Linux 4.1.16
[linux/fpc-iii.git] / drivers / crypto / picoxcell_crypto.c
blob5da5b98b8f297a36a98dca4d90b7ede3cdce6a07
1 /*
2 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 #include <crypto/aead.h>
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/authenc.h>
22 #include <crypto/des.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/clk.h>
27 #include <linux/crypto.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/err.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/list.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/scatterlist.h>
42 #include <linux/sched.h>
43 #include <linux/slab.h>
44 #include <linux/timer.h>
46 #include "picoxcell_crypto_regs.h"
49 * The threshold for the number of entries in the CMD FIFO available before
50 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
51 * number of interrupts raised to the CPU.
53 #define CMD0_IRQ_THRESHOLD 1
56 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
57 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
58 * When there are packets in flight but lower than the threshold, we enable
59 * the timer and at expiry, attempt to remove any processed packets from the
60 * queue and if there are still packets left, schedule the timer again.
62 #define PACKET_TIMEOUT 1
64 /* The priority to register each algorithm with. */
65 #define SPACC_CRYPTO_ALG_PRIORITY 10000
67 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
68 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
69 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
70 #define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
71 #define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
72 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
73 #define SPACC_CRYPTO_L2_HASH_PG_SZ 64
74 #define SPACC_CRYPTO_L2_MAX_CTXS 128
75 #define SPACC_CRYPTO_L2_FIFO_SZ 128
77 #define MAX_DDT_LEN 16
79 /* DDT format. This must match the hardware DDT format exactly. */
80 struct spacc_ddt {
81 dma_addr_t p;
82 u32 len;
86 * Asynchronous crypto request structure.
88 * This structure defines a request that is either queued for processing or
89 * being processed.
91 struct spacc_req {
92 struct list_head list;
93 struct spacc_engine *engine;
94 struct crypto_async_request *req;
95 int result;
96 bool is_encrypt;
97 unsigned ctx_id;
98 dma_addr_t src_addr, dst_addr;
99 struct spacc_ddt *src_ddt, *dst_ddt;
100 void (*complete)(struct spacc_req *req);
102 /* AEAD specific bits. */
103 u8 *giv;
104 size_t giv_len;
105 dma_addr_t giv_pa;
108 struct spacc_engine {
109 void __iomem *regs;
110 struct list_head pending;
111 int next_ctx;
112 spinlock_t hw_lock;
113 int in_flight;
114 struct list_head completed;
115 struct list_head in_progress;
116 struct tasklet_struct complete;
117 unsigned long fifo_sz;
118 void __iomem *cipher_ctx_base;
119 void __iomem *hash_key_base;
120 struct spacc_alg *algs;
121 unsigned num_algs;
122 struct list_head registered_algs;
123 size_t cipher_pg_sz;
124 size_t hash_pg_sz;
125 const char *name;
126 struct clk *clk;
127 struct device *dev;
128 unsigned max_ctxs;
129 struct timer_list packet_timeout;
130 unsigned stat_irq_thresh;
131 struct dma_pool *req_pool;
134 /* Algorithm type mask. */
135 #define SPACC_CRYPTO_ALG_MASK 0x7
137 /* SPACC definition of a crypto algorithm. */
138 struct spacc_alg {
139 unsigned long ctrl_default;
140 unsigned long type;
141 struct crypto_alg alg;
142 struct spacc_engine *engine;
143 struct list_head entry;
144 int key_offs;
145 int iv_offs;
148 /* Generic context structure for any algorithm type. */
149 struct spacc_generic_ctx {
150 struct spacc_engine *engine;
151 int flags;
152 int key_offs;
153 int iv_offs;
156 /* Block cipher context. */
157 struct spacc_ablk_ctx {
158 struct spacc_generic_ctx generic;
159 u8 key[AES_MAX_KEY_SIZE];
160 u8 key_len;
162 * The fallback cipher. If the operation can't be done in hardware,
163 * fallback to a software version.
165 struct crypto_ablkcipher *sw_cipher;
168 /* AEAD cipher context. */
169 struct spacc_aead_ctx {
170 struct spacc_generic_ctx generic;
171 u8 cipher_key[AES_MAX_KEY_SIZE];
172 u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
173 u8 cipher_key_len;
174 u8 hash_key_len;
175 struct crypto_aead *sw_cipher;
176 size_t auth_size;
177 u8 salt[AES_BLOCK_SIZE];
180 static int spacc_ablk_submit(struct spacc_req *req);
182 static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
184 return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
187 static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
189 u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
191 return fifo_stat & SPA_FIFO_CMD_FULL;
195 * Given a cipher context, and a context number, get the base address of the
196 * context page.
198 * Returns the address of the context page where the key/context may
199 * be written.
201 static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
202 unsigned indx,
203 bool is_cipher_ctx)
205 return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
206 (indx * ctx->engine->cipher_pg_sz) :
207 ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
210 /* The context pages can only be written with 32-bit accesses. */
211 static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
212 unsigned count)
214 const u32 *src32 = (const u32 *) src;
216 while (count--)
217 writel(*src32++, dst++);
220 static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
221 void __iomem *page_addr, const u8 *key,
222 size_t key_len, const u8 *iv, size_t iv_len)
224 void __iomem *key_ptr = page_addr + ctx->key_offs;
225 void __iomem *iv_ptr = page_addr + ctx->iv_offs;
227 memcpy_toio32(key_ptr, key, key_len / 4);
228 memcpy_toio32(iv_ptr, iv, iv_len / 4);
232 * Load a context into the engines context memory.
234 * Returns the index of the context page where the context was loaded.
236 static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
237 const u8 *ciph_key, size_t ciph_len,
238 const u8 *iv, size_t ivlen, const u8 *hash_key,
239 size_t hash_len)
241 unsigned indx = ctx->engine->next_ctx++;
242 void __iomem *ciph_page_addr, *hash_page_addr;
244 ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
245 hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
247 ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
248 spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
249 ivlen);
250 writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
251 (1 << SPA_KEY_SZ_CIPHER_OFFSET),
252 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
254 if (hash_key) {
255 memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
256 writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
257 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
260 return indx;
263 /* Count the number of scatterlist entries in a scatterlist. */
264 static int sg_count(struct scatterlist *sg_list, int nbytes)
266 struct scatterlist *sg = sg_list;
267 int sg_nents = 0;
269 while (nbytes > 0) {
270 ++sg_nents;
271 nbytes -= sg->length;
272 sg = sg_next(sg);
275 return sg_nents;
278 static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
280 ddt->p = phys;
281 ddt->len = len;
285 * Take a crypto request and scatterlists for the data and turn them into DDTs
286 * for passing to the crypto engines. This also DMA maps the data so that the
287 * crypto engines can DMA to/from them.
289 static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
290 struct scatterlist *payload,
291 unsigned nbytes,
292 enum dma_data_direction dir,
293 dma_addr_t *ddt_phys)
295 unsigned nents, mapped_ents;
296 struct scatterlist *cur;
297 struct spacc_ddt *ddt;
298 int i;
300 nents = sg_count(payload, nbytes);
301 mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
303 if (mapped_ents + 1 > MAX_DDT_LEN)
304 goto out;
306 ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
307 if (!ddt)
308 goto out;
310 for_each_sg(payload, cur, mapped_ents, i)
311 ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
312 ddt_set(&ddt[mapped_ents], 0, 0);
314 return ddt;
316 out:
317 dma_unmap_sg(engine->dev, payload, nents, dir);
318 return NULL;
321 static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv)
323 struct aead_request *areq = container_of(req->req, struct aead_request,
324 base);
325 struct spacc_engine *engine = req->engine;
326 struct spacc_ddt *src_ddt, *dst_ddt;
327 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq));
328 unsigned nents = sg_count(areq->src, areq->cryptlen);
329 dma_addr_t iv_addr;
330 struct scatterlist *cur;
331 int i, dst_ents, src_ents, assoc_ents;
332 u8 *iv = giv ? giv : areq->iv;
334 src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
335 if (!src_ddt)
336 return -ENOMEM;
338 dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
339 if (!dst_ddt) {
340 dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
341 return -ENOMEM;
344 req->src_ddt = src_ddt;
345 req->dst_ddt = dst_ddt;
347 assoc_ents = dma_map_sg(engine->dev, areq->assoc,
348 sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
349 if (areq->src != areq->dst) {
350 src_ents = dma_map_sg(engine->dev, areq->src, nents,
351 DMA_TO_DEVICE);
352 dst_ents = dma_map_sg(engine->dev, areq->dst, nents,
353 DMA_FROM_DEVICE);
354 } else {
355 src_ents = dma_map_sg(engine->dev, areq->src, nents,
356 DMA_BIDIRECTIONAL);
357 dst_ents = 0;
361 * Map the IV/GIV. For the GIV it needs to be bidirectional as it is
362 * formed by the crypto block and sent as the ESP IV for IPSEC.
364 iv_addr = dma_map_single(engine->dev, iv, ivsize,
365 giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
366 req->giv_pa = iv_addr;
369 * Map the associated data. For decryption we don't copy the
370 * associated data.
372 for_each_sg(areq->assoc, cur, assoc_ents, i) {
373 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
374 if (req->is_encrypt)
375 ddt_set(dst_ddt++, sg_dma_address(cur),
376 sg_dma_len(cur));
378 ddt_set(src_ddt++, iv_addr, ivsize);
380 if (giv || req->is_encrypt)
381 ddt_set(dst_ddt++, iv_addr, ivsize);
384 * Now map in the payload for the source and destination and terminate
385 * with the NULL pointers.
387 for_each_sg(areq->src, cur, src_ents, i) {
388 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
389 if (areq->src == areq->dst)
390 ddt_set(dst_ddt++, sg_dma_address(cur),
391 sg_dma_len(cur));
394 for_each_sg(areq->dst, cur, dst_ents, i)
395 ddt_set(dst_ddt++, sg_dma_address(cur),
396 sg_dma_len(cur));
398 ddt_set(src_ddt, 0, 0);
399 ddt_set(dst_ddt, 0, 0);
401 return 0;
404 static void spacc_aead_free_ddts(struct spacc_req *req)
406 struct aead_request *areq = container_of(req->req, struct aead_request,
407 base);
408 struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg);
409 struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm);
410 struct spacc_engine *engine = aead_ctx->generic.engine;
411 unsigned ivsize = alg->alg.cra_aead.ivsize;
412 unsigned nents = sg_count(areq->src, areq->cryptlen);
414 if (areq->src != areq->dst) {
415 dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
416 dma_unmap_sg(engine->dev, areq->dst,
417 sg_count(areq->dst, areq->cryptlen),
418 DMA_FROM_DEVICE);
419 } else
420 dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
422 dma_unmap_sg(engine->dev, areq->assoc,
423 sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
425 dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL);
427 dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
428 dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
431 static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
432 dma_addr_t ddt_addr, struct scatterlist *payload,
433 unsigned nbytes, enum dma_data_direction dir)
435 unsigned nents = sg_count(payload, nbytes);
437 dma_unmap_sg(req->engine->dev, payload, nents, dir);
438 dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
442 * Set key for a DES operation in an AEAD cipher. This also performs weak key
443 * checking if required.
445 static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key,
446 unsigned int len)
448 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
449 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
450 u32 tmp[DES_EXPKEY_WORDS];
452 if (unlikely(!des_ekey(tmp, key)) &&
453 (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) {
454 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
455 return -EINVAL;
458 memcpy(ctx->cipher_key, key, len);
459 ctx->cipher_key_len = len;
461 return 0;
464 /* Set the key for the AES block cipher component of the AEAD transform. */
465 static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key,
466 unsigned int len)
468 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
469 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
472 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
473 * request for any other size (192 bits) then we need to do a software
474 * fallback.
476 if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
478 * Set the fallback transform to use the same request flags as
479 * the hardware transform.
481 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
482 ctx->sw_cipher->base.crt_flags |=
483 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
484 return crypto_aead_setkey(ctx->sw_cipher, key, len);
487 memcpy(ctx->cipher_key, key, len);
488 ctx->cipher_key_len = len;
490 return 0;
493 static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
494 unsigned int keylen)
496 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
497 struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
498 struct crypto_authenc_keys keys;
499 int err = -EINVAL;
501 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
502 goto badkey;
504 if (keys.enckeylen > AES_MAX_KEY_SIZE)
505 goto badkey;
507 if (keys.authkeylen > sizeof(ctx->hash_ctx))
508 goto badkey;
510 if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
511 SPA_CTRL_CIPH_ALG_AES)
512 err = spacc_aead_aes_setkey(tfm, keys.enckey, keys.enckeylen);
513 else
514 err = spacc_aead_des_setkey(tfm, keys.enckey, keys.enckeylen);
516 if (err)
517 goto badkey;
519 memcpy(ctx->hash_ctx, keys.authkey, keys.authkeylen);
520 ctx->hash_key_len = keys.authkeylen;
522 return 0;
524 badkey:
525 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
526 return -EINVAL;
529 static int spacc_aead_setauthsize(struct crypto_aead *tfm,
530 unsigned int authsize)
532 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
534 ctx->auth_size = authsize;
536 return 0;
540 * Check if an AEAD request requires a fallback operation. Some requests can't
541 * be completed in hardware because the hardware may not support certain key
542 * sizes. In these cases we need to complete the request in software.
544 static int spacc_aead_need_fallback(struct spacc_req *req)
546 struct aead_request *aead_req;
547 struct crypto_tfm *tfm = req->req->tfm;
548 struct crypto_alg *alg = req->req->tfm->__crt_alg;
549 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
550 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
552 aead_req = container_of(req->req, struct aead_request, base);
554 * If we have a non-supported key-length, then we need to do a
555 * software fallback.
557 if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
558 SPA_CTRL_CIPH_ALG_AES &&
559 ctx->cipher_key_len != AES_KEYSIZE_128 &&
560 ctx->cipher_key_len != AES_KEYSIZE_256)
561 return 1;
563 return 0;
566 static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
567 bool is_encrypt)
569 struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
570 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
571 int err;
573 if (ctx->sw_cipher) {
575 * Change the request to use the software fallback transform,
576 * and once the ciphering has completed, put the old transform
577 * back into the request.
579 aead_request_set_tfm(req, ctx->sw_cipher);
580 err = is_encrypt ? crypto_aead_encrypt(req) :
581 crypto_aead_decrypt(req);
582 aead_request_set_tfm(req, __crypto_aead_cast(old_tfm));
583 } else
584 err = -EINVAL;
586 return err;
589 static void spacc_aead_complete(struct spacc_req *req)
591 spacc_aead_free_ddts(req);
592 req->req->complete(req->req, req->result);
595 static int spacc_aead_submit(struct spacc_req *req)
597 struct crypto_tfm *tfm = req->req->tfm;
598 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
599 struct crypto_alg *alg = req->req->tfm->__crt_alg;
600 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
601 struct spacc_engine *engine = ctx->generic.engine;
602 u32 ctrl, proc_len, assoc_len;
603 struct aead_request *aead_req =
604 container_of(req->req, struct aead_request, base);
606 req->result = -EINPROGRESS;
607 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
608 ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize,
609 ctx->hash_ctx, ctx->hash_key_len);
611 /* Set the source and destination DDT pointers. */
612 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
613 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
614 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
616 assoc_len = aead_req->assoclen;
617 proc_len = aead_req->cryptlen + assoc_len;
620 * If we aren't generating an IV, then we need to include the IV in the
621 * associated data so that it is included in the hash.
623 if (!req->giv) {
624 assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
625 proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
626 } else
627 proc_len += req->giv_len;
630 * If we are decrypting, we need to take the length of the ICV out of
631 * the processing length.
633 if (!req->is_encrypt)
634 proc_len -= ctx->auth_size;
636 writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
637 writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
638 writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET);
639 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
640 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
642 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
643 (1 << SPA_CTRL_ICV_APPEND);
644 if (req->is_encrypt)
645 ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
646 else
647 ctrl |= (1 << SPA_CTRL_KEY_EXP);
649 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
651 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
653 return -EINPROGRESS;
656 static int spacc_req_submit(struct spacc_req *req);
658 static void spacc_push(struct spacc_engine *engine)
660 struct spacc_req *req;
662 while (!list_empty(&engine->pending) &&
663 engine->in_flight + 1 <= engine->fifo_sz) {
665 ++engine->in_flight;
666 req = list_first_entry(&engine->pending, struct spacc_req,
667 list);
668 list_move_tail(&req->list, &engine->in_progress);
670 req->result = spacc_req_submit(req);
675 * Setup an AEAD request for processing. This will configure the engine, load
676 * the context and then start the packet processing.
678 * @giv Pointer to destination address for a generated IV. If the
679 * request does not need to generate an IV then this should be set to NULL.
681 static int spacc_aead_setup(struct aead_request *req, u8 *giv,
682 unsigned alg_type, bool is_encrypt)
684 struct crypto_alg *alg = req->base.tfm->__crt_alg;
685 struct spacc_engine *engine = to_spacc_alg(alg)->engine;
686 struct spacc_req *dev_req = aead_request_ctx(req);
687 int err = -EINPROGRESS;
688 unsigned long flags;
689 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
691 dev_req->giv = giv;
692 dev_req->giv_len = ivsize;
693 dev_req->req = &req->base;
694 dev_req->is_encrypt = is_encrypt;
695 dev_req->result = -EBUSY;
696 dev_req->engine = engine;
697 dev_req->complete = spacc_aead_complete;
699 if (unlikely(spacc_aead_need_fallback(dev_req)))
700 return spacc_aead_do_fallback(req, alg_type, is_encrypt);
702 spacc_aead_make_ddts(dev_req, dev_req->giv);
704 err = -EINPROGRESS;
705 spin_lock_irqsave(&engine->hw_lock, flags);
706 if (unlikely(spacc_fifo_cmd_full(engine)) ||
707 engine->in_flight + 1 > engine->fifo_sz) {
708 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
709 err = -EBUSY;
710 spin_unlock_irqrestore(&engine->hw_lock, flags);
711 goto out_free_ddts;
713 list_add_tail(&dev_req->list, &engine->pending);
714 } else {
715 list_add_tail(&dev_req->list, &engine->pending);
716 spacc_push(engine);
718 spin_unlock_irqrestore(&engine->hw_lock, flags);
720 goto out;
722 out_free_ddts:
723 spacc_aead_free_ddts(dev_req);
724 out:
725 return err;
728 static int spacc_aead_encrypt(struct aead_request *req)
730 struct crypto_aead *aead = crypto_aead_reqtfm(req);
731 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
732 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
734 return spacc_aead_setup(req, NULL, alg->type, 1);
737 static int spacc_aead_givencrypt(struct aead_givcrypt_request *req)
739 struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
740 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
741 size_t ivsize = crypto_aead_ivsize(tfm);
742 struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
743 unsigned len;
744 __be64 seq;
746 memcpy(req->areq.iv, ctx->salt, ivsize);
747 len = ivsize;
748 if (ivsize > sizeof(u64)) {
749 memset(req->giv, 0, ivsize - sizeof(u64));
750 len = sizeof(u64);
752 seq = cpu_to_be64(req->seq);
753 memcpy(req->giv + ivsize - len, &seq, len);
755 return spacc_aead_setup(&req->areq, req->giv, alg->type, 1);
758 static int spacc_aead_decrypt(struct aead_request *req)
760 struct crypto_aead *aead = crypto_aead_reqtfm(req);
761 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
762 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
764 return spacc_aead_setup(req, NULL, alg->type, 0);
768 * Initialise a new AEAD context. This is responsible for allocating the
769 * fallback cipher and initialising the context.
771 static int spacc_aead_cra_init(struct crypto_tfm *tfm)
773 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
774 struct crypto_alg *alg = tfm->__crt_alg;
775 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
776 struct spacc_engine *engine = spacc_alg->engine;
778 ctx->generic.flags = spacc_alg->type;
779 ctx->generic.engine = engine;
780 ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0,
781 CRYPTO_ALG_ASYNC |
782 CRYPTO_ALG_NEED_FALLBACK);
783 if (IS_ERR(ctx->sw_cipher)) {
784 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
785 alg->cra_name);
786 ctx->sw_cipher = NULL;
788 ctx->generic.key_offs = spacc_alg->key_offs;
789 ctx->generic.iv_offs = spacc_alg->iv_offs;
791 get_random_bytes(ctx->salt, sizeof(ctx->salt));
793 tfm->crt_aead.reqsize = sizeof(struct spacc_req);
795 return 0;
799 * Destructor for an AEAD context. This is called when the transform is freed
800 * and must free the fallback cipher.
802 static void spacc_aead_cra_exit(struct crypto_tfm *tfm)
804 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
806 if (ctx->sw_cipher)
807 crypto_free_aead(ctx->sw_cipher);
808 ctx->sw_cipher = NULL;
812 * Set the DES key for a block cipher transform. This also performs weak key
813 * checking if the transform has requested it.
815 static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
816 unsigned int len)
818 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
819 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
820 u32 tmp[DES_EXPKEY_WORDS];
822 if (len > DES3_EDE_KEY_SIZE) {
823 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
824 return -EINVAL;
827 if (unlikely(!des_ekey(tmp, key)) &&
828 (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
829 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
830 return -EINVAL;
833 memcpy(ctx->key, key, len);
834 ctx->key_len = len;
836 return 0;
840 * Set the key for an AES block cipher. Some key lengths are not supported in
841 * hardware so this must also check whether a fallback is needed.
843 static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
844 unsigned int len)
846 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
847 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
848 int err = 0;
850 if (len > AES_MAX_KEY_SIZE) {
851 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
852 return -EINVAL;
856 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
857 * request for any other size (192 bits) then we need to do a software
858 * fallback.
860 if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
861 ctx->sw_cipher) {
863 * Set the fallback transform to use the same request flags as
864 * the hardware transform.
866 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
867 ctx->sw_cipher->base.crt_flags |=
868 cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
870 err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
871 if (err)
872 goto sw_setkey_failed;
873 } else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
874 !ctx->sw_cipher)
875 err = -EINVAL;
877 memcpy(ctx->key, key, len);
878 ctx->key_len = len;
880 sw_setkey_failed:
881 if (err && ctx->sw_cipher) {
882 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
883 tfm->crt_flags |=
884 ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
887 return err;
890 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
891 const u8 *key, unsigned int len)
893 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
894 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
895 int err = 0;
897 if (len > AES_MAX_KEY_SIZE) {
898 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
899 err = -EINVAL;
900 goto out;
903 memcpy(ctx->key, key, len);
904 ctx->key_len = len;
906 out:
907 return err;
910 static int spacc_ablk_need_fallback(struct spacc_req *req)
912 struct spacc_ablk_ctx *ctx;
913 struct crypto_tfm *tfm = req->req->tfm;
914 struct crypto_alg *alg = req->req->tfm->__crt_alg;
915 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
917 ctx = crypto_tfm_ctx(tfm);
919 return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
920 SPA_CTRL_CIPH_ALG_AES &&
921 ctx->key_len != AES_KEYSIZE_128 &&
922 ctx->key_len != AES_KEYSIZE_256;
925 static void spacc_ablk_complete(struct spacc_req *req)
927 struct ablkcipher_request *ablk_req =
928 container_of(req->req, struct ablkcipher_request, base);
930 if (ablk_req->src != ablk_req->dst) {
931 spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
932 ablk_req->nbytes, DMA_TO_DEVICE);
933 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
934 ablk_req->nbytes, DMA_FROM_DEVICE);
935 } else
936 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
937 ablk_req->nbytes, DMA_BIDIRECTIONAL);
939 req->req->complete(req->req, req->result);
942 static int spacc_ablk_submit(struct spacc_req *req)
944 struct crypto_tfm *tfm = req->req->tfm;
945 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
946 struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
947 struct crypto_alg *alg = req->req->tfm->__crt_alg;
948 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
949 struct spacc_engine *engine = ctx->generic.engine;
950 u32 ctrl;
952 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
953 ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
954 NULL, 0);
956 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
957 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
958 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
960 writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
961 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
962 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
963 writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
965 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
966 (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
967 (1 << SPA_CTRL_KEY_EXP));
969 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
971 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
973 return -EINPROGRESS;
976 static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
977 unsigned alg_type, bool is_encrypt)
979 struct crypto_tfm *old_tfm =
980 crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
981 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
982 int err;
984 if (!ctx->sw_cipher)
985 return -EINVAL;
988 * Change the request to use the software fallback transform, and once
989 * the ciphering has completed, put the old transform back into the
990 * request.
992 ablkcipher_request_set_tfm(req, ctx->sw_cipher);
993 err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
994 crypto_ablkcipher_decrypt(req);
995 ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
997 return err;
1000 static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
1001 bool is_encrypt)
1003 struct crypto_alg *alg = req->base.tfm->__crt_alg;
1004 struct spacc_engine *engine = to_spacc_alg(alg)->engine;
1005 struct spacc_req *dev_req = ablkcipher_request_ctx(req);
1006 unsigned long flags;
1007 int err = -ENOMEM;
1009 dev_req->req = &req->base;
1010 dev_req->is_encrypt = is_encrypt;
1011 dev_req->engine = engine;
1012 dev_req->complete = spacc_ablk_complete;
1013 dev_req->result = -EINPROGRESS;
1015 if (unlikely(spacc_ablk_need_fallback(dev_req)))
1016 return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
1019 * Create the DDT's for the engine. If we share the same source and
1020 * destination then we can optimize by reusing the DDT's.
1022 if (req->src != req->dst) {
1023 dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
1024 req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
1025 if (!dev_req->src_ddt)
1026 goto out;
1028 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1029 req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
1030 if (!dev_req->dst_ddt)
1031 goto out_free_src;
1032 } else {
1033 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1034 req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
1035 if (!dev_req->dst_ddt)
1036 goto out;
1038 dev_req->src_ddt = NULL;
1039 dev_req->src_addr = dev_req->dst_addr;
1042 err = -EINPROGRESS;
1043 spin_lock_irqsave(&engine->hw_lock, flags);
1045 * Check if the engine will accept the operation now. If it won't then
1046 * we either stick it on the end of a pending list if we can backlog,
1047 * or bailout with an error if not.
1049 if (unlikely(spacc_fifo_cmd_full(engine)) ||
1050 engine->in_flight + 1 > engine->fifo_sz) {
1051 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1052 err = -EBUSY;
1053 spin_unlock_irqrestore(&engine->hw_lock, flags);
1054 goto out_free_ddts;
1056 list_add_tail(&dev_req->list, &engine->pending);
1057 } else {
1058 list_add_tail(&dev_req->list, &engine->pending);
1059 spacc_push(engine);
1061 spin_unlock_irqrestore(&engine->hw_lock, flags);
1063 goto out;
1065 out_free_ddts:
1066 spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
1067 req->nbytes, req->src == req->dst ?
1068 DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1069 out_free_src:
1070 if (req->src != req->dst)
1071 spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1072 req->src, req->nbytes, DMA_TO_DEVICE);
1073 out:
1074 return err;
1077 static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1079 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1080 struct crypto_alg *alg = tfm->__crt_alg;
1081 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1082 struct spacc_engine *engine = spacc_alg->engine;
1084 ctx->generic.flags = spacc_alg->type;
1085 ctx->generic.engine = engine;
1086 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1087 ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
1088 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
1089 if (IS_ERR(ctx->sw_cipher)) {
1090 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1091 alg->cra_name);
1092 ctx->sw_cipher = NULL;
1095 ctx->generic.key_offs = spacc_alg->key_offs;
1096 ctx->generic.iv_offs = spacc_alg->iv_offs;
1098 tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1100 return 0;
1103 static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1105 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1107 if (ctx->sw_cipher)
1108 crypto_free_ablkcipher(ctx->sw_cipher);
1109 ctx->sw_cipher = NULL;
1112 static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1114 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1115 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1116 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1118 return spacc_ablk_setup(req, alg->type, 1);
1121 static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1123 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1124 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1125 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1127 return spacc_ablk_setup(req, alg->type, 0);
1130 static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1132 return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1133 SPA_FIFO_STAT_EMPTY;
1136 static void spacc_process_done(struct spacc_engine *engine)
1138 struct spacc_req *req;
1139 unsigned long flags;
1141 spin_lock_irqsave(&engine->hw_lock, flags);
1143 while (!spacc_fifo_stat_empty(engine)) {
1144 req = list_first_entry(&engine->in_progress, struct spacc_req,
1145 list);
1146 list_move_tail(&req->list, &engine->completed);
1147 --engine->in_flight;
1149 /* POP the status register. */
1150 writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1151 req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1152 SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1155 * Convert the SPAcc error status into the standard POSIX error
1156 * codes.
1158 if (unlikely(req->result)) {
1159 switch (req->result) {
1160 case SPA_STATUS_ICV_FAIL:
1161 req->result = -EBADMSG;
1162 break;
1164 case SPA_STATUS_MEMORY_ERROR:
1165 dev_warn(engine->dev,
1166 "memory error triggered\n");
1167 req->result = -EFAULT;
1168 break;
1170 case SPA_STATUS_BLOCK_ERROR:
1171 dev_warn(engine->dev,
1172 "block error triggered\n");
1173 req->result = -EIO;
1174 break;
1179 tasklet_schedule(&engine->complete);
1181 spin_unlock_irqrestore(&engine->hw_lock, flags);
1184 static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1186 struct spacc_engine *engine = (struct spacc_engine *)dev;
1187 u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1189 writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1190 spacc_process_done(engine);
1192 return IRQ_HANDLED;
1195 static void spacc_packet_timeout(unsigned long data)
1197 struct spacc_engine *engine = (struct spacc_engine *)data;
1199 spacc_process_done(engine);
1202 static int spacc_req_submit(struct spacc_req *req)
1204 struct crypto_alg *alg = req->req->tfm->__crt_alg;
1206 if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1207 return spacc_aead_submit(req);
1208 else
1209 return spacc_ablk_submit(req);
1212 static void spacc_spacc_complete(unsigned long data)
1214 struct spacc_engine *engine = (struct spacc_engine *)data;
1215 struct spacc_req *req, *tmp;
1216 unsigned long flags;
1217 LIST_HEAD(completed);
1219 spin_lock_irqsave(&engine->hw_lock, flags);
1221 list_splice_init(&engine->completed, &completed);
1222 spacc_push(engine);
1223 if (engine->in_flight)
1224 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1226 spin_unlock_irqrestore(&engine->hw_lock, flags);
1228 list_for_each_entry_safe(req, tmp, &completed, list) {
1229 list_del(&req->list);
1230 req->complete(req);
1234 #ifdef CONFIG_PM
1235 static int spacc_suspend(struct device *dev)
1237 struct platform_device *pdev = to_platform_device(dev);
1238 struct spacc_engine *engine = platform_get_drvdata(pdev);
1241 * We only support standby mode. All we have to do is gate the clock to
1242 * the spacc. The hardware will preserve state until we turn it back
1243 * on again.
1245 clk_disable(engine->clk);
1247 return 0;
1250 static int spacc_resume(struct device *dev)
1252 struct platform_device *pdev = to_platform_device(dev);
1253 struct spacc_engine *engine = platform_get_drvdata(pdev);
1255 return clk_enable(engine->clk);
1258 static const struct dev_pm_ops spacc_pm_ops = {
1259 .suspend = spacc_suspend,
1260 .resume = spacc_resume,
1262 #endif /* CONFIG_PM */
1264 static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1266 return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1269 static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1270 struct device_attribute *attr,
1271 char *buf)
1273 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1275 return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1278 static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1279 struct device_attribute *attr,
1280 const char *buf, size_t len)
1282 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1283 unsigned long thresh;
1285 if (kstrtoul(buf, 0, &thresh))
1286 return -EINVAL;
1288 thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1290 engine->stat_irq_thresh = thresh;
1291 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1292 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1294 return len;
1296 static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1297 spacc_stat_irq_thresh_store);
1299 static struct spacc_alg ipsec_engine_algs[] = {
1301 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1302 .key_offs = 0,
1303 .iv_offs = AES_MAX_KEY_SIZE,
1304 .alg = {
1305 .cra_name = "cbc(aes)",
1306 .cra_driver_name = "cbc-aes-picoxcell",
1307 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1308 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1309 CRYPTO_ALG_KERN_DRIVER_ONLY |
1310 CRYPTO_ALG_ASYNC |
1311 CRYPTO_ALG_NEED_FALLBACK,
1312 .cra_blocksize = AES_BLOCK_SIZE,
1313 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1314 .cra_type = &crypto_ablkcipher_type,
1315 .cra_module = THIS_MODULE,
1316 .cra_ablkcipher = {
1317 .setkey = spacc_aes_setkey,
1318 .encrypt = spacc_ablk_encrypt,
1319 .decrypt = spacc_ablk_decrypt,
1320 .min_keysize = AES_MIN_KEY_SIZE,
1321 .max_keysize = AES_MAX_KEY_SIZE,
1322 .ivsize = AES_BLOCK_SIZE,
1324 .cra_init = spacc_ablk_cra_init,
1325 .cra_exit = spacc_ablk_cra_exit,
1329 .key_offs = 0,
1330 .iv_offs = AES_MAX_KEY_SIZE,
1331 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1332 .alg = {
1333 .cra_name = "ecb(aes)",
1334 .cra_driver_name = "ecb-aes-picoxcell",
1335 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1336 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1337 CRYPTO_ALG_KERN_DRIVER_ONLY |
1338 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1339 .cra_blocksize = AES_BLOCK_SIZE,
1340 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1341 .cra_type = &crypto_ablkcipher_type,
1342 .cra_module = THIS_MODULE,
1343 .cra_ablkcipher = {
1344 .setkey = spacc_aes_setkey,
1345 .encrypt = spacc_ablk_encrypt,
1346 .decrypt = spacc_ablk_decrypt,
1347 .min_keysize = AES_MIN_KEY_SIZE,
1348 .max_keysize = AES_MAX_KEY_SIZE,
1350 .cra_init = spacc_ablk_cra_init,
1351 .cra_exit = spacc_ablk_cra_exit,
1355 .key_offs = DES_BLOCK_SIZE,
1356 .iv_offs = 0,
1357 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1358 .alg = {
1359 .cra_name = "cbc(des)",
1360 .cra_driver_name = "cbc-des-picoxcell",
1361 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1362 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1363 CRYPTO_ALG_ASYNC |
1364 CRYPTO_ALG_KERN_DRIVER_ONLY,
1365 .cra_blocksize = DES_BLOCK_SIZE,
1366 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1367 .cra_type = &crypto_ablkcipher_type,
1368 .cra_module = THIS_MODULE,
1369 .cra_ablkcipher = {
1370 .setkey = spacc_des_setkey,
1371 .encrypt = spacc_ablk_encrypt,
1372 .decrypt = spacc_ablk_decrypt,
1373 .min_keysize = DES_KEY_SIZE,
1374 .max_keysize = DES_KEY_SIZE,
1375 .ivsize = DES_BLOCK_SIZE,
1377 .cra_init = spacc_ablk_cra_init,
1378 .cra_exit = spacc_ablk_cra_exit,
1382 .key_offs = DES_BLOCK_SIZE,
1383 .iv_offs = 0,
1384 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1385 .alg = {
1386 .cra_name = "ecb(des)",
1387 .cra_driver_name = "ecb-des-picoxcell",
1388 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1389 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1390 CRYPTO_ALG_ASYNC |
1391 CRYPTO_ALG_KERN_DRIVER_ONLY,
1392 .cra_blocksize = DES_BLOCK_SIZE,
1393 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1394 .cra_type = &crypto_ablkcipher_type,
1395 .cra_module = THIS_MODULE,
1396 .cra_ablkcipher = {
1397 .setkey = spacc_des_setkey,
1398 .encrypt = spacc_ablk_encrypt,
1399 .decrypt = spacc_ablk_decrypt,
1400 .min_keysize = DES_KEY_SIZE,
1401 .max_keysize = DES_KEY_SIZE,
1403 .cra_init = spacc_ablk_cra_init,
1404 .cra_exit = spacc_ablk_cra_exit,
1408 .key_offs = DES_BLOCK_SIZE,
1409 .iv_offs = 0,
1410 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1411 .alg = {
1412 .cra_name = "cbc(des3_ede)",
1413 .cra_driver_name = "cbc-des3-ede-picoxcell",
1414 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1415 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1416 CRYPTO_ALG_ASYNC |
1417 CRYPTO_ALG_KERN_DRIVER_ONLY,
1418 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1419 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1420 .cra_type = &crypto_ablkcipher_type,
1421 .cra_module = THIS_MODULE,
1422 .cra_ablkcipher = {
1423 .setkey = spacc_des_setkey,
1424 .encrypt = spacc_ablk_encrypt,
1425 .decrypt = spacc_ablk_decrypt,
1426 .min_keysize = DES3_EDE_KEY_SIZE,
1427 .max_keysize = DES3_EDE_KEY_SIZE,
1428 .ivsize = DES3_EDE_BLOCK_SIZE,
1430 .cra_init = spacc_ablk_cra_init,
1431 .cra_exit = spacc_ablk_cra_exit,
1435 .key_offs = DES_BLOCK_SIZE,
1436 .iv_offs = 0,
1437 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1438 .alg = {
1439 .cra_name = "ecb(des3_ede)",
1440 .cra_driver_name = "ecb-des3-ede-picoxcell",
1441 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1442 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1443 CRYPTO_ALG_ASYNC |
1444 CRYPTO_ALG_KERN_DRIVER_ONLY,
1445 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1446 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1447 .cra_type = &crypto_ablkcipher_type,
1448 .cra_module = THIS_MODULE,
1449 .cra_ablkcipher = {
1450 .setkey = spacc_des_setkey,
1451 .encrypt = spacc_ablk_encrypt,
1452 .decrypt = spacc_ablk_decrypt,
1453 .min_keysize = DES3_EDE_KEY_SIZE,
1454 .max_keysize = DES3_EDE_KEY_SIZE,
1456 .cra_init = spacc_ablk_cra_init,
1457 .cra_exit = spacc_ablk_cra_exit,
1461 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1462 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1463 .key_offs = 0,
1464 .iv_offs = AES_MAX_KEY_SIZE,
1465 .alg = {
1466 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1467 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell",
1468 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1469 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1470 CRYPTO_ALG_ASYNC |
1471 CRYPTO_ALG_KERN_DRIVER_ONLY,
1472 .cra_blocksize = AES_BLOCK_SIZE,
1473 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1474 .cra_type = &crypto_aead_type,
1475 .cra_module = THIS_MODULE,
1476 .cra_aead = {
1477 .setkey = spacc_aead_setkey,
1478 .setauthsize = spacc_aead_setauthsize,
1479 .encrypt = spacc_aead_encrypt,
1480 .decrypt = spacc_aead_decrypt,
1481 .givencrypt = spacc_aead_givencrypt,
1482 .ivsize = AES_BLOCK_SIZE,
1483 .maxauthsize = SHA1_DIGEST_SIZE,
1485 .cra_init = spacc_aead_cra_init,
1486 .cra_exit = spacc_aead_cra_exit,
1490 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1491 SPA_CTRL_HASH_ALG_SHA256 |
1492 SPA_CTRL_HASH_MODE_HMAC,
1493 .key_offs = 0,
1494 .iv_offs = AES_MAX_KEY_SIZE,
1495 .alg = {
1496 .cra_name = "authenc(hmac(sha256),cbc(aes))",
1497 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell",
1498 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1499 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1500 CRYPTO_ALG_ASYNC |
1501 CRYPTO_ALG_KERN_DRIVER_ONLY,
1502 .cra_blocksize = AES_BLOCK_SIZE,
1503 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1504 .cra_type = &crypto_aead_type,
1505 .cra_module = THIS_MODULE,
1506 .cra_aead = {
1507 .setkey = spacc_aead_setkey,
1508 .setauthsize = spacc_aead_setauthsize,
1509 .encrypt = spacc_aead_encrypt,
1510 .decrypt = spacc_aead_decrypt,
1511 .givencrypt = spacc_aead_givencrypt,
1512 .ivsize = AES_BLOCK_SIZE,
1513 .maxauthsize = SHA256_DIGEST_SIZE,
1515 .cra_init = spacc_aead_cra_init,
1516 .cra_exit = spacc_aead_cra_exit,
1520 .key_offs = 0,
1521 .iv_offs = AES_MAX_KEY_SIZE,
1522 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1523 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1524 .alg = {
1525 .cra_name = "authenc(hmac(md5),cbc(aes))",
1526 .cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell",
1527 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1528 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1529 CRYPTO_ALG_ASYNC |
1530 CRYPTO_ALG_KERN_DRIVER_ONLY,
1531 .cra_blocksize = AES_BLOCK_SIZE,
1532 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1533 .cra_type = &crypto_aead_type,
1534 .cra_module = THIS_MODULE,
1535 .cra_aead = {
1536 .setkey = spacc_aead_setkey,
1537 .setauthsize = spacc_aead_setauthsize,
1538 .encrypt = spacc_aead_encrypt,
1539 .decrypt = spacc_aead_decrypt,
1540 .givencrypt = spacc_aead_givencrypt,
1541 .ivsize = AES_BLOCK_SIZE,
1542 .maxauthsize = MD5_DIGEST_SIZE,
1544 .cra_init = spacc_aead_cra_init,
1545 .cra_exit = spacc_aead_cra_exit,
1549 .key_offs = DES_BLOCK_SIZE,
1550 .iv_offs = 0,
1551 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1552 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1553 .alg = {
1554 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1555 .cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell",
1556 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1557 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1558 CRYPTO_ALG_ASYNC |
1559 CRYPTO_ALG_KERN_DRIVER_ONLY,
1560 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1561 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1562 .cra_type = &crypto_aead_type,
1563 .cra_module = THIS_MODULE,
1564 .cra_aead = {
1565 .setkey = spacc_aead_setkey,
1566 .setauthsize = spacc_aead_setauthsize,
1567 .encrypt = spacc_aead_encrypt,
1568 .decrypt = spacc_aead_decrypt,
1569 .givencrypt = spacc_aead_givencrypt,
1570 .ivsize = DES3_EDE_BLOCK_SIZE,
1571 .maxauthsize = SHA1_DIGEST_SIZE,
1573 .cra_init = spacc_aead_cra_init,
1574 .cra_exit = spacc_aead_cra_exit,
1578 .key_offs = DES_BLOCK_SIZE,
1579 .iv_offs = 0,
1580 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1581 SPA_CTRL_HASH_ALG_SHA256 |
1582 SPA_CTRL_HASH_MODE_HMAC,
1583 .alg = {
1584 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
1585 .cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell",
1586 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1587 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1588 CRYPTO_ALG_ASYNC |
1589 CRYPTO_ALG_KERN_DRIVER_ONLY,
1590 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1591 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1592 .cra_type = &crypto_aead_type,
1593 .cra_module = THIS_MODULE,
1594 .cra_aead = {
1595 .setkey = spacc_aead_setkey,
1596 .setauthsize = spacc_aead_setauthsize,
1597 .encrypt = spacc_aead_encrypt,
1598 .decrypt = spacc_aead_decrypt,
1599 .givencrypt = spacc_aead_givencrypt,
1600 .ivsize = DES3_EDE_BLOCK_SIZE,
1601 .maxauthsize = SHA256_DIGEST_SIZE,
1603 .cra_init = spacc_aead_cra_init,
1604 .cra_exit = spacc_aead_cra_exit,
1608 .key_offs = DES_BLOCK_SIZE,
1609 .iv_offs = 0,
1610 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1611 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1612 .alg = {
1613 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1614 .cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell",
1615 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1616 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1617 CRYPTO_ALG_ASYNC |
1618 CRYPTO_ALG_KERN_DRIVER_ONLY,
1619 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1620 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1621 .cra_type = &crypto_aead_type,
1622 .cra_module = THIS_MODULE,
1623 .cra_aead = {
1624 .setkey = spacc_aead_setkey,
1625 .setauthsize = spacc_aead_setauthsize,
1626 .encrypt = spacc_aead_encrypt,
1627 .decrypt = spacc_aead_decrypt,
1628 .givencrypt = spacc_aead_givencrypt,
1629 .ivsize = DES3_EDE_BLOCK_SIZE,
1630 .maxauthsize = MD5_DIGEST_SIZE,
1632 .cra_init = spacc_aead_cra_init,
1633 .cra_exit = spacc_aead_cra_exit,
1638 static struct spacc_alg l2_engine_algs[] = {
1640 .key_offs = 0,
1641 .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1642 .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1643 SPA_CTRL_CIPH_MODE_F8,
1644 .alg = {
1645 .cra_name = "f8(kasumi)",
1646 .cra_driver_name = "f8-kasumi-picoxcell",
1647 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1648 .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER |
1649 CRYPTO_ALG_ASYNC |
1650 CRYPTO_ALG_KERN_DRIVER_ONLY,
1651 .cra_blocksize = 8,
1652 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1653 .cra_type = &crypto_ablkcipher_type,
1654 .cra_module = THIS_MODULE,
1655 .cra_ablkcipher = {
1656 .setkey = spacc_kasumi_f8_setkey,
1657 .encrypt = spacc_ablk_encrypt,
1658 .decrypt = spacc_ablk_decrypt,
1659 .min_keysize = 16,
1660 .max_keysize = 16,
1661 .ivsize = 8,
1663 .cra_init = spacc_ablk_cra_init,
1664 .cra_exit = spacc_ablk_cra_exit,
1669 #ifdef CONFIG_OF
1670 static const struct of_device_id spacc_of_id_table[] = {
1671 { .compatible = "picochip,spacc-ipsec" },
1672 { .compatible = "picochip,spacc-l2" },
1675 #endif /* CONFIG_OF */
1677 static bool spacc_is_compatible(struct platform_device *pdev,
1678 const char *spacc_type)
1680 const struct platform_device_id *platid = platform_get_device_id(pdev);
1682 if (platid && !strcmp(platid->name, spacc_type))
1683 return true;
1685 #ifdef CONFIG_OF
1686 if (of_device_is_compatible(pdev->dev.of_node, spacc_type))
1687 return true;
1688 #endif /* CONFIG_OF */
1690 return false;
1693 static int spacc_probe(struct platform_device *pdev)
1695 int i, err, ret = -EINVAL;
1696 struct resource *mem, *irq;
1697 struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1698 GFP_KERNEL);
1699 if (!engine)
1700 return -ENOMEM;
1702 if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) {
1703 engine->max_ctxs = SPACC_CRYPTO_IPSEC_MAX_CTXS;
1704 engine->cipher_pg_sz = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1705 engine->hash_pg_sz = SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1706 engine->fifo_sz = SPACC_CRYPTO_IPSEC_FIFO_SZ;
1707 engine->algs = ipsec_engine_algs;
1708 engine->num_algs = ARRAY_SIZE(ipsec_engine_algs);
1709 } else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) {
1710 engine->max_ctxs = SPACC_CRYPTO_L2_MAX_CTXS;
1711 engine->cipher_pg_sz = SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1712 engine->hash_pg_sz = SPACC_CRYPTO_L2_HASH_PG_SZ;
1713 engine->fifo_sz = SPACC_CRYPTO_L2_FIFO_SZ;
1714 engine->algs = l2_engine_algs;
1715 engine->num_algs = ARRAY_SIZE(l2_engine_algs);
1716 } else {
1717 return -EINVAL;
1720 engine->name = dev_name(&pdev->dev);
1722 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1723 engine->regs = devm_ioremap_resource(&pdev->dev, mem);
1724 if (IS_ERR(engine->regs))
1725 return PTR_ERR(engine->regs);
1727 irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1728 if (!irq) {
1729 dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1730 return -ENXIO;
1733 if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1734 engine->name, engine)) {
1735 dev_err(engine->dev, "failed to request IRQ\n");
1736 return -EBUSY;
1739 engine->dev = &pdev->dev;
1740 engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1741 engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1743 engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1744 MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1745 if (!engine->req_pool)
1746 return -ENOMEM;
1748 spin_lock_init(&engine->hw_lock);
1750 engine->clk = clk_get(&pdev->dev, "ref");
1751 if (IS_ERR(engine->clk)) {
1752 dev_info(&pdev->dev, "clk unavailable\n");
1753 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1754 return PTR_ERR(engine->clk);
1757 if (clk_enable(engine->clk)) {
1758 dev_info(&pdev->dev, "unable to enable clk\n");
1759 clk_put(engine->clk);
1760 return -EIO;
1763 err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1764 if (err) {
1765 clk_disable(engine->clk);
1766 clk_put(engine->clk);
1767 return err;
1772 * Use an IRQ threshold of 50% as a default. This seems to be a
1773 * reasonable trade off of latency against throughput but can be
1774 * changed at runtime.
1776 engine->stat_irq_thresh = (engine->fifo_sz / 2);
1779 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1780 * only submit a new packet for processing when we complete another in
1781 * the queue. This minimizes time spent in the interrupt handler.
1783 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1784 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1785 writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1786 engine->regs + SPA_IRQ_EN_REG_OFFSET);
1788 setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1789 (unsigned long)engine);
1791 INIT_LIST_HEAD(&engine->pending);
1792 INIT_LIST_HEAD(&engine->completed);
1793 INIT_LIST_HEAD(&engine->in_progress);
1794 engine->in_flight = 0;
1795 tasklet_init(&engine->complete, spacc_spacc_complete,
1796 (unsigned long)engine);
1798 platform_set_drvdata(pdev, engine);
1800 INIT_LIST_HEAD(&engine->registered_algs);
1801 for (i = 0; i < engine->num_algs; ++i) {
1802 engine->algs[i].engine = engine;
1803 err = crypto_register_alg(&engine->algs[i].alg);
1804 if (!err) {
1805 list_add_tail(&engine->algs[i].entry,
1806 &engine->registered_algs);
1807 ret = 0;
1809 if (err)
1810 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1811 engine->algs[i].alg.cra_name);
1812 else
1813 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1814 engine->algs[i].alg.cra_name);
1817 return ret;
1820 static int spacc_remove(struct platform_device *pdev)
1822 struct spacc_alg *alg, *next;
1823 struct spacc_engine *engine = platform_get_drvdata(pdev);
1825 del_timer_sync(&engine->packet_timeout);
1826 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1828 list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1829 list_del(&alg->entry);
1830 crypto_unregister_alg(&alg->alg);
1833 clk_disable(engine->clk);
1834 clk_put(engine->clk);
1836 return 0;
1839 static const struct platform_device_id spacc_id_table[] = {
1840 { "picochip,spacc-ipsec", },
1841 { "picochip,spacc-l2", },
1845 static struct platform_driver spacc_driver = {
1846 .probe = spacc_probe,
1847 .remove = spacc_remove,
1848 .driver = {
1849 .name = "picochip,spacc",
1850 #ifdef CONFIG_PM
1851 .pm = &spacc_pm_ops,
1852 #endif /* CONFIG_PM */
1853 .of_match_table = of_match_ptr(spacc_of_id_table),
1855 .id_table = spacc_id_table,
1858 module_platform_driver(spacc_driver);
1860 MODULE_LICENSE("GPL");
1861 MODULE_AUTHOR("Jamie Iles");