Linux 4.1.16
[linux/fpc-iii.git] / drivers / crypto / mxs-dcp.c
blob59ed54e464a96ed6af707f8bb2617b2314976e0b
1 /*
2 * Freescale i.MX23/i.MX28 Data Co-Processor driver
4 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 * The code contained herein is licensed under the GNU General Public
7 * License. You may obtain a copy of the GNU General Public License
8 * Version 2 or later at the following locations:
10 * http://www.opensource.org/licenses/gpl-license.html
11 * http://www.gnu.org/copyleft/gpl.html
14 #include <linux/crypto.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/kthread.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/platform_device.h>
23 #include <linux/stmp_device.h>
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/internal/hash.h>
29 #define DCP_MAX_CHANS 4
30 #define DCP_BUF_SZ PAGE_SIZE
32 #define DCP_ALIGNMENT 64
34 /* DCP DMA descriptor. */
35 struct dcp_dma_desc {
36 uint32_t next_cmd_addr;
37 uint32_t control0;
38 uint32_t control1;
39 uint32_t source;
40 uint32_t destination;
41 uint32_t size;
42 uint32_t payload;
43 uint32_t status;
46 /* Coherent aligned block for bounce buffering. */
47 struct dcp_coherent_block {
48 uint8_t aes_in_buf[DCP_BUF_SZ];
49 uint8_t aes_out_buf[DCP_BUF_SZ];
50 uint8_t sha_in_buf[DCP_BUF_SZ];
52 uint8_t aes_key[2 * AES_KEYSIZE_128];
54 struct dcp_dma_desc desc[DCP_MAX_CHANS];
57 struct dcp {
58 struct device *dev;
59 void __iomem *base;
61 uint32_t caps;
63 struct dcp_coherent_block *coh;
65 struct completion completion[DCP_MAX_CHANS];
66 struct mutex mutex[DCP_MAX_CHANS];
67 struct task_struct *thread[DCP_MAX_CHANS];
68 struct crypto_queue queue[DCP_MAX_CHANS];
71 enum dcp_chan {
72 DCP_CHAN_HASH_SHA = 0,
73 DCP_CHAN_CRYPTO = 2,
76 struct dcp_async_ctx {
77 /* Common context */
78 enum dcp_chan chan;
79 uint32_t fill;
81 /* SHA Hash-specific context */
82 struct mutex mutex;
83 uint32_t alg;
84 unsigned int hot:1;
86 /* Crypto-specific context */
87 struct crypto_ablkcipher *fallback;
88 unsigned int key_len;
89 uint8_t key[AES_KEYSIZE_128];
92 struct dcp_aes_req_ctx {
93 unsigned int enc:1;
94 unsigned int ecb:1;
97 struct dcp_sha_req_ctx {
98 unsigned int init:1;
99 unsigned int fini:1;
103 * There can even be only one instance of the MXS DCP due to the
104 * design of Linux Crypto API.
106 static struct dcp *global_sdcp;
108 /* DCP register layout. */
109 #define MXS_DCP_CTRL 0x00
110 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
111 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
113 #define MXS_DCP_STAT 0x10
114 #define MXS_DCP_STAT_CLR 0x18
115 #define MXS_DCP_STAT_IRQ_MASK 0xf
117 #define MXS_DCP_CHANNELCTRL 0x20
118 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
120 #define MXS_DCP_CAPABILITY1 0x40
121 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
122 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
123 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
125 #define MXS_DCP_CONTEXT 0x50
127 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
129 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
131 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
132 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
134 /* DMA descriptor bits. */
135 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
136 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
137 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
138 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
139 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
140 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
141 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
142 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
143 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
145 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
146 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
147 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
148 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
149 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
151 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
153 struct dcp *sdcp = global_sdcp;
154 const int chan = actx->chan;
155 uint32_t stat;
156 unsigned long ret;
157 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
159 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
160 DMA_TO_DEVICE);
162 reinit_completion(&sdcp->completion[chan]);
164 /* Clear status register. */
165 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
167 /* Load the DMA descriptor. */
168 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
170 /* Increment the semaphore to start the DMA transfer. */
171 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
173 ret = wait_for_completion_timeout(&sdcp->completion[chan],
174 msecs_to_jiffies(1000));
175 if (!ret) {
176 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
177 chan, readl(sdcp->base + MXS_DCP_STAT));
178 return -ETIMEDOUT;
181 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
182 if (stat & 0xff) {
183 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
184 chan, stat);
185 return -EINVAL;
188 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
190 return 0;
194 * Encryption (AES128)
196 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
197 struct ablkcipher_request *req, int init)
199 struct dcp *sdcp = global_sdcp;
200 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
201 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
202 int ret;
204 dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
205 2 * AES_KEYSIZE_128,
206 DMA_TO_DEVICE);
207 dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
208 DCP_BUF_SZ, DMA_TO_DEVICE);
209 dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
210 DCP_BUF_SZ, DMA_FROM_DEVICE);
212 /* Fill in the DMA descriptor. */
213 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
214 MXS_DCP_CONTROL0_INTERRUPT |
215 MXS_DCP_CONTROL0_ENABLE_CIPHER;
217 /* Payload contains the key. */
218 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
220 if (rctx->enc)
221 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
222 if (init)
223 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
225 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
227 if (rctx->ecb)
228 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
229 else
230 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
232 desc->next_cmd_addr = 0;
233 desc->source = src_phys;
234 desc->destination = dst_phys;
235 desc->size = actx->fill;
236 desc->payload = key_phys;
237 desc->status = 0;
239 ret = mxs_dcp_start_dma(actx);
241 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
242 DMA_TO_DEVICE);
243 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
244 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
246 return ret;
249 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
251 struct dcp *sdcp = global_sdcp;
253 struct ablkcipher_request *req = ablkcipher_request_cast(arq);
254 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
255 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
257 struct scatterlist *dst = req->dst;
258 struct scatterlist *src = req->src;
259 const int nents = sg_nents(req->src);
261 const int out_off = DCP_BUF_SZ;
262 uint8_t *in_buf = sdcp->coh->aes_in_buf;
263 uint8_t *out_buf = sdcp->coh->aes_out_buf;
265 uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
266 uint32_t dst_off = 0;
268 uint8_t *key = sdcp->coh->aes_key;
270 int ret = 0;
271 int split = 0;
272 unsigned int i, len, clen, rem = 0;
273 int init = 0;
275 actx->fill = 0;
277 /* Copy the key from the temporary location. */
278 memcpy(key, actx->key, actx->key_len);
280 if (!rctx->ecb) {
281 /* Copy the CBC IV just past the key. */
282 memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
283 /* CBC needs the INIT set. */
284 init = 1;
285 } else {
286 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
289 for_each_sg(req->src, src, nents, i) {
290 src_buf = sg_virt(src);
291 len = sg_dma_len(src);
293 do {
294 if (actx->fill + len > out_off)
295 clen = out_off - actx->fill;
296 else
297 clen = len;
299 memcpy(in_buf + actx->fill, src_buf, clen);
300 len -= clen;
301 src_buf += clen;
302 actx->fill += clen;
305 * If we filled the buffer or this is the last SG,
306 * submit the buffer.
308 if (actx->fill == out_off || sg_is_last(src)) {
309 ret = mxs_dcp_run_aes(actx, req, init);
310 if (ret)
311 return ret;
312 init = 0;
314 out_tmp = out_buf;
315 while (dst && actx->fill) {
316 if (!split) {
317 dst_buf = sg_virt(dst);
318 dst_off = 0;
320 rem = min(sg_dma_len(dst) - dst_off,
321 actx->fill);
323 memcpy(dst_buf + dst_off, out_tmp, rem);
324 out_tmp += rem;
325 dst_off += rem;
326 actx->fill -= rem;
328 if (dst_off == sg_dma_len(dst)) {
329 dst = sg_next(dst);
330 split = 0;
331 } else {
332 split = 1;
336 } while (len);
339 return ret;
342 static int dcp_chan_thread_aes(void *data)
344 struct dcp *sdcp = global_sdcp;
345 const int chan = DCP_CHAN_CRYPTO;
347 struct crypto_async_request *backlog;
348 struct crypto_async_request *arq;
350 int ret;
352 do {
353 __set_current_state(TASK_INTERRUPTIBLE);
355 mutex_lock(&sdcp->mutex[chan]);
356 backlog = crypto_get_backlog(&sdcp->queue[chan]);
357 arq = crypto_dequeue_request(&sdcp->queue[chan]);
358 mutex_unlock(&sdcp->mutex[chan]);
360 if (backlog)
361 backlog->complete(backlog, -EINPROGRESS);
363 if (arq) {
364 ret = mxs_dcp_aes_block_crypt(arq);
365 arq->complete(arq, ret);
366 continue;
369 schedule();
370 } while (!kthread_should_stop());
372 return 0;
375 static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
377 struct crypto_tfm *tfm =
378 crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
379 struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(
380 crypto_ablkcipher_reqtfm(req));
381 int ret;
383 ablkcipher_request_set_tfm(req, ctx->fallback);
385 if (enc)
386 ret = crypto_ablkcipher_encrypt(req);
387 else
388 ret = crypto_ablkcipher_decrypt(req);
390 ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
392 return ret;
395 static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
397 struct dcp *sdcp = global_sdcp;
398 struct crypto_async_request *arq = &req->base;
399 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
400 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
401 int ret;
403 if (unlikely(actx->key_len != AES_KEYSIZE_128))
404 return mxs_dcp_block_fallback(req, enc);
406 rctx->enc = enc;
407 rctx->ecb = ecb;
408 actx->chan = DCP_CHAN_CRYPTO;
410 mutex_lock(&sdcp->mutex[actx->chan]);
411 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
412 mutex_unlock(&sdcp->mutex[actx->chan]);
414 wake_up_process(sdcp->thread[actx->chan]);
416 return -EINPROGRESS;
419 static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
421 return mxs_dcp_aes_enqueue(req, 0, 1);
424 static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
426 return mxs_dcp_aes_enqueue(req, 1, 1);
429 static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
431 return mxs_dcp_aes_enqueue(req, 0, 0);
434 static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
436 return mxs_dcp_aes_enqueue(req, 1, 0);
439 static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
440 unsigned int len)
442 struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
443 unsigned int ret;
446 * AES 128 is supposed by the hardware, store key into temporary
447 * buffer and exit. We must use the temporary buffer here, since
448 * there can still be an operation in progress.
450 actx->key_len = len;
451 if (len == AES_KEYSIZE_128) {
452 memcpy(actx->key, key, len);
453 return 0;
456 /* Check if the key size is supported by kernel at all. */
457 if (len != AES_KEYSIZE_192 && len != AES_KEYSIZE_256) {
458 tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
459 return -EINVAL;
463 * If the requested AES key size is not supported by the hardware,
464 * but is supported by in-kernel software implementation, we use
465 * software fallback.
467 actx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
468 actx->fallback->base.crt_flags |=
469 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK;
471 ret = crypto_ablkcipher_setkey(actx->fallback, key, len);
472 if (!ret)
473 return 0;
475 tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
476 tfm->base.crt_flags |=
477 actx->fallback->base.crt_flags & CRYPTO_TFM_RES_MASK;
479 return ret;
482 static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
484 const char *name = crypto_tfm_alg_name(tfm);
485 const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
486 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
487 struct crypto_ablkcipher *blk;
489 blk = crypto_alloc_ablkcipher(name, 0, flags);
490 if (IS_ERR(blk))
491 return PTR_ERR(blk);
493 actx->fallback = blk;
494 tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
495 return 0;
498 static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
500 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
502 crypto_free_ablkcipher(actx->fallback);
503 actx->fallback = NULL;
507 * Hashing (SHA1/SHA256)
509 static int mxs_dcp_run_sha(struct ahash_request *req)
511 struct dcp *sdcp = global_sdcp;
512 int ret;
514 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
515 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
516 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
517 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
519 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
521 dma_addr_t digest_phys = 0;
522 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
523 DCP_BUF_SZ, DMA_TO_DEVICE);
525 /* Fill in the DMA descriptor. */
526 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
527 MXS_DCP_CONTROL0_INTERRUPT |
528 MXS_DCP_CONTROL0_ENABLE_HASH;
529 if (rctx->init)
530 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
532 desc->control1 = actx->alg;
533 desc->next_cmd_addr = 0;
534 desc->source = buf_phys;
535 desc->destination = 0;
536 desc->size = actx->fill;
537 desc->payload = 0;
538 desc->status = 0;
540 /* Set HASH_TERM bit for last transfer block. */
541 if (rctx->fini) {
542 digest_phys = dma_map_single(sdcp->dev, req->result,
543 halg->digestsize, DMA_FROM_DEVICE);
544 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
545 desc->payload = digest_phys;
548 ret = mxs_dcp_start_dma(actx);
550 if (rctx->fini)
551 dma_unmap_single(sdcp->dev, digest_phys, halg->digestsize,
552 DMA_FROM_DEVICE);
554 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
556 return ret;
559 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
561 struct dcp *sdcp = global_sdcp;
563 struct ahash_request *req = ahash_request_cast(arq);
564 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
565 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
566 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
567 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
568 const int nents = sg_nents(req->src);
570 uint8_t *in_buf = sdcp->coh->sha_in_buf;
572 uint8_t *src_buf;
574 struct scatterlist *src;
576 unsigned int i, len, clen;
577 int ret;
579 int fin = rctx->fini;
580 if (fin)
581 rctx->fini = 0;
583 for_each_sg(req->src, src, nents, i) {
584 src_buf = sg_virt(src);
585 len = sg_dma_len(src);
587 do {
588 if (actx->fill + len > DCP_BUF_SZ)
589 clen = DCP_BUF_SZ - actx->fill;
590 else
591 clen = len;
593 memcpy(in_buf + actx->fill, src_buf, clen);
594 len -= clen;
595 src_buf += clen;
596 actx->fill += clen;
599 * If we filled the buffer and still have some
600 * more data, submit the buffer.
602 if (len && actx->fill == DCP_BUF_SZ) {
603 ret = mxs_dcp_run_sha(req);
604 if (ret)
605 return ret;
606 actx->fill = 0;
607 rctx->init = 0;
609 } while (len);
612 if (fin) {
613 rctx->fini = 1;
615 /* Submit whatever is left. */
616 if (!req->result)
617 return -EINVAL;
619 ret = mxs_dcp_run_sha(req);
620 if (ret)
621 return ret;
623 actx->fill = 0;
625 /* For some reason, the result is flipped. */
626 for (i = 0; i < halg->digestsize / 2; i++) {
627 swap(req->result[i],
628 req->result[halg->digestsize - i - 1]);
632 return 0;
635 static int dcp_chan_thread_sha(void *data)
637 struct dcp *sdcp = global_sdcp;
638 const int chan = DCP_CHAN_HASH_SHA;
640 struct crypto_async_request *backlog;
641 struct crypto_async_request *arq;
643 struct dcp_sha_req_ctx *rctx;
645 struct ahash_request *req;
646 int ret, fini;
648 do {
649 __set_current_state(TASK_INTERRUPTIBLE);
651 mutex_lock(&sdcp->mutex[chan]);
652 backlog = crypto_get_backlog(&sdcp->queue[chan]);
653 arq = crypto_dequeue_request(&sdcp->queue[chan]);
654 mutex_unlock(&sdcp->mutex[chan]);
656 if (backlog)
657 backlog->complete(backlog, -EINPROGRESS);
659 if (arq) {
660 req = ahash_request_cast(arq);
661 rctx = ahash_request_ctx(req);
663 ret = dcp_sha_req_to_buf(arq);
664 fini = rctx->fini;
665 arq->complete(arq, ret);
666 if (!fini)
667 continue;
670 schedule();
671 } while (!kthread_should_stop());
673 return 0;
676 static int dcp_sha_init(struct ahash_request *req)
678 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
679 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
681 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
684 * Start hashing session. The code below only inits the
685 * hashing session context, nothing more.
687 memset(actx, 0, sizeof(*actx));
689 if (strcmp(halg->base.cra_name, "sha1") == 0)
690 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
691 else
692 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
694 actx->fill = 0;
695 actx->hot = 0;
696 actx->chan = DCP_CHAN_HASH_SHA;
698 mutex_init(&actx->mutex);
700 return 0;
703 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
705 struct dcp *sdcp = global_sdcp;
707 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
708 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
709 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
711 int ret;
714 * Ignore requests that have no data in them and are not
715 * the trailing requests in the stream of requests.
717 if (!req->nbytes && !fini)
718 return 0;
720 mutex_lock(&actx->mutex);
722 rctx->fini = fini;
724 if (!actx->hot) {
725 actx->hot = 1;
726 rctx->init = 1;
729 mutex_lock(&sdcp->mutex[actx->chan]);
730 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
731 mutex_unlock(&sdcp->mutex[actx->chan]);
733 wake_up_process(sdcp->thread[actx->chan]);
734 mutex_unlock(&actx->mutex);
736 return -EINPROGRESS;
739 static int dcp_sha_update(struct ahash_request *req)
741 return dcp_sha_update_fx(req, 0);
744 static int dcp_sha_final(struct ahash_request *req)
746 ahash_request_set_crypt(req, NULL, req->result, 0);
747 req->nbytes = 0;
748 return dcp_sha_update_fx(req, 1);
751 static int dcp_sha_finup(struct ahash_request *req)
753 return dcp_sha_update_fx(req, 1);
756 static int dcp_sha_digest(struct ahash_request *req)
758 int ret;
760 ret = dcp_sha_init(req);
761 if (ret)
762 return ret;
764 return dcp_sha_finup(req);
767 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
769 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
770 sizeof(struct dcp_sha_req_ctx));
771 return 0;
774 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
778 /* AES 128 ECB and AES 128 CBC */
779 static struct crypto_alg dcp_aes_algs[] = {
781 .cra_name = "ecb(aes)",
782 .cra_driver_name = "ecb-aes-dcp",
783 .cra_priority = 400,
784 .cra_alignmask = 15,
785 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
786 CRYPTO_ALG_ASYNC |
787 CRYPTO_ALG_NEED_FALLBACK,
788 .cra_init = mxs_dcp_aes_fallback_init,
789 .cra_exit = mxs_dcp_aes_fallback_exit,
790 .cra_blocksize = AES_BLOCK_SIZE,
791 .cra_ctxsize = sizeof(struct dcp_async_ctx),
792 .cra_type = &crypto_ablkcipher_type,
793 .cra_module = THIS_MODULE,
794 .cra_u = {
795 .ablkcipher = {
796 .min_keysize = AES_MIN_KEY_SIZE,
797 .max_keysize = AES_MAX_KEY_SIZE,
798 .setkey = mxs_dcp_aes_setkey,
799 .encrypt = mxs_dcp_aes_ecb_encrypt,
800 .decrypt = mxs_dcp_aes_ecb_decrypt
803 }, {
804 .cra_name = "cbc(aes)",
805 .cra_driver_name = "cbc-aes-dcp",
806 .cra_priority = 400,
807 .cra_alignmask = 15,
808 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
809 CRYPTO_ALG_ASYNC |
810 CRYPTO_ALG_NEED_FALLBACK,
811 .cra_init = mxs_dcp_aes_fallback_init,
812 .cra_exit = mxs_dcp_aes_fallback_exit,
813 .cra_blocksize = AES_BLOCK_SIZE,
814 .cra_ctxsize = sizeof(struct dcp_async_ctx),
815 .cra_type = &crypto_ablkcipher_type,
816 .cra_module = THIS_MODULE,
817 .cra_u = {
818 .ablkcipher = {
819 .min_keysize = AES_MIN_KEY_SIZE,
820 .max_keysize = AES_MAX_KEY_SIZE,
821 .setkey = mxs_dcp_aes_setkey,
822 .encrypt = mxs_dcp_aes_cbc_encrypt,
823 .decrypt = mxs_dcp_aes_cbc_decrypt,
824 .ivsize = AES_BLOCK_SIZE,
830 /* SHA1 */
831 static struct ahash_alg dcp_sha1_alg = {
832 .init = dcp_sha_init,
833 .update = dcp_sha_update,
834 .final = dcp_sha_final,
835 .finup = dcp_sha_finup,
836 .digest = dcp_sha_digest,
837 .halg = {
838 .digestsize = SHA1_DIGEST_SIZE,
839 .base = {
840 .cra_name = "sha1",
841 .cra_driver_name = "sha1-dcp",
842 .cra_priority = 400,
843 .cra_alignmask = 63,
844 .cra_flags = CRYPTO_ALG_ASYNC,
845 .cra_blocksize = SHA1_BLOCK_SIZE,
846 .cra_ctxsize = sizeof(struct dcp_async_ctx),
847 .cra_module = THIS_MODULE,
848 .cra_init = dcp_sha_cra_init,
849 .cra_exit = dcp_sha_cra_exit,
854 /* SHA256 */
855 static struct ahash_alg dcp_sha256_alg = {
856 .init = dcp_sha_init,
857 .update = dcp_sha_update,
858 .final = dcp_sha_final,
859 .finup = dcp_sha_finup,
860 .digest = dcp_sha_digest,
861 .halg = {
862 .digestsize = SHA256_DIGEST_SIZE,
863 .base = {
864 .cra_name = "sha256",
865 .cra_driver_name = "sha256-dcp",
866 .cra_priority = 400,
867 .cra_alignmask = 63,
868 .cra_flags = CRYPTO_ALG_ASYNC,
869 .cra_blocksize = SHA256_BLOCK_SIZE,
870 .cra_ctxsize = sizeof(struct dcp_async_ctx),
871 .cra_module = THIS_MODULE,
872 .cra_init = dcp_sha_cra_init,
873 .cra_exit = dcp_sha_cra_exit,
878 static irqreturn_t mxs_dcp_irq(int irq, void *context)
880 struct dcp *sdcp = context;
881 uint32_t stat;
882 int i;
884 stat = readl(sdcp->base + MXS_DCP_STAT);
885 stat &= MXS_DCP_STAT_IRQ_MASK;
886 if (!stat)
887 return IRQ_NONE;
889 /* Clear the interrupts. */
890 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
892 /* Complete the DMA requests that finished. */
893 for (i = 0; i < DCP_MAX_CHANS; i++)
894 if (stat & (1 << i))
895 complete(&sdcp->completion[i]);
897 return IRQ_HANDLED;
900 static int mxs_dcp_probe(struct platform_device *pdev)
902 struct device *dev = &pdev->dev;
903 struct dcp *sdcp = NULL;
904 int i, ret;
906 struct resource *iores;
907 int dcp_vmi_irq, dcp_irq;
909 if (global_sdcp) {
910 dev_err(dev, "Only one DCP instance allowed!\n");
911 return -ENODEV;
914 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
915 dcp_vmi_irq = platform_get_irq(pdev, 0);
916 if (dcp_vmi_irq < 0)
917 return dcp_vmi_irq;
919 dcp_irq = platform_get_irq(pdev, 1);
920 if (dcp_irq < 0)
921 return dcp_irq;
923 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
924 if (!sdcp)
925 return -ENOMEM;
927 sdcp->dev = dev;
928 sdcp->base = devm_ioremap_resource(dev, iores);
929 if (IS_ERR(sdcp->base))
930 return PTR_ERR(sdcp->base);
933 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
934 "dcp-vmi-irq", sdcp);
935 if (ret) {
936 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
937 return ret;
940 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
941 "dcp-irq", sdcp);
942 if (ret) {
943 dev_err(dev, "Failed to claim DCP IRQ!\n");
944 return ret;
947 /* Allocate coherent helper block. */
948 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
949 GFP_KERNEL);
950 if (!sdcp->coh)
951 return -ENOMEM;
953 /* Re-align the structure so it fits the DCP constraints. */
954 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
956 /* Restart the DCP block. */
957 ret = stmp_reset_block(sdcp->base);
958 if (ret)
959 return ret;
961 /* Initialize control register. */
962 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
963 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
964 sdcp->base + MXS_DCP_CTRL);
966 /* Enable all DCP DMA channels. */
967 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
968 sdcp->base + MXS_DCP_CHANNELCTRL);
971 * We do not enable context switching. Give the context buffer a
972 * pointer to an illegal address so if context switching is
973 * inadvertantly enabled, the DCP will return an error instead of
974 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
975 * address will do.
977 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
978 for (i = 0; i < DCP_MAX_CHANS; i++)
979 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
980 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
982 global_sdcp = sdcp;
984 platform_set_drvdata(pdev, sdcp);
986 for (i = 0; i < DCP_MAX_CHANS; i++) {
987 mutex_init(&sdcp->mutex[i]);
988 init_completion(&sdcp->completion[i]);
989 crypto_init_queue(&sdcp->queue[i], 50);
992 /* Create the SHA and AES handler threads. */
993 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
994 NULL, "mxs_dcp_chan/sha");
995 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
996 dev_err(dev, "Error starting SHA thread!\n");
997 return PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1000 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1001 NULL, "mxs_dcp_chan/aes");
1002 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1003 dev_err(dev, "Error starting SHA thread!\n");
1004 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1005 goto err_destroy_sha_thread;
1008 /* Register the various crypto algorithms. */
1009 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1011 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1012 ret = crypto_register_algs(dcp_aes_algs,
1013 ARRAY_SIZE(dcp_aes_algs));
1014 if (ret) {
1015 /* Failed to register algorithm. */
1016 dev_err(dev, "Failed to register AES crypto!\n");
1017 goto err_destroy_aes_thread;
1021 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1022 ret = crypto_register_ahash(&dcp_sha1_alg);
1023 if (ret) {
1024 dev_err(dev, "Failed to register %s hash!\n",
1025 dcp_sha1_alg.halg.base.cra_name);
1026 goto err_unregister_aes;
1030 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1031 ret = crypto_register_ahash(&dcp_sha256_alg);
1032 if (ret) {
1033 dev_err(dev, "Failed to register %s hash!\n",
1034 dcp_sha256_alg.halg.base.cra_name);
1035 goto err_unregister_sha1;
1039 return 0;
1041 err_unregister_sha1:
1042 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1043 crypto_unregister_ahash(&dcp_sha1_alg);
1045 err_unregister_aes:
1046 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1047 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1049 err_destroy_aes_thread:
1050 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1052 err_destroy_sha_thread:
1053 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1054 return ret;
1057 static int mxs_dcp_remove(struct platform_device *pdev)
1059 struct dcp *sdcp = platform_get_drvdata(pdev);
1061 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1062 crypto_unregister_ahash(&dcp_sha256_alg);
1064 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1065 crypto_unregister_ahash(&dcp_sha1_alg);
1067 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1068 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1070 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1071 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1073 platform_set_drvdata(pdev, NULL);
1075 global_sdcp = NULL;
1077 return 0;
1080 static const struct of_device_id mxs_dcp_dt_ids[] = {
1081 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1082 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1083 { /* sentinel */ }
1086 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1088 static struct platform_driver mxs_dcp_driver = {
1089 .probe = mxs_dcp_probe,
1090 .remove = mxs_dcp_remove,
1091 .driver = {
1092 .name = "mxs-dcp",
1093 .of_match_table = mxs_dcp_dt_ids,
1097 module_platform_driver(mxs_dcp_driver);
1099 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1100 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1101 MODULE_LICENSE("GPL");
1102 MODULE_ALIAS("platform:mxs-dcp");