scsi: ufs: fix race between clock gating and devfreq scaling work
[linux/fpc-iii.git] / net / openvswitch / flow.c
blob22087062bd1013e7c526dc95bce379bcaaebc4b9
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/cpumask.h>
33 #include <linux/if_arp.h>
34 #include <linux/ip.h>
35 #include <linux/ipv6.h>
36 #include <linux/mpls.h>
37 #include <linux/sctp.h>
38 #include <linux/smp.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/icmpv6.h>
43 #include <linux/rculist.h>
44 #include <net/ip.h>
45 #include <net/ip_tunnels.h>
46 #include <net/ipv6.h>
47 #include <net/mpls.h>
48 #include <net/ndisc.h>
50 #include "conntrack.h"
51 #include "datapath.h"
52 #include "flow.h"
53 #include "flow_netlink.h"
54 #include "vport.h"
56 u64 ovs_flow_used_time(unsigned long flow_jiffies)
58 struct timespec cur_ts;
59 u64 cur_ms, idle_ms;
61 ktime_get_ts(&cur_ts);
62 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
63 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
64 cur_ts.tv_nsec / NSEC_PER_MSEC;
66 return cur_ms - idle_ms;
69 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
71 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
72 const struct sk_buff *skb)
74 struct flow_stats *stats;
75 int node = numa_node_id();
76 int cpu = smp_processor_id();
77 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
79 stats = rcu_dereference(flow->stats[cpu]);
81 /* Check if already have CPU-specific stats. */
82 if (likely(stats)) {
83 spin_lock(&stats->lock);
84 /* Mark if we write on the pre-allocated stats. */
85 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
86 flow->stats_last_writer = cpu;
87 } else {
88 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
89 spin_lock(&stats->lock);
91 /* If the current CPU is the only writer on the
92 * pre-allocated stats keep using them.
94 if (unlikely(flow->stats_last_writer != cpu)) {
95 /* A previous locker may have already allocated the
96 * stats, so we need to check again. If CPU-specific
97 * stats were already allocated, we update the pre-
98 * allocated stats as we have already locked them.
100 if (likely(flow->stats_last_writer != -1) &&
101 likely(!rcu_access_pointer(flow->stats[cpu]))) {
102 /* Try to allocate CPU-specific stats. */
103 struct flow_stats *new_stats;
105 new_stats =
106 kmem_cache_alloc_node(flow_stats_cache,
107 GFP_NOWAIT |
108 __GFP_THISNODE |
109 __GFP_NOWARN |
110 __GFP_NOMEMALLOC,
111 node);
112 if (likely(new_stats)) {
113 new_stats->used = jiffies;
114 new_stats->packet_count = 1;
115 new_stats->byte_count = len;
116 new_stats->tcp_flags = tcp_flags;
117 spin_lock_init(&new_stats->lock);
119 rcu_assign_pointer(flow->stats[cpu],
120 new_stats);
121 goto unlock;
124 flow->stats_last_writer = cpu;
128 stats->used = jiffies;
129 stats->packet_count++;
130 stats->byte_count += len;
131 stats->tcp_flags |= tcp_flags;
132 unlock:
133 spin_unlock(&stats->lock);
136 /* Must be called with rcu_read_lock or ovs_mutex. */
137 void ovs_flow_stats_get(const struct sw_flow *flow,
138 struct ovs_flow_stats *ovs_stats,
139 unsigned long *used, __be16 *tcp_flags)
141 int cpu;
143 *used = 0;
144 *tcp_flags = 0;
145 memset(ovs_stats, 0, sizeof(*ovs_stats));
147 /* We open code this to make sure cpu 0 is always considered */
148 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) {
149 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
151 if (stats) {
152 /* Local CPU may write on non-local stats, so we must
153 * block bottom-halves here.
155 spin_lock_bh(&stats->lock);
156 if (!*used || time_after(stats->used, *used))
157 *used = stats->used;
158 *tcp_flags |= stats->tcp_flags;
159 ovs_stats->n_packets += stats->packet_count;
160 ovs_stats->n_bytes += stats->byte_count;
161 spin_unlock_bh(&stats->lock);
166 /* Called with ovs_mutex. */
167 void ovs_flow_stats_clear(struct sw_flow *flow)
169 int cpu;
171 /* We open code this to make sure cpu 0 is always considered */
172 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) {
173 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
175 if (stats) {
176 spin_lock_bh(&stats->lock);
177 stats->used = 0;
178 stats->packet_count = 0;
179 stats->byte_count = 0;
180 stats->tcp_flags = 0;
181 spin_unlock_bh(&stats->lock);
186 static int check_header(struct sk_buff *skb, int len)
188 if (unlikely(skb->len < len))
189 return -EINVAL;
190 if (unlikely(!pskb_may_pull(skb, len)))
191 return -ENOMEM;
192 return 0;
195 static bool arphdr_ok(struct sk_buff *skb)
197 return pskb_may_pull(skb, skb_network_offset(skb) +
198 sizeof(struct arp_eth_header));
201 static int check_iphdr(struct sk_buff *skb)
203 unsigned int nh_ofs = skb_network_offset(skb);
204 unsigned int ip_len;
205 int err;
207 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
208 if (unlikely(err))
209 return err;
211 ip_len = ip_hdrlen(skb);
212 if (unlikely(ip_len < sizeof(struct iphdr) ||
213 skb->len < nh_ofs + ip_len))
214 return -EINVAL;
216 skb_set_transport_header(skb, nh_ofs + ip_len);
217 return 0;
220 static bool tcphdr_ok(struct sk_buff *skb)
222 int th_ofs = skb_transport_offset(skb);
223 int tcp_len;
225 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
226 return false;
228 tcp_len = tcp_hdrlen(skb);
229 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
230 skb->len < th_ofs + tcp_len))
231 return false;
233 return true;
236 static bool udphdr_ok(struct sk_buff *skb)
238 return pskb_may_pull(skb, skb_transport_offset(skb) +
239 sizeof(struct udphdr));
242 static bool sctphdr_ok(struct sk_buff *skb)
244 return pskb_may_pull(skb, skb_transport_offset(skb) +
245 sizeof(struct sctphdr));
248 static bool icmphdr_ok(struct sk_buff *skb)
250 return pskb_may_pull(skb, skb_transport_offset(skb) +
251 sizeof(struct icmphdr));
254 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
256 unsigned int nh_ofs = skb_network_offset(skb);
257 unsigned int nh_len;
258 int payload_ofs;
259 struct ipv6hdr *nh;
260 uint8_t nexthdr;
261 __be16 frag_off;
262 int err;
264 err = check_header(skb, nh_ofs + sizeof(*nh));
265 if (unlikely(err))
266 return err;
268 nh = ipv6_hdr(skb);
269 nexthdr = nh->nexthdr;
270 payload_ofs = (u8 *)(nh + 1) - skb->data;
272 key->ip.proto = NEXTHDR_NONE;
273 key->ip.tos = ipv6_get_dsfield(nh);
274 key->ip.ttl = nh->hop_limit;
275 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
276 key->ipv6.addr.src = nh->saddr;
277 key->ipv6.addr.dst = nh->daddr;
279 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
281 if (frag_off) {
282 if (frag_off & htons(~0x7))
283 key->ip.frag = OVS_FRAG_TYPE_LATER;
284 else
285 key->ip.frag = OVS_FRAG_TYPE_FIRST;
286 } else {
287 key->ip.frag = OVS_FRAG_TYPE_NONE;
290 /* Delayed handling of error in ipv6_skip_exthdr() as it
291 * always sets frag_off to a valid value which may be
292 * used to set key->ip.frag above.
294 if (unlikely(payload_ofs < 0))
295 return -EPROTO;
297 nh_len = payload_ofs - nh_ofs;
298 skb_set_transport_header(skb, nh_ofs + nh_len);
299 key->ip.proto = nexthdr;
300 return nh_len;
303 static bool icmp6hdr_ok(struct sk_buff *skb)
305 return pskb_may_pull(skb, skb_transport_offset(skb) +
306 sizeof(struct icmp6hdr));
310 * Parse vlan tag from vlan header.
311 * Returns ERROR on memory error.
312 * Returns 0 if it encounters a non-vlan or incomplete packet.
313 * Returns 1 after successfully parsing vlan tag.
315 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh)
317 struct vlan_head *vh = (struct vlan_head *)skb->data;
319 if (likely(!eth_type_vlan(vh->tpid)))
320 return 0;
322 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
323 return 0;
325 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
326 sizeof(__be16))))
327 return -ENOMEM;
329 vh = (struct vlan_head *)skb->data;
330 key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
331 key_vh->tpid = vh->tpid;
333 __skb_pull(skb, sizeof(struct vlan_head));
334 return 1;
337 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
339 int res;
341 key->eth.vlan.tci = 0;
342 key->eth.vlan.tpid = 0;
343 key->eth.cvlan.tci = 0;
344 key->eth.cvlan.tpid = 0;
346 if (skb_vlan_tag_present(skb)) {
347 key->eth.vlan.tci = htons(skb->vlan_tci);
348 key->eth.vlan.tpid = skb->vlan_proto;
349 } else {
350 /* Parse outer vlan tag in the non-accelerated case. */
351 res = parse_vlan_tag(skb, &key->eth.vlan);
352 if (res <= 0)
353 return res;
356 /* Parse inner vlan tag. */
357 res = parse_vlan_tag(skb, &key->eth.cvlan);
358 if (res <= 0)
359 return res;
361 return 0;
364 static __be16 parse_ethertype(struct sk_buff *skb)
366 struct llc_snap_hdr {
367 u8 dsap; /* Always 0xAA */
368 u8 ssap; /* Always 0xAA */
369 u8 ctrl;
370 u8 oui[3];
371 __be16 ethertype;
373 struct llc_snap_hdr *llc;
374 __be16 proto;
376 proto = *(__be16 *) skb->data;
377 __skb_pull(skb, sizeof(__be16));
379 if (eth_proto_is_802_3(proto))
380 return proto;
382 if (skb->len < sizeof(struct llc_snap_hdr))
383 return htons(ETH_P_802_2);
385 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
386 return htons(0);
388 llc = (struct llc_snap_hdr *) skb->data;
389 if (llc->dsap != LLC_SAP_SNAP ||
390 llc->ssap != LLC_SAP_SNAP ||
391 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
392 return htons(ETH_P_802_2);
394 __skb_pull(skb, sizeof(struct llc_snap_hdr));
396 if (eth_proto_is_802_3(llc->ethertype))
397 return llc->ethertype;
399 return htons(ETH_P_802_2);
402 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
403 int nh_len)
405 struct icmp6hdr *icmp = icmp6_hdr(skb);
407 /* The ICMPv6 type and code fields use the 16-bit transport port
408 * fields, so we need to store them in 16-bit network byte order.
410 key->tp.src = htons(icmp->icmp6_type);
411 key->tp.dst = htons(icmp->icmp6_code);
412 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
414 if (icmp->icmp6_code == 0 &&
415 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
416 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
417 int icmp_len = skb->len - skb_transport_offset(skb);
418 struct nd_msg *nd;
419 int offset;
421 /* In order to process neighbor discovery options, we need the
422 * entire packet.
424 if (unlikely(icmp_len < sizeof(*nd)))
425 return 0;
427 if (unlikely(skb_linearize(skb)))
428 return -ENOMEM;
430 nd = (struct nd_msg *)skb_transport_header(skb);
431 key->ipv6.nd.target = nd->target;
433 icmp_len -= sizeof(*nd);
434 offset = 0;
435 while (icmp_len >= 8) {
436 struct nd_opt_hdr *nd_opt =
437 (struct nd_opt_hdr *)(nd->opt + offset);
438 int opt_len = nd_opt->nd_opt_len * 8;
440 if (unlikely(!opt_len || opt_len > icmp_len))
441 return 0;
443 /* Store the link layer address if the appropriate
444 * option is provided. It is considered an error if
445 * the same link layer option is specified twice.
447 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
448 && opt_len == 8) {
449 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
450 goto invalid;
451 ether_addr_copy(key->ipv6.nd.sll,
452 &nd->opt[offset+sizeof(*nd_opt)]);
453 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
454 && opt_len == 8) {
455 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
456 goto invalid;
457 ether_addr_copy(key->ipv6.nd.tll,
458 &nd->opt[offset+sizeof(*nd_opt)]);
461 icmp_len -= opt_len;
462 offset += opt_len;
466 return 0;
468 invalid:
469 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
470 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
471 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
473 return 0;
477 * key_extract - extracts a flow key from an Ethernet frame.
478 * @skb: sk_buff that contains the frame, with skb->data pointing to the
479 * Ethernet header
480 * @key: output flow key
482 * The caller must ensure that skb->len >= ETH_HLEN.
484 * Returns 0 if successful, otherwise a negative errno value.
486 * Initializes @skb header pointers as follows:
488 * - skb->mac_header: the Ethernet header.
490 * - skb->network_header: just past the Ethernet header, or just past the
491 * VLAN header, to the first byte of the Ethernet payload.
493 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
494 * on output, then just past the IP header, if one is present and
495 * of a correct length, otherwise the same as skb->network_header.
496 * For other key->eth.type values it is left untouched.
498 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
500 int error;
501 struct ethhdr *eth;
503 /* Flags are always used as part of stats */
504 key->tp.flags = 0;
506 skb_reset_mac_header(skb);
508 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
509 * header in the linear data area.
511 eth = eth_hdr(skb);
512 ether_addr_copy(key->eth.src, eth->h_source);
513 ether_addr_copy(key->eth.dst, eth->h_dest);
515 __skb_pull(skb, 2 * ETH_ALEN);
516 /* We are going to push all headers that we pull, so no need to
517 * update skb->csum here.
520 if (unlikely(parse_vlan(skb, key)))
521 return -ENOMEM;
523 key->eth.type = parse_ethertype(skb);
524 if (unlikely(key->eth.type == htons(0)))
525 return -ENOMEM;
527 skb_reset_network_header(skb);
528 skb_reset_mac_len(skb);
529 __skb_push(skb, skb->data - skb_mac_header(skb));
531 /* Network layer. */
532 if (key->eth.type == htons(ETH_P_IP)) {
533 struct iphdr *nh;
534 __be16 offset;
536 error = check_iphdr(skb);
537 if (unlikely(error)) {
538 memset(&key->ip, 0, sizeof(key->ip));
539 memset(&key->ipv4, 0, sizeof(key->ipv4));
540 if (error == -EINVAL) {
541 skb->transport_header = skb->network_header;
542 error = 0;
544 return error;
547 nh = ip_hdr(skb);
548 key->ipv4.addr.src = nh->saddr;
549 key->ipv4.addr.dst = nh->daddr;
551 key->ip.proto = nh->protocol;
552 key->ip.tos = nh->tos;
553 key->ip.ttl = nh->ttl;
555 offset = nh->frag_off & htons(IP_OFFSET);
556 if (offset) {
557 key->ip.frag = OVS_FRAG_TYPE_LATER;
558 return 0;
560 if (nh->frag_off & htons(IP_MF) ||
561 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
562 key->ip.frag = OVS_FRAG_TYPE_FIRST;
563 else
564 key->ip.frag = OVS_FRAG_TYPE_NONE;
566 /* Transport layer. */
567 if (key->ip.proto == IPPROTO_TCP) {
568 if (tcphdr_ok(skb)) {
569 struct tcphdr *tcp = tcp_hdr(skb);
570 key->tp.src = tcp->source;
571 key->tp.dst = tcp->dest;
572 key->tp.flags = TCP_FLAGS_BE16(tcp);
573 } else {
574 memset(&key->tp, 0, sizeof(key->tp));
577 } else if (key->ip.proto == IPPROTO_UDP) {
578 if (udphdr_ok(skb)) {
579 struct udphdr *udp = udp_hdr(skb);
580 key->tp.src = udp->source;
581 key->tp.dst = udp->dest;
582 } else {
583 memset(&key->tp, 0, sizeof(key->tp));
585 } else if (key->ip.proto == IPPROTO_SCTP) {
586 if (sctphdr_ok(skb)) {
587 struct sctphdr *sctp = sctp_hdr(skb);
588 key->tp.src = sctp->source;
589 key->tp.dst = sctp->dest;
590 } else {
591 memset(&key->tp, 0, sizeof(key->tp));
593 } else if (key->ip.proto == IPPROTO_ICMP) {
594 if (icmphdr_ok(skb)) {
595 struct icmphdr *icmp = icmp_hdr(skb);
596 /* The ICMP type and code fields use the 16-bit
597 * transport port fields, so we need to store
598 * them in 16-bit network byte order. */
599 key->tp.src = htons(icmp->type);
600 key->tp.dst = htons(icmp->code);
601 } else {
602 memset(&key->tp, 0, sizeof(key->tp));
606 } else if (key->eth.type == htons(ETH_P_ARP) ||
607 key->eth.type == htons(ETH_P_RARP)) {
608 struct arp_eth_header *arp;
609 bool arp_available = arphdr_ok(skb);
611 arp = (struct arp_eth_header *)skb_network_header(skb);
613 if (arp_available &&
614 arp->ar_hrd == htons(ARPHRD_ETHER) &&
615 arp->ar_pro == htons(ETH_P_IP) &&
616 arp->ar_hln == ETH_ALEN &&
617 arp->ar_pln == 4) {
619 /* We only match on the lower 8 bits of the opcode. */
620 if (ntohs(arp->ar_op) <= 0xff)
621 key->ip.proto = ntohs(arp->ar_op);
622 else
623 key->ip.proto = 0;
625 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
626 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
627 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
628 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
629 } else {
630 memset(&key->ip, 0, sizeof(key->ip));
631 memset(&key->ipv4, 0, sizeof(key->ipv4));
633 } else if (eth_p_mpls(key->eth.type)) {
634 size_t stack_len = MPLS_HLEN;
636 skb_set_inner_network_header(skb, skb->mac_len);
637 while (1) {
638 __be32 lse;
640 error = check_header(skb, skb->mac_len + stack_len);
641 if (unlikely(error))
642 return 0;
644 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
646 if (stack_len == MPLS_HLEN)
647 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
649 skb_set_inner_network_header(skb, skb->mac_len + stack_len);
650 if (lse & htonl(MPLS_LS_S_MASK))
651 break;
653 stack_len += MPLS_HLEN;
655 } else if (key->eth.type == htons(ETH_P_IPV6)) {
656 int nh_len; /* IPv6 Header + Extensions */
658 nh_len = parse_ipv6hdr(skb, key);
659 if (unlikely(nh_len < 0)) {
660 switch (nh_len) {
661 case -EINVAL:
662 memset(&key->ip, 0, sizeof(key->ip));
663 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
664 /* fall-through */
665 case -EPROTO:
666 skb->transport_header = skb->network_header;
667 error = 0;
668 break;
669 default:
670 error = nh_len;
672 return error;
675 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
676 return 0;
677 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
678 key->ip.frag = OVS_FRAG_TYPE_FIRST;
680 /* Transport layer. */
681 if (key->ip.proto == NEXTHDR_TCP) {
682 if (tcphdr_ok(skb)) {
683 struct tcphdr *tcp = tcp_hdr(skb);
684 key->tp.src = tcp->source;
685 key->tp.dst = tcp->dest;
686 key->tp.flags = TCP_FLAGS_BE16(tcp);
687 } else {
688 memset(&key->tp, 0, sizeof(key->tp));
690 } else if (key->ip.proto == NEXTHDR_UDP) {
691 if (udphdr_ok(skb)) {
692 struct udphdr *udp = udp_hdr(skb);
693 key->tp.src = udp->source;
694 key->tp.dst = udp->dest;
695 } else {
696 memset(&key->tp, 0, sizeof(key->tp));
698 } else if (key->ip.proto == NEXTHDR_SCTP) {
699 if (sctphdr_ok(skb)) {
700 struct sctphdr *sctp = sctp_hdr(skb);
701 key->tp.src = sctp->source;
702 key->tp.dst = sctp->dest;
703 } else {
704 memset(&key->tp, 0, sizeof(key->tp));
706 } else if (key->ip.proto == NEXTHDR_ICMP) {
707 if (icmp6hdr_ok(skb)) {
708 error = parse_icmpv6(skb, key, nh_len);
709 if (error)
710 return error;
711 } else {
712 memset(&key->tp, 0, sizeof(key->tp));
716 return 0;
719 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
721 return key_extract(skb, key);
724 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
725 struct sk_buff *skb, struct sw_flow_key *key)
727 /* Extract metadata from packet. */
728 if (tun_info) {
729 key->tun_proto = ip_tunnel_info_af(tun_info);
730 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
732 if (tun_info->options_len) {
733 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
734 8)) - 1
735 > sizeof(key->tun_opts));
737 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
738 tun_info);
739 key->tun_opts_len = tun_info->options_len;
740 } else {
741 key->tun_opts_len = 0;
743 } else {
744 key->tun_proto = 0;
745 key->tun_opts_len = 0;
746 memset(&key->tun_key, 0, sizeof(key->tun_key));
749 key->phy.priority = skb->priority;
750 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
751 key->phy.skb_mark = skb->mark;
752 ovs_ct_fill_key(skb, key);
753 key->ovs_flow_hash = 0;
754 key->recirc_id = 0;
756 return key_extract(skb, key);
759 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
760 struct sk_buff *skb,
761 struct sw_flow_key *key, bool log)
763 int err;
765 /* Extract metadata from netlink attributes. */
766 err = ovs_nla_get_flow_metadata(net, attr, key, log);
767 if (err)
768 return err;
770 return key_extract(skb, key);