Linux 4.1.16
[linux/fpc-iii.git] / drivers / clocksource / dw_apb_timer.c
blob35a88097af3c0daef2918c8e93585b004e268623
1 /*
2 * (C) Copyright 2009 Intel Corporation
3 * Author: Jacob Pan (jacob.jun.pan@intel.com)
5 * Shared with ARM platforms, Jamie Iles, Picochip 2011
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * Support for the Synopsys DesignWare APB Timers.
13 #include <linux/dw_apb_timer.h>
14 #include <linux/delay.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
21 #define APBT_MIN_PERIOD 4
22 #define APBT_MIN_DELTA_USEC 200
24 #define APBTMR_N_LOAD_COUNT 0x00
25 #define APBTMR_N_CURRENT_VALUE 0x04
26 #define APBTMR_N_CONTROL 0x08
27 #define APBTMR_N_EOI 0x0c
28 #define APBTMR_N_INT_STATUS 0x10
30 #define APBTMRS_INT_STATUS 0xa0
31 #define APBTMRS_EOI 0xa4
32 #define APBTMRS_RAW_INT_STATUS 0xa8
33 #define APBTMRS_COMP_VERSION 0xac
35 #define APBTMR_CONTROL_ENABLE (1 << 0)
36 /* 1: periodic, 0:free running. */
37 #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
38 #define APBTMR_CONTROL_INT (1 << 2)
40 static inline struct dw_apb_clock_event_device *
41 ced_to_dw_apb_ced(struct clock_event_device *evt)
43 return container_of(evt, struct dw_apb_clock_event_device, ced);
46 static inline struct dw_apb_clocksource *
47 clocksource_to_dw_apb_clocksource(struct clocksource *cs)
49 return container_of(cs, struct dw_apb_clocksource, cs);
52 static unsigned long apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
54 return readl(timer->base + offs);
57 static void apbt_writel(struct dw_apb_timer *timer, unsigned long val,
58 unsigned long offs)
60 writel(val, timer->base + offs);
63 static void apbt_disable_int(struct dw_apb_timer *timer)
65 unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
67 ctrl |= APBTMR_CONTROL_INT;
68 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
71 /**
72 * dw_apb_clockevent_pause() - stop the clock_event_device from running
74 * @dw_ced: The APB clock to stop generating events.
76 void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
78 disable_irq(dw_ced->timer.irq);
79 apbt_disable_int(&dw_ced->timer);
82 static void apbt_eoi(struct dw_apb_timer *timer)
84 apbt_readl(timer, APBTMR_N_EOI);
87 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
89 struct clock_event_device *evt = data;
90 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
92 if (!evt->event_handler) {
93 pr_info("Spurious APBT timer interrupt %d", irq);
94 return IRQ_NONE;
97 if (dw_ced->eoi)
98 dw_ced->eoi(&dw_ced->timer);
100 evt->event_handler(evt);
101 return IRQ_HANDLED;
104 static void apbt_enable_int(struct dw_apb_timer *timer)
106 unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
107 /* clear pending intr */
108 apbt_readl(timer, APBTMR_N_EOI);
109 ctrl &= ~APBTMR_CONTROL_INT;
110 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
113 static void apbt_set_mode(enum clock_event_mode mode,
114 struct clock_event_device *evt)
116 unsigned long ctrl;
117 unsigned long period;
118 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
120 pr_debug("%s CPU %d mode=%d\n", __func__,
121 cpumask_first(evt->cpumask),
122 mode);
124 switch (mode) {
125 case CLOCK_EVT_MODE_PERIODIC:
126 period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
127 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
128 ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
129 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
131 * DW APB p. 46, have to disable timer before load counter,
132 * may cause sync problem.
134 ctrl &= ~APBTMR_CONTROL_ENABLE;
135 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
136 udelay(1);
137 pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
138 apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
139 ctrl |= APBTMR_CONTROL_ENABLE;
140 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
141 break;
143 case CLOCK_EVT_MODE_ONESHOT:
144 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
146 * set free running mode, this mode will let timer reload max
147 * timeout which will give time (3min on 25MHz clock) to rearm
148 * the next event, therefore emulate the one-shot mode.
150 ctrl &= ~APBTMR_CONTROL_ENABLE;
151 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
153 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
154 /* write again to set free running mode */
155 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
158 * DW APB p. 46, load counter with all 1s before starting free
159 * running mode.
161 apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
162 ctrl &= ~APBTMR_CONTROL_INT;
163 ctrl |= APBTMR_CONTROL_ENABLE;
164 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
165 break;
167 case CLOCK_EVT_MODE_UNUSED:
168 case CLOCK_EVT_MODE_SHUTDOWN:
169 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
170 ctrl &= ~APBTMR_CONTROL_ENABLE;
171 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
172 break;
174 case CLOCK_EVT_MODE_RESUME:
175 apbt_enable_int(&dw_ced->timer);
176 break;
180 static int apbt_next_event(unsigned long delta,
181 struct clock_event_device *evt)
183 unsigned long ctrl;
184 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
186 /* Disable timer */
187 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
188 ctrl &= ~APBTMR_CONTROL_ENABLE;
189 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
190 /* write new count */
191 apbt_writel(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
192 ctrl |= APBTMR_CONTROL_ENABLE;
193 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
195 return 0;
199 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
201 * @cpu: The CPU the events will be targeted at.
202 * @name: The name used for the timer and the IRQ for it.
203 * @rating: The rating to give the timer.
204 * @base: I/O base for the timer registers.
205 * @irq: The interrupt number to use for the timer.
206 * @freq: The frequency that the timer counts at.
208 * This creates a clock_event_device for using with the generic clock layer
209 * but does not start and register it. This should be done with
210 * dw_apb_clockevent_register() as the next step. If this is the first time
211 * it has been called for a timer then the IRQ will be requested, if not it
212 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
213 * releasing the IRQ.
215 struct dw_apb_clock_event_device *
216 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
217 void __iomem *base, int irq, unsigned long freq)
219 struct dw_apb_clock_event_device *dw_ced =
220 kzalloc(sizeof(*dw_ced), GFP_KERNEL);
221 int err;
223 if (!dw_ced)
224 return NULL;
226 dw_ced->timer.base = base;
227 dw_ced->timer.irq = irq;
228 dw_ced->timer.freq = freq;
230 clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
231 dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
232 &dw_ced->ced);
233 dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
234 dw_ced->ced.cpumask = cpumask_of(cpu);
235 dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
236 dw_ced->ced.set_mode = apbt_set_mode;
237 dw_ced->ced.set_next_event = apbt_next_event;
238 dw_ced->ced.irq = dw_ced->timer.irq;
239 dw_ced->ced.rating = rating;
240 dw_ced->ced.name = name;
242 dw_ced->irqaction.name = dw_ced->ced.name;
243 dw_ced->irqaction.handler = dw_apb_clockevent_irq;
244 dw_ced->irqaction.dev_id = &dw_ced->ced;
245 dw_ced->irqaction.irq = irq;
246 dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL |
247 IRQF_NOBALANCING;
249 dw_ced->eoi = apbt_eoi;
250 err = setup_irq(irq, &dw_ced->irqaction);
251 if (err) {
252 pr_err("failed to request timer irq\n");
253 kfree(dw_ced);
254 dw_ced = NULL;
257 return dw_ced;
261 * dw_apb_clockevent_resume() - resume a clock that has been paused.
263 * @dw_ced: The APB clock to resume.
265 void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
267 enable_irq(dw_ced->timer.irq);
271 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
273 * @dw_ced: The APB clock to stop generating the events.
275 void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
277 free_irq(dw_ced->timer.irq, &dw_ced->ced);
281 * dw_apb_clockevent_register() - register the clock with the generic layer
283 * @dw_ced: The APB clock to register as a clock_event_device.
285 void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
287 apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
288 clockevents_register_device(&dw_ced->ced);
289 apbt_enable_int(&dw_ced->timer);
293 * dw_apb_clocksource_start() - start the clocksource counting.
295 * @dw_cs: The clocksource to start.
297 * This is used to start the clocksource before registration and can be used
298 * to enable calibration of timers.
300 void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
303 * start count down from 0xffff_ffff. this is done by toggling the
304 * enable bit then load initial load count to ~0.
306 unsigned long ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
308 ctrl &= ~APBTMR_CONTROL_ENABLE;
309 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
310 apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
311 /* enable, mask interrupt */
312 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
313 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
314 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
315 /* read it once to get cached counter value initialized */
316 dw_apb_clocksource_read(dw_cs);
319 static cycle_t __apbt_read_clocksource(struct clocksource *cs)
321 unsigned long current_count;
322 struct dw_apb_clocksource *dw_cs =
323 clocksource_to_dw_apb_clocksource(cs);
325 current_count = apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
327 return (cycle_t)~current_count;
330 static void apbt_restart_clocksource(struct clocksource *cs)
332 struct dw_apb_clocksource *dw_cs =
333 clocksource_to_dw_apb_clocksource(cs);
335 dw_apb_clocksource_start(dw_cs);
339 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
341 * @rating: The rating to give the clocksource.
342 * @name: The name for the clocksource.
343 * @base: The I/O base for the timer registers.
344 * @freq: The frequency that the timer counts at.
346 * This creates a clocksource using an APB timer but does not yet register it
347 * with the clocksource system. This should be done with
348 * dw_apb_clocksource_register() as the next step.
350 struct dw_apb_clocksource *
351 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
352 unsigned long freq)
354 struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
356 if (!dw_cs)
357 return NULL;
359 dw_cs->timer.base = base;
360 dw_cs->timer.freq = freq;
361 dw_cs->cs.name = name;
362 dw_cs->cs.rating = rating;
363 dw_cs->cs.read = __apbt_read_clocksource;
364 dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
365 dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
366 dw_cs->cs.resume = apbt_restart_clocksource;
368 return dw_cs;
372 * dw_apb_clocksource_register() - register the APB clocksource.
374 * @dw_cs: The clocksource to register.
376 void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
378 clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
382 * dw_apb_clocksource_read() - read the current value of a clocksource.
384 * @dw_cs: The clocksource to read.
386 cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
388 return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);