net: introduce sk_gfp_atomic() to allow addition of GFP flags depending on the indivi...
[linux/fpc-iii.git] / include / net / sock.h
blob11ccde65c4cfa4d957e5904538a4dcbe2808e64c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 return 0;
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
86 #endif
88 * This structure really needs to be cleaned up.
89 * Most of it is for TCP, and not used by any of
90 * the other protocols.
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
104 #endif
106 /* This is the per-socket lock. The spinlock provides a synchronization
107 * between user contexts and software interrupt processing, whereas the
108 * mini-semaphore synchronizes multiple users amongst themselves.
110 typedef struct {
111 spinlock_t slock;
112 int owned;
113 wait_queue_head_t wq;
115 * We express the mutex-alike socket_lock semantics
116 * to the lock validator by explicitly managing
117 * the slock as a lock variant (in addition to
118 * the slock itself):
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
125 struct sock;
126 struct proto;
127 struct net;
130 * struct sock_common - minimal network layer representation of sockets
131 * @skc_daddr: Foreign IPv4 addr
132 * @skc_rcv_saddr: Bound local IPv4 addr
133 * @skc_hash: hash value used with various protocol lookup tables
134 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
135 * @skc_family: network address family
136 * @skc_state: Connection state
137 * @skc_reuse: %SO_REUSEADDR setting
138 * @skc_bound_dev_if: bound device index if != 0
139 * @skc_bind_node: bind hash linkage for various protocol lookup tables
140 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
141 * @skc_prot: protocol handlers inside a network family
142 * @skc_net: reference to the network namespace of this socket
143 * @skc_node: main hash linkage for various protocol lookup tables
144 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
145 * @skc_tx_queue_mapping: tx queue number for this connection
146 * @skc_refcnt: reference count
148 * This is the minimal network layer representation of sockets, the header
149 * for struct sock and struct inet_timewait_sock.
151 struct sock_common {
152 /* skc_daddr and skc_rcv_saddr must be grouped :
153 * cf INET_MATCH() and INET_TW_MATCH()
155 __be32 skc_daddr;
156 __be32 skc_rcv_saddr;
158 union {
159 unsigned int skc_hash;
160 __u16 skc_u16hashes[2];
162 unsigned short skc_family;
163 volatile unsigned char skc_state;
164 unsigned char skc_reuse;
165 int skc_bound_dev_if;
166 union {
167 struct hlist_node skc_bind_node;
168 struct hlist_nulls_node skc_portaddr_node;
170 struct proto *skc_prot;
171 #ifdef CONFIG_NET_NS
172 struct net *skc_net;
173 #endif
175 * fields between dontcopy_begin/dontcopy_end
176 * are not copied in sock_copy()
178 /* private: */
179 int skc_dontcopy_begin[0];
180 /* public: */
181 union {
182 struct hlist_node skc_node;
183 struct hlist_nulls_node skc_nulls_node;
185 int skc_tx_queue_mapping;
186 atomic_t skc_refcnt;
187 /* private: */
188 int skc_dontcopy_end[0];
189 /* public: */
192 struct cg_proto;
194 * struct sock - network layer representation of sockets
195 * @__sk_common: shared layout with inet_timewait_sock
196 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
197 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
198 * @sk_lock: synchronizer
199 * @sk_rcvbuf: size of receive buffer in bytes
200 * @sk_wq: sock wait queue and async head
201 * @sk_rx_dst: receive input route used by early tcp demux
202 * @sk_dst_cache: destination cache
203 * @sk_dst_lock: destination cache lock
204 * @sk_policy: flow policy
205 * @sk_receive_queue: incoming packets
206 * @sk_wmem_alloc: transmit queue bytes committed
207 * @sk_write_queue: Packet sending queue
208 * @sk_async_wait_queue: DMA copied packets
209 * @sk_omem_alloc: "o" is "option" or "other"
210 * @sk_wmem_queued: persistent queue size
211 * @sk_forward_alloc: space allocated forward
212 * @sk_allocation: allocation mode
213 * @sk_sndbuf: size of send buffer in bytes
214 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
215 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
216 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
217 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
218 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
219 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
220 * @sk_gso_max_size: Maximum GSO segment size to build
221 * @sk_lingertime: %SO_LINGER l_linger setting
222 * @sk_backlog: always used with the per-socket spinlock held
223 * @sk_callback_lock: used with the callbacks in the end of this struct
224 * @sk_error_queue: rarely used
225 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
226 * IPV6_ADDRFORM for instance)
227 * @sk_err: last error
228 * @sk_err_soft: errors that don't cause failure but are the cause of a
229 * persistent failure not just 'timed out'
230 * @sk_drops: raw/udp drops counter
231 * @sk_ack_backlog: current listen backlog
232 * @sk_max_ack_backlog: listen backlog set in listen()
233 * @sk_priority: %SO_PRIORITY setting
234 * @sk_cgrp_prioidx: socket group's priority map index
235 * @sk_type: socket type (%SOCK_STREAM, etc)
236 * @sk_protocol: which protocol this socket belongs in this network family
237 * @sk_peer_pid: &struct pid for this socket's peer
238 * @sk_peer_cred: %SO_PEERCRED setting
239 * @sk_rcvlowat: %SO_RCVLOWAT setting
240 * @sk_rcvtimeo: %SO_RCVTIMEO setting
241 * @sk_sndtimeo: %SO_SNDTIMEO setting
242 * @sk_rxhash: flow hash received from netif layer
243 * @sk_filter: socket filtering instructions
244 * @sk_protinfo: private area, net family specific, when not using slab
245 * @sk_timer: sock cleanup timer
246 * @sk_stamp: time stamp of last packet received
247 * @sk_socket: Identd and reporting IO signals
248 * @sk_user_data: RPC layer private data
249 * @sk_sndmsg_page: cached page for sendmsg
250 * @sk_sndmsg_off: cached offset for sendmsg
251 * @sk_peek_off: current peek_offset value
252 * @sk_send_head: front of stuff to transmit
253 * @sk_security: used by security modules
254 * @sk_mark: generic packet mark
255 * @sk_classid: this socket's cgroup classid
256 * @sk_cgrp: this socket's cgroup-specific proto data
257 * @sk_write_pending: a write to stream socket waits to start
258 * @sk_state_change: callback to indicate change in the state of the sock
259 * @sk_data_ready: callback to indicate there is data to be processed
260 * @sk_write_space: callback to indicate there is bf sending space available
261 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
262 * @sk_backlog_rcv: callback to process the backlog
263 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
265 struct sock {
267 * Now struct inet_timewait_sock also uses sock_common, so please just
268 * don't add nothing before this first member (__sk_common) --acme
270 struct sock_common __sk_common;
271 #define sk_node __sk_common.skc_node
272 #define sk_nulls_node __sk_common.skc_nulls_node
273 #define sk_refcnt __sk_common.skc_refcnt
274 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
276 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
277 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
278 #define sk_hash __sk_common.skc_hash
279 #define sk_family __sk_common.skc_family
280 #define sk_state __sk_common.skc_state
281 #define sk_reuse __sk_common.skc_reuse
282 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
283 #define sk_bind_node __sk_common.skc_bind_node
284 #define sk_prot __sk_common.skc_prot
285 #define sk_net __sk_common.skc_net
286 socket_lock_t sk_lock;
287 struct sk_buff_head sk_receive_queue;
289 * The backlog queue is special, it is always used with
290 * the per-socket spinlock held and requires low latency
291 * access. Therefore we special case it's implementation.
292 * Note : rmem_alloc is in this structure to fill a hole
293 * on 64bit arches, not because its logically part of
294 * backlog.
296 struct {
297 atomic_t rmem_alloc;
298 int len;
299 struct sk_buff *head;
300 struct sk_buff *tail;
301 } sk_backlog;
302 #define sk_rmem_alloc sk_backlog.rmem_alloc
303 int sk_forward_alloc;
304 #ifdef CONFIG_RPS
305 __u32 sk_rxhash;
306 #endif
307 atomic_t sk_drops;
308 int sk_rcvbuf;
310 struct sk_filter __rcu *sk_filter;
311 struct socket_wq __rcu *sk_wq;
313 #ifdef CONFIG_NET_DMA
314 struct sk_buff_head sk_async_wait_queue;
315 #endif
317 #ifdef CONFIG_XFRM
318 struct xfrm_policy *sk_policy[2];
319 #endif
320 unsigned long sk_flags;
321 struct dst_entry *sk_rx_dst;
322 struct dst_entry *sk_dst_cache;
323 spinlock_t sk_dst_lock;
324 atomic_t sk_wmem_alloc;
325 atomic_t sk_omem_alloc;
326 int sk_sndbuf;
327 struct sk_buff_head sk_write_queue;
328 kmemcheck_bitfield_begin(flags);
329 unsigned int sk_shutdown : 2,
330 sk_no_check : 2,
331 sk_userlocks : 4,
332 sk_protocol : 8,
333 sk_type : 16;
334 kmemcheck_bitfield_end(flags);
335 int sk_wmem_queued;
336 gfp_t sk_allocation;
337 netdev_features_t sk_route_caps;
338 netdev_features_t sk_route_nocaps;
339 int sk_gso_type;
340 unsigned int sk_gso_max_size;
341 int sk_rcvlowat;
342 unsigned long sk_lingertime;
343 struct sk_buff_head sk_error_queue;
344 struct proto *sk_prot_creator;
345 rwlock_t sk_callback_lock;
346 int sk_err,
347 sk_err_soft;
348 unsigned short sk_ack_backlog;
349 unsigned short sk_max_ack_backlog;
350 __u32 sk_priority;
351 #ifdef CONFIG_CGROUPS
352 __u32 sk_cgrp_prioidx;
353 #endif
354 struct pid *sk_peer_pid;
355 const struct cred *sk_peer_cred;
356 long sk_rcvtimeo;
357 long sk_sndtimeo;
358 void *sk_protinfo;
359 struct timer_list sk_timer;
360 ktime_t sk_stamp;
361 struct socket *sk_socket;
362 void *sk_user_data;
363 struct page *sk_sndmsg_page;
364 struct sk_buff *sk_send_head;
365 __u32 sk_sndmsg_off;
366 __s32 sk_peek_off;
367 int sk_write_pending;
368 #ifdef CONFIG_SECURITY
369 void *sk_security;
370 #endif
371 __u32 sk_mark;
372 u32 sk_classid;
373 struct cg_proto *sk_cgrp;
374 void (*sk_state_change)(struct sock *sk);
375 void (*sk_data_ready)(struct sock *sk, int bytes);
376 void (*sk_write_space)(struct sock *sk);
377 void (*sk_error_report)(struct sock *sk);
378 int (*sk_backlog_rcv)(struct sock *sk,
379 struct sk_buff *skb);
380 void (*sk_destruct)(struct sock *sk);
384 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
385 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
386 * on a socket means that the socket will reuse everybody else's port
387 * without looking at the other's sk_reuse value.
390 #define SK_NO_REUSE 0
391 #define SK_CAN_REUSE 1
392 #define SK_FORCE_REUSE 2
394 static inline int sk_peek_offset(struct sock *sk, int flags)
396 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
397 return sk->sk_peek_off;
398 else
399 return 0;
402 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
404 if (sk->sk_peek_off >= 0) {
405 if (sk->sk_peek_off >= val)
406 sk->sk_peek_off -= val;
407 else
408 sk->sk_peek_off = 0;
412 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
414 if (sk->sk_peek_off >= 0)
415 sk->sk_peek_off += val;
419 * Hashed lists helper routines
421 static inline struct sock *sk_entry(const struct hlist_node *node)
423 return hlist_entry(node, struct sock, sk_node);
426 static inline struct sock *__sk_head(const struct hlist_head *head)
428 return hlist_entry(head->first, struct sock, sk_node);
431 static inline struct sock *sk_head(const struct hlist_head *head)
433 return hlist_empty(head) ? NULL : __sk_head(head);
436 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
438 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
441 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
443 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
446 static inline struct sock *sk_next(const struct sock *sk)
448 return sk->sk_node.next ?
449 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
452 static inline struct sock *sk_nulls_next(const struct sock *sk)
454 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
455 hlist_nulls_entry(sk->sk_nulls_node.next,
456 struct sock, sk_nulls_node) :
457 NULL;
460 static inline bool sk_unhashed(const struct sock *sk)
462 return hlist_unhashed(&sk->sk_node);
465 static inline bool sk_hashed(const struct sock *sk)
467 return !sk_unhashed(sk);
470 static inline void sk_node_init(struct hlist_node *node)
472 node->pprev = NULL;
475 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
477 node->pprev = NULL;
480 static inline void __sk_del_node(struct sock *sk)
482 __hlist_del(&sk->sk_node);
485 /* NB: equivalent to hlist_del_init_rcu */
486 static inline bool __sk_del_node_init(struct sock *sk)
488 if (sk_hashed(sk)) {
489 __sk_del_node(sk);
490 sk_node_init(&sk->sk_node);
491 return true;
493 return false;
496 /* Grab socket reference count. This operation is valid only
497 when sk is ALREADY grabbed f.e. it is found in hash table
498 or a list and the lookup is made under lock preventing hash table
499 modifications.
502 static inline void sock_hold(struct sock *sk)
504 atomic_inc(&sk->sk_refcnt);
507 /* Ungrab socket in the context, which assumes that socket refcnt
508 cannot hit zero, f.e. it is true in context of any socketcall.
510 static inline void __sock_put(struct sock *sk)
512 atomic_dec(&sk->sk_refcnt);
515 static inline bool sk_del_node_init(struct sock *sk)
517 bool rc = __sk_del_node_init(sk);
519 if (rc) {
520 /* paranoid for a while -acme */
521 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
522 __sock_put(sk);
524 return rc;
526 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
528 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
530 if (sk_hashed(sk)) {
531 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
532 return true;
534 return false;
537 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
539 bool rc = __sk_nulls_del_node_init_rcu(sk);
541 if (rc) {
542 /* paranoid for a while -acme */
543 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
544 __sock_put(sk);
546 return rc;
549 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
551 hlist_add_head(&sk->sk_node, list);
554 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
556 sock_hold(sk);
557 __sk_add_node(sk, list);
560 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
562 sock_hold(sk);
563 hlist_add_head_rcu(&sk->sk_node, list);
566 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
568 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
571 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
573 sock_hold(sk);
574 __sk_nulls_add_node_rcu(sk, list);
577 static inline void __sk_del_bind_node(struct sock *sk)
579 __hlist_del(&sk->sk_bind_node);
582 static inline void sk_add_bind_node(struct sock *sk,
583 struct hlist_head *list)
585 hlist_add_head(&sk->sk_bind_node, list);
588 #define sk_for_each(__sk, node, list) \
589 hlist_for_each_entry(__sk, node, list, sk_node)
590 #define sk_for_each_rcu(__sk, node, list) \
591 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
592 #define sk_nulls_for_each(__sk, node, list) \
593 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
594 #define sk_nulls_for_each_rcu(__sk, node, list) \
595 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
596 #define sk_for_each_from(__sk, node) \
597 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
598 hlist_for_each_entry_from(__sk, node, sk_node)
599 #define sk_nulls_for_each_from(__sk, node) \
600 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
601 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
602 #define sk_for_each_safe(__sk, node, tmp, list) \
603 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
604 #define sk_for_each_bound(__sk, node, list) \
605 hlist_for_each_entry(__sk, node, list, sk_bind_node)
607 /* Sock flags */
608 enum sock_flags {
609 SOCK_DEAD,
610 SOCK_DONE,
611 SOCK_URGINLINE,
612 SOCK_KEEPOPEN,
613 SOCK_LINGER,
614 SOCK_DESTROY,
615 SOCK_BROADCAST,
616 SOCK_TIMESTAMP,
617 SOCK_ZAPPED,
618 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
619 SOCK_DBG, /* %SO_DEBUG setting */
620 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
621 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
622 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
623 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
624 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
625 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
626 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
627 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
628 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
629 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
630 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
631 SOCK_FASYNC, /* fasync() active */
632 SOCK_RXQ_OVFL,
633 SOCK_ZEROCOPY, /* buffers from userspace */
634 SOCK_WIFI_STATUS, /* push wifi status to userspace */
635 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
636 * Will use last 4 bytes of packet sent from
637 * user-space instead.
641 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
643 nsk->sk_flags = osk->sk_flags;
646 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
648 __set_bit(flag, &sk->sk_flags);
651 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
653 __clear_bit(flag, &sk->sk_flags);
656 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
658 return test_bit(flag, &sk->sk_flags);
661 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
663 return GFP_ATOMIC;
666 static inline void sk_acceptq_removed(struct sock *sk)
668 sk->sk_ack_backlog--;
671 static inline void sk_acceptq_added(struct sock *sk)
673 sk->sk_ack_backlog++;
676 static inline bool sk_acceptq_is_full(const struct sock *sk)
678 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
682 * Compute minimal free write space needed to queue new packets.
684 static inline int sk_stream_min_wspace(const struct sock *sk)
686 return sk->sk_wmem_queued >> 1;
689 static inline int sk_stream_wspace(const struct sock *sk)
691 return sk->sk_sndbuf - sk->sk_wmem_queued;
694 extern void sk_stream_write_space(struct sock *sk);
696 static inline bool sk_stream_memory_free(const struct sock *sk)
698 return sk->sk_wmem_queued < sk->sk_sndbuf;
701 /* OOB backlog add */
702 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
704 /* dont let skb dst not refcounted, we are going to leave rcu lock */
705 skb_dst_force(skb);
707 if (!sk->sk_backlog.tail)
708 sk->sk_backlog.head = skb;
709 else
710 sk->sk_backlog.tail->next = skb;
712 sk->sk_backlog.tail = skb;
713 skb->next = NULL;
717 * Take into account size of receive queue and backlog queue
718 * Do not take into account this skb truesize,
719 * to allow even a single big packet to come.
721 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
722 unsigned int limit)
724 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
726 return qsize > limit;
729 /* The per-socket spinlock must be held here. */
730 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
731 unsigned int limit)
733 if (sk_rcvqueues_full(sk, skb, limit))
734 return -ENOBUFS;
736 __sk_add_backlog(sk, skb);
737 sk->sk_backlog.len += skb->truesize;
738 return 0;
741 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
743 return sk->sk_backlog_rcv(sk, skb);
746 static inline void sock_rps_record_flow(const struct sock *sk)
748 #ifdef CONFIG_RPS
749 struct rps_sock_flow_table *sock_flow_table;
751 rcu_read_lock();
752 sock_flow_table = rcu_dereference(rps_sock_flow_table);
753 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
754 rcu_read_unlock();
755 #endif
758 static inline void sock_rps_reset_flow(const struct sock *sk)
760 #ifdef CONFIG_RPS
761 struct rps_sock_flow_table *sock_flow_table;
763 rcu_read_lock();
764 sock_flow_table = rcu_dereference(rps_sock_flow_table);
765 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
766 rcu_read_unlock();
767 #endif
770 static inline void sock_rps_save_rxhash(struct sock *sk,
771 const struct sk_buff *skb)
773 #ifdef CONFIG_RPS
774 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
775 sock_rps_reset_flow(sk);
776 sk->sk_rxhash = skb->rxhash;
778 #endif
781 static inline void sock_rps_reset_rxhash(struct sock *sk)
783 #ifdef CONFIG_RPS
784 sock_rps_reset_flow(sk);
785 sk->sk_rxhash = 0;
786 #endif
789 #define sk_wait_event(__sk, __timeo, __condition) \
790 ({ int __rc; \
791 release_sock(__sk); \
792 __rc = __condition; \
793 if (!__rc) { \
794 *(__timeo) = schedule_timeout(*(__timeo)); \
796 lock_sock(__sk); \
797 __rc = __condition; \
798 __rc; \
801 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
802 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
803 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
804 extern int sk_stream_error(struct sock *sk, int flags, int err);
805 extern void sk_stream_kill_queues(struct sock *sk);
807 extern int sk_wait_data(struct sock *sk, long *timeo);
809 struct request_sock_ops;
810 struct timewait_sock_ops;
811 struct inet_hashinfo;
812 struct raw_hashinfo;
813 struct module;
815 /* Networking protocol blocks we attach to sockets.
816 * socket layer -> transport layer interface
817 * transport -> network interface is defined by struct inet_proto
819 struct proto {
820 void (*close)(struct sock *sk,
821 long timeout);
822 int (*connect)(struct sock *sk,
823 struct sockaddr *uaddr,
824 int addr_len);
825 int (*disconnect)(struct sock *sk, int flags);
827 struct sock * (*accept)(struct sock *sk, int flags, int *err);
829 int (*ioctl)(struct sock *sk, int cmd,
830 unsigned long arg);
831 int (*init)(struct sock *sk);
832 void (*destroy)(struct sock *sk);
833 void (*shutdown)(struct sock *sk, int how);
834 int (*setsockopt)(struct sock *sk, int level,
835 int optname, char __user *optval,
836 unsigned int optlen);
837 int (*getsockopt)(struct sock *sk, int level,
838 int optname, char __user *optval,
839 int __user *option);
840 #ifdef CONFIG_COMPAT
841 int (*compat_setsockopt)(struct sock *sk,
842 int level,
843 int optname, char __user *optval,
844 unsigned int optlen);
845 int (*compat_getsockopt)(struct sock *sk,
846 int level,
847 int optname, char __user *optval,
848 int __user *option);
849 int (*compat_ioctl)(struct sock *sk,
850 unsigned int cmd, unsigned long arg);
851 #endif
852 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
853 struct msghdr *msg, size_t len);
854 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
855 struct msghdr *msg,
856 size_t len, int noblock, int flags,
857 int *addr_len);
858 int (*sendpage)(struct sock *sk, struct page *page,
859 int offset, size_t size, int flags);
860 int (*bind)(struct sock *sk,
861 struct sockaddr *uaddr, int addr_len);
863 int (*backlog_rcv) (struct sock *sk,
864 struct sk_buff *skb);
866 void (*release_cb)(struct sock *sk);
867 void (*mtu_reduced)(struct sock *sk);
869 /* Keeping track of sk's, looking them up, and port selection methods. */
870 void (*hash)(struct sock *sk);
871 void (*unhash)(struct sock *sk);
872 void (*rehash)(struct sock *sk);
873 int (*get_port)(struct sock *sk, unsigned short snum);
874 void (*clear_sk)(struct sock *sk, int size);
876 /* Keeping track of sockets in use */
877 #ifdef CONFIG_PROC_FS
878 unsigned int inuse_idx;
879 #endif
881 /* Memory pressure */
882 void (*enter_memory_pressure)(struct sock *sk);
883 atomic_long_t *memory_allocated; /* Current allocated memory. */
884 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
886 * Pressure flag: try to collapse.
887 * Technical note: it is used by multiple contexts non atomically.
888 * All the __sk_mem_schedule() is of this nature: accounting
889 * is strict, actions are advisory and have some latency.
891 int *memory_pressure;
892 long *sysctl_mem;
893 int *sysctl_wmem;
894 int *sysctl_rmem;
895 int max_header;
896 bool no_autobind;
898 struct kmem_cache *slab;
899 unsigned int obj_size;
900 int slab_flags;
902 struct percpu_counter *orphan_count;
904 struct request_sock_ops *rsk_prot;
905 struct timewait_sock_ops *twsk_prot;
907 union {
908 struct inet_hashinfo *hashinfo;
909 struct udp_table *udp_table;
910 struct raw_hashinfo *raw_hash;
911 } h;
913 struct module *owner;
915 char name[32];
917 struct list_head node;
918 #ifdef SOCK_REFCNT_DEBUG
919 atomic_t socks;
920 #endif
921 #ifdef CONFIG_MEMCG_KMEM
923 * cgroup specific init/deinit functions. Called once for all
924 * protocols that implement it, from cgroups populate function.
925 * This function has to setup any files the protocol want to
926 * appear in the kmem cgroup filesystem.
928 int (*init_cgroup)(struct mem_cgroup *memcg,
929 struct cgroup_subsys *ss);
930 void (*destroy_cgroup)(struct mem_cgroup *memcg);
931 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
932 #endif
936 * Bits in struct cg_proto.flags
938 enum cg_proto_flags {
939 /* Currently active and new sockets should be assigned to cgroups */
940 MEMCG_SOCK_ACTIVE,
941 /* It was ever activated; we must disarm static keys on destruction */
942 MEMCG_SOCK_ACTIVATED,
945 struct cg_proto {
946 void (*enter_memory_pressure)(struct sock *sk);
947 struct res_counter *memory_allocated; /* Current allocated memory. */
948 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
949 int *memory_pressure;
950 long *sysctl_mem;
951 unsigned long flags;
953 * memcg field is used to find which memcg we belong directly
954 * Each memcg struct can hold more than one cg_proto, so container_of
955 * won't really cut.
957 * The elegant solution would be having an inverse function to
958 * proto_cgroup in struct proto, but that means polluting the structure
959 * for everybody, instead of just for memcg users.
961 struct mem_cgroup *memcg;
964 extern int proto_register(struct proto *prot, int alloc_slab);
965 extern void proto_unregister(struct proto *prot);
967 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
969 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
972 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
974 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
977 #ifdef SOCK_REFCNT_DEBUG
978 static inline void sk_refcnt_debug_inc(struct sock *sk)
980 atomic_inc(&sk->sk_prot->socks);
983 static inline void sk_refcnt_debug_dec(struct sock *sk)
985 atomic_dec(&sk->sk_prot->socks);
986 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
987 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
990 inline void sk_refcnt_debug_release(const struct sock *sk)
992 if (atomic_read(&sk->sk_refcnt) != 1)
993 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
994 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
996 #else /* SOCK_REFCNT_DEBUG */
997 #define sk_refcnt_debug_inc(sk) do { } while (0)
998 #define sk_refcnt_debug_dec(sk) do { } while (0)
999 #define sk_refcnt_debug_release(sk) do { } while (0)
1000 #endif /* SOCK_REFCNT_DEBUG */
1002 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1003 extern struct static_key memcg_socket_limit_enabled;
1004 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1005 struct cg_proto *cg_proto)
1007 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1009 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1010 #else
1011 #define mem_cgroup_sockets_enabled 0
1012 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1013 struct cg_proto *cg_proto)
1015 return NULL;
1017 #endif
1020 static inline bool sk_has_memory_pressure(const struct sock *sk)
1022 return sk->sk_prot->memory_pressure != NULL;
1025 static inline bool sk_under_memory_pressure(const struct sock *sk)
1027 if (!sk->sk_prot->memory_pressure)
1028 return false;
1030 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1031 return !!*sk->sk_cgrp->memory_pressure;
1033 return !!*sk->sk_prot->memory_pressure;
1036 static inline void sk_leave_memory_pressure(struct sock *sk)
1038 int *memory_pressure = sk->sk_prot->memory_pressure;
1040 if (!memory_pressure)
1041 return;
1043 if (*memory_pressure)
1044 *memory_pressure = 0;
1046 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1047 struct cg_proto *cg_proto = sk->sk_cgrp;
1048 struct proto *prot = sk->sk_prot;
1050 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1051 if (*cg_proto->memory_pressure)
1052 *cg_proto->memory_pressure = 0;
1057 static inline void sk_enter_memory_pressure(struct sock *sk)
1059 if (!sk->sk_prot->enter_memory_pressure)
1060 return;
1062 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1063 struct cg_proto *cg_proto = sk->sk_cgrp;
1064 struct proto *prot = sk->sk_prot;
1066 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1067 cg_proto->enter_memory_pressure(sk);
1070 sk->sk_prot->enter_memory_pressure(sk);
1073 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1075 long *prot = sk->sk_prot->sysctl_mem;
1076 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1077 prot = sk->sk_cgrp->sysctl_mem;
1078 return prot[index];
1081 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1082 unsigned long amt,
1083 int *parent_status)
1085 struct res_counter *fail;
1086 int ret;
1088 ret = res_counter_charge_nofail(prot->memory_allocated,
1089 amt << PAGE_SHIFT, &fail);
1090 if (ret < 0)
1091 *parent_status = OVER_LIMIT;
1094 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1095 unsigned long amt)
1097 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1100 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1102 u64 ret;
1103 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1104 return ret >> PAGE_SHIFT;
1107 static inline long
1108 sk_memory_allocated(const struct sock *sk)
1110 struct proto *prot = sk->sk_prot;
1111 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1112 return memcg_memory_allocated_read(sk->sk_cgrp);
1114 return atomic_long_read(prot->memory_allocated);
1117 static inline long
1118 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1120 struct proto *prot = sk->sk_prot;
1122 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1123 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1124 /* update the root cgroup regardless */
1125 atomic_long_add_return(amt, prot->memory_allocated);
1126 return memcg_memory_allocated_read(sk->sk_cgrp);
1129 return atomic_long_add_return(amt, prot->memory_allocated);
1132 static inline void
1133 sk_memory_allocated_sub(struct sock *sk, int amt)
1135 struct proto *prot = sk->sk_prot;
1137 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1138 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1140 atomic_long_sub(amt, prot->memory_allocated);
1143 static inline void sk_sockets_allocated_dec(struct sock *sk)
1145 struct proto *prot = sk->sk_prot;
1147 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1148 struct cg_proto *cg_proto = sk->sk_cgrp;
1150 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1151 percpu_counter_dec(cg_proto->sockets_allocated);
1154 percpu_counter_dec(prot->sockets_allocated);
1157 static inline void sk_sockets_allocated_inc(struct sock *sk)
1159 struct proto *prot = sk->sk_prot;
1161 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1162 struct cg_proto *cg_proto = sk->sk_cgrp;
1164 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1165 percpu_counter_inc(cg_proto->sockets_allocated);
1168 percpu_counter_inc(prot->sockets_allocated);
1171 static inline int
1172 sk_sockets_allocated_read_positive(struct sock *sk)
1174 struct proto *prot = sk->sk_prot;
1176 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1177 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1179 return percpu_counter_read_positive(prot->sockets_allocated);
1182 static inline int
1183 proto_sockets_allocated_sum_positive(struct proto *prot)
1185 return percpu_counter_sum_positive(prot->sockets_allocated);
1188 static inline long
1189 proto_memory_allocated(struct proto *prot)
1191 return atomic_long_read(prot->memory_allocated);
1194 static inline bool
1195 proto_memory_pressure(struct proto *prot)
1197 if (!prot->memory_pressure)
1198 return false;
1199 return !!*prot->memory_pressure;
1203 #ifdef CONFIG_PROC_FS
1204 /* Called with local bh disabled */
1205 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1206 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1207 #else
1208 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1209 int inc)
1212 #endif
1215 /* With per-bucket locks this operation is not-atomic, so that
1216 * this version is not worse.
1218 static inline void __sk_prot_rehash(struct sock *sk)
1220 sk->sk_prot->unhash(sk);
1221 sk->sk_prot->hash(sk);
1224 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1226 /* About 10 seconds */
1227 #define SOCK_DESTROY_TIME (10*HZ)
1229 /* Sockets 0-1023 can't be bound to unless you are superuser */
1230 #define PROT_SOCK 1024
1232 #define SHUTDOWN_MASK 3
1233 #define RCV_SHUTDOWN 1
1234 #define SEND_SHUTDOWN 2
1236 #define SOCK_SNDBUF_LOCK 1
1237 #define SOCK_RCVBUF_LOCK 2
1238 #define SOCK_BINDADDR_LOCK 4
1239 #define SOCK_BINDPORT_LOCK 8
1241 /* sock_iocb: used to kick off async processing of socket ios */
1242 struct sock_iocb {
1243 struct list_head list;
1245 int flags;
1246 int size;
1247 struct socket *sock;
1248 struct sock *sk;
1249 struct scm_cookie *scm;
1250 struct msghdr *msg, async_msg;
1251 struct kiocb *kiocb;
1254 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1256 return (struct sock_iocb *)iocb->private;
1259 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1261 return si->kiocb;
1264 struct socket_alloc {
1265 struct socket socket;
1266 struct inode vfs_inode;
1269 static inline struct socket *SOCKET_I(struct inode *inode)
1271 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1274 static inline struct inode *SOCK_INODE(struct socket *socket)
1276 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1280 * Functions for memory accounting
1282 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1283 extern void __sk_mem_reclaim(struct sock *sk);
1285 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1286 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1287 #define SK_MEM_SEND 0
1288 #define SK_MEM_RECV 1
1290 static inline int sk_mem_pages(int amt)
1292 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1295 static inline bool sk_has_account(struct sock *sk)
1297 /* return true if protocol supports memory accounting */
1298 return !!sk->sk_prot->memory_allocated;
1301 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1303 if (!sk_has_account(sk))
1304 return true;
1305 return size <= sk->sk_forward_alloc ||
1306 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1309 static inline bool sk_rmem_schedule(struct sock *sk, int size)
1311 if (!sk_has_account(sk))
1312 return true;
1313 return size <= sk->sk_forward_alloc ||
1314 __sk_mem_schedule(sk, size, SK_MEM_RECV);
1317 static inline void sk_mem_reclaim(struct sock *sk)
1319 if (!sk_has_account(sk))
1320 return;
1321 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1322 __sk_mem_reclaim(sk);
1325 static inline void sk_mem_reclaim_partial(struct sock *sk)
1327 if (!sk_has_account(sk))
1328 return;
1329 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1330 __sk_mem_reclaim(sk);
1333 static inline void sk_mem_charge(struct sock *sk, int size)
1335 if (!sk_has_account(sk))
1336 return;
1337 sk->sk_forward_alloc -= size;
1340 static inline void sk_mem_uncharge(struct sock *sk, int size)
1342 if (!sk_has_account(sk))
1343 return;
1344 sk->sk_forward_alloc += size;
1347 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1349 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1350 sk->sk_wmem_queued -= skb->truesize;
1351 sk_mem_uncharge(sk, skb->truesize);
1352 __kfree_skb(skb);
1355 /* Used by processes to "lock" a socket state, so that
1356 * interrupts and bottom half handlers won't change it
1357 * from under us. It essentially blocks any incoming
1358 * packets, so that we won't get any new data or any
1359 * packets that change the state of the socket.
1361 * While locked, BH processing will add new packets to
1362 * the backlog queue. This queue is processed by the
1363 * owner of the socket lock right before it is released.
1365 * Since ~2.3.5 it is also exclusive sleep lock serializing
1366 * accesses from user process context.
1368 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1371 * Macro so as to not evaluate some arguments when
1372 * lockdep is not enabled.
1374 * Mark both the sk_lock and the sk_lock.slock as a
1375 * per-address-family lock class.
1377 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1378 do { \
1379 sk->sk_lock.owned = 0; \
1380 init_waitqueue_head(&sk->sk_lock.wq); \
1381 spin_lock_init(&(sk)->sk_lock.slock); \
1382 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1383 sizeof((sk)->sk_lock)); \
1384 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1385 (skey), (sname)); \
1386 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1387 } while (0)
1389 extern void lock_sock_nested(struct sock *sk, int subclass);
1391 static inline void lock_sock(struct sock *sk)
1393 lock_sock_nested(sk, 0);
1396 extern void release_sock(struct sock *sk);
1398 /* BH context may only use the following locking interface. */
1399 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1400 #define bh_lock_sock_nested(__sk) \
1401 spin_lock_nested(&((__sk)->sk_lock.slock), \
1402 SINGLE_DEPTH_NESTING)
1403 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1405 extern bool lock_sock_fast(struct sock *sk);
1407 * unlock_sock_fast - complement of lock_sock_fast
1408 * @sk: socket
1409 * @slow: slow mode
1411 * fast unlock socket for user context.
1412 * If slow mode is on, we call regular release_sock()
1414 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1416 if (slow)
1417 release_sock(sk);
1418 else
1419 spin_unlock_bh(&sk->sk_lock.slock);
1423 extern struct sock *sk_alloc(struct net *net, int family,
1424 gfp_t priority,
1425 struct proto *prot);
1426 extern void sk_free(struct sock *sk);
1427 extern void sk_release_kernel(struct sock *sk);
1428 extern struct sock *sk_clone_lock(const struct sock *sk,
1429 const gfp_t priority);
1431 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1432 unsigned long size, int force,
1433 gfp_t priority);
1434 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1435 unsigned long size, int force,
1436 gfp_t priority);
1437 extern void sock_wfree(struct sk_buff *skb);
1438 extern void sock_rfree(struct sk_buff *skb);
1439 extern void sock_edemux(struct sk_buff *skb);
1441 extern int sock_setsockopt(struct socket *sock, int level,
1442 int op, char __user *optval,
1443 unsigned int optlen);
1445 extern int sock_getsockopt(struct socket *sock, int level,
1446 int op, char __user *optval,
1447 int __user *optlen);
1448 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1449 unsigned long size,
1450 int noblock,
1451 int *errcode);
1452 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1453 unsigned long header_len,
1454 unsigned long data_len,
1455 int noblock,
1456 int *errcode);
1457 extern void *sock_kmalloc(struct sock *sk, int size,
1458 gfp_t priority);
1459 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1460 extern void sk_send_sigurg(struct sock *sk);
1462 #ifdef CONFIG_CGROUPS
1463 extern void sock_update_classid(struct sock *sk);
1464 #else
1465 static inline void sock_update_classid(struct sock *sk)
1468 #endif
1471 * Functions to fill in entries in struct proto_ops when a protocol
1472 * does not implement a particular function.
1474 extern int sock_no_bind(struct socket *,
1475 struct sockaddr *, int);
1476 extern int sock_no_connect(struct socket *,
1477 struct sockaddr *, int, int);
1478 extern int sock_no_socketpair(struct socket *,
1479 struct socket *);
1480 extern int sock_no_accept(struct socket *,
1481 struct socket *, int);
1482 extern int sock_no_getname(struct socket *,
1483 struct sockaddr *, int *, int);
1484 extern unsigned int sock_no_poll(struct file *, struct socket *,
1485 struct poll_table_struct *);
1486 extern int sock_no_ioctl(struct socket *, unsigned int,
1487 unsigned long);
1488 extern int sock_no_listen(struct socket *, int);
1489 extern int sock_no_shutdown(struct socket *, int);
1490 extern int sock_no_getsockopt(struct socket *, int , int,
1491 char __user *, int __user *);
1492 extern int sock_no_setsockopt(struct socket *, int, int,
1493 char __user *, unsigned int);
1494 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1495 struct msghdr *, size_t);
1496 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1497 struct msghdr *, size_t, int);
1498 extern int sock_no_mmap(struct file *file,
1499 struct socket *sock,
1500 struct vm_area_struct *vma);
1501 extern ssize_t sock_no_sendpage(struct socket *sock,
1502 struct page *page,
1503 int offset, size_t size,
1504 int flags);
1507 * Functions to fill in entries in struct proto_ops when a protocol
1508 * uses the inet style.
1510 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1511 char __user *optval, int __user *optlen);
1512 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1513 struct msghdr *msg, size_t size, int flags);
1514 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1515 char __user *optval, unsigned int optlen);
1516 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1517 int optname, char __user *optval, int __user *optlen);
1518 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1519 int optname, char __user *optval, unsigned int optlen);
1521 extern void sk_common_release(struct sock *sk);
1524 * Default socket callbacks and setup code
1527 /* Initialise core socket variables */
1528 extern void sock_init_data(struct socket *sock, struct sock *sk);
1530 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1533 * sk_filter_release - release a socket filter
1534 * @fp: filter to remove
1536 * Remove a filter from a socket and release its resources.
1539 static inline void sk_filter_release(struct sk_filter *fp)
1541 if (atomic_dec_and_test(&fp->refcnt))
1542 call_rcu(&fp->rcu, sk_filter_release_rcu);
1545 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1547 unsigned int size = sk_filter_len(fp);
1549 atomic_sub(size, &sk->sk_omem_alloc);
1550 sk_filter_release(fp);
1553 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1555 atomic_inc(&fp->refcnt);
1556 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1560 * Socket reference counting postulates.
1562 * * Each user of socket SHOULD hold a reference count.
1563 * * Each access point to socket (an hash table bucket, reference from a list,
1564 * running timer, skb in flight MUST hold a reference count.
1565 * * When reference count hits 0, it means it will never increase back.
1566 * * When reference count hits 0, it means that no references from
1567 * outside exist to this socket and current process on current CPU
1568 * is last user and may/should destroy this socket.
1569 * * sk_free is called from any context: process, BH, IRQ. When
1570 * it is called, socket has no references from outside -> sk_free
1571 * may release descendant resources allocated by the socket, but
1572 * to the time when it is called, socket is NOT referenced by any
1573 * hash tables, lists etc.
1574 * * Packets, delivered from outside (from network or from another process)
1575 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1576 * when they sit in queue. Otherwise, packets will leak to hole, when
1577 * socket is looked up by one cpu and unhasing is made by another CPU.
1578 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1579 * (leak to backlog). Packet socket does all the processing inside
1580 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1581 * use separate SMP lock, so that they are prone too.
1584 /* Ungrab socket and destroy it, if it was the last reference. */
1585 static inline void sock_put(struct sock *sk)
1587 if (atomic_dec_and_test(&sk->sk_refcnt))
1588 sk_free(sk);
1591 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1592 const int nested);
1594 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1596 sk->sk_tx_queue_mapping = tx_queue;
1599 static inline void sk_tx_queue_clear(struct sock *sk)
1601 sk->sk_tx_queue_mapping = -1;
1604 static inline int sk_tx_queue_get(const struct sock *sk)
1606 return sk ? sk->sk_tx_queue_mapping : -1;
1609 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1611 sk_tx_queue_clear(sk);
1612 sk->sk_socket = sock;
1615 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1617 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1618 return &rcu_dereference_raw(sk->sk_wq)->wait;
1620 /* Detach socket from process context.
1621 * Announce socket dead, detach it from wait queue and inode.
1622 * Note that parent inode held reference count on this struct sock,
1623 * we do not release it in this function, because protocol
1624 * probably wants some additional cleanups or even continuing
1625 * to work with this socket (TCP).
1627 static inline void sock_orphan(struct sock *sk)
1629 write_lock_bh(&sk->sk_callback_lock);
1630 sock_set_flag(sk, SOCK_DEAD);
1631 sk_set_socket(sk, NULL);
1632 sk->sk_wq = NULL;
1633 write_unlock_bh(&sk->sk_callback_lock);
1636 static inline void sock_graft(struct sock *sk, struct socket *parent)
1638 write_lock_bh(&sk->sk_callback_lock);
1639 sk->sk_wq = parent->wq;
1640 parent->sk = sk;
1641 sk_set_socket(sk, parent);
1642 security_sock_graft(sk, parent);
1643 write_unlock_bh(&sk->sk_callback_lock);
1646 extern int sock_i_uid(struct sock *sk);
1647 extern unsigned long sock_i_ino(struct sock *sk);
1649 static inline struct dst_entry *
1650 __sk_dst_get(struct sock *sk)
1652 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1653 lockdep_is_held(&sk->sk_lock.slock));
1656 static inline struct dst_entry *
1657 sk_dst_get(struct sock *sk)
1659 struct dst_entry *dst;
1661 rcu_read_lock();
1662 dst = rcu_dereference(sk->sk_dst_cache);
1663 if (dst)
1664 dst_hold(dst);
1665 rcu_read_unlock();
1666 return dst;
1669 extern void sk_reset_txq(struct sock *sk);
1671 static inline void dst_negative_advice(struct sock *sk)
1673 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1675 if (dst && dst->ops->negative_advice) {
1676 ndst = dst->ops->negative_advice(dst);
1678 if (ndst != dst) {
1679 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1680 sk_reset_txq(sk);
1685 static inline void
1686 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1688 struct dst_entry *old_dst;
1690 sk_tx_queue_clear(sk);
1692 * This can be called while sk is owned by the caller only,
1693 * with no state that can be checked in a rcu_dereference_check() cond
1695 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1696 rcu_assign_pointer(sk->sk_dst_cache, dst);
1697 dst_release(old_dst);
1700 static inline void
1701 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1703 spin_lock(&sk->sk_dst_lock);
1704 __sk_dst_set(sk, dst);
1705 spin_unlock(&sk->sk_dst_lock);
1708 static inline void
1709 __sk_dst_reset(struct sock *sk)
1711 __sk_dst_set(sk, NULL);
1714 static inline void
1715 sk_dst_reset(struct sock *sk)
1717 spin_lock(&sk->sk_dst_lock);
1718 __sk_dst_reset(sk);
1719 spin_unlock(&sk->sk_dst_lock);
1722 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1724 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1726 static inline bool sk_can_gso(const struct sock *sk)
1728 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1731 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1733 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1735 sk->sk_route_nocaps |= flags;
1736 sk->sk_route_caps &= ~flags;
1739 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1740 char __user *from, char *to,
1741 int copy, int offset)
1743 if (skb->ip_summed == CHECKSUM_NONE) {
1744 int err = 0;
1745 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1746 if (err)
1747 return err;
1748 skb->csum = csum_block_add(skb->csum, csum, offset);
1749 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1750 if (!access_ok(VERIFY_READ, from, copy) ||
1751 __copy_from_user_nocache(to, from, copy))
1752 return -EFAULT;
1753 } else if (copy_from_user(to, from, copy))
1754 return -EFAULT;
1756 return 0;
1759 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1760 char __user *from, int copy)
1762 int err, offset = skb->len;
1764 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1765 copy, offset);
1766 if (err)
1767 __skb_trim(skb, offset);
1769 return err;
1772 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1773 struct sk_buff *skb,
1774 struct page *page,
1775 int off, int copy)
1777 int err;
1779 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1780 copy, skb->len);
1781 if (err)
1782 return err;
1784 skb->len += copy;
1785 skb->data_len += copy;
1786 skb->truesize += copy;
1787 sk->sk_wmem_queued += copy;
1788 sk_mem_charge(sk, copy);
1789 return 0;
1792 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1793 struct sk_buff *skb, struct page *page,
1794 int off, int copy)
1796 if (skb->ip_summed == CHECKSUM_NONE) {
1797 int err = 0;
1798 __wsum csum = csum_and_copy_from_user(from,
1799 page_address(page) + off,
1800 copy, 0, &err);
1801 if (err)
1802 return err;
1803 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1804 } else if (copy_from_user(page_address(page) + off, from, copy))
1805 return -EFAULT;
1807 skb->len += copy;
1808 skb->data_len += copy;
1809 skb->truesize += copy;
1810 sk->sk_wmem_queued += copy;
1811 sk_mem_charge(sk, copy);
1812 return 0;
1816 * sk_wmem_alloc_get - returns write allocations
1817 * @sk: socket
1819 * Returns sk_wmem_alloc minus initial offset of one
1821 static inline int sk_wmem_alloc_get(const struct sock *sk)
1823 return atomic_read(&sk->sk_wmem_alloc) - 1;
1827 * sk_rmem_alloc_get - returns read allocations
1828 * @sk: socket
1830 * Returns sk_rmem_alloc
1832 static inline int sk_rmem_alloc_get(const struct sock *sk)
1834 return atomic_read(&sk->sk_rmem_alloc);
1838 * sk_has_allocations - check if allocations are outstanding
1839 * @sk: socket
1841 * Returns true if socket has write or read allocations
1843 static inline bool sk_has_allocations(const struct sock *sk)
1845 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1849 * wq_has_sleeper - check if there are any waiting processes
1850 * @wq: struct socket_wq
1852 * Returns true if socket_wq has waiting processes
1854 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1855 * barrier call. They were added due to the race found within the tcp code.
1857 * Consider following tcp code paths:
1859 * CPU1 CPU2
1861 * sys_select receive packet
1862 * ... ...
1863 * __add_wait_queue update tp->rcv_nxt
1864 * ... ...
1865 * tp->rcv_nxt check sock_def_readable
1866 * ... {
1867 * schedule rcu_read_lock();
1868 * wq = rcu_dereference(sk->sk_wq);
1869 * if (wq && waitqueue_active(&wq->wait))
1870 * wake_up_interruptible(&wq->wait)
1871 * ...
1874 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1875 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1876 * could then endup calling schedule and sleep forever if there are no more
1877 * data on the socket.
1880 static inline bool wq_has_sleeper(struct socket_wq *wq)
1882 /* We need to be sure we are in sync with the
1883 * add_wait_queue modifications to the wait queue.
1885 * This memory barrier is paired in the sock_poll_wait.
1887 smp_mb();
1888 return wq && waitqueue_active(&wq->wait);
1892 * sock_poll_wait - place memory barrier behind the poll_wait call.
1893 * @filp: file
1894 * @wait_address: socket wait queue
1895 * @p: poll_table
1897 * See the comments in the wq_has_sleeper function.
1899 static inline void sock_poll_wait(struct file *filp,
1900 wait_queue_head_t *wait_address, poll_table *p)
1902 if (!poll_does_not_wait(p) && wait_address) {
1903 poll_wait(filp, wait_address, p);
1904 /* We need to be sure we are in sync with the
1905 * socket flags modification.
1907 * This memory barrier is paired in the wq_has_sleeper.
1909 smp_mb();
1914 * Queue a received datagram if it will fit. Stream and sequenced
1915 * protocols can't normally use this as they need to fit buffers in
1916 * and play with them.
1918 * Inlined as it's very short and called for pretty much every
1919 * packet ever received.
1922 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1924 skb_orphan(skb);
1925 skb->sk = sk;
1926 skb->destructor = sock_wfree;
1928 * We used to take a refcount on sk, but following operation
1929 * is enough to guarantee sk_free() wont free this sock until
1930 * all in-flight packets are completed
1932 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1935 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1937 skb_orphan(skb);
1938 skb->sk = sk;
1939 skb->destructor = sock_rfree;
1940 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1941 sk_mem_charge(sk, skb->truesize);
1944 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1945 unsigned long expires);
1947 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1949 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1951 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1954 * Recover an error report and clear atomically
1957 static inline int sock_error(struct sock *sk)
1959 int err;
1960 if (likely(!sk->sk_err))
1961 return 0;
1962 err = xchg(&sk->sk_err, 0);
1963 return -err;
1966 static inline unsigned long sock_wspace(struct sock *sk)
1968 int amt = 0;
1970 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1971 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1972 if (amt < 0)
1973 amt = 0;
1975 return amt;
1978 static inline void sk_wake_async(struct sock *sk, int how, int band)
1980 if (sock_flag(sk, SOCK_FASYNC))
1981 sock_wake_async(sk->sk_socket, how, band);
1984 #define SOCK_MIN_SNDBUF 2048
1986 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1987 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1989 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1991 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1993 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1994 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1995 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1999 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2001 static inline struct page *sk_stream_alloc_page(struct sock *sk)
2003 struct page *page = NULL;
2005 page = alloc_pages(sk->sk_allocation, 0);
2006 if (!page) {
2007 sk_enter_memory_pressure(sk);
2008 sk_stream_moderate_sndbuf(sk);
2010 return page;
2014 * Default write policy as shown to user space via poll/select/SIGIO
2016 static inline bool sock_writeable(const struct sock *sk)
2018 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2021 static inline gfp_t gfp_any(void)
2023 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2026 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2028 return noblock ? 0 : sk->sk_rcvtimeo;
2031 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2033 return noblock ? 0 : sk->sk_sndtimeo;
2036 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2038 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2041 /* Alas, with timeout socket operations are not restartable.
2042 * Compare this to poll().
2044 static inline int sock_intr_errno(long timeo)
2046 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2049 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2050 struct sk_buff *skb);
2051 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2052 struct sk_buff *skb);
2054 static inline void
2055 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2057 ktime_t kt = skb->tstamp;
2058 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2061 * generate control messages if
2062 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2063 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2064 * - software time stamp available and wanted
2065 * (SOCK_TIMESTAMPING_SOFTWARE)
2066 * - hardware time stamps available and wanted
2067 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2068 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2070 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2071 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2072 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2073 (hwtstamps->hwtstamp.tv64 &&
2074 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2075 (hwtstamps->syststamp.tv64 &&
2076 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2077 __sock_recv_timestamp(msg, sk, skb);
2078 else
2079 sk->sk_stamp = kt;
2081 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2082 __sock_recv_wifi_status(msg, sk, skb);
2085 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2086 struct sk_buff *skb);
2088 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2089 struct sk_buff *skb)
2091 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2092 (1UL << SOCK_RCVTSTAMP) | \
2093 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2094 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2095 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2096 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2098 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2099 __sock_recv_ts_and_drops(msg, sk, skb);
2100 else
2101 sk->sk_stamp = skb->tstamp;
2105 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2106 * @sk: socket sending this packet
2107 * @tx_flags: filled with instructions for time stamping
2109 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2110 * parameters are invalid.
2112 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2115 * sk_eat_skb - Release a skb if it is no longer needed
2116 * @sk: socket to eat this skb from
2117 * @skb: socket buffer to eat
2118 * @copied_early: flag indicating whether DMA operations copied this data early
2120 * This routine must be called with interrupts disabled or with the socket
2121 * locked so that the sk_buff queue operation is ok.
2123 #ifdef CONFIG_NET_DMA
2124 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2126 __skb_unlink(skb, &sk->sk_receive_queue);
2127 if (!copied_early)
2128 __kfree_skb(skb);
2129 else
2130 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2132 #else
2133 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2135 __skb_unlink(skb, &sk->sk_receive_queue);
2136 __kfree_skb(skb);
2138 #endif
2140 static inline
2141 struct net *sock_net(const struct sock *sk)
2143 return read_pnet(&sk->sk_net);
2146 static inline
2147 void sock_net_set(struct sock *sk, struct net *net)
2149 write_pnet(&sk->sk_net, net);
2153 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2154 * They should not hold a reference to a namespace in order to allow
2155 * to stop it.
2156 * Sockets after sk_change_net should be released using sk_release_kernel
2158 static inline void sk_change_net(struct sock *sk, struct net *net)
2160 put_net(sock_net(sk));
2161 sock_net_set(sk, hold_net(net));
2164 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2166 if (skb->sk) {
2167 struct sock *sk = skb->sk;
2169 skb->destructor = NULL;
2170 skb->sk = NULL;
2171 return sk;
2173 return NULL;
2176 extern void sock_enable_timestamp(struct sock *sk, int flag);
2177 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2178 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2181 * Enable debug/info messages
2183 extern int net_msg_warn;
2184 #define NETDEBUG(fmt, args...) \
2185 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2187 #define LIMIT_NETDEBUG(fmt, args...) \
2188 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2190 extern __u32 sysctl_wmem_max;
2191 extern __u32 sysctl_rmem_max;
2193 extern void sk_init(void);
2195 extern int sysctl_optmem_max;
2197 extern __u32 sysctl_wmem_default;
2198 extern __u32 sysctl_rmem_default;
2200 #endif /* _SOCK_H */