) = t;
1200 dev->recv = process_rx;
1201 dev->neigh_update = t3_l2t_update;
1203 /* Register netevent handler once */
1204 if (list_empty(&adapter_list))
1205 register_netevent_notifier(&nb);
1207 add_adapter(adapter);
1208 return 0;
1210 out_free_l2t:
1211 t3_free_l2t(L2DATA(dev));
1212 L2DATA(dev) = NULL;
1213 out_free:
1214 kfree(t);
1215 return err;
1218 void cxgb3_offload_deactivate(struct adapter *adapter)
1220 struct t3cdev *tdev = &adapter->tdev;
1221 struct t3c_data *t = T3C_DATA(tdev);
1223 remove_adapter(adapter);
1224 if (list_empty(&adapter_list))
1225 unregister_netevent_notifier(&nb);
1227 free_tid_maps(&t->tid_maps);
1228 T3C_DATA(tdev) = NULL;
1229 t3_free_l2t(L2DATA(tdev));
1230 L2DATA(tdev) = NULL;
1231 kfree(t);
1234 static inline void register_tdev(struct t3cdev *tdev)
1236 static int unit;
1238 mutex_lock(&cxgb3_db_lock);
1239 snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1240 list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1241 mutex_unlock(&cxgb3_db_lock);
1244 static inline void unregister_tdev(struct t3cdev *tdev)
1246 mutex_lock(&cxgb3_db_lock);
1247 list_del(&tdev->ofld_dev_list);
1248 mutex_unlock(&cxgb3_db_lock);
1251 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1253 struct t3cdev *tdev = &adapter->tdev;
1255 INIT_LIST_HEAD(&tdev->ofld_dev_list);
1257 cxgb3_set_dummy_ops(tdev);
1258 tdev->send = t3_offload_tx;
1259 tdev->ctl = cxgb_offload_ctl;
1260 tdev->type = adapter->params.rev == 0 ? T3A : T3B;
1262 register_tdev(tdev);
1265 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1267 struct t3cdev *tdev = &adapter->tdev;
1269 tdev->recv = NULL;
1270 tdev->neigh_update = NULL;
1272 unregister_tdev(tdev);
1275 void __init cxgb3_offload_init(void)
1277 int i;
1279 for (i = 0; i < NUM_CPL_CMDS; ++i)
1280 cpl_handlers[i] = do_bad_cpl;
1282 t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1283 t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1284 t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1285 t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1286 t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1287 t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1288 t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1289 t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1290 t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1291 t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1292 t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1293 t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1294 t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1295 t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1296 t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1297 t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1298 t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1299 t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1300 t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1301 t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1302 t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1303 t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1304 t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1305 t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1306 t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1307 t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);