scsi: ufs: fix race between clock gating and devfreq scaling work
[linux/fpc-iii.git] / net / socket.c
blobd9e2989c10c4c6bf9e37ee8e8268845a8d6fe88f
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
94 #include <asm/uaccess.h>
95 #include <asm/unistd.h>
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <linux/atalk.h>
109 #include <net/busy_poll.h>
110 #include <linux/errqueue.h>
112 #ifdef CONFIG_NET_RX_BUSY_POLL
113 unsigned int sysctl_net_busy_read __read_mostly;
114 unsigned int sysctl_net_busy_poll __read_mostly;
115 #endif
117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
141 static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
143 .llseek = no_llseek,
144 .read_iter = sock_read_iter,
145 .write_iter = sock_write_iter,
146 .poll = sock_poll,
147 .unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 .compat_ioctl = compat_sock_ioctl,
150 #endif
151 .mmap = sock_mmap,
152 .release = sock_close,
153 .fasync = sock_fasync,
154 .sendpage = sock_sendpage,
155 .splice_write = generic_splice_sendpage,
156 .splice_read = sock_splice_read,
160 * The protocol list. Each protocol is registered in here.
163 static DEFINE_SPINLOCK(net_family_lock);
164 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167 * Statistics counters of the socket lists
170 static DEFINE_PER_CPU(int, sockets_in_use);
173 * Support routines.
174 * Move socket addresses back and forth across the kernel/user
175 * divide and look after the messy bits.
179 * move_addr_to_kernel - copy a socket address into kernel space
180 * @uaddr: Address in user space
181 * @kaddr: Address in kernel space
182 * @ulen: Length in user space
184 * The address is copied into kernel space. If the provided address is
185 * too long an error code of -EINVAL is returned. If the copy gives
186 * invalid addresses -EFAULT is returned. On a success 0 is returned.
189 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
192 return -EINVAL;
193 if (ulen == 0)
194 return 0;
195 if (copy_from_user(kaddr, uaddr, ulen))
196 return -EFAULT;
197 return audit_sockaddr(ulen, kaddr);
201 * move_addr_to_user - copy an address to user space
202 * @kaddr: kernel space address
203 * @klen: length of address in kernel
204 * @uaddr: user space address
205 * @ulen: pointer to user length field
207 * The value pointed to by ulen on entry is the buffer length available.
208 * This is overwritten with the buffer space used. -EINVAL is returned
209 * if an overlong buffer is specified or a negative buffer size. -EFAULT
210 * is returned if either the buffer or the length field are not
211 * accessible.
212 * After copying the data up to the limit the user specifies, the true
213 * length of the data is written over the length limit the user
214 * specified. Zero is returned for a success.
217 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
218 void __user *uaddr, int __user *ulen)
220 int err;
221 int len;
223 BUG_ON(klen > sizeof(struct sockaddr_storage));
224 err = get_user(len, ulen);
225 if (err)
226 return err;
227 if (len > klen)
228 len = klen;
229 if (len < 0)
230 return -EINVAL;
231 if (len) {
232 if (audit_sockaddr(klen, kaddr))
233 return -ENOMEM;
234 if (copy_to_user(uaddr, kaddr, len))
235 return -EFAULT;
238 * "fromlen shall refer to the value before truncation.."
239 * 1003.1g
241 return __put_user(klen, ulen);
244 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 static struct inode *sock_alloc_inode(struct super_block *sb)
248 struct socket_alloc *ei;
249 struct socket_wq *wq;
251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 if (!ei)
253 return NULL;
254 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 if (!wq) {
256 kmem_cache_free(sock_inode_cachep, ei);
257 return NULL;
259 init_waitqueue_head(&wq->wait);
260 wq->fasync_list = NULL;
261 wq->flags = 0;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
270 return &ei->vfs_inode;
273 static void sock_destroy_inode(struct inode *inode)
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
284 static void init_once(void *foo)
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
288 inode_init_once(&ei->vfs_inode);
291 static int init_inodecache(void)
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
299 init_once);
300 if (sock_inode_cachep == NULL)
301 return -ENOMEM;
302 return 0;
305 static const struct super_operations sockfs_ops = {
306 .alloc_inode = sock_alloc_inode,
307 .destroy_inode = sock_destroy_inode,
308 .statfs = simple_statfs,
312 * sockfs_dname() is called from d_path().
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 d_inode(dentry)->i_ino);
320 static const struct dentry_operations sockfs_dentry_operations = {
321 .d_dname = sockfs_dname,
324 static int sockfs_xattr_get(const struct xattr_handler *handler,
325 struct dentry *dentry, struct inode *inode,
326 const char *suffix, void *value, size_t size)
328 if (value) {
329 if (dentry->d_name.len + 1 > size)
330 return -ERANGE;
331 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
333 return dentry->d_name.len + 1;
336 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
337 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
338 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
340 static const struct xattr_handler sockfs_xattr_handler = {
341 .name = XATTR_NAME_SOCKPROTONAME,
342 .get = sockfs_xattr_get,
345 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
346 struct dentry *dentry, struct inode *inode,
347 const char *suffix, const void *value,
348 size_t size, int flags)
350 /* Handled by LSM. */
351 return -EAGAIN;
354 static const struct xattr_handler sockfs_security_xattr_handler = {
355 .prefix = XATTR_SECURITY_PREFIX,
356 .set = sockfs_security_xattr_set,
359 static const struct xattr_handler *sockfs_xattr_handlers[] = {
360 &sockfs_xattr_handler,
361 &sockfs_security_xattr_handler,
362 NULL
365 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
366 int flags, const char *dev_name, void *data)
368 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
369 sockfs_xattr_handlers,
370 &sockfs_dentry_operations, SOCKFS_MAGIC);
373 static struct vfsmount *sock_mnt __read_mostly;
375 static struct file_system_type sock_fs_type = {
376 .name = "sockfs",
377 .mount = sockfs_mount,
378 .kill_sb = kill_anon_super,
382 * Obtains the first available file descriptor and sets it up for use.
384 * These functions create file structures and maps them to fd space
385 * of the current process. On success it returns file descriptor
386 * and file struct implicitly stored in sock->file.
387 * Note that another thread may close file descriptor before we return
388 * from this function. We use the fact that now we do not refer
389 * to socket after mapping. If one day we will need it, this
390 * function will increment ref. count on file by 1.
392 * In any case returned fd MAY BE not valid!
393 * This race condition is unavoidable
394 * with shared fd spaces, we cannot solve it inside kernel,
395 * but we take care of internal coherence yet.
398 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
400 struct qstr name = { .name = "" };
401 struct path path;
402 struct file *file;
404 if (dname) {
405 name.name = dname;
406 name.len = strlen(name.name);
407 } else if (sock->sk) {
408 name.name = sock->sk->sk_prot_creator->name;
409 name.len = strlen(name.name);
411 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
412 if (unlikely(!path.dentry))
413 return ERR_PTR(-ENOMEM);
414 path.mnt = mntget(sock_mnt);
416 d_instantiate(path.dentry, SOCK_INODE(sock));
418 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
419 &socket_file_ops);
420 if (IS_ERR(file)) {
421 /* drop dentry, keep inode */
422 ihold(d_inode(path.dentry));
423 path_put(&path);
424 return file;
427 sock->file = file;
428 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
429 file->private_data = sock;
430 return file;
432 EXPORT_SYMBOL(sock_alloc_file);
434 static int sock_map_fd(struct socket *sock, int flags)
436 struct file *newfile;
437 int fd = get_unused_fd_flags(flags);
438 if (unlikely(fd < 0))
439 return fd;
441 newfile = sock_alloc_file(sock, flags, NULL);
442 if (likely(!IS_ERR(newfile))) {
443 fd_install(fd, newfile);
444 return fd;
447 put_unused_fd(fd);
448 return PTR_ERR(newfile);
451 struct socket *sock_from_file(struct file *file, int *err)
453 if (file->f_op == &socket_file_ops)
454 return file->private_data; /* set in sock_map_fd */
456 *err = -ENOTSOCK;
457 return NULL;
459 EXPORT_SYMBOL(sock_from_file);
462 * sockfd_lookup - Go from a file number to its socket slot
463 * @fd: file handle
464 * @err: pointer to an error code return
466 * The file handle passed in is locked and the socket it is bound
467 * too is returned. If an error occurs the err pointer is overwritten
468 * with a negative errno code and NULL is returned. The function checks
469 * for both invalid handles and passing a handle which is not a socket.
471 * On a success the socket object pointer is returned.
474 struct socket *sockfd_lookup(int fd, int *err)
476 struct file *file;
477 struct socket *sock;
479 file = fget(fd);
480 if (!file) {
481 *err = -EBADF;
482 return NULL;
485 sock = sock_from_file(file, err);
486 if (!sock)
487 fput(file);
488 return sock;
490 EXPORT_SYMBOL(sockfd_lookup);
492 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
494 struct fd f = fdget(fd);
495 struct socket *sock;
497 *err = -EBADF;
498 if (f.file) {
499 sock = sock_from_file(f.file, err);
500 if (likely(sock)) {
501 *fput_needed = f.flags;
502 return sock;
504 fdput(f);
506 return NULL;
509 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
510 size_t size)
512 ssize_t len;
513 ssize_t used = 0;
515 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
516 if (len < 0)
517 return len;
518 used += len;
519 if (buffer) {
520 if (size < used)
521 return -ERANGE;
522 buffer += len;
525 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
526 used += len;
527 if (buffer) {
528 if (size < used)
529 return -ERANGE;
530 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
531 buffer += len;
534 return used;
537 static const struct inode_operations sockfs_inode_ops = {
538 .listxattr = sockfs_listxattr,
542 * sock_alloc - allocate a socket
544 * Allocate a new inode and socket object. The two are bound together
545 * and initialised. The socket is then returned. If we are out of inodes
546 * NULL is returned.
549 struct socket *sock_alloc(void)
551 struct inode *inode;
552 struct socket *sock;
554 inode = new_inode_pseudo(sock_mnt->mnt_sb);
555 if (!inode)
556 return NULL;
558 sock = SOCKET_I(inode);
560 kmemcheck_annotate_bitfield(sock, type);
561 inode->i_ino = get_next_ino();
562 inode->i_mode = S_IFSOCK | S_IRWXUGO;
563 inode->i_uid = current_fsuid();
564 inode->i_gid = current_fsgid();
565 inode->i_op = &sockfs_inode_ops;
567 this_cpu_add(sockets_in_use, 1);
568 return sock;
570 EXPORT_SYMBOL(sock_alloc);
573 * sock_release - close a socket
574 * @sock: socket to close
576 * The socket is released from the protocol stack if it has a release
577 * callback, and the inode is then released if the socket is bound to
578 * an inode not a file.
581 void sock_release(struct socket *sock)
583 if (sock->ops) {
584 struct module *owner = sock->ops->owner;
586 sock->ops->release(sock);
587 sock->ops = NULL;
588 module_put(owner);
591 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
592 pr_err("%s: fasync list not empty!\n", __func__);
594 this_cpu_sub(sockets_in_use, 1);
595 if (!sock->file) {
596 iput(SOCK_INODE(sock));
597 return;
599 sock->file = NULL;
601 EXPORT_SYMBOL(sock_release);
603 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
605 u8 flags = *tx_flags;
607 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
608 flags |= SKBTX_HW_TSTAMP;
610 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
611 flags |= SKBTX_SW_TSTAMP;
613 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
614 flags |= SKBTX_SCHED_TSTAMP;
616 *tx_flags = flags;
618 EXPORT_SYMBOL(__sock_tx_timestamp);
620 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
622 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
623 BUG_ON(ret == -EIOCBQUEUED);
624 return ret;
627 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
629 int err = security_socket_sendmsg(sock, msg,
630 msg_data_left(msg));
632 return err ?: sock_sendmsg_nosec(sock, msg);
634 EXPORT_SYMBOL(sock_sendmsg);
636 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
637 struct kvec *vec, size_t num, size_t size)
639 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
640 return sock_sendmsg(sock, msg);
642 EXPORT_SYMBOL(kernel_sendmsg);
645 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
647 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
648 struct sk_buff *skb)
650 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
651 struct scm_timestamping tss;
652 int empty = 1;
653 struct skb_shared_hwtstamps *shhwtstamps =
654 skb_hwtstamps(skb);
656 /* Race occurred between timestamp enabling and packet
657 receiving. Fill in the current time for now. */
658 if (need_software_tstamp && skb->tstamp.tv64 == 0)
659 __net_timestamp(skb);
661 if (need_software_tstamp) {
662 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
663 struct timeval tv;
664 skb_get_timestamp(skb, &tv);
665 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
666 sizeof(tv), &tv);
667 } else {
668 struct timespec ts;
669 skb_get_timestampns(skb, &ts);
670 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
671 sizeof(ts), &ts);
675 memset(&tss, 0, sizeof(tss));
676 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
677 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
678 empty = 0;
679 if (shhwtstamps &&
680 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
681 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
682 empty = 0;
683 if (!empty)
684 put_cmsg(msg, SOL_SOCKET,
685 SCM_TIMESTAMPING, sizeof(tss), &tss);
687 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
689 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
690 struct sk_buff *skb)
692 int ack;
694 if (!sock_flag(sk, SOCK_WIFI_STATUS))
695 return;
696 if (!skb->wifi_acked_valid)
697 return;
699 ack = skb->wifi_acked;
701 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
703 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
705 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
706 struct sk_buff *skb)
708 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
709 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
710 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
713 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
714 struct sk_buff *skb)
716 sock_recv_timestamp(msg, sk, skb);
717 sock_recv_drops(msg, sk, skb);
719 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
721 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
722 int flags)
724 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
727 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
729 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
731 return err ?: sock_recvmsg_nosec(sock, msg, flags);
733 EXPORT_SYMBOL(sock_recvmsg);
736 * kernel_recvmsg - Receive a message from a socket (kernel space)
737 * @sock: The socket to receive the message from
738 * @msg: Received message
739 * @vec: Input s/g array for message data
740 * @num: Size of input s/g array
741 * @size: Number of bytes to read
742 * @flags: Message flags (MSG_DONTWAIT, etc...)
744 * On return the msg structure contains the scatter/gather array passed in the
745 * vec argument. The array is modified so that it consists of the unfilled
746 * portion of the original array.
748 * The returned value is the total number of bytes received, or an error.
750 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
751 struct kvec *vec, size_t num, size_t size, int flags)
753 mm_segment_t oldfs = get_fs();
754 int result;
756 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
757 set_fs(KERNEL_DS);
758 result = sock_recvmsg(sock, msg, flags);
759 set_fs(oldfs);
760 return result;
762 EXPORT_SYMBOL(kernel_recvmsg);
764 static ssize_t sock_sendpage(struct file *file, struct page *page,
765 int offset, size_t size, loff_t *ppos, int more)
767 struct socket *sock;
768 int flags;
770 sock = file->private_data;
772 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
773 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
774 flags |= more;
776 return kernel_sendpage(sock, page, offset, size, flags);
779 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
780 struct pipe_inode_info *pipe, size_t len,
781 unsigned int flags)
783 struct socket *sock = file->private_data;
785 if (unlikely(!sock->ops->splice_read))
786 return -EINVAL;
788 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
791 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
793 struct file *file = iocb->ki_filp;
794 struct socket *sock = file->private_data;
795 struct msghdr msg = {.msg_iter = *to,
796 .msg_iocb = iocb};
797 ssize_t res;
799 if (file->f_flags & O_NONBLOCK)
800 msg.msg_flags = MSG_DONTWAIT;
802 if (iocb->ki_pos != 0)
803 return -ESPIPE;
805 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
806 return 0;
808 res = sock_recvmsg(sock, &msg, msg.msg_flags);
809 *to = msg.msg_iter;
810 return res;
813 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
815 struct file *file = iocb->ki_filp;
816 struct socket *sock = file->private_data;
817 struct msghdr msg = {.msg_iter = *from,
818 .msg_iocb = iocb};
819 ssize_t res;
821 if (iocb->ki_pos != 0)
822 return -ESPIPE;
824 if (file->f_flags & O_NONBLOCK)
825 msg.msg_flags = MSG_DONTWAIT;
827 if (sock->type == SOCK_SEQPACKET)
828 msg.msg_flags |= MSG_EOR;
830 res = sock_sendmsg(sock, &msg);
831 *from = msg.msg_iter;
832 return res;
836 * Atomic setting of ioctl hooks to avoid race
837 * with module unload.
840 static DEFINE_MUTEX(br_ioctl_mutex);
841 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
843 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
845 mutex_lock(&br_ioctl_mutex);
846 br_ioctl_hook = hook;
847 mutex_unlock(&br_ioctl_mutex);
849 EXPORT_SYMBOL(brioctl_set);
851 static DEFINE_MUTEX(vlan_ioctl_mutex);
852 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
854 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
856 mutex_lock(&vlan_ioctl_mutex);
857 vlan_ioctl_hook = hook;
858 mutex_unlock(&vlan_ioctl_mutex);
860 EXPORT_SYMBOL(vlan_ioctl_set);
862 static DEFINE_MUTEX(dlci_ioctl_mutex);
863 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
865 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
867 mutex_lock(&dlci_ioctl_mutex);
868 dlci_ioctl_hook = hook;
869 mutex_unlock(&dlci_ioctl_mutex);
871 EXPORT_SYMBOL(dlci_ioctl_set);
873 static long sock_do_ioctl(struct net *net, struct socket *sock,
874 unsigned int cmd, unsigned long arg)
876 int err;
877 void __user *argp = (void __user *)arg;
879 err = sock->ops->ioctl(sock, cmd, arg);
882 * If this ioctl is unknown try to hand it down
883 * to the NIC driver.
885 if (err == -ENOIOCTLCMD)
886 err = dev_ioctl(net, cmd, argp);
888 return err;
892 * With an ioctl, arg may well be a user mode pointer, but we don't know
893 * what to do with it - that's up to the protocol still.
896 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
898 struct socket *sock;
899 struct sock *sk;
900 void __user *argp = (void __user *)arg;
901 int pid, err;
902 struct net *net;
904 sock = file->private_data;
905 sk = sock->sk;
906 net = sock_net(sk);
907 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
908 err = dev_ioctl(net, cmd, argp);
909 } else
910 #ifdef CONFIG_WEXT_CORE
911 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
912 err = dev_ioctl(net, cmd, argp);
913 } else
914 #endif
915 switch (cmd) {
916 case FIOSETOWN:
917 case SIOCSPGRP:
918 err = -EFAULT;
919 if (get_user(pid, (int __user *)argp))
920 break;
921 f_setown(sock->file, pid, 1);
922 err = 0;
923 break;
924 case FIOGETOWN:
925 case SIOCGPGRP:
926 err = put_user(f_getown(sock->file),
927 (int __user *)argp);
928 break;
929 case SIOCGIFBR:
930 case SIOCSIFBR:
931 case SIOCBRADDBR:
932 case SIOCBRDELBR:
933 err = -ENOPKG;
934 if (!br_ioctl_hook)
935 request_module("bridge");
937 mutex_lock(&br_ioctl_mutex);
938 if (br_ioctl_hook)
939 err = br_ioctl_hook(net, cmd, argp);
940 mutex_unlock(&br_ioctl_mutex);
941 break;
942 case SIOCGIFVLAN:
943 case SIOCSIFVLAN:
944 err = -ENOPKG;
945 if (!vlan_ioctl_hook)
946 request_module("8021q");
948 mutex_lock(&vlan_ioctl_mutex);
949 if (vlan_ioctl_hook)
950 err = vlan_ioctl_hook(net, argp);
951 mutex_unlock(&vlan_ioctl_mutex);
952 break;
953 case SIOCADDDLCI:
954 case SIOCDELDLCI:
955 err = -ENOPKG;
956 if (!dlci_ioctl_hook)
957 request_module("dlci");
959 mutex_lock(&dlci_ioctl_mutex);
960 if (dlci_ioctl_hook)
961 err = dlci_ioctl_hook(cmd, argp);
962 mutex_unlock(&dlci_ioctl_mutex);
963 break;
964 default:
965 err = sock_do_ioctl(net, sock, cmd, arg);
966 break;
968 return err;
971 int sock_create_lite(int family, int type, int protocol, struct socket **res)
973 int err;
974 struct socket *sock = NULL;
976 err = security_socket_create(family, type, protocol, 1);
977 if (err)
978 goto out;
980 sock = sock_alloc();
981 if (!sock) {
982 err = -ENOMEM;
983 goto out;
986 sock->type = type;
987 err = security_socket_post_create(sock, family, type, protocol, 1);
988 if (err)
989 goto out_release;
991 out:
992 *res = sock;
993 return err;
994 out_release:
995 sock_release(sock);
996 sock = NULL;
997 goto out;
999 EXPORT_SYMBOL(sock_create_lite);
1001 /* No kernel lock held - perfect */
1002 static unsigned int sock_poll(struct file *file, poll_table *wait)
1004 unsigned int busy_flag = 0;
1005 struct socket *sock;
1008 * We can't return errors to poll, so it's either yes or no.
1010 sock = file->private_data;
1012 if (sk_can_busy_loop(sock->sk)) {
1013 /* this socket can poll_ll so tell the system call */
1014 busy_flag = POLL_BUSY_LOOP;
1016 /* once, only if requested by syscall */
1017 if (wait && (wait->_key & POLL_BUSY_LOOP))
1018 sk_busy_loop(sock->sk, 1);
1021 return busy_flag | sock->ops->poll(file, sock, wait);
1024 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1026 struct socket *sock = file->private_data;
1028 return sock->ops->mmap(file, sock, vma);
1031 static int sock_close(struct inode *inode, struct file *filp)
1033 sock_release(SOCKET_I(inode));
1034 return 0;
1038 * Update the socket async list
1040 * Fasync_list locking strategy.
1042 * 1. fasync_list is modified only under process context socket lock
1043 * i.e. under semaphore.
1044 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1045 * or under socket lock
1048 static int sock_fasync(int fd, struct file *filp, int on)
1050 struct socket *sock = filp->private_data;
1051 struct sock *sk = sock->sk;
1052 struct socket_wq *wq;
1054 if (sk == NULL)
1055 return -EINVAL;
1057 lock_sock(sk);
1058 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1059 fasync_helper(fd, filp, on, &wq->fasync_list);
1061 if (!wq->fasync_list)
1062 sock_reset_flag(sk, SOCK_FASYNC);
1063 else
1064 sock_set_flag(sk, SOCK_FASYNC);
1066 release_sock(sk);
1067 return 0;
1070 /* This function may be called only under rcu_lock */
1072 int sock_wake_async(struct socket_wq *wq, int how, int band)
1074 if (!wq || !wq->fasync_list)
1075 return -1;
1077 switch (how) {
1078 case SOCK_WAKE_WAITD:
1079 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1080 break;
1081 goto call_kill;
1082 case SOCK_WAKE_SPACE:
1083 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1084 break;
1085 /* fall through */
1086 case SOCK_WAKE_IO:
1087 call_kill:
1088 kill_fasync(&wq->fasync_list, SIGIO, band);
1089 break;
1090 case SOCK_WAKE_URG:
1091 kill_fasync(&wq->fasync_list, SIGURG, band);
1094 return 0;
1096 EXPORT_SYMBOL(sock_wake_async);
1098 int __sock_create(struct net *net, int family, int type, int protocol,
1099 struct socket **res, int kern)
1101 int err;
1102 struct socket *sock;
1103 const struct net_proto_family *pf;
1106 * Check protocol is in range
1108 if (family < 0 || family >= NPROTO)
1109 return -EAFNOSUPPORT;
1110 if (type < 0 || type >= SOCK_MAX)
1111 return -EINVAL;
1113 /* Compatibility.
1115 This uglymoron is moved from INET layer to here to avoid
1116 deadlock in module load.
1118 if (family == PF_INET && type == SOCK_PACKET) {
1119 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1120 current->comm);
1121 family = PF_PACKET;
1124 err = security_socket_create(family, type, protocol, kern);
1125 if (err)
1126 return err;
1129 * Allocate the socket and allow the family to set things up. if
1130 * the protocol is 0, the family is instructed to select an appropriate
1131 * default.
1133 sock = sock_alloc();
1134 if (!sock) {
1135 net_warn_ratelimited("socket: no more sockets\n");
1136 return -ENFILE; /* Not exactly a match, but its the
1137 closest posix thing */
1140 sock->type = type;
1142 #ifdef CONFIG_MODULES
1143 /* Attempt to load a protocol module if the find failed.
1145 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1146 * requested real, full-featured networking support upon configuration.
1147 * Otherwise module support will break!
1149 if (rcu_access_pointer(net_families[family]) == NULL)
1150 request_module("net-pf-%d", family);
1151 #endif
1153 rcu_read_lock();
1154 pf = rcu_dereference(net_families[family]);
1155 err = -EAFNOSUPPORT;
1156 if (!pf)
1157 goto out_release;
1160 * We will call the ->create function, that possibly is in a loadable
1161 * module, so we have to bump that loadable module refcnt first.
1163 if (!try_module_get(pf->owner))
1164 goto out_release;
1166 /* Now protected by module ref count */
1167 rcu_read_unlock();
1169 err = pf->create(net, sock, protocol, kern);
1170 if (err < 0)
1171 goto out_module_put;
1174 * Now to bump the refcnt of the [loadable] module that owns this
1175 * socket at sock_release time we decrement its refcnt.
1177 if (!try_module_get(sock->ops->owner))
1178 goto out_module_busy;
1181 * Now that we're done with the ->create function, the [loadable]
1182 * module can have its refcnt decremented
1184 module_put(pf->owner);
1185 err = security_socket_post_create(sock, family, type, protocol, kern);
1186 if (err)
1187 goto out_sock_release;
1188 *res = sock;
1190 return 0;
1192 out_module_busy:
1193 err = -EAFNOSUPPORT;
1194 out_module_put:
1195 sock->ops = NULL;
1196 module_put(pf->owner);
1197 out_sock_release:
1198 sock_release(sock);
1199 return err;
1201 out_release:
1202 rcu_read_unlock();
1203 goto out_sock_release;
1205 EXPORT_SYMBOL(__sock_create);
1207 int sock_create(int family, int type, int protocol, struct socket **res)
1209 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1211 EXPORT_SYMBOL(sock_create);
1213 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1215 return __sock_create(net, family, type, protocol, res, 1);
1217 EXPORT_SYMBOL(sock_create_kern);
1219 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1221 int retval;
1222 struct socket *sock;
1223 int flags;
1225 /* Check the SOCK_* constants for consistency. */
1226 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1227 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1228 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1229 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1231 flags = type & ~SOCK_TYPE_MASK;
1232 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1233 return -EINVAL;
1234 type &= SOCK_TYPE_MASK;
1236 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1237 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1239 retval = sock_create(family, type, protocol, &sock);
1240 if (retval < 0)
1241 goto out;
1243 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1244 if (retval < 0)
1245 goto out_release;
1247 out:
1248 /* It may be already another descriptor 8) Not kernel problem. */
1249 return retval;
1251 out_release:
1252 sock_release(sock);
1253 return retval;
1257 * Create a pair of connected sockets.
1260 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1261 int __user *, usockvec)
1263 struct socket *sock1, *sock2;
1264 int fd1, fd2, err;
1265 struct file *newfile1, *newfile2;
1266 int flags;
1268 flags = type & ~SOCK_TYPE_MASK;
1269 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1270 return -EINVAL;
1271 type &= SOCK_TYPE_MASK;
1273 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1274 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1277 * Obtain the first socket and check if the underlying protocol
1278 * supports the socketpair call.
1281 err = sock_create(family, type, protocol, &sock1);
1282 if (err < 0)
1283 goto out;
1285 err = sock_create(family, type, protocol, &sock2);
1286 if (err < 0)
1287 goto out_release_1;
1289 err = sock1->ops->socketpair(sock1, sock2);
1290 if (err < 0)
1291 goto out_release_both;
1293 fd1 = get_unused_fd_flags(flags);
1294 if (unlikely(fd1 < 0)) {
1295 err = fd1;
1296 goto out_release_both;
1299 fd2 = get_unused_fd_flags(flags);
1300 if (unlikely(fd2 < 0)) {
1301 err = fd2;
1302 goto out_put_unused_1;
1305 newfile1 = sock_alloc_file(sock1, flags, NULL);
1306 if (IS_ERR(newfile1)) {
1307 err = PTR_ERR(newfile1);
1308 goto out_put_unused_both;
1311 newfile2 = sock_alloc_file(sock2, flags, NULL);
1312 if (IS_ERR(newfile2)) {
1313 err = PTR_ERR(newfile2);
1314 goto out_fput_1;
1317 err = put_user(fd1, &usockvec[0]);
1318 if (err)
1319 goto out_fput_both;
1321 err = put_user(fd2, &usockvec[1]);
1322 if (err)
1323 goto out_fput_both;
1325 audit_fd_pair(fd1, fd2);
1327 fd_install(fd1, newfile1);
1328 fd_install(fd2, newfile2);
1329 /* fd1 and fd2 may be already another descriptors.
1330 * Not kernel problem.
1333 return 0;
1335 out_fput_both:
1336 fput(newfile2);
1337 fput(newfile1);
1338 put_unused_fd(fd2);
1339 put_unused_fd(fd1);
1340 goto out;
1342 out_fput_1:
1343 fput(newfile1);
1344 put_unused_fd(fd2);
1345 put_unused_fd(fd1);
1346 sock_release(sock2);
1347 goto out;
1349 out_put_unused_both:
1350 put_unused_fd(fd2);
1351 out_put_unused_1:
1352 put_unused_fd(fd1);
1353 out_release_both:
1354 sock_release(sock2);
1355 out_release_1:
1356 sock_release(sock1);
1357 out:
1358 return err;
1362 * Bind a name to a socket. Nothing much to do here since it's
1363 * the protocol's responsibility to handle the local address.
1365 * We move the socket address to kernel space before we call
1366 * the protocol layer (having also checked the address is ok).
1369 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1371 struct socket *sock;
1372 struct sockaddr_storage address;
1373 int err, fput_needed;
1375 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1376 if (sock) {
1377 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1378 if (err >= 0) {
1379 err = security_socket_bind(sock,
1380 (struct sockaddr *)&address,
1381 addrlen);
1382 if (!err)
1383 err = sock->ops->bind(sock,
1384 (struct sockaddr *)
1385 &address, addrlen);
1387 fput_light(sock->file, fput_needed);
1389 return err;
1393 * Perform a listen. Basically, we allow the protocol to do anything
1394 * necessary for a listen, and if that works, we mark the socket as
1395 * ready for listening.
1398 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1400 struct socket *sock;
1401 int err, fput_needed;
1402 int somaxconn;
1404 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1405 if (sock) {
1406 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1407 if ((unsigned int)backlog > somaxconn)
1408 backlog = somaxconn;
1410 err = security_socket_listen(sock, backlog);
1411 if (!err)
1412 err = sock->ops->listen(sock, backlog);
1414 fput_light(sock->file, fput_needed);
1416 return err;
1420 * For accept, we attempt to create a new socket, set up the link
1421 * with the client, wake up the client, then return the new
1422 * connected fd. We collect the address of the connector in kernel
1423 * space and move it to user at the very end. This is unclean because
1424 * we open the socket then return an error.
1426 * 1003.1g adds the ability to recvmsg() to query connection pending
1427 * status to recvmsg. We need to add that support in a way thats
1428 * clean when we restucture accept also.
1431 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1432 int __user *, upeer_addrlen, int, flags)
1434 struct socket *sock, *newsock;
1435 struct file *newfile;
1436 int err, len, newfd, fput_needed;
1437 struct sockaddr_storage address;
1439 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1440 return -EINVAL;
1442 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1443 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1445 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1446 if (!sock)
1447 goto out;
1449 err = -ENFILE;
1450 newsock = sock_alloc();
1451 if (!newsock)
1452 goto out_put;
1454 newsock->type = sock->type;
1455 newsock->ops = sock->ops;
1458 * We don't need try_module_get here, as the listening socket (sock)
1459 * has the protocol module (sock->ops->owner) held.
1461 __module_get(newsock->ops->owner);
1463 newfd = get_unused_fd_flags(flags);
1464 if (unlikely(newfd < 0)) {
1465 err = newfd;
1466 sock_release(newsock);
1467 goto out_put;
1469 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1470 if (IS_ERR(newfile)) {
1471 err = PTR_ERR(newfile);
1472 put_unused_fd(newfd);
1473 sock_release(newsock);
1474 goto out_put;
1477 err = security_socket_accept(sock, newsock);
1478 if (err)
1479 goto out_fd;
1481 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1482 if (err < 0)
1483 goto out_fd;
1485 if (upeer_sockaddr) {
1486 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1487 &len, 2) < 0) {
1488 err = -ECONNABORTED;
1489 goto out_fd;
1491 err = move_addr_to_user(&address,
1492 len, upeer_sockaddr, upeer_addrlen);
1493 if (err < 0)
1494 goto out_fd;
1497 /* File flags are not inherited via accept() unlike another OSes. */
1499 fd_install(newfd, newfile);
1500 err = newfd;
1502 out_put:
1503 fput_light(sock->file, fput_needed);
1504 out:
1505 return err;
1506 out_fd:
1507 fput(newfile);
1508 put_unused_fd(newfd);
1509 goto out_put;
1512 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1513 int __user *, upeer_addrlen)
1515 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1519 * Attempt to connect to a socket with the server address. The address
1520 * is in user space so we verify it is OK and move it to kernel space.
1522 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1523 * break bindings
1525 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1526 * other SEQPACKET protocols that take time to connect() as it doesn't
1527 * include the -EINPROGRESS status for such sockets.
1530 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1531 int, addrlen)
1533 struct socket *sock;
1534 struct sockaddr_storage address;
1535 int err, fput_needed;
1537 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1538 if (!sock)
1539 goto out;
1540 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1541 if (err < 0)
1542 goto out_put;
1544 err =
1545 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1546 if (err)
1547 goto out_put;
1549 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1550 sock->file->f_flags);
1551 out_put:
1552 fput_light(sock->file, fput_needed);
1553 out:
1554 return err;
1558 * Get the local address ('name') of a socket object. Move the obtained
1559 * name to user space.
1562 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1563 int __user *, usockaddr_len)
1565 struct socket *sock;
1566 struct sockaddr_storage address;
1567 int len, err, fput_needed;
1569 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1570 if (!sock)
1571 goto out;
1573 err = security_socket_getsockname(sock);
1574 if (err)
1575 goto out_put;
1577 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1578 if (err)
1579 goto out_put;
1580 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1582 out_put:
1583 fput_light(sock->file, fput_needed);
1584 out:
1585 return err;
1589 * Get the remote address ('name') of a socket object. Move the obtained
1590 * name to user space.
1593 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1594 int __user *, usockaddr_len)
1596 struct socket *sock;
1597 struct sockaddr_storage address;
1598 int len, err, fput_needed;
1600 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1601 if (sock != NULL) {
1602 err = security_socket_getpeername(sock);
1603 if (err) {
1604 fput_light(sock->file, fput_needed);
1605 return err;
1608 err =
1609 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1611 if (!err)
1612 err = move_addr_to_user(&address, len, usockaddr,
1613 usockaddr_len);
1614 fput_light(sock->file, fput_needed);
1616 return err;
1620 * Send a datagram to a given address. We move the address into kernel
1621 * space and check the user space data area is readable before invoking
1622 * the protocol.
1625 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1626 unsigned int, flags, struct sockaddr __user *, addr,
1627 int, addr_len)
1629 struct socket *sock;
1630 struct sockaddr_storage address;
1631 int err;
1632 struct msghdr msg;
1633 struct iovec iov;
1634 int fput_needed;
1636 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1637 if (unlikely(err))
1638 return err;
1639 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640 if (!sock)
1641 goto out;
1643 msg.msg_name = NULL;
1644 msg.msg_control = NULL;
1645 msg.msg_controllen = 0;
1646 msg.msg_namelen = 0;
1647 if (addr) {
1648 err = move_addr_to_kernel(addr, addr_len, &address);
1649 if (err < 0)
1650 goto out_put;
1651 msg.msg_name = (struct sockaddr *)&address;
1652 msg.msg_namelen = addr_len;
1654 if (sock->file->f_flags & O_NONBLOCK)
1655 flags |= MSG_DONTWAIT;
1656 msg.msg_flags = flags;
1657 err = sock_sendmsg(sock, &msg);
1659 out_put:
1660 fput_light(sock->file, fput_needed);
1661 out:
1662 return err;
1666 * Send a datagram down a socket.
1669 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1670 unsigned int, flags)
1672 return sys_sendto(fd, buff, len, flags, NULL, 0);
1676 * Receive a frame from the socket and optionally record the address of the
1677 * sender. We verify the buffers are writable and if needed move the
1678 * sender address from kernel to user space.
1681 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1682 unsigned int, flags, struct sockaddr __user *, addr,
1683 int __user *, addr_len)
1685 struct socket *sock;
1686 struct iovec iov;
1687 struct msghdr msg;
1688 struct sockaddr_storage address;
1689 int err, err2;
1690 int fput_needed;
1692 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1693 if (unlikely(err))
1694 return err;
1695 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1696 if (!sock)
1697 goto out;
1699 msg.msg_control = NULL;
1700 msg.msg_controllen = 0;
1701 /* Save some cycles and don't copy the address if not needed */
1702 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1703 /* We assume all kernel code knows the size of sockaddr_storage */
1704 msg.msg_namelen = 0;
1705 msg.msg_iocb = NULL;
1706 msg.msg_flags = 0;
1707 if (sock->file->f_flags & O_NONBLOCK)
1708 flags |= MSG_DONTWAIT;
1709 err = sock_recvmsg(sock, &msg, flags);
1711 if (err >= 0 && addr != NULL) {
1712 err2 = move_addr_to_user(&address,
1713 msg.msg_namelen, addr, addr_len);
1714 if (err2 < 0)
1715 err = err2;
1718 fput_light(sock->file, fput_needed);
1719 out:
1720 return err;
1724 * Receive a datagram from a socket.
1727 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1728 unsigned int, flags)
1730 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1734 * Set a socket option. Because we don't know the option lengths we have
1735 * to pass the user mode parameter for the protocols to sort out.
1738 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1739 char __user *, optval, int, optlen)
1741 int err, fput_needed;
1742 struct socket *sock;
1744 if (optlen < 0)
1745 return -EINVAL;
1747 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1748 if (sock != NULL) {
1749 err = security_socket_setsockopt(sock, level, optname);
1750 if (err)
1751 goto out_put;
1753 if (level == SOL_SOCKET)
1754 err =
1755 sock_setsockopt(sock, level, optname, optval,
1756 optlen);
1757 else
1758 err =
1759 sock->ops->setsockopt(sock, level, optname, optval,
1760 optlen);
1761 out_put:
1762 fput_light(sock->file, fput_needed);
1764 return err;
1768 * Get a socket option. Because we don't know the option lengths we have
1769 * to pass a user mode parameter for the protocols to sort out.
1772 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1773 char __user *, optval, int __user *, optlen)
1775 int err, fput_needed;
1776 struct socket *sock;
1778 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1779 if (sock != NULL) {
1780 err = security_socket_getsockopt(sock, level, optname);
1781 if (err)
1782 goto out_put;
1784 if (level == SOL_SOCKET)
1785 err =
1786 sock_getsockopt(sock, level, optname, optval,
1787 optlen);
1788 else
1789 err =
1790 sock->ops->getsockopt(sock, level, optname, optval,
1791 optlen);
1792 out_put:
1793 fput_light(sock->file, fput_needed);
1795 return err;
1799 * Shutdown a socket.
1802 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1804 int err, fput_needed;
1805 struct socket *sock;
1807 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808 if (sock != NULL) {
1809 err = security_socket_shutdown(sock, how);
1810 if (!err)
1811 err = sock->ops->shutdown(sock, how);
1812 fput_light(sock->file, fput_needed);
1814 return err;
1817 /* A couple of helpful macros for getting the address of the 32/64 bit
1818 * fields which are the same type (int / unsigned) on our platforms.
1820 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1821 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1822 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1824 struct used_address {
1825 struct sockaddr_storage name;
1826 unsigned int name_len;
1829 static int copy_msghdr_from_user(struct msghdr *kmsg,
1830 struct user_msghdr __user *umsg,
1831 struct sockaddr __user **save_addr,
1832 struct iovec **iov)
1834 struct sockaddr __user *uaddr;
1835 struct iovec __user *uiov;
1836 size_t nr_segs;
1837 ssize_t err;
1839 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1840 __get_user(uaddr, &umsg->msg_name) ||
1841 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1842 __get_user(uiov, &umsg->msg_iov) ||
1843 __get_user(nr_segs, &umsg->msg_iovlen) ||
1844 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1845 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1846 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1847 return -EFAULT;
1849 if (!uaddr)
1850 kmsg->msg_namelen = 0;
1852 if (kmsg->msg_namelen < 0)
1853 return -EINVAL;
1855 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1856 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1858 if (save_addr)
1859 *save_addr = uaddr;
1861 if (uaddr && kmsg->msg_namelen) {
1862 if (!save_addr) {
1863 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1864 kmsg->msg_name);
1865 if (err < 0)
1866 return err;
1868 } else {
1869 kmsg->msg_name = NULL;
1870 kmsg->msg_namelen = 0;
1873 if (nr_segs > UIO_MAXIOV)
1874 return -EMSGSIZE;
1876 kmsg->msg_iocb = NULL;
1878 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1879 UIO_FASTIOV, iov, &kmsg->msg_iter);
1882 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1883 struct msghdr *msg_sys, unsigned int flags,
1884 struct used_address *used_address,
1885 unsigned int allowed_msghdr_flags)
1887 struct compat_msghdr __user *msg_compat =
1888 (struct compat_msghdr __user *)msg;
1889 struct sockaddr_storage address;
1890 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1891 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1892 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1893 /* 20 is size of ipv6_pktinfo */
1894 unsigned char *ctl_buf = ctl;
1895 int ctl_len;
1896 ssize_t err;
1898 msg_sys->msg_name = &address;
1900 if (MSG_CMSG_COMPAT & flags)
1901 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1902 else
1903 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1904 if (err < 0)
1905 return err;
1907 err = -ENOBUFS;
1909 if (msg_sys->msg_controllen > INT_MAX)
1910 goto out_freeiov;
1911 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1912 ctl_len = msg_sys->msg_controllen;
1913 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1914 err =
1915 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1916 sizeof(ctl));
1917 if (err)
1918 goto out_freeiov;
1919 ctl_buf = msg_sys->msg_control;
1920 ctl_len = msg_sys->msg_controllen;
1921 } else if (ctl_len) {
1922 if (ctl_len > sizeof(ctl)) {
1923 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1924 if (ctl_buf == NULL)
1925 goto out_freeiov;
1927 err = -EFAULT;
1929 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1930 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1931 * checking falls down on this.
1933 if (copy_from_user(ctl_buf,
1934 (void __user __force *)msg_sys->msg_control,
1935 ctl_len))
1936 goto out_freectl;
1937 msg_sys->msg_control = ctl_buf;
1939 msg_sys->msg_flags = flags;
1941 if (sock->file->f_flags & O_NONBLOCK)
1942 msg_sys->msg_flags |= MSG_DONTWAIT;
1944 * If this is sendmmsg() and current destination address is same as
1945 * previously succeeded address, omit asking LSM's decision.
1946 * used_address->name_len is initialized to UINT_MAX so that the first
1947 * destination address never matches.
1949 if (used_address && msg_sys->msg_name &&
1950 used_address->name_len == msg_sys->msg_namelen &&
1951 !memcmp(&used_address->name, msg_sys->msg_name,
1952 used_address->name_len)) {
1953 err = sock_sendmsg_nosec(sock, msg_sys);
1954 goto out_freectl;
1956 err = sock_sendmsg(sock, msg_sys);
1958 * If this is sendmmsg() and sending to current destination address was
1959 * successful, remember it.
1961 if (used_address && err >= 0) {
1962 used_address->name_len = msg_sys->msg_namelen;
1963 if (msg_sys->msg_name)
1964 memcpy(&used_address->name, msg_sys->msg_name,
1965 used_address->name_len);
1968 out_freectl:
1969 if (ctl_buf != ctl)
1970 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1971 out_freeiov:
1972 kfree(iov);
1973 return err;
1977 * BSD sendmsg interface
1980 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1982 int fput_needed, err;
1983 struct msghdr msg_sys;
1984 struct socket *sock;
1986 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1987 if (!sock)
1988 goto out;
1990 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1992 fput_light(sock->file, fput_needed);
1993 out:
1994 return err;
1997 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1999 if (flags & MSG_CMSG_COMPAT)
2000 return -EINVAL;
2001 return __sys_sendmsg(fd, msg, flags);
2005 * Linux sendmmsg interface
2008 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2009 unsigned int flags)
2011 int fput_needed, err, datagrams;
2012 struct socket *sock;
2013 struct mmsghdr __user *entry;
2014 struct compat_mmsghdr __user *compat_entry;
2015 struct msghdr msg_sys;
2016 struct used_address used_address;
2017 unsigned int oflags = flags;
2019 if (vlen > UIO_MAXIOV)
2020 vlen = UIO_MAXIOV;
2022 datagrams = 0;
2024 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2025 if (!sock)
2026 return err;
2028 used_address.name_len = UINT_MAX;
2029 entry = mmsg;
2030 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2031 err = 0;
2032 flags |= MSG_BATCH;
2034 while (datagrams < vlen) {
2035 if (datagrams == vlen - 1)
2036 flags = oflags;
2038 if (MSG_CMSG_COMPAT & flags) {
2039 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2040 &msg_sys, flags, &used_address, MSG_EOR);
2041 if (err < 0)
2042 break;
2043 err = __put_user(err, &compat_entry->msg_len);
2044 ++compat_entry;
2045 } else {
2046 err = ___sys_sendmsg(sock,
2047 (struct user_msghdr __user *)entry,
2048 &msg_sys, flags, &used_address, MSG_EOR);
2049 if (err < 0)
2050 break;
2051 err = put_user(err, &entry->msg_len);
2052 ++entry;
2055 if (err)
2056 break;
2057 ++datagrams;
2058 if (msg_data_left(&msg_sys))
2059 break;
2060 cond_resched();
2063 fput_light(sock->file, fput_needed);
2065 /* We only return an error if no datagrams were able to be sent */
2066 if (datagrams != 0)
2067 return datagrams;
2069 return err;
2072 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2073 unsigned int, vlen, unsigned int, flags)
2075 if (flags & MSG_CMSG_COMPAT)
2076 return -EINVAL;
2077 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2080 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2081 struct msghdr *msg_sys, unsigned int flags, int nosec)
2083 struct compat_msghdr __user *msg_compat =
2084 (struct compat_msghdr __user *)msg;
2085 struct iovec iovstack[UIO_FASTIOV];
2086 struct iovec *iov = iovstack;
2087 unsigned long cmsg_ptr;
2088 int len;
2089 ssize_t err;
2091 /* kernel mode address */
2092 struct sockaddr_storage addr;
2094 /* user mode address pointers */
2095 struct sockaddr __user *uaddr;
2096 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2098 msg_sys->msg_name = &addr;
2100 if (MSG_CMSG_COMPAT & flags)
2101 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2102 else
2103 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2104 if (err < 0)
2105 return err;
2107 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2108 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2110 /* We assume all kernel code knows the size of sockaddr_storage */
2111 msg_sys->msg_namelen = 0;
2113 if (sock->file->f_flags & O_NONBLOCK)
2114 flags |= MSG_DONTWAIT;
2115 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2116 if (err < 0)
2117 goto out_freeiov;
2118 len = err;
2120 if (uaddr != NULL) {
2121 err = move_addr_to_user(&addr,
2122 msg_sys->msg_namelen, uaddr,
2123 uaddr_len);
2124 if (err < 0)
2125 goto out_freeiov;
2127 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2128 COMPAT_FLAGS(msg));
2129 if (err)
2130 goto out_freeiov;
2131 if (MSG_CMSG_COMPAT & flags)
2132 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2133 &msg_compat->msg_controllen);
2134 else
2135 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2136 &msg->msg_controllen);
2137 if (err)
2138 goto out_freeiov;
2139 err = len;
2141 out_freeiov:
2142 kfree(iov);
2143 return err;
2147 * BSD recvmsg interface
2150 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2152 int fput_needed, err;
2153 struct msghdr msg_sys;
2154 struct socket *sock;
2156 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2157 if (!sock)
2158 goto out;
2160 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2162 fput_light(sock->file, fput_needed);
2163 out:
2164 return err;
2167 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2168 unsigned int, flags)
2170 if (flags & MSG_CMSG_COMPAT)
2171 return -EINVAL;
2172 return __sys_recvmsg(fd, msg, flags);
2176 * Linux recvmmsg interface
2179 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2180 unsigned int flags, struct timespec *timeout)
2182 int fput_needed, err, datagrams;
2183 struct socket *sock;
2184 struct mmsghdr __user *entry;
2185 struct compat_mmsghdr __user *compat_entry;
2186 struct msghdr msg_sys;
2187 struct timespec64 end_time;
2188 struct timespec64 timeout64;
2190 if (timeout &&
2191 poll_select_set_timeout(&end_time, timeout->tv_sec,
2192 timeout->tv_nsec))
2193 return -EINVAL;
2195 datagrams = 0;
2197 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2198 if (!sock)
2199 return err;
2201 err = sock_error(sock->sk);
2202 if (err) {
2203 datagrams = err;
2204 goto out_put;
2207 entry = mmsg;
2208 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2210 while (datagrams < vlen) {
2212 * No need to ask LSM for more than the first datagram.
2214 if (MSG_CMSG_COMPAT & flags) {
2215 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2216 &msg_sys, flags & ~MSG_WAITFORONE,
2217 datagrams);
2218 if (err < 0)
2219 break;
2220 err = __put_user(err, &compat_entry->msg_len);
2221 ++compat_entry;
2222 } else {
2223 err = ___sys_recvmsg(sock,
2224 (struct user_msghdr __user *)entry,
2225 &msg_sys, flags & ~MSG_WAITFORONE,
2226 datagrams);
2227 if (err < 0)
2228 break;
2229 err = put_user(err, &entry->msg_len);
2230 ++entry;
2233 if (err)
2234 break;
2235 ++datagrams;
2237 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2238 if (flags & MSG_WAITFORONE)
2239 flags |= MSG_DONTWAIT;
2241 if (timeout) {
2242 ktime_get_ts64(&timeout64);
2243 *timeout = timespec64_to_timespec(
2244 timespec64_sub(end_time, timeout64));
2245 if (timeout->tv_sec < 0) {
2246 timeout->tv_sec = timeout->tv_nsec = 0;
2247 break;
2250 /* Timeout, return less than vlen datagrams */
2251 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2252 break;
2255 /* Out of band data, return right away */
2256 if (msg_sys.msg_flags & MSG_OOB)
2257 break;
2258 cond_resched();
2261 if (err == 0)
2262 goto out_put;
2264 if (datagrams == 0) {
2265 datagrams = err;
2266 goto out_put;
2270 * We may return less entries than requested (vlen) if the
2271 * sock is non block and there aren't enough datagrams...
2273 if (err != -EAGAIN) {
2275 * ... or if recvmsg returns an error after we
2276 * received some datagrams, where we record the
2277 * error to return on the next call or if the
2278 * app asks about it using getsockopt(SO_ERROR).
2280 sock->sk->sk_err = -err;
2282 out_put:
2283 fput_light(sock->file, fput_needed);
2285 return datagrams;
2288 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2289 unsigned int, vlen, unsigned int, flags,
2290 struct timespec __user *, timeout)
2292 int datagrams;
2293 struct timespec timeout_sys;
2295 if (flags & MSG_CMSG_COMPAT)
2296 return -EINVAL;
2298 if (!timeout)
2299 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2301 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2302 return -EFAULT;
2304 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2306 if (datagrams > 0 &&
2307 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2308 datagrams = -EFAULT;
2310 return datagrams;
2313 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2314 /* Argument list sizes for sys_socketcall */
2315 #define AL(x) ((x) * sizeof(unsigned long))
2316 static const unsigned char nargs[21] = {
2317 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2318 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2319 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2320 AL(4), AL(5), AL(4)
2323 #undef AL
2326 * System call vectors.
2328 * Argument checking cleaned up. Saved 20% in size.
2329 * This function doesn't need to set the kernel lock because
2330 * it is set by the callees.
2333 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2335 unsigned long a[AUDITSC_ARGS];
2336 unsigned long a0, a1;
2337 int err;
2338 unsigned int len;
2340 if (call < 1 || call > SYS_SENDMMSG)
2341 return -EINVAL;
2342 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2344 len = nargs[call];
2345 if (len > sizeof(a))
2346 return -EINVAL;
2348 /* copy_from_user should be SMP safe. */
2349 if (copy_from_user(a, args, len))
2350 return -EFAULT;
2352 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2353 if (err)
2354 return err;
2356 a0 = a[0];
2357 a1 = a[1];
2359 switch (call) {
2360 case SYS_SOCKET:
2361 err = sys_socket(a0, a1, a[2]);
2362 break;
2363 case SYS_BIND:
2364 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2365 break;
2366 case SYS_CONNECT:
2367 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2368 break;
2369 case SYS_LISTEN:
2370 err = sys_listen(a0, a1);
2371 break;
2372 case SYS_ACCEPT:
2373 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2374 (int __user *)a[2], 0);
2375 break;
2376 case SYS_GETSOCKNAME:
2377 err =
2378 sys_getsockname(a0, (struct sockaddr __user *)a1,
2379 (int __user *)a[2]);
2380 break;
2381 case SYS_GETPEERNAME:
2382 err =
2383 sys_getpeername(a0, (struct sockaddr __user *)a1,
2384 (int __user *)a[2]);
2385 break;
2386 case SYS_SOCKETPAIR:
2387 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2388 break;
2389 case SYS_SEND:
2390 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2391 break;
2392 case SYS_SENDTO:
2393 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2394 (struct sockaddr __user *)a[4], a[5]);
2395 break;
2396 case SYS_RECV:
2397 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2398 break;
2399 case SYS_RECVFROM:
2400 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2401 (struct sockaddr __user *)a[4],
2402 (int __user *)a[5]);
2403 break;
2404 case SYS_SHUTDOWN:
2405 err = sys_shutdown(a0, a1);
2406 break;
2407 case SYS_SETSOCKOPT:
2408 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2409 break;
2410 case SYS_GETSOCKOPT:
2411 err =
2412 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2413 (int __user *)a[4]);
2414 break;
2415 case SYS_SENDMSG:
2416 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2417 break;
2418 case SYS_SENDMMSG:
2419 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2420 break;
2421 case SYS_RECVMSG:
2422 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2423 break;
2424 case SYS_RECVMMSG:
2425 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2426 (struct timespec __user *)a[4]);
2427 break;
2428 case SYS_ACCEPT4:
2429 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2430 (int __user *)a[2], a[3]);
2431 break;
2432 default:
2433 err = -EINVAL;
2434 break;
2436 return err;
2439 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2442 * sock_register - add a socket protocol handler
2443 * @ops: description of protocol
2445 * This function is called by a protocol handler that wants to
2446 * advertise its address family, and have it linked into the
2447 * socket interface. The value ops->family corresponds to the
2448 * socket system call protocol family.
2450 int sock_register(const struct net_proto_family *ops)
2452 int err;
2454 if (ops->family >= NPROTO) {
2455 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2456 return -ENOBUFS;
2459 spin_lock(&net_family_lock);
2460 if (rcu_dereference_protected(net_families[ops->family],
2461 lockdep_is_held(&net_family_lock)))
2462 err = -EEXIST;
2463 else {
2464 rcu_assign_pointer(net_families[ops->family], ops);
2465 err = 0;
2467 spin_unlock(&net_family_lock);
2469 pr_info("NET: Registered protocol family %d\n", ops->family);
2470 return err;
2472 EXPORT_SYMBOL(sock_register);
2475 * sock_unregister - remove a protocol handler
2476 * @family: protocol family to remove
2478 * This function is called by a protocol handler that wants to
2479 * remove its address family, and have it unlinked from the
2480 * new socket creation.
2482 * If protocol handler is a module, then it can use module reference
2483 * counts to protect against new references. If protocol handler is not
2484 * a module then it needs to provide its own protection in
2485 * the ops->create routine.
2487 void sock_unregister(int family)
2489 BUG_ON(family < 0 || family >= NPROTO);
2491 spin_lock(&net_family_lock);
2492 RCU_INIT_POINTER(net_families[family], NULL);
2493 spin_unlock(&net_family_lock);
2495 synchronize_rcu();
2497 pr_info("NET: Unregistered protocol family %d\n", family);
2499 EXPORT_SYMBOL(sock_unregister);
2501 static int __init sock_init(void)
2503 int err;
2505 * Initialize the network sysctl infrastructure.
2507 err = net_sysctl_init();
2508 if (err)
2509 goto out;
2512 * Initialize skbuff SLAB cache
2514 skb_init();
2517 * Initialize the protocols module.
2520 init_inodecache();
2522 err = register_filesystem(&sock_fs_type);
2523 if (err)
2524 goto out_fs;
2525 sock_mnt = kern_mount(&sock_fs_type);
2526 if (IS_ERR(sock_mnt)) {
2527 err = PTR_ERR(sock_mnt);
2528 goto out_mount;
2531 /* The real protocol initialization is performed in later initcalls.
2534 #ifdef CONFIG_NETFILTER
2535 err = netfilter_init();
2536 if (err)
2537 goto out;
2538 #endif
2540 ptp_classifier_init();
2542 out:
2543 return err;
2545 out_mount:
2546 unregister_filesystem(&sock_fs_type);
2547 out_fs:
2548 goto out;
2551 core_initcall(sock_init); /* early initcall */
2553 static int __init jit_init(void)
2555 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2556 bpf_jit_enable = 1;
2557 #endif
2558 return 0;
2560 pure_initcall(jit_init);
2562 #ifdef CONFIG_PROC_FS
2563 void socket_seq_show(struct seq_file *seq)
2565 int cpu;
2566 int counter = 0;
2568 for_each_possible_cpu(cpu)
2569 counter += per_cpu(sockets_in_use, cpu);
2571 /* It can be negative, by the way. 8) */
2572 if (counter < 0)
2573 counter = 0;
2575 seq_printf(seq, "sockets: used %d\n", counter);
2577 #endif /* CONFIG_PROC_FS */
2579 #ifdef CONFIG_COMPAT
2580 static int do_siocgstamp(struct net *net, struct socket *sock,
2581 unsigned int cmd, void __user *up)
2583 mm_segment_t old_fs = get_fs();
2584 struct timeval ktv;
2585 int err;
2587 set_fs(KERNEL_DS);
2588 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2589 set_fs(old_fs);
2590 if (!err)
2591 err = compat_put_timeval(&ktv, up);
2593 return err;
2596 static int do_siocgstampns(struct net *net, struct socket *sock,
2597 unsigned int cmd, void __user *up)
2599 mm_segment_t old_fs = get_fs();
2600 struct timespec kts;
2601 int err;
2603 set_fs(KERNEL_DS);
2604 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2605 set_fs(old_fs);
2606 if (!err)
2607 err = compat_put_timespec(&kts, up);
2609 return err;
2612 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2614 struct ifreq __user *uifr;
2615 int err;
2617 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2618 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2619 return -EFAULT;
2621 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2622 if (err)
2623 return err;
2625 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2626 return -EFAULT;
2628 return 0;
2631 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2633 struct compat_ifconf ifc32;
2634 struct ifconf ifc;
2635 struct ifconf __user *uifc;
2636 struct compat_ifreq __user *ifr32;
2637 struct ifreq __user *ifr;
2638 unsigned int i, j;
2639 int err;
2641 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2642 return -EFAULT;
2644 memset(&ifc, 0, sizeof(ifc));
2645 if (ifc32.ifcbuf == 0) {
2646 ifc32.ifc_len = 0;
2647 ifc.ifc_len = 0;
2648 ifc.ifc_req = NULL;
2649 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2650 } else {
2651 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2652 sizeof(struct ifreq);
2653 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2654 ifc.ifc_len = len;
2655 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2656 ifr32 = compat_ptr(ifc32.ifcbuf);
2657 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2658 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2659 return -EFAULT;
2660 ifr++;
2661 ifr32++;
2664 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2665 return -EFAULT;
2667 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2668 if (err)
2669 return err;
2671 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2672 return -EFAULT;
2674 ifr = ifc.ifc_req;
2675 ifr32 = compat_ptr(ifc32.ifcbuf);
2676 for (i = 0, j = 0;
2677 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2678 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2679 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2680 return -EFAULT;
2681 ifr32++;
2682 ifr++;
2685 if (ifc32.ifcbuf == 0) {
2686 /* Translate from 64-bit structure multiple to
2687 * a 32-bit one.
2689 i = ifc.ifc_len;
2690 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2691 ifc32.ifc_len = i;
2692 } else {
2693 ifc32.ifc_len = i;
2695 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2696 return -EFAULT;
2698 return 0;
2701 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2703 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2704 bool convert_in = false, convert_out = false;
2705 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2706 struct ethtool_rxnfc __user *rxnfc;
2707 struct ifreq __user *ifr;
2708 u32 rule_cnt = 0, actual_rule_cnt;
2709 u32 ethcmd;
2710 u32 data;
2711 int ret;
2713 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2714 return -EFAULT;
2716 compat_rxnfc = compat_ptr(data);
2718 if (get_user(ethcmd, &compat_rxnfc->cmd))
2719 return -EFAULT;
2721 /* Most ethtool structures are defined without padding.
2722 * Unfortunately struct ethtool_rxnfc is an exception.
2724 switch (ethcmd) {
2725 default:
2726 break;
2727 case ETHTOOL_GRXCLSRLALL:
2728 /* Buffer size is variable */
2729 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2730 return -EFAULT;
2731 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2732 return -ENOMEM;
2733 buf_size += rule_cnt * sizeof(u32);
2734 /* fall through */
2735 case ETHTOOL_GRXRINGS:
2736 case ETHTOOL_GRXCLSRLCNT:
2737 case ETHTOOL_GRXCLSRULE:
2738 case ETHTOOL_SRXCLSRLINS:
2739 convert_out = true;
2740 /* fall through */
2741 case ETHTOOL_SRXCLSRLDEL:
2742 buf_size += sizeof(struct ethtool_rxnfc);
2743 convert_in = true;
2744 break;
2747 ifr = compat_alloc_user_space(buf_size);
2748 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2750 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2751 return -EFAULT;
2753 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2754 &ifr->ifr_ifru.ifru_data))
2755 return -EFAULT;
2757 if (convert_in) {
2758 /* We expect there to be holes between fs.m_ext and
2759 * fs.ring_cookie and at the end of fs, but nowhere else.
2761 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2762 sizeof(compat_rxnfc->fs.m_ext) !=
2763 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2764 sizeof(rxnfc->fs.m_ext));
2765 BUILD_BUG_ON(
2766 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2767 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2768 offsetof(struct ethtool_rxnfc, fs.location) -
2769 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2771 if (copy_in_user(rxnfc, compat_rxnfc,
2772 (void __user *)(&rxnfc->fs.m_ext + 1) -
2773 (void __user *)rxnfc) ||
2774 copy_in_user(&rxnfc->fs.ring_cookie,
2775 &compat_rxnfc->fs.ring_cookie,
2776 (void __user *)(&rxnfc->fs.location + 1) -
2777 (void __user *)&rxnfc->fs.ring_cookie))
2778 return -EFAULT;
2779 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2780 if (put_user(rule_cnt, &rxnfc->rule_cnt))
2781 return -EFAULT;
2782 } else if (copy_in_user(&rxnfc->rule_cnt,
2783 &compat_rxnfc->rule_cnt,
2784 sizeof(rxnfc->rule_cnt)))
2785 return -EFAULT;
2788 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2789 if (ret)
2790 return ret;
2792 if (convert_out) {
2793 if (copy_in_user(compat_rxnfc, rxnfc,
2794 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2795 (const void __user *)rxnfc) ||
2796 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2797 &rxnfc->fs.ring_cookie,
2798 (const void __user *)(&rxnfc->fs.location + 1) -
2799 (const void __user *)&rxnfc->fs.ring_cookie) ||
2800 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2801 sizeof(rxnfc->rule_cnt)))
2802 return -EFAULT;
2804 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2805 /* As an optimisation, we only copy the actual
2806 * number of rules that the underlying
2807 * function returned. Since Mallory might
2808 * change the rule count in user memory, we
2809 * check that it is less than the rule count
2810 * originally given (as the user buffer size),
2811 * which has been range-checked.
2813 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2814 return -EFAULT;
2815 if (actual_rule_cnt < rule_cnt)
2816 rule_cnt = actual_rule_cnt;
2817 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2818 &rxnfc->rule_locs[0],
2819 rule_cnt * sizeof(u32)))
2820 return -EFAULT;
2824 return 0;
2827 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2829 void __user *uptr;
2830 compat_uptr_t uptr32;
2831 struct ifreq __user *uifr;
2833 uifr = compat_alloc_user_space(sizeof(*uifr));
2834 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2835 return -EFAULT;
2837 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2838 return -EFAULT;
2840 uptr = compat_ptr(uptr32);
2842 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2843 return -EFAULT;
2845 return dev_ioctl(net, SIOCWANDEV, uifr);
2848 static int bond_ioctl(struct net *net, unsigned int cmd,
2849 struct compat_ifreq __user *ifr32)
2851 struct ifreq kifr;
2852 mm_segment_t old_fs;
2853 int err;
2855 switch (cmd) {
2856 case SIOCBONDENSLAVE:
2857 case SIOCBONDRELEASE:
2858 case SIOCBONDSETHWADDR:
2859 case SIOCBONDCHANGEACTIVE:
2860 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2861 return -EFAULT;
2863 old_fs = get_fs();
2864 set_fs(KERNEL_DS);
2865 err = dev_ioctl(net, cmd,
2866 (struct ifreq __user __force *) &kifr);
2867 set_fs(old_fs);
2869 return err;
2870 default:
2871 return -ENOIOCTLCMD;
2875 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2876 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2877 struct compat_ifreq __user *u_ifreq32)
2879 struct ifreq __user *u_ifreq64;
2880 char tmp_buf[IFNAMSIZ];
2881 void __user *data64;
2882 u32 data32;
2884 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2885 IFNAMSIZ))
2886 return -EFAULT;
2887 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2888 return -EFAULT;
2889 data64 = compat_ptr(data32);
2891 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2893 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2894 IFNAMSIZ))
2895 return -EFAULT;
2896 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2897 return -EFAULT;
2899 return dev_ioctl(net, cmd, u_ifreq64);
2902 static int dev_ifsioc(struct net *net, struct socket *sock,
2903 unsigned int cmd, struct compat_ifreq __user *uifr32)
2905 struct ifreq __user *uifr;
2906 int err;
2908 uifr = compat_alloc_user_space(sizeof(*uifr));
2909 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2910 return -EFAULT;
2912 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2914 if (!err) {
2915 switch (cmd) {
2916 case SIOCGIFFLAGS:
2917 case SIOCGIFMETRIC:
2918 case SIOCGIFMTU:
2919 case SIOCGIFMEM:
2920 case SIOCGIFHWADDR:
2921 case SIOCGIFINDEX:
2922 case SIOCGIFADDR:
2923 case SIOCGIFBRDADDR:
2924 case SIOCGIFDSTADDR:
2925 case SIOCGIFNETMASK:
2926 case SIOCGIFPFLAGS:
2927 case SIOCGIFTXQLEN:
2928 case SIOCGMIIPHY:
2929 case SIOCGMIIREG:
2930 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2931 err = -EFAULT;
2932 break;
2935 return err;
2938 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2939 struct compat_ifreq __user *uifr32)
2941 struct ifreq ifr;
2942 struct compat_ifmap __user *uifmap32;
2943 mm_segment_t old_fs;
2944 int err;
2946 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2947 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2948 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2949 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2950 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2951 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2952 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2953 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2954 if (err)
2955 return -EFAULT;
2957 old_fs = get_fs();
2958 set_fs(KERNEL_DS);
2959 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2960 set_fs(old_fs);
2962 if (cmd == SIOCGIFMAP && !err) {
2963 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2964 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2965 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2966 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2967 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2968 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2969 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2970 if (err)
2971 err = -EFAULT;
2973 return err;
2976 struct rtentry32 {
2977 u32 rt_pad1;
2978 struct sockaddr rt_dst; /* target address */
2979 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2980 struct sockaddr rt_genmask; /* target network mask (IP) */
2981 unsigned short rt_flags;
2982 short rt_pad2;
2983 u32 rt_pad3;
2984 unsigned char rt_tos;
2985 unsigned char rt_class;
2986 short rt_pad4;
2987 short rt_metric; /* +1 for binary compatibility! */
2988 /* char * */ u32 rt_dev; /* forcing the device at add */
2989 u32 rt_mtu; /* per route MTU/Window */
2990 u32 rt_window; /* Window clamping */
2991 unsigned short rt_irtt; /* Initial RTT */
2994 struct in6_rtmsg32 {
2995 struct in6_addr rtmsg_dst;
2996 struct in6_addr rtmsg_src;
2997 struct in6_addr rtmsg_gateway;
2998 u32 rtmsg_type;
2999 u16 rtmsg_dst_len;
3000 u16 rtmsg_src_len;
3001 u32 rtmsg_metric;
3002 u32 rtmsg_info;
3003 u32 rtmsg_flags;
3004 s32 rtmsg_ifindex;
3007 static int routing_ioctl(struct net *net, struct socket *sock,
3008 unsigned int cmd, void __user *argp)
3010 int ret;
3011 void *r = NULL;
3012 struct in6_rtmsg r6;
3013 struct rtentry r4;
3014 char devname[16];
3015 u32 rtdev;
3016 mm_segment_t old_fs = get_fs();
3018 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3019 struct in6_rtmsg32 __user *ur6 = argp;
3020 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3021 3 * sizeof(struct in6_addr));
3022 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3023 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3024 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3025 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3026 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3027 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3028 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3030 r = (void *) &r6;
3031 } else { /* ipv4 */
3032 struct rtentry32 __user *ur4 = argp;
3033 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3034 3 * sizeof(struct sockaddr));
3035 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3036 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3037 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3038 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3039 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3040 ret |= get_user(rtdev, &(ur4->rt_dev));
3041 if (rtdev) {
3042 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3043 r4.rt_dev = (char __user __force *)devname;
3044 devname[15] = 0;
3045 } else
3046 r4.rt_dev = NULL;
3048 r = (void *) &r4;
3051 if (ret) {
3052 ret = -EFAULT;
3053 goto out;
3056 set_fs(KERNEL_DS);
3057 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3058 set_fs(old_fs);
3060 out:
3061 return ret;
3064 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3065 * for some operations; this forces use of the newer bridge-utils that
3066 * use compatible ioctls
3068 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3070 compat_ulong_t tmp;
3072 if (get_user(tmp, argp))
3073 return -EFAULT;
3074 if (tmp == BRCTL_GET_VERSION)
3075 return BRCTL_VERSION + 1;
3076 return -EINVAL;
3079 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3080 unsigned int cmd, unsigned long arg)
3082 void __user *argp = compat_ptr(arg);
3083 struct sock *sk = sock->sk;
3084 struct net *net = sock_net(sk);
3086 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3087 return compat_ifr_data_ioctl(net, cmd, argp);
3089 switch (cmd) {
3090 case SIOCSIFBR:
3091 case SIOCGIFBR:
3092 return old_bridge_ioctl(argp);
3093 case SIOCGIFNAME:
3094 return dev_ifname32(net, argp);
3095 case SIOCGIFCONF:
3096 return dev_ifconf(net, argp);
3097 case SIOCETHTOOL:
3098 return ethtool_ioctl(net, argp);
3099 case SIOCWANDEV:
3100 return compat_siocwandev(net, argp);
3101 case SIOCGIFMAP:
3102 case SIOCSIFMAP:
3103 return compat_sioc_ifmap(net, cmd, argp);
3104 case SIOCBONDENSLAVE:
3105 case SIOCBONDRELEASE:
3106 case SIOCBONDSETHWADDR:
3107 case SIOCBONDCHANGEACTIVE:
3108 return bond_ioctl(net, cmd, argp);
3109 case SIOCADDRT:
3110 case SIOCDELRT:
3111 return routing_ioctl(net, sock, cmd, argp);
3112 case SIOCGSTAMP:
3113 return do_siocgstamp(net, sock, cmd, argp);
3114 case SIOCGSTAMPNS:
3115 return do_siocgstampns(net, sock, cmd, argp);
3116 case SIOCBONDSLAVEINFOQUERY:
3117 case SIOCBONDINFOQUERY:
3118 case SIOCSHWTSTAMP:
3119 case SIOCGHWTSTAMP:
3120 return compat_ifr_data_ioctl(net, cmd, argp);
3122 case FIOSETOWN:
3123 case SIOCSPGRP:
3124 case FIOGETOWN:
3125 case SIOCGPGRP:
3126 case SIOCBRADDBR:
3127 case SIOCBRDELBR:
3128 case SIOCGIFVLAN:
3129 case SIOCSIFVLAN:
3130 case SIOCADDDLCI:
3131 case SIOCDELDLCI:
3132 return sock_ioctl(file, cmd, arg);
3134 case SIOCGIFFLAGS:
3135 case SIOCSIFFLAGS:
3136 case SIOCGIFMETRIC:
3137 case SIOCSIFMETRIC:
3138 case SIOCGIFMTU:
3139 case SIOCSIFMTU:
3140 case SIOCGIFMEM:
3141 case SIOCSIFMEM:
3142 case SIOCGIFHWADDR:
3143 case SIOCSIFHWADDR:
3144 case SIOCADDMULTI:
3145 case SIOCDELMULTI:
3146 case SIOCGIFINDEX:
3147 case SIOCGIFADDR:
3148 case SIOCSIFADDR:
3149 case SIOCSIFHWBROADCAST:
3150 case SIOCDIFADDR:
3151 case SIOCGIFBRDADDR:
3152 case SIOCSIFBRDADDR:
3153 case SIOCGIFDSTADDR:
3154 case SIOCSIFDSTADDR:
3155 case SIOCGIFNETMASK:
3156 case SIOCSIFNETMASK:
3157 case SIOCSIFPFLAGS:
3158 case SIOCGIFPFLAGS:
3159 case SIOCGIFTXQLEN:
3160 case SIOCSIFTXQLEN:
3161 case SIOCBRADDIF:
3162 case SIOCBRDELIF:
3163 case SIOCSIFNAME:
3164 case SIOCGMIIPHY:
3165 case SIOCGMIIREG:
3166 case SIOCSMIIREG:
3167 return dev_ifsioc(net, sock, cmd, argp);
3169 case SIOCSARP:
3170 case SIOCGARP:
3171 case SIOCDARP:
3172 case SIOCATMARK:
3173 return sock_do_ioctl(net, sock, cmd, arg);
3176 return -ENOIOCTLCMD;
3179 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3180 unsigned long arg)
3182 struct socket *sock = file->private_data;
3183 int ret = -ENOIOCTLCMD;
3184 struct sock *sk;
3185 struct net *net;
3187 sk = sock->sk;
3188 net = sock_net(sk);
3190 if (sock->ops->compat_ioctl)
3191 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3193 if (ret == -ENOIOCTLCMD &&
3194 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3195 ret = compat_wext_handle_ioctl(net, cmd, arg);
3197 if (ret == -ENOIOCTLCMD)
3198 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3200 return ret;
3202 #endif
3204 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3206 return sock->ops->bind(sock, addr, addrlen);
3208 EXPORT_SYMBOL(kernel_bind);
3210 int kernel_listen(struct socket *sock, int backlog)
3212 return sock->ops->listen(sock, backlog);
3214 EXPORT_SYMBOL(kernel_listen);
3216 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3218 struct sock *sk = sock->sk;
3219 int err;
3221 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3222 newsock);
3223 if (err < 0)
3224 goto done;
3226 err = sock->ops->accept(sock, *newsock, flags);
3227 if (err < 0) {
3228 sock_release(*newsock);
3229 *newsock = NULL;
3230 goto done;
3233 (*newsock)->ops = sock->ops;
3234 __module_get((*newsock)->ops->owner);
3236 done:
3237 return err;
3239 EXPORT_SYMBOL(kernel_accept);
3241 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3242 int flags)
3244 return sock->ops->connect(sock, addr, addrlen, flags);
3246 EXPORT_SYMBOL(kernel_connect);
3248 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3249 int *addrlen)
3251 return sock->ops->getname(sock, addr, addrlen, 0);
3253 EXPORT_SYMBOL(kernel_getsockname);
3255 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3256 int *addrlen)
3258 return sock->ops->getname(sock, addr, addrlen, 1);
3260 EXPORT_SYMBOL(kernel_getpeername);
3262 int kernel_getsockopt(struct socket *sock, int level, int optname,
3263 char *optval, int *optlen)
3265 mm_segment_t oldfs = get_fs();
3266 char __user *uoptval;
3267 int __user *uoptlen;
3268 int err;
3270 uoptval = (char __user __force *) optval;
3271 uoptlen = (int __user __force *) optlen;
3273 set_fs(KERNEL_DS);
3274 if (level == SOL_SOCKET)
3275 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3276 else
3277 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3278 uoptlen);
3279 set_fs(oldfs);
3280 return err;
3282 EXPORT_SYMBOL(kernel_getsockopt);
3284 int kernel_setsockopt(struct socket *sock, int level, int optname,
3285 char *optval, unsigned int optlen)
3287 mm_segment_t oldfs = get_fs();
3288 char __user *uoptval;
3289 int err;
3291 uoptval = (char __user __force *) optval;
3293 set_fs(KERNEL_DS);
3294 if (level == SOL_SOCKET)
3295 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3296 else
3297 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3298 optlen);
3299 set_fs(oldfs);
3300 return err;
3302 EXPORT_SYMBOL(kernel_setsockopt);
3304 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3305 size_t size, int flags)
3307 if (sock->ops->sendpage)
3308 return sock->ops->sendpage(sock, page, offset, size, flags);
3310 return sock_no_sendpage(sock, page, offset, size, flags);
3312 EXPORT_SYMBOL(kernel_sendpage);
3314 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3316 mm_segment_t oldfs = get_fs();
3317 int err;
3319 set_fs(KERNEL_DS);
3320 err = sock->ops->ioctl(sock, cmd, arg);
3321 set_fs(oldfs);
3323 return err;
3325 EXPORT_SYMBOL(kernel_sock_ioctl);
3327 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3329 return sock->ops->shutdown(sock, how);
3331 EXPORT_SYMBOL(kernel_sock_shutdown);