1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
4 static struct edac_pci_ctl_info
*pci_ctl
;
6 static int report_gart_errors
;
7 module_param(report_gart_errors
, int, 0644);
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override
;
14 module_param(ecc_enable_override
, int, 0644);
16 static struct msr __percpu
*msrs
;
19 * count successfully initialized driver instances for setup_pci_device()
21 static atomic_t drv_instances
= ATOMIC_INIT(0);
24 static struct ecc_settings
**ecc_stngs
;
27 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
28 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
31 *FIXME: Produce a better mapping/linearisation.
33 static const struct scrubrate
{
34 u32 scrubval
; /* bit pattern for scrub rate */
35 u32 bandwidth
; /* bandwidth consumed (bytes/sec) */
37 { 0x01, 1600000000UL},
59 { 0x00, 0UL}, /* scrubbing off */
62 int __amd64_read_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
63 u32
*val
, const char *func
)
67 err
= pci_read_config_dword(pdev
, offset
, val
);
69 amd64_warn("%s: error reading F%dx%03x.\n",
70 func
, PCI_FUNC(pdev
->devfn
), offset
);
75 int __amd64_write_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
76 u32 val
, const char *func
)
80 err
= pci_write_config_dword(pdev
, offset
, val
);
82 amd64_warn("%s: error writing to F%dx%03x.\n",
83 func
, PCI_FUNC(pdev
->devfn
), offset
);
89 * Select DCT to which PCI cfg accesses are routed
91 static void f15h_select_dct(struct amd64_pvt
*pvt
, u8 dct
)
95 amd64_read_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, ®
);
96 reg
&= (pvt
->model
== 0x30) ? ~3 : ~1;
98 amd64_write_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, reg
);
103 * Depending on the family, F2 DCT reads need special handling:
105 * K8: has a single DCT only and no address offsets >= 0x100
107 * F10h: each DCT has its own set of regs
111 * F16h: has only 1 DCT
113 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
115 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt
*pvt
, u8 dct
,
116 int offset
, u32
*val
)
120 if (dct
|| offset
>= 0x100)
127 * Note: If ganging is enabled, barring the regs
128 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
129 * return 0. (cf. Section 2.8.1 F10h BKDG)
131 if (dct_ganging_enabled(pvt
))
140 * F15h: F2x1xx addresses do not map explicitly to DCT1.
141 * We should select which DCT we access using F1x10C[DctCfgSel]
143 dct
= (dct
&& pvt
->model
== 0x30) ? 3 : dct
;
144 f15h_select_dct(pvt
, dct
);
155 return amd64_read_pci_cfg(pvt
->F2
, offset
, val
);
159 * Memory scrubber control interface. For K8, memory scrubbing is handled by
160 * hardware and can involve L2 cache, dcache as well as the main memory. With
161 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
164 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
165 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
166 * bytes/sec for the setting.
168 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
169 * other archs, we might not have access to the caches directly.
173 * scan the scrub rate mapping table for a close or matching bandwidth value to
174 * issue. If requested is too big, then use last maximum value found.
176 static int __set_scrub_rate(struct pci_dev
*ctl
, u32 new_bw
, u32 min_rate
)
182 * map the configured rate (new_bw) to a value specific to the AMD64
183 * memory controller and apply to register. Search for the first
184 * bandwidth entry that is greater or equal than the setting requested
185 * and program that. If at last entry, turn off DRAM scrubbing.
187 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
188 * by falling back to the last element in scrubrates[].
190 for (i
= 0; i
< ARRAY_SIZE(scrubrates
) - 1; i
++) {
192 * skip scrub rates which aren't recommended
193 * (see F10 BKDG, F3x58)
195 if (scrubrates
[i
].scrubval
< min_rate
)
198 if (scrubrates
[i
].bandwidth
<= new_bw
)
202 scrubval
= scrubrates
[i
].scrubval
;
204 pci_write_bits32(ctl
, SCRCTRL
, scrubval
, 0x001F);
207 return scrubrates
[i
].bandwidth
;
212 static int set_scrub_rate(struct mem_ctl_info
*mci
, u32 bw
)
214 struct amd64_pvt
*pvt
= mci
->pvt_info
;
215 u32 min_scrubrate
= 0x5;
221 if (pvt
->fam
== 0x15 && pvt
->model
< 0x10)
222 f15h_select_dct(pvt
, 0);
224 return __set_scrub_rate(pvt
->F3
, bw
, min_scrubrate
);
227 static int get_scrub_rate(struct mem_ctl_info
*mci
)
229 struct amd64_pvt
*pvt
= mci
->pvt_info
;
231 int i
, retval
= -EINVAL
;
234 if (pvt
->fam
== 0x15 && pvt
->model
< 0x10)
235 f15h_select_dct(pvt
, 0);
237 amd64_read_pci_cfg(pvt
->F3
, SCRCTRL
, &scrubval
);
239 scrubval
= scrubval
& 0x001F;
241 for (i
= 0; i
< ARRAY_SIZE(scrubrates
); i
++) {
242 if (scrubrates
[i
].scrubval
== scrubval
) {
243 retval
= scrubrates
[i
].bandwidth
;
251 * returns true if the SysAddr given by sys_addr matches the
252 * DRAM base/limit associated with node_id
254 static bool base_limit_match(struct amd64_pvt
*pvt
, u64 sys_addr
, u8 nid
)
258 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
259 * all ones if the most significant implemented address bit is 1.
260 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
261 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
262 * Application Programming.
264 addr
= sys_addr
& 0x000000ffffffffffull
;
266 return ((addr
>= get_dram_base(pvt
, nid
)) &&
267 (addr
<= get_dram_limit(pvt
, nid
)));
271 * Attempt to map a SysAddr to a node. On success, return a pointer to the
272 * mem_ctl_info structure for the node that the SysAddr maps to.
274 * On failure, return NULL.
276 static struct mem_ctl_info
*find_mc_by_sys_addr(struct mem_ctl_info
*mci
,
279 struct amd64_pvt
*pvt
;
284 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
285 * 3.4.4.2) registers to map the SysAddr to a node ID.
290 * The value of this field should be the same for all DRAM Base
291 * registers. Therefore we arbitrarily choose to read it from the
292 * register for node 0.
294 intlv_en
= dram_intlv_en(pvt
, 0);
297 for (node_id
= 0; node_id
< DRAM_RANGES
; node_id
++) {
298 if (base_limit_match(pvt
, sys_addr
, node_id
))
304 if (unlikely((intlv_en
!= 0x01) &&
305 (intlv_en
!= 0x03) &&
306 (intlv_en
!= 0x07))) {
307 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en
);
311 bits
= (((u32
) sys_addr
) >> 12) & intlv_en
;
313 for (node_id
= 0; ; ) {
314 if ((dram_intlv_sel(pvt
, node_id
) & intlv_en
) == bits
)
315 break; /* intlv_sel field matches */
317 if (++node_id
>= DRAM_RANGES
)
321 /* sanity test for sys_addr */
322 if (unlikely(!base_limit_match(pvt
, sys_addr
, node_id
))) {
323 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
324 "range for node %d with node interleaving enabled.\n",
325 __func__
, sys_addr
, node_id
);
330 return edac_mc_find((int)node_id
);
333 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
334 (unsigned long)sys_addr
);
340 * compute the CS base address of the @csrow on the DRAM controller @dct.
341 * For details see F2x[5C:40] in the processor's BKDG
343 static void get_cs_base_and_mask(struct amd64_pvt
*pvt
, int csrow
, u8 dct
,
344 u64
*base
, u64
*mask
)
346 u64 csbase
, csmask
, base_bits
, mask_bits
;
349 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_F
) {
350 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
351 csmask
= pvt
->csels
[dct
].csmasks
[csrow
];
352 base_bits
= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
353 mask_bits
= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
357 * F16h and F15h, models 30h and later need two addr_shift values:
358 * 8 for high and 6 for low (cf. F16h BKDG).
360 } else if (pvt
->fam
== 0x16 ||
361 (pvt
->fam
== 0x15 && pvt
->model
>= 0x30)) {
362 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
363 csmask
= pvt
->csels
[dct
].csmasks
[csrow
>> 1];
365 *base
= (csbase
& GENMASK_ULL(15, 5)) << 6;
366 *base
|= (csbase
& GENMASK_ULL(30, 19)) << 8;
369 /* poke holes for the csmask */
370 *mask
&= ~((GENMASK_ULL(15, 5) << 6) |
371 (GENMASK_ULL(30, 19) << 8));
373 *mask
|= (csmask
& GENMASK_ULL(15, 5)) << 6;
374 *mask
|= (csmask
& GENMASK_ULL(30, 19)) << 8;
378 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
379 csmask
= pvt
->csels
[dct
].csmasks
[csrow
>> 1];
382 if (pvt
->fam
== 0x15)
383 base_bits
= mask_bits
=
384 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
386 base_bits
= mask_bits
=
387 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
390 *base
= (csbase
& base_bits
) << addr_shift
;
393 /* poke holes for the csmask */
394 *mask
&= ~(mask_bits
<< addr_shift
);
396 *mask
|= (csmask
& mask_bits
) << addr_shift
;
399 #define for_each_chip_select(i, dct, pvt) \
400 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
402 #define chip_select_base(i, dct, pvt) \
403 pvt->csels[dct].csbases[i]
405 #define for_each_chip_select_mask(i, dct, pvt) \
406 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
409 * @input_addr is an InputAddr associated with the node given by mci. Return the
410 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
412 static int input_addr_to_csrow(struct mem_ctl_info
*mci
, u64 input_addr
)
414 struct amd64_pvt
*pvt
;
420 for_each_chip_select(csrow
, 0, pvt
) {
421 if (!csrow_enabled(csrow
, 0, pvt
))
424 get_cs_base_and_mask(pvt
, csrow
, 0, &base
, &mask
);
428 if ((input_addr
& mask
) == (base
& mask
)) {
429 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
430 (unsigned long)input_addr
, csrow
,
436 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
437 (unsigned long)input_addr
, pvt
->mc_node_id
);
443 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
444 * for the node represented by mci. Info is passed back in *hole_base,
445 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
446 * info is invalid. Info may be invalid for either of the following reasons:
448 * - The revision of the node is not E or greater. In this case, the DRAM Hole
449 * Address Register does not exist.
451 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
452 * indicating that its contents are not valid.
454 * The values passed back in *hole_base, *hole_offset, and *hole_size are
455 * complete 32-bit values despite the fact that the bitfields in the DHAR
456 * only represent bits 31-24 of the base and offset values.
458 int amd64_get_dram_hole_info(struct mem_ctl_info
*mci
, u64
*hole_base
,
459 u64
*hole_offset
, u64
*hole_size
)
461 struct amd64_pvt
*pvt
= mci
->pvt_info
;
463 /* only revE and later have the DRAM Hole Address Register */
464 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_E
) {
465 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
466 pvt
->ext_model
, pvt
->mc_node_id
);
470 /* valid for Fam10h and above */
471 if (pvt
->fam
>= 0x10 && !dhar_mem_hoist_valid(pvt
)) {
472 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
476 if (!dhar_valid(pvt
)) {
477 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
482 /* This node has Memory Hoisting */
484 /* +------------------+--------------------+--------------------+-----
485 * | memory | DRAM hole | relocated |
486 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
488 * | | | [0x100000000, |
489 * | | | (0x100000000+ |
490 * | | | (0xffffffff-x))] |
491 * +------------------+--------------------+--------------------+-----
493 * Above is a diagram of physical memory showing the DRAM hole and the
494 * relocated addresses from the DRAM hole. As shown, the DRAM hole
495 * starts at address x (the base address) and extends through address
496 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
497 * addresses in the hole so that they start at 0x100000000.
500 *hole_base
= dhar_base(pvt
);
501 *hole_size
= (1ULL << 32) - *hole_base
;
503 *hole_offset
= (pvt
->fam
> 0xf) ? f10_dhar_offset(pvt
)
504 : k8_dhar_offset(pvt
);
506 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
507 pvt
->mc_node_id
, (unsigned long)*hole_base
,
508 (unsigned long)*hole_offset
, (unsigned long)*hole_size
);
512 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info
);
515 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
516 * assumed that sys_addr maps to the node given by mci.
518 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
519 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
520 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
521 * then it is also involved in translating a SysAddr to a DramAddr. Sections
522 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
523 * These parts of the documentation are unclear. I interpret them as follows:
525 * When node n receives a SysAddr, it processes the SysAddr as follows:
527 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
528 * Limit registers for node n. If the SysAddr is not within the range
529 * specified by the base and limit values, then node n ignores the Sysaddr
530 * (since it does not map to node n). Otherwise continue to step 2 below.
532 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
533 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
534 * the range of relocated addresses (starting at 0x100000000) from the DRAM
535 * hole. If not, skip to step 3 below. Else get the value of the
536 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
537 * offset defined by this value from the SysAddr.
539 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
540 * Base register for node n. To obtain the DramAddr, subtract the base
541 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
543 static u64
sys_addr_to_dram_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
545 struct amd64_pvt
*pvt
= mci
->pvt_info
;
546 u64 dram_base
, hole_base
, hole_offset
, hole_size
, dram_addr
;
549 dram_base
= get_dram_base(pvt
, pvt
->mc_node_id
);
551 ret
= amd64_get_dram_hole_info(mci
, &hole_base
, &hole_offset
,
554 if ((sys_addr
>= (1ULL << 32)) &&
555 (sys_addr
< ((1ULL << 32) + hole_size
))) {
556 /* use DHAR to translate SysAddr to DramAddr */
557 dram_addr
= sys_addr
- hole_offset
;
559 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
560 (unsigned long)sys_addr
,
561 (unsigned long)dram_addr
);
568 * Translate the SysAddr to a DramAddr as shown near the start of
569 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
570 * only deals with 40-bit values. Therefore we discard bits 63-40 of
571 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
572 * discard are all 1s. Otherwise the bits we discard are all 0s. See
573 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
574 * Programmer's Manual Volume 1 Application Programming.
576 dram_addr
= (sys_addr
& GENMASK_ULL(39, 0)) - dram_base
;
578 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
579 (unsigned long)sys_addr
, (unsigned long)dram_addr
);
584 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
585 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
586 * for node interleaving.
588 static int num_node_interleave_bits(unsigned intlv_en
)
590 static const int intlv_shift_table
[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
593 BUG_ON(intlv_en
> 7);
594 n
= intlv_shift_table
[intlv_en
];
598 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
599 static u64
dram_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 dram_addr
)
601 struct amd64_pvt
*pvt
;
608 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
609 * concerning translating a DramAddr to an InputAddr.
611 intlv_shift
= num_node_interleave_bits(dram_intlv_en(pvt
, 0));
612 input_addr
= ((dram_addr
>> intlv_shift
) & GENMASK_ULL(35, 12)) +
615 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
616 intlv_shift
, (unsigned long)dram_addr
,
617 (unsigned long)input_addr
);
623 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
624 * assumed that @sys_addr maps to the node given by mci.
626 static u64
sys_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
631 dram_addr_to_input_addr(mci
, sys_addr_to_dram_addr(mci
, sys_addr
));
633 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
634 (unsigned long)sys_addr
, (unsigned long)input_addr
);
639 /* Map the Error address to a PAGE and PAGE OFFSET. */
640 static inline void error_address_to_page_and_offset(u64 error_address
,
641 struct err_info
*err
)
643 err
->page
= (u32
) (error_address
>> PAGE_SHIFT
);
644 err
->offset
= ((u32
) error_address
) & ~PAGE_MASK
;
648 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
649 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
650 * of a node that detected an ECC memory error. mci represents the node that
651 * the error address maps to (possibly different from the node that detected
652 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
655 static int sys_addr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
)
659 csrow
= input_addr_to_csrow(mci
, sys_addr_to_input_addr(mci
, sys_addr
));
662 amd64_mc_err(mci
, "Failed to translate InputAddr to csrow for "
663 "address 0x%lx\n", (unsigned long)sys_addr
);
667 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*, u16
);
670 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
673 static unsigned long determine_edac_cap(struct amd64_pvt
*pvt
)
676 unsigned long edac_cap
= EDAC_FLAG_NONE
;
678 bit
= (pvt
->fam
> 0xf || pvt
->ext_model
>= K8_REV_F
)
682 if (pvt
->dclr0
& BIT(bit
))
683 edac_cap
= EDAC_FLAG_SECDED
;
688 static void debug_display_dimm_sizes(struct amd64_pvt
*, u8
);
690 static void debug_dump_dramcfg_low(struct amd64_pvt
*pvt
, u32 dclr
, int chan
)
692 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan
, dclr
);
694 if (pvt
->dram_type
== MEM_LRDDR3
) {
695 u32 dcsm
= pvt
->csels
[chan
].csmasks
[0];
697 * It's assumed all LRDIMMs in a DCT are going to be of
698 * same 'type' until proven otherwise. So, use a cs
699 * value of '0' here to get dcsm value.
701 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm
& 0x3));
704 edac_dbg(1, "All DIMMs support ECC:%s\n",
705 (dclr
& BIT(19)) ? "yes" : "no");
708 edac_dbg(1, " PAR/ERR parity: %s\n",
709 (dclr
& BIT(8)) ? "enabled" : "disabled");
711 if (pvt
->fam
== 0x10)
712 edac_dbg(1, " DCT 128bit mode width: %s\n",
713 (dclr
& BIT(11)) ? "128b" : "64b");
715 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
716 (dclr
& BIT(12)) ? "yes" : "no",
717 (dclr
& BIT(13)) ? "yes" : "no",
718 (dclr
& BIT(14)) ? "yes" : "no",
719 (dclr
& BIT(15)) ? "yes" : "no");
722 /* Display and decode various NB registers for debug purposes. */
723 static void dump_misc_regs(struct amd64_pvt
*pvt
)
725 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt
->nbcap
);
727 edac_dbg(1, " NB two channel DRAM capable: %s\n",
728 (pvt
->nbcap
& NBCAP_DCT_DUAL
) ? "yes" : "no");
730 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
731 (pvt
->nbcap
& NBCAP_SECDED
) ? "yes" : "no",
732 (pvt
->nbcap
& NBCAP_CHIPKILL
) ? "yes" : "no");
734 debug_dump_dramcfg_low(pvt
, pvt
->dclr0
, 0);
736 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt
->online_spare
);
738 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
739 pvt
->dhar
, dhar_base(pvt
),
740 (pvt
->fam
== 0xf) ? k8_dhar_offset(pvt
)
741 : f10_dhar_offset(pvt
));
743 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt
) ? "yes" : "no");
745 debug_display_dimm_sizes(pvt
, 0);
747 /* everything below this point is Fam10h and above */
751 debug_display_dimm_sizes(pvt
, 1);
753 amd64_info("using %s syndromes.\n", ((pvt
->ecc_sym_sz
== 8) ? "x8" : "x4"));
755 /* Only if NOT ganged does dclr1 have valid info */
756 if (!dct_ganging_enabled(pvt
))
757 debug_dump_dramcfg_low(pvt
, pvt
->dclr1
, 1);
761 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
763 static void prep_chip_selects(struct amd64_pvt
*pvt
)
765 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_F
) {
766 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
767 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 8;
768 } else if (pvt
->fam
== 0x15 && pvt
->model
== 0x30) {
769 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 4;
770 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 2;
772 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
773 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 4;
778 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
780 static void read_dct_base_mask(struct amd64_pvt
*pvt
)
784 prep_chip_selects(pvt
);
786 for_each_chip_select(cs
, 0, pvt
) {
787 int reg0
= DCSB0
+ (cs
* 4);
788 int reg1
= DCSB1
+ (cs
* 4);
789 u32
*base0
= &pvt
->csels
[0].csbases
[cs
];
790 u32
*base1
= &pvt
->csels
[1].csbases
[cs
];
792 if (!amd64_read_dct_pci_cfg(pvt
, 0, reg0
, base0
))
793 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
799 if (!amd64_read_dct_pci_cfg(pvt
, 1, reg0
, base1
))
800 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
801 cs
, *base1
, (pvt
->fam
== 0x10) ? reg1
805 for_each_chip_select_mask(cs
, 0, pvt
) {
806 int reg0
= DCSM0
+ (cs
* 4);
807 int reg1
= DCSM1
+ (cs
* 4);
808 u32
*mask0
= &pvt
->csels
[0].csmasks
[cs
];
809 u32
*mask1
= &pvt
->csels
[1].csmasks
[cs
];
811 if (!amd64_read_dct_pci_cfg(pvt
, 0, reg0
, mask0
))
812 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
818 if (!amd64_read_dct_pci_cfg(pvt
, 1, reg0
, mask1
))
819 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
820 cs
, *mask1
, (pvt
->fam
== 0x10) ? reg1
825 static void determine_memory_type(struct amd64_pvt
*pvt
)
831 if (pvt
->ext_model
>= K8_REV_F
)
834 pvt
->dram_type
= (pvt
->dclr0
& BIT(18)) ? MEM_DDR
: MEM_RDDR
;
838 if (pvt
->dchr0
& DDR3_MODE
)
841 pvt
->dram_type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR2
: MEM_RDDR2
;
845 if (pvt
->model
< 0x60)
849 * Model 0x60h needs special handling:
851 * We use a Chip Select value of '0' to obtain dcsm.
852 * Theoretically, it is possible to populate LRDIMMs of different
853 * 'Rank' value on a DCT. But this is not the common case. So,
854 * it's reasonable to assume all DIMMs are going to be of same
855 * 'type' until proven otherwise.
857 amd64_read_dct_pci_cfg(pvt
, 0, DRAM_CONTROL
, &dram_ctrl
);
858 dcsm
= pvt
->csels
[0].csmasks
[0];
860 if (((dram_ctrl
>> 8) & 0x7) == 0x2)
861 pvt
->dram_type
= MEM_DDR4
;
862 else if (pvt
->dclr0
& BIT(16))
863 pvt
->dram_type
= MEM_DDR3
;
865 pvt
->dram_type
= MEM_LRDDR3
;
867 pvt
->dram_type
= MEM_RDDR3
;
875 WARN(1, KERN_ERR
"%s: Family??? 0x%x\n", __func__
, pvt
->fam
);
876 pvt
->dram_type
= MEM_EMPTY
;
881 pvt
->dram_type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR3
: MEM_RDDR3
;
884 /* Get the number of DCT channels the memory controller is using. */
885 static int k8_early_channel_count(struct amd64_pvt
*pvt
)
889 if (pvt
->ext_model
>= K8_REV_F
)
890 /* RevF (NPT) and later */
891 flag
= pvt
->dclr0
& WIDTH_128
;
893 /* RevE and earlier */
894 flag
= pvt
->dclr0
& REVE_WIDTH_128
;
899 return (flag
) ? 2 : 1;
902 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
903 static u64
get_error_address(struct amd64_pvt
*pvt
, struct mce
*m
)
905 u16 mce_nid
= amd_get_nb_id(m
->extcpu
);
906 struct mem_ctl_info
*mci
;
911 mci
= edac_mc_find(mce_nid
);
917 if (pvt
->fam
== 0xf) {
922 addr
= m
->addr
& GENMASK_ULL(end_bit
, start_bit
);
925 * Erratum 637 workaround
927 if (pvt
->fam
== 0x15) {
928 u64 cc6_base
, tmp_addr
;
932 if ((addr
& GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
936 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_LIM
, &tmp
);
937 intlv_en
= tmp
>> 21 & 0x7;
939 /* add [47:27] + 3 trailing bits */
940 cc6_base
= (tmp
& GENMASK_ULL(20, 0)) << 3;
942 /* reverse and add DramIntlvEn */
943 cc6_base
|= intlv_en
^ 0x7;
949 return cc6_base
| (addr
& GENMASK_ULL(23, 0));
951 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_BASE
, &tmp
);
954 tmp_addr
= (addr
& GENMASK_ULL(23, 12)) << __fls(intlv_en
+ 1);
956 /* OR DramIntlvSel into bits [14:12] */
957 tmp_addr
|= (tmp
& GENMASK_ULL(23, 21)) >> 9;
959 /* add remaining [11:0] bits from original MC4_ADDR */
960 tmp_addr
|= addr
& GENMASK_ULL(11, 0);
962 return cc6_base
| tmp_addr
;
968 static struct pci_dev
*pci_get_related_function(unsigned int vendor
,
970 struct pci_dev
*related
)
972 struct pci_dev
*dev
= NULL
;
974 while ((dev
= pci_get_device(vendor
, device
, dev
))) {
975 if (pci_domain_nr(dev
->bus
) == pci_domain_nr(related
->bus
) &&
976 (dev
->bus
->number
== related
->bus
->number
) &&
977 (PCI_SLOT(dev
->devfn
) == PCI_SLOT(related
->devfn
)))
984 static void read_dram_base_limit_regs(struct amd64_pvt
*pvt
, unsigned range
)
986 struct amd_northbridge
*nb
;
987 struct pci_dev
*f1
= NULL
;
988 unsigned int pci_func
;
989 int off
= range
<< 3;
992 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_LO
+ off
, &pvt
->ranges
[range
].base
.lo
);
993 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_LO
+ off
, &pvt
->ranges
[range
].lim
.lo
);
998 if (!dram_rw(pvt
, range
))
1001 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_HI
+ off
, &pvt
->ranges
[range
].base
.hi
);
1002 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_HI
+ off
, &pvt
->ranges
[range
].lim
.hi
);
1004 /* F15h: factor in CC6 save area by reading dst node's limit reg */
1005 if (pvt
->fam
!= 0x15)
1008 nb
= node_to_amd_nb(dram_dst_node(pvt
, range
));
1012 if (pvt
->model
== 0x60)
1013 pci_func
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F1
;
1014 else if (pvt
->model
== 0x30)
1015 pci_func
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
;
1017 pci_func
= PCI_DEVICE_ID_AMD_15H_NB_F1
;
1019 f1
= pci_get_related_function(nb
->misc
->vendor
, pci_func
, nb
->misc
);
1023 amd64_read_pci_cfg(f1
, DRAM_LOCAL_NODE_LIM
, &llim
);
1025 pvt
->ranges
[range
].lim
.lo
&= GENMASK_ULL(15, 0);
1027 /* {[39:27],111b} */
1028 pvt
->ranges
[range
].lim
.lo
|= ((llim
& 0x1fff) << 3 | 0x7) << 16;
1030 pvt
->ranges
[range
].lim
.hi
&= GENMASK_ULL(7, 0);
1033 pvt
->ranges
[range
].lim
.hi
|= llim
>> 13;
1038 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
1039 struct err_info
*err
)
1041 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1043 error_address_to_page_and_offset(sys_addr
, err
);
1046 * Find out which node the error address belongs to. This may be
1047 * different from the node that detected the error.
1049 err
->src_mci
= find_mc_by_sys_addr(mci
, sys_addr
);
1050 if (!err
->src_mci
) {
1051 amd64_mc_err(mci
, "failed to map error addr 0x%lx to a node\n",
1052 (unsigned long)sys_addr
);
1053 err
->err_code
= ERR_NODE
;
1057 /* Now map the sys_addr to a CSROW */
1058 err
->csrow
= sys_addr_to_csrow(err
->src_mci
, sys_addr
);
1059 if (err
->csrow
< 0) {
1060 err
->err_code
= ERR_CSROW
;
1064 /* CHIPKILL enabled */
1065 if (pvt
->nbcfg
& NBCFG_CHIPKILL
) {
1066 err
->channel
= get_channel_from_ecc_syndrome(mci
, err
->syndrome
);
1067 if (err
->channel
< 0) {
1069 * Syndrome didn't map, so we don't know which of the
1070 * 2 DIMMs is in error. So we need to ID 'both' of them
1073 amd64_mc_warn(err
->src_mci
, "unknown syndrome 0x%04x - "
1074 "possible error reporting race\n",
1076 err
->err_code
= ERR_CHANNEL
;
1081 * non-chipkill ecc mode
1083 * The k8 documentation is unclear about how to determine the
1084 * channel number when using non-chipkill memory. This method
1085 * was obtained from email communication with someone at AMD.
1086 * (Wish the email was placed in this comment - norsk)
1088 err
->channel
= ((sys_addr
& BIT(3)) != 0);
1092 static int ddr2_cs_size(unsigned i
, bool dct_width
)
1098 else if (!(i
& 0x1))
1101 shift
= (i
+ 1) >> 1;
1103 return 128 << (shift
+ !!dct_width
);
1106 static int k8_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1107 unsigned cs_mode
, int cs_mask_nr
)
1109 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1111 if (pvt
->ext_model
>= K8_REV_F
) {
1112 WARN_ON(cs_mode
> 11);
1113 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1115 else if (pvt
->ext_model
>= K8_REV_D
) {
1117 WARN_ON(cs_mode
> 10);
1120 * the below calculation, besides trying to win an obfuscated C
1121 * contest, maps cs_mode values to DIMM chip select sizes. The
1124 * cs_mode CS size (mb)
1125 * ======= ============
1138 * Basically, it calculates a value with which to shift the
1139 * smallest CS size of 32MB.
1141 * ddr[23]_cs_size have a similar purpose.
1143 diff
= cs_mode
/3 + (unsigned)(cs_mode
> 5);
1145 return 32 << (cs_mode
- diff
);
1148 WARN_ON(cs_mode
> 6);
1149 return 32 << cs_mode
;
1154 * Get the number of DCT channels in use.
1157 * number of Memory Channels in operation
1159 * contents of the DCL0_LOW register
1161 static int f1x_early_channel_count(struct amd64_pvt
*pvt
)
1163 int i
, j
, channels
= 0;
1165 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1166 if (pvt
->fam
== 0x10 && (pvt
->dclr0
& WIDTH_128
))
1170 * Need to check if in unganged mode: In such, there are 2 channels,
1171 * but they are not in 128 bit mode and thus the above 'dclr0' status
1174 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1175 * their CSEnable bit on. If so, then SINGLE DIMM case.
1177 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1180 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1181 * is more than just one DIMM present in unganged mode. Need to check
1182 * both controllers since DIMMs can be placed in either one.
1184 for (i
= 0; i
< 2; i
++) {
1185 u32 dbam
= (i
? pvt
->dbam1
: pvt
->dbam0
);
1187 for (j
= 0; j
< 4; j
++) {
1188 if (DBAM_DIMM(j
, dbam
) > 0) {
1198 amd64_info("MCT channel count: %d\n", channels
);
1203 static int ddr3_cs_size(unsigned i
, bool dct_width
)
1208 if (i
== 0 || i
== 3 || i
== 4)
1214 else if (!(i
& 0x1))
1217 shift
= (i
+ 1) >> 1;
1220 cs_size
= (128 * (1 << !!dct_width
)) << shift
;
1225 static int ddr3_lrdimm_cs_size(unsigned i
, unsigned rank_multiply
)
1230 if (i
< 4 || i
== 6)
1234 else if (!(i
& 0x1))
1237 shift
= (i
+ 1) >> 1;
1240 cs_size
= rank_multiply
* (128 << shift
);
1245 static int ddr4_cs_size(unsigned i
)
1254 /* Min cs_size = 1G */
1255 cs_size
= 1024 * (1 << (i
>> 1));
1260 static int f10_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1261 unsigned cs_mode
, int cs_mask_nr
)
1263 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1265 WARN_ON(cs_mode
> 11);
1267 if (pvt
->dchr0
& DDR3_MODE
|| pvt
->dchr1
& DDR3_MODE
)
1268 return ddr3_cs_size(cs_mode
, dclr
& WIDTH_128
);
1270 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1274 * F15h supports only 64bit DCT interfaces
1276 static int f15_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1277 unsigned cs_mode
, int cs_mask_nr
)
1279 WARN_ON(cs_mode
> 12);
1281 return ddr3_cs_size(cs_mode
, false);
1284 /* F15h M60h supports DDR4 mapping as well.. */
1285 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1286 unsigned cs_mode
, int cs_mask_nr
)
1289 u32 dcsm
= pvt
->csels
[dct
].csmasks
[cs_mask_nr
];
1291 WARN_ON(cs_mode
> 12);
1293 if (pvt
->dram_type
== MEM_DDR4
) {
1297 cs_size
= ddr4_cs_size(cs_mode
);
1298 } else if (pvt
->dram_type
== MEM_LRDDR3
) {
1299 unsigned rank_multiply
= dcsm
& 0xf;
1301 if (rank_multiply
== 3)
1303 cs_size
= ddr3_lrdimm_cs_size(cs_mode
, rank_multiply
);
1305 /* Minimum cs size is 512mb for F15hM60h*/
1309 cs_size
= ddr3_cs_size(cs_mode
, false);
1316 * F16h and F15h model 30h have only limited cs_modes.
1318 static int f16_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1319 unsigned cs_mode
, int cs_mask_nr
)
1321 WARN_ON(cs_mode
> 12);
1323 if (cs_mode
== 6 || cs_mode
== 8 ||
1324 cs_mode
== 9 || cs_mode
== 12)
1327 return ddr3_cs_size(cs_mode
, false);
1330 static void read_dram_ctl_register(struct amd64_pvt
*pvt
)
1333 if (pvt
->fam
== 0xf)
1336 if (!amd64_read_pci_cfg(pvt
->F2
, DCT_SEL_LO
, &pvt
->dct_sel_lo
)) {
1337 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1338 pvt
->dct_sel_lo
, dct_sel_baseaddr(pvt
));
1340 edac_dbg(0, " DCTs operate in %s mode\n",
1341 (dct_ganging_enabled(pvt
) ? "ganged" : "unganged"));
1343 if (!dct_ganging_enabled(pvt
))
1344 edac_dbg(0, " Address range split per DCT: %s\n",
1345 (dct_high_range_enabled(pvt
) ? "yes" : "no"));
1347 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1348 (dct_data_intlv_enabled(pvt
) ? "enabled" : "disabled"),
1349 (dct_memory_cleared(pvt
) ? "yes" : "no"));
1351 edac_dbg(0, " channel interleave: %s, "
1352 "interleave bits selector: 0x%x\n",
1353 (dct_interleave_enabled(pvt
) ? "enabled" : "disabled"),
1354 dct_sel_interleave_addr(pvt
));
1357 amd64_read_pci_cfg(pvt
->F2
, DCT_SEL_HI
, &pvt
->dct_sel_hi
);
1361 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1362 * 2.10.12 Memory Interleaving Modes).
1364 static u8
f15_m30h_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1365 u8 intlv_en
, int num_dcts_intlv
,
1372 return (u8
)(dct_sel
);
1374 if (num_dcts_intlv
== 2) {
1375 select
= (sys_addr
>> 8) & 0x3;
1376 channel
= select
? 0x3 : 0;
1377 } else if (num_dcts_intlv
== 4) {
1378 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1379 switch (intlv_addr
) {
1381 channel
= (sys_addr
>> 8) & 0x3;
1384 channel
= (sys_addr
>> 9) & 0x3;
1392 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1393 * Interleaving Modes.
1395 static u8
f1x_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1396 bool hi_range_sel
, u8 intlv_en
)
1398 u8 dct_sel_high
= (pvt
->dct_sel_lo
>> 1) & 1;
1400 if (dct_ganging_enabled(pvt
))
1404 return dct_sel_high
;
1407 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1409 if (dct_interleave_enabled(pvt
)) {
1410 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1412 /* return DCT select function: 0=DCT0, 1=DCT1 */
1414 return sys_addr
>> 6 & 1;
1416 if (intlv_addr
& 0x2) {
1417 u8 shift
= intlv_addr
& 0x1 ? 9 : 6;
1418 u32 temp
= hweight_long((u32
) ((sys_addr
>> 16) & 0x1F)) % 2;
1420 return ((sys_addr
>> shift
) & 1) ^ temp
;
1423 return (sys_addr
>> (12 + hweight8(intlv_en
))) & 1;
1426 if (dct_high_range_enabled(pvt
))
1427 return ~dct_sel_high
& 1;
1432 /* Convert the sys_addr to the normalized DCT address */
1433 static u64
f1x_get_norm_dct_addr(struct amd64_pvt
*pvt
, u8 range
,
1434 u64 sys_addr
, bool hi_rng
,
1435 u32 dct_sel_base_addr
)
1438 u64 dram_base
= get_dram_base(pvt
, range
);
1439 u64 hole_off
= f10_dhar_offset(pvt
);
1440 u64 dct_sel_base_off
= (pvt
->dct_sel_hi
& 0xFFFFFC00) << 16;
1445 * base address of high range is below 4Gb
1446 * (bits [47:27] at [31:11])
1447 * DRAM address space on this DCT is hoisted above 4Gb &&
1450 * remove hole offset from sys_addr
1452 * remove high range offset from sys_addr
1454 if ((!(dct_sel_base_addr
>> 16) ||
1455 dct_sel_base_addr
< dhar_base(pvt
)) &&
1457 (sys_addr
>= BIT_64(32)))
1458 chan_off
= hole_off
;
1460 chan_off
= dct_sel_base_off
;
1464 * we have a valid hole &&
1469 * remove dram base to normalize to DCT address
1471 if (dhar_valid(pvt
) && (sys_addr
>= BIT_64(32)))
1472 chan_off
= hole_off
;
1474 chan_off
= dram_base
;
1477 return (sys_addr
& GENMASK_ULL(47,6)) - (chan_off
& GENMASK_ULL(47,23));
1481 * checks if the csrow passed in is marked as SPARED, if so returns the new
1484 static int f10_process_possible_spare(struct amd64_pvt
*pvt
, u8 dct
, int csrow
)
1488 if (online_spare_swap_done(pvt
, dct
) &&
1489 csrow
== online_spare_bad_dramcs(pvt
, dct
)) {
1491 for_each_chip_select(tmp_cs
, dct
, pvt
) {
1492 if (chip_select_base(tmp_cs
, dct
, pvt
) & 0x2) {
1502 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1503 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1506 * -EINVAL: NOT FOUND
1507 * 0..csrow = Chip-Select Row
1509 static int f1x_lookup_addr_in_dct(u64 in_addr
, u8 nid
, u8 dct
)
1511 struct mem_ctl_info
*mci
;
1512 struct amd64_pvt
*pvt
;
1513 u64 cs_base
, cs_mask
;
1514 int cs_found
= -EINVAL
;
1517 mci
= edac_mc_find(nid
);
1521 pvt
= mci
->pvt_info
;
1523 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr
, dct
);
1525 for_each_chip_select(csrow
, dct
, pvt
) {
1526 if (!csrow_enabled(csrow
, dct
, pvt
))
1529 get_cs_base_and_mask(pvt
, csrow
, dct
, &cs_base
, &cs_mask
);
1531 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1532 csrow
, cs_base
, cs_mask
);
1536 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1537 (in_addr
& cs_mask
), (cs_base
& cs_mask
));
1539 if ((in_addr
& cs_mask
) == (cs_base
& cs_mask
)) {
1540 if (pvt
->fam
== 0x15 && pvt
->model
>= 0x30) {
1544 cs_found
= f10_process_possible_spare(pvt
, dct
, csrow
);
1546 edac_dbg(1, " MATCH csrow=%d\n", cs_found
);
1554 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1555 * swapped with a region located at the bottom of memory so that the GPU can use
1556 * the interleaved region and thus two channels.
1558 static u64
f1x_swap_interleaved_region(struct amd64_pvt
*pvt
, u64 sys_addr
)
1560 u32 swap_reg
, swap_base
, swap_limit
, rgn_size
, tmp_addr
;
1562 if (pvt
->fam
== 0x10) {
1563 /* only revC3 and revE have that feature */
1564 if (pvt
->model
< 4 || (pvt
->model
< 0xa && pvt
->stepping
< 3))
1568 amd64_read_pci_cfg(pvt
->F2
, SWAP_INTLV_REG
, &swap_reg
);
1570 if (!(swap_reg
& 0x1))
1573 swap_base
= (swap_reg
>> 3) & 0x7f;
1574 swap_limit
= (swap_reg
>> 11) & 0x7f;
1575 rgn_size
= (swap_reg
>> 20) & 0x7f;
1576 tmp_addr
= sys_addr
>> 27;
1578 if (!(sys_addr
>> 34) &&
1579 (((tmp_addr
>= swap_base
) &&
1580 (tmp_addr
<= swap_limit
)) ||
1581 (tmp_addr
< rgn_size
)))
1582 return sys_addr
^ (u64
)swap_base
<< 27;
1587 /* For a given @dram_range, check if @sys_addr falls within it. */
1588 static int f1x_match_to_this_node(struct amd64_pvt
*pvt
, unsigned range
,
1589 u64 sys_addr
, int *chan_sel
)
1591 int cs_found
= -EINVAL
;
1595 bool high_range
= false;
1597 u8 node_id
= dram_dst_node(pvt
, range
);
1598 u8 intlv_en
= dram_intlv_en(pvt
, range
);
1599 u32 intlv_sel
= dram_intlv_sel(pvt
, range
);
1601 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1602 range
, sys_addr
, get_dram_limit(pvt
, range
));
1604 if (dhar_valid(pvt
) &&
1605 dhar_base(pvt
) <= sys_addr
&&
1606 sys_addr
< BIT_64(32)) {
1607 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1612 if (intlv_en
&& (intlv_sel
!= ((sys_addr
>> 12) & intlv_en
)))
1615 sys_addr
= f1x_swap_interleaved_region(pvt
, sys_addr
);
1617 dct_sel_base
= dct_sel_baseaddr(pvt
);
1620 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1621 * select between DCT0 and DCT1.
1623 if (dct_high_range_enabled(pvt
) &&
1624 !dct_ganging_enabled(pvt
) &&
1625 ((sys_addr
>> 27) >= (dct_sel_base
>> 11)))
1628 channel
= f1x_determine_channel(pvt
, sys_addr
, high_range
, intlv_en
);
1630 chan_addr
= f1x_get_norm_dct_addr(pvt
, range
, sys_addr
,
1631 high_range
, dct_sel_base
);
1633 /* Remove node interleaving, see F1x120 */
1635 chan_addr
= ((chan_addr
>> (12 + hweight8(intlv_en
))) << 12) |
1636 (chan_addr
& 0xfff);
1638 /* remove channel interleave */
1639 if (dct_interleave_enabled(pvt
) &&
1640 !dct_high_range_enabled(pvt
) &&
1641 !dct_ganging_enabled(pvt
)) {
1643 if (dct_sel_interleave_addr(pvt
) != 1) {
1644 if (dct_sel_interleave_addr(pvt
) == 0x3)
1646 chan_addr
= ((chan_addr
>> 10) << 9) |
1647 (chan_addr
& 0x1ff);
1649 /* A[6] or hash 6 */
1650 chan_addr
= ((chan_addr
>> 7) << 6) |
1654 chan_addr
= ((chan_addr
>> 13) << 12) |
1655 (chan_addr
& 0xfff);
1658 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr
);
1660 cs_found
= f1x_lookup_addr_in_dct(chan_addr
, node_id
, channel
);
1663 *chan_sel
= channel
;
1668 static int f15_m30h_match_to_this_node(struct amd64_pvt
*pvt
, unsigned range
,
1669 u64 sys_addr
, int *chan_sel
)
1671 int cs_found
= -EINVAL
;
1672 int num_dcts_intlv
= 0;
1673 u64 chan_addr
, chan_offset
;
1674 u64 dct_base
, dct_limit
;
1675 u32 dct_cont_base_reg
, dct_cont_limit_reg
, tmp
;
1676 u8 channel
, alias_channel
, leg_mmio_hole
, dct_sel
, dct_offset_en
;
1678 u64 dhar_offset
= f10_dhar_offset(pvt
);
1679 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1680 u8 node_id
= dram_dst_node(pvt
, range
);
1681 u8 intlv_en
= dram_intlv_en(pvt
, range
);
1683 amd64_read_pci_cfg(pvt
->F1
, DRAM_CONT_BASE
, &dct_cont_base_reg
);
1684 amd64_read_pci_cfg(pvt
->F1
, DRAM_CONT_LIMIT
, &dct_cont_limit_reg
);
1686 dct_offset_en
= (u8
) ((dct_cont_base_reg
>> 3) & BIT(0));
1687 dct_sel
= (u8
) ((dct_cont_base_reg
>> 4) & 0x7);
1689 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1690 range
, sys_addr
, get_dram_limit(pvt
, range
));
1692 if (!(get_dram_base(pvt
, range
) <= sys_addr
) &&
1693 !(get_dram_limit(pvt
, range
) >= sys_addr
))
1696 if (dhar_valid(pvt
) &&
1697 dhar_base(pvt
) <= sys_addr
&&
1698 sys_addr
< BIT_64(32)) {
1699 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1704 /* Verify sys_addr is within DCT Range. */
1705 dct_base
= (u64
) dct_sel_baseaddr(pvt
);
1706 dct_limit
= (dct_cont_limit_reg
>> 11) & 0x1FFF;
1708 if (!(dct_cont_base_reg
& BIT(0)) &&
1709 !(dct_base
<= (sys_addr
>> 27) &&
1710 dct_limit
>= (sys_addr
>> 27)))
1713 /* Verify number of dct's that participate in channel interleaving. */
1714 num_dcts_intlv
= (int) hweight8(intlv_en
);
1716 if (!(num_dcts_intlv
% 2 == 0) || (num_dcts_intlv
> 4))
1719 channel
= f15_m30h_determine_channel(pvt
, sys_addr
, intlv_en
,
1720 num_dcts_intlv
, dct_sel
);
1722 /* Verify we stay within the MAX number of channels allowed */
1726 leg_mmio_hole
= (u8
) (dct_cont_base_reg
>> 1 & BIT(0));
1728 /* Get normalized DCT addr */
1729 if (leg_mmio_hole
&& (sys_addr
>= BIT_64(32)))
1730 chan_offset
= dhar_offset
;
1732 chan_offset
= dct_base
<< 27;
1734 chan_addr
= sys_addr
- chan_offset
;
1736 /* remove channel interleave */
1737 if (num_dcts_intlv
== 2) {
1738 if (intlv_addr
== 0x4)
1739 chan_addr
= ((chan_addr
>> 9) << 8) |
1741 else if (intlv_addr
== 0x5)
1742 chan_addr
= ((chan_addr
>> 10) << 9) |
1743 (chan_addr
& 0x1ff);
1747 } else if (num_dcts_intlv
== 4) {
1748 if (intlv_addr
== 0x4)
1749 chan_addr
= ((chan_addr
>> 10) << 8) |
1751 else if (intlv_addr
== 0x5)
1752 chan_addr
= ((chan_addr
>> 11) << 9) |
1753 (chan_addr
& 0x1ff);
1758 if (dct_offset_en
) {
1759 amd64_read_pci_cfg(pvt
->F1
,
1760 DRAM_CONT_HIGH_OFF
+ (int) channel
* 4,
1762 chan_addr
+= (u64
) ((tmp
>> 11) & 0xfff) << 27;
1765 f15h_select_dct(pvt
, channel
);
1767 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr
);
1771 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1772 * there is support for 4 DCT's, but only 2 are currently functional.
1773 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1774 * pvt->csels[1]. So we need to use '1' here to get correct info.
1775 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1777 alias_channel
= (channel
== 3) ? 1 : channel
;
1779 cs_found
= f1x_lookup_addr_in_dct(chan_addr
, node_id
, alias_channel
);
1782 *chan_sel
= alias_channel
;
1787 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt
*pvt
,
1791 int cs_found
= -EINVAL
;
1794 for (range
= 0; range
< DRAM_RANGES
; range
++) {
1795 if (!dram_rw(pvt
, range
))
1798 if (pvt
->fam
== 0x15 && pvt
->model
>= 0x30)
1799 cs_found
= f15_m30h_match_to_this_node(pvt
, range
,
1803 else if ((get_dram_base(pvt
, range
) <= sys_addr
) &&
1804 (get_dram_limit(pvt
, range
) >= sys_addr
)) {
1805 cs_found
= f1x_match_to_this_node(pvt
, range
,
1806 sys_addr
, chan_sel
);
1815 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1816 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1818 * The @sys_addr is usually an error address received from the hardware
1821 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
1822 struct err_info
*err
)
1824 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1826 error_address_to_page_and_offset(sys_addr
, err
);
1828 err
->csrow
= f1x_translate_sysaddr_to_cs(pvt
, sys_addr
, &err
->channel
);
1829 if (err
->csrow
< 0) {
1830 err
->err_code
= ERR_CSROW
;
1835 * We need the syndromes for channel detection only when we're
1836 * ganged. Otherwise @chan should already contain the channel at
1839 if (dct_ganging_enabled(pvt
))
1840 err
->channel
= get_channel_from_ecc_syndrome(mci
, err
->syndrome
);
1844 * debug routine to display the memory sizes of all logical DIMMs and its
1847 static void debug_display_dimm_sizes(struct amd64_pvt
*pvt
, u8 ctrl
)
1849 int dimm
, size0
, size1
;
1850 u32
*dcsb
= ctrl
? pvt
->csels
[1].csbases
: pvt
->csels
[0].csbases
;
1851 u32 dbam
= ctrl
? pvt
->dbam1
: pvt
->dbam0
;
1853 if (pvt
->fam
== 0xf) {
1854 /* K8 families < revF not supported yet */
1855 if (pvt
->ext_model
< K8_REV_F
)
1861 if (pvt
->fam
== 0x10) {
1862 dbam
= (ctrl
&& !dct_ganging_enabled(pvt
)) ? pvt
->dbam1
1864 dcsb
= (ctrl
&& !dct_ganging_enabled(pvt
)) ?
1865 pvt
->csels
[1].csbases
:
1866 pvt
->csels
[0].csbases
;
1869 dcsb
= pvt
->csels
[1].csbases
;
1871 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1874 edac_printk(KERN_DEBUG
, EDAC_MC
, "DCT%d chip selects:\n", ctrl
);
1876 /* Dump memory sizes for DIMM and its CSROWs */
1877 for (dimm
= 0; dimm
< 4; dimm
++) {
1880 if (dcsb
[dimm
*2] & DCSB_CS_ENABLE
)
1881 /* For f15m60h, need multiplier for LRDIMM cs_size
1882 * calculation. We pass 'dimm' value to the dbam_to_cs
1883 * mapper so we can find the multiplier from the
1884 * corresponding DCSM.
1886 size0
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
1887 DBAM_DIMM(dimm
, dbam
),
1891 if (dcsb
[dimm
*2 + 1] & DCSB_CS_ENABLE
)
1892 size1
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
1893 DBAM_DIMM(dimm
, dbam
),
1896 amd64_info(EDAC_MC
": %d: %5dMB %d: %5dMB\n",
1898 dimm
* 2 + 1, size1
);
1902 static struct amd64_family_type family_types
[] = {
1905 .f1_id
= PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP
,
1906 .f3_id
= PCI_DEVICE_ID_AMD_K8_NB_MISC
,
1908 .early_channel_count
= k8_early_channel_count
,
1909 .map_sysaddr_to_csrow
= k8_map_sysaddr_to_csrow
,
1910 .dbam_to_cs
= k8_dbam_to_chip_select
,
1915 .f1_id
= PCI_DEVICE_ID_AMD_10H_NB_MAP
,
1916 .f3_id
= PCI_DEVICE_ID_AMD_10H_NB_MISC
,
1918 .early_channel_count
= f1x_early_channel_count
,
1919 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1920 .dbam_to_cs
= f10_dbam_to_chip_select
,
1925 .f1_id
= PCI_DEVICE_ID_AMD_15H_NB_F1
,
1926 .f3_id
= PCI_DEVICE_ID_AMD_15H_NB_F3
,
1928 .early_channel_count
= f1x_early_channel_count
,
1929 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1930 .dbam_to_cs
= f15_dbam_to_chip_select
,
1934 .ctl_name
= "F15h_M30h",
1935 .f1_id
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
,
1936 .f3_id
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F3
,
1938 .early_channel_count
= f1x_early_channel_count
,
1939 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1940 .dbam_to_cs
= f16_dbam_to_chip_select
,
1944 .ctl_name
= "F15h_M60h",
1945 .f1_id
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F1
,
1946 .f3_id
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F3
,
1948 .early_channel_count
= f1x_early_channel_count
,
1949 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1950 .dbam_to_cs
= f15_m60h_dbam_to_chip_select
,
1955 .f1_id
= PCI_DEVICE_ID_AMD_16H_NB_F1
,
1956 .f3_id
= PCI_DEVICE_ID_AMD_16H_NB_F3
,
1958 .early_channel_count
= f1x_early_channel_count
,
1959 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1960 .dbam_to_cs
= f16_dbam_to_chip_select
,
1964 .ctl_name
= "F16h_M30h",
1965 .f1_id
= PCI_DEVICE_ID_AMD_16H_M30H_NB_F1
,
1966 .f3_id
= PCI_DEVICE_ID_AMD_16H_M30H_NB_F3
,
1968 .early_channel_count
= f1x_early_channel_count
,
1969 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1970 .dbam_to_cs
= f16_dbam_to_chip_select
,
1976 * These are tables of eigenvectors (one per line) which can be used for the
1977 * construction of the syndrome tables. The modified syndrome search algorithm
1978 * uses those to find the symbol in error and thus the DIMM.
1980 * Algorithm courtesy of Ross LaFetra from AMD.
1982 static const u16 x4_vectors
[] = {
1983 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1984 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1985 0x0001, 0x0002, 0x0004, 0x0008,
1986 0x1013, 0x3032, 0x4044, 0x8088,
1987 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1988 0x4857, 0xc4fe, 0x13cc, 0x3288,
1989 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1990 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1991 0x15c1, 0x2a42, 0x89ac, 0x4758,
1992 0x2b03, 0x1602, 0x4f0c, 0xca08,
1993 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1994 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1995 0x2b87, 0x164e, 0x642c, 0xdc18,
1996 0x40b9, 0x80de, 0x1094, 0x20e8,
1997 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1998 0x11c1, 0x2242, 0x84ac, 0x4c58,
1999 0x1be5, 0x2d7a, 0x5e34, 0xa718,
2000 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2001 0x4c97, 0xc87e, 0x11fc, 0x33a8,
2002 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2003 0x16b3, 0x3d62, 0x4f34, 0x8518,
2004 0x1e2f, 0x391a, 0x5cac, 0xf858,
2005 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2006 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2007 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2008 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2009 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2010 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2011 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2012 0x185d, 0x2ca6, 0x7914, 0x9e28,
2013 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2014 0x4199, 0x82ee, 0x19f4, 0x2e58,
2015 0x4807, 0xc40e, 0x130c, 0x3208,
2016 0x1905, 0x2e0a, 0x5804, 0xac08,
2017 0x213f, 0x132a, 0xadfc, 0x5ba8,
2018 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2021 static const u16 x8_vectors
[] = {
2022 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2023 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2024 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2025 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2026 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2027 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2028 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2029 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2030 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2031 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2032 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2033 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2034 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2035 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2036 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2037 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2038 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2039 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2040 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2043 static int decode_syndrome(u16 syndrome
, const u16
*vectors
, unsigned num_vecs
,
2046 unsigned int i
, err_sym
;
2048 for (err_sym
= 0; err_sym
< num_vecs
/ v_dim
; err_sym
++) {
2050 unsigned v_idx
= err_sym
* v_dim
;
2051 unsigned v_end
= (err_sym
+ 1) * v_dim
;
2053 /* walk over all 16 bits of the syndrome */
2054 for (i
= 1; i
< (1U << 16); i
<<= 1) {
2056 /* if bit is set in that eigenvector... */
2057 if (v_idx
< v_end
&& vectors
[v_idx
] & i
) {
2058 u16 ev_comp
= vectors
[v_idx
++];
2060 /* ... and bit set in the modified syndrome, */
2070 /* can't get to zero, move to next symbol */
2075 edac_dbg(0, "syndrome(%x) not found\n", syndrome
);
2079 static int map_err_sym_to_channel(int err_sym
, int sym_size
)
2092 return err_sym
>> 4;
2098 /* imaginary bits not in a DIMM */
2100 WARN(1, KERN_ERR
"Invalid error symbol: 0x%x\n",
2112 return err_sym
>> 3;
2118 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*mci
, u16 syndrome
)
2120 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2123 if (pvt
->ecc_sym_sz
== 8)
2124 err_sym
= decode_syndrome(syndrome
, x8_vectors
,
2125 ARRAY_SIZE(x8_vectors
),
2127 else if (pvt
->ecc_sym_sz
== 4)
2128 err_sym
= decode_syndrome(syndrome
, x4_vectors
,
2129 ARRAY_SIZE(x4_vectors
),
2132 amd64_warn("Illegal syndrome type: %u\n", pvt
->ecc_sym_sz
);
2136 return map_err_sym_to_channel(err_sym
, pvt
->ecc_sym_sz
);
2139 static void __log_bus_error(struct mem_ctl_info
*mci
, struct err_info
*err
,
2142 enum hw_event_mc_err_type err_type
;
2146 err_type
= HW_EVENT_ERR_CORRECTED
;
2147 else if (ecc_type
== 1)
2148 err_type
= HW_EVENT_ERR_UNCORRECTED
;
2150 WARN(1, "Something is rotten in the state of Denmark.\n");
2154 switch (err
->err_code
) {
2159 string
= "Failed to map error addr to a node";
2162 string
= "Failed to map error addr to a csrow";
2165 string
= "unknown syndrome - possible error reporting race";
2168 string
= "WTF error";
2172 edac_mc_handle_error(err_type
, mci
, 1,
2173 err
->page
, err
->offset
, err
->syndrome
,
2174 err
->csrow
, err
->channel
, -1,
2178 static inline void decode_bus_error(int node_id
, struct mce
*m
)
2180 struct mem_ctl_info
*mci
;
2181 struct amd64_pvt
*pvt
;
2182 u8 ecc_type
= (m
->status
>> 45) & 0x3;
2183 u8 xec
= XEC(m
->status
, 0x1f);
2184 u16 ec
= EC(m
->status
);
2186 struct err_info err
;
2188 mci
= edac_mc_find(node_id
);
2192 pvt
= mci
->pvt_info
;
2194 /* Bail out early if this was an 'observed' error */
2195 if (PP(ec
) == NBSL_PP_OBS
)
2198 /* Do only ECC errors */
2199 if (xec
&& xec
!= F10_NBSL_EXT_ERR_ECC
)
2202 memset(&err
, 0, sizeof(err
));
2204 sys_addr
= get_error_address(pvt
, m
);
2207 err
.syndrome
= extract_syndrome(m
->status
);
2209 pvt
->ops
->map_sysaddr_to_csrow(mci
, sys_addr
, &err
);
2211 __log_bus_error(mci
, &err
, ecc_type
);
2215 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2216 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2218 static int reserve_mc_sibling_devs(struct amd64_pvt
*pvt
, u16 f1_id
, u16 f3_id
)
2220 /* Reserve the ADDRESS MAP Device */
2221 pvt
->F1
= pci_get_related_function(pvt
->F2
->vendor
, f1_id
, pvt
->F2
);
2223 amd64_err("error address map device not found: "
2224 "vendor %x device 0x%x (broken BIOS?)\n",
2225 PCI_VENDOR_ID_AMD
, f1_id
);
2229 /* Reserve the MISC Device */
2230 pvt
->F3
= pci_get_related_function(pvt
->F2
->vendor
, f3_id
, pvt
->F2
);
2232 pci_dev_put(pvt
->F1
);
2235 amd64_err("error F3 device not found: "
2236 "vendor %x device 0x%x (broken BIOS?)\n",
2237 PCI_VENDOR_ID_AMD
, f3_id
);
2241 edac_dbg(1, "F1: %s\n", pci_name(pvt
->F1
));
2242 edac_dbg(1, "F2: %s\n", pci_name(pvt
->F2
));
2243 edac_dbg(1, "F3: %s\n", pci_name(pvt
->F3
));
2248 static void free_mc_sibling_devs(struct amd64_pvt
*pvt
)
2250 pci_dev_put(pvt
->F1
);
2251 pci_dev_put(pvt
->F3
);
2255 * Retrieve the hardware registers of the memory controller (this includes the
2256 * 'Address Map' and 'Misc' device regs)
2258 static void read_mc_regs(struct amd64_pvt
*pvt
)
2265 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2266 * those are Read-As-Zero
2268 rdmsrl(MSR_K8_TOP_MEM1
, pvt
->top_mem
);
2269 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt
->top_mem
);
2271 /* check first whether TOP_MEM2 is enabled */
2272 rdmsrl(MSR_K8_SYSCFG
, msr_val
);
2273 if (msr_val
& (1U << 21)) {
2274 rdmsrl(MSR_K8_TOP_MEM2
, pvt
->top_mem2
);
2275 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt
->top_mem2
);
2277 edac_dbg(0, " TOP_MEM2 disabled\n");
2279 amd64_read_pci_cfg(pvt
->F3
, NBCAP
, &pvt
->nbcap
);
2281 read_dram_ctl_register(pvt
);
2283 for (range
= 0; range
< DRAM_RANGES
; range
++) {
2286 /* read settings for this DRAM range */
2287 read_dram_base_limit_regs(pvt
, range
);
2289 rw
= dram_rw(pvt
, range
);
2293 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2295 get_dram_base(pvt
, range
),
2296 get_dram_limit(pvt
, range
));
2298 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2299 dram_intlv_en(pvt
, range
) ? "Enabled" : "Disabled",
2300 (rw
& 0x1) ? "R" : "-",
2301 (rw
& 0x2) ? "W" : "-",
2302 dram_intlv_sel(pvt
, range
),
2303 dram_dst_node(pvt
, range
));
2306 read_dct_base_mask(pvt
);
2308 amd64_read_pci_cfg(pvt
->F1
, DHAR
, &pvt
->dhar
);
2309 amd64_read_dct_pci_cfg(pvt
, 0, DBAM0
, &pvt
->dbam0
);
2311 amd64_read_pci_cfg(pvt
->F3
, F10_ONLINE_SPARE
, &pvt
->online_spare
);
2313 amd64_read_dct_pci_cfg(pvt
, 0, DCLR0
, &pvt
->dclr0
);
2314 amd64_read_dct_pci_cfg(pvt
, 0, DCHR0
, &pvt
->dchr0
);
2316 if (!dct_ganging_enabled(pvt
)) {
2317 amd64_read_dct_pci_cfg(pvt
, 1, DCLR0
, &pvt
->dclr1
);
2318 amd64_read_dct_pci_cfg(pvt
, 1, DCHR0
, &pvt
->dchr1
);
2321 pvt
->ecc_sym_sz
= 4;
2322 determine_memory_type(pvt
);
2323 edac_dbg(1, " DIMM type: %s\n", edac_mem_types
[pvt
->dram_type
]);
2325 if (pvt
->fam
>= 0x10) {
2326 amd64_read_pci_cfg(pvt
->F3
, EXT_NB_MCA_CFG
, &tmp
);
2327 /* F16h has only DCT0, so no need to read dbam1 */
2328 if (pvt
->fam
!= 0x16)
2329 amd64_read_dct_pci_cfg(pvt
, 1, DBAM0
, &pvt
->dbam1
);
2331 /* F10h, revD and later can do x8 ECC too */
2332 if ((pvt
->fam
> 0x10 || pvt
->model
> 7) && tmp
& BIT(25))
2333 pvt
->ecc_sym_sz
= 8;
2335 dump_misc_regs(pvt
);
2339 * NOTE: CPU Revision Dependent code
2342 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2343 * k8 private pointer to -->
2344 * DRAM Bank Address mapping register
2346 * DCL register where dual_channel_active is
2348 * The DBAM register consists of 4 sets of 4 bits each definitions:
2351 * 0-3 CSROWs 0 and 1
2352 * 4-7 CSROWs 2 and 3
2353 * 8-11 CSROWs 4 and 5
2354 * 12-15 CSROWs 6 and 7
2356 * Values range from: 0 to 15
2357 * The meaning of the values depends on CPU revision and dual-channel state,
2358 * see relevant BKDG more info.
2360 * The memory controller provides for total of only 8 CSROWs in its current
2361 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2362 * single channel or two (2) DIMMs in dual channel mode.
2364 * The following code logic collapses the various tables for CSROW based on CPU
2368 * The number of PAGE_SIZE pages on the specified CSROW number it
2372 static u32
get_csrow_nr_pages(struct amd64_pvt
*pvt
, u8 dct
, int csrow_nr
)
2374 u32 cs_mode
, nr_pages
;
2375 u32 dbam
= dct
? pvt
->dbam1
: pvt
->dbam0
;
2379 * The math on this doesn't look right on the surface because x/2*4 can
2380 * be simplified to x*2 but this expression makes use of the fact that
2381 * it is integral math where 1/2=0. This intermediate value becomes the
2382 * number of bits to shift the DBAM register to extract the proper CSROW
2385 cs_mode
= DBAM_DIMM(csrow_nr
/ 2, dbam
);
2387 nr_pages
= pvt
->ops
->dbam_to_cs(pvt
, dct
, cs_mode
, (csrow_nr
/ 2))
2388 << (20 - PAGE_SHIFT
);
2390 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2391 csrow_nr
, dct
, cs_mode
);
2392 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages
);
2398 * Initialize the array of csrow attribute instances, based on the values
2399 * from pci config hardware registers.
2401 static int init_csrows(struct mem_ctl_info
*mci
)
2403 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2404 struct csrow_info
*csrow
;
2405 struct dimm_info
*dimm
;
2406 enum edac_type edac_mode
;
2407 int i
, j
, empty
= 1;
2411 amd64_read_pci_cfg(pvt
->F3
, NBCFG
, &val
);
2415 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2416 pvt
->mc_node_id
, val
,
2417 !!(val
& NBCFG_CHIPKILL
), !!(val
& NBCFG_ECC_ENABLE
));
2420 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2422 for_each_chip_select(i
, 0, pvt
) {
2423 bool row_dct0
= !!csrow_enabled(i
, 0, pvt
);
2424 bool row_dct1
= false;
2426 if (pvt
->fam
!= 0xf)
2427 row_dct1
= !!csrow_enabled(i
, 1, pvt
);
2429 if (!row_dct0
&& !row_dct1
)
2432 csrow
= mci
->csrows
[i
];
2435 edac_dbg(1, "MC node: %d, csrow: %d\n",
2436 pvt
->mc_node_id
, i
);
2439 nr_pages
= get_csrow_nr_pages(pvt
, 0, i
);
2440 csrow
->channels
[0]->dimm
->nr_pages
= nr_pages
;
2443 /* K8 has only one DCT */
2444 if (pvt
->fam
!= 0xf && row_dct1
) {
2445 int row_dct1_pages
= get_csrow_nr_pages(pvt
, 1, i
);
2447 csrow
->channels
[1]->dimm
->nr_pages
= row_dct1_pages
;
2448 nr_pages
+= row_dct1_pages
;
2451 edac_dbg(1, "Total csrow%d pages: %u\n", i
, nr_pages
);
2454 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2456 if (pvt
->nbcfg
& NBCFG_ECC_ENABLE
)
2457 edac_mode
= (pvt
->nbcfg
& NBCFG_CHIPKILL
) ?
2458 EDAC_S4ECD4ED
: EDAC_SECDED
;
2460 edac_mode
= EDAC_NONE
;
2462 for (j
= 0; j
< pvt
->channel_count
; j
++) {
2463 dimm
= csrow
->channels
[j
]->dimm
;
2464 dimm
->mtype
= pvt
->dram_type
;
2465 dimm
->edac_mode
= edac_mode
;
2472 /* get all cores on this DCT */
2473 static void get_cpus_on_this_dct_cpumask(struct cpumask
*mask
, u16 nid
)
2477 for_each_online_cpu(cpu
)
2478 if (amd_get_nb_id(cpu
) == nid
)
2479 cpumask_set_cpu(cpu
, mask
);
2482 /* check MCG_CTL on all the cpus on this node */
2483 static bool nb_mce_bank_enabled_on_node(u16 nid
)
2489 if (!zalloc_cpumask_var(&mask
, GFP_KERNEL
)) {
2490 amd64_warn("%s: Error allocating mask\n", __func__
);
2494 get_cpus_on_this_dct_cpumask(mask
, nid
);
2496 rdmsr_on_cpus(mask
, MSR_IA32_MCG_CTL
, msrs
);
2498 for_each_cpu(cpu
, mask
) {
2499 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
2500 nbe
= reg
->l
& MSR_MCGCTL_NBE
;
2502 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2504 (nbe
? "enabled" : "disabled"));
2512 free_cpumask_var(mask
);
2516 static int toggle_ecc_err_reporting(struct ecc_settings
*s
, u16 nid
, bool on
)
2518 cpumask_var_t cmask
;
2521 if (!zalloc_cpumask_var(&cmask
, GFP_KERNEL
)) {
2522 amd64_warn("%s: error allocating mask\n", __func__
);
2526 get_cpus_on_this_dct_cpumask(cmask
, nid
);
2528 rdmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
2530 for_each_cpu(cpu
, cmask
) {
2532 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
2535 if (reg
->l
& MSR_MCGCTL_NBE
)
2536 s
->flags
.nb_mce_enable
= 1;
2538 reg
->l
|= MSR_MCGCTL_NBE
;
2541 * Turn off NB MCE reporting only when it was off before
2543 if (!s
->flags
.nb_mce_enable
)
2544 reg
->l
&= ~MSR_MCGCTL_NBE
;
2547 wrmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
2549 free_cpumask_var(cmask
);
2554 static bool enable_ecc_error_reporting(struct ecc_settings
*s
, u16 nid
,
2558 u32 value
, mask
= 0x3; /* UECC/CECC enable */
2560 if (toggle_ecc_err_reporting(s
, nid
, ON
)) {
2561 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2565 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
2567 s
->old_nbctl
= value
& mask
;
2568 s
->nbctl_valid
= true;
2571 amd64_write_pci_cfg(F3
, NBCTL
, value
);
2573 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2575 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2576 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
2578 if (!(value
& NBCFG_ECC_ENABLE
)) {
2579 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2581 s
->flags
.nb_ecc_prev
= 0;
2583 /* Attempt to turn on DRAM ECC Enable */
2584 value
|= NBCFG_ECC_ENABLE
;
2585 amd64_write_pci_cfg(F3
, NBCFG
, value
);
2587 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2589 if (!(value
& NBCFG_ECC_ENABLE
)) {
2590 amd64_warn("Hardware rejected DRAM ECC enable,"
2591 "check memory DIMM configuration.\n");
2594 amd64_info("Hardware accepted DRAM ECC Enable\n");
2597 s
->flags
.nb_ecc_prev
= 1;
2600 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2601 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
2606 static void restore_ecc_error_reporting(struct ecc_settings
*s
, u16 nid
,
2609 u32 value
, mask
= 0x3; /* UECC/CECC enable */
2612 if (!s
->nbctl_valid
)
2615 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
2617 value
|= s
->old_nbctl
;
2619 amd64_write_pci_cfg(F3
, NBCTL
, value
);
2621 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2622 if (!s
->flags
.nb_ecc_prev
) {
2623 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2624 value
&= ~NBCFG_ECC_ENABLE
;
2625 amd64_write_pci_cfg(F3
, NBCFG
, value
);
2628 /* restore the NB Enable MCGCTL bit */
2629 if (toggle_ecc_err_reporting(s
, nid
, OFF
))
2630 amd64_warn("Error restoring NB MCGCTL settings!\n");
2634 * EDAC requires that the BIOS have ECC enabled before
2635 * taking over the processing of ECC errors. A command line
2636 * option allows to force-enable hardware ECC later in
2637 * enable_ecc_error_reporting().
2639 static const char *ecc_msg
=
2640 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2641 " Either enable ECC checking or force module loading by setting "
2642 "'ecc_enable_override'.\n"
2643 " (Note that use of the override may cause unknown side effects.)\n";
2645 static bool ecc_enabled(struct pci_dev
*F3
, u16 nid
)
2649 bool nb_mce_en
= false;
2651 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2653 ecc_en
= !!(value
& NBCFG_ECC_ENABLE
);
2654 amd64_info("DRAM ECC %s.\n", (ecc_en
? "enabled" : "disabled"));
2656 nb_mce_en
= nb_mce_bank_enabled_on_node(nid
);
2658 amd64_notice("NB MCE bank disabled, set MSR "
2659 "0x%08x[4] on node %d to enable.\n",
2660 MSR_IA32_MCG_CTL
, nid
);
2662 if (!ecc_en
|| !nb_mce_en
) {
2663 amd64_notice("%s", ecc_msg
);
2669 static void setup_mci_misc_attrs(struct mem_ctl_info
*mci
,
2670 struct amd64_family_type
*fam
)
2672 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2674 mci
->mtype_cap
= MEM_FLAG_DDR2
| MEM_FLAG_RDDR2
;
2675 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
2677 if (pvt
->nbcap
& NBCAP_SECDED
)
2678 mci
->edac_ctl_cap
|= EDAC_FLAG_SECDED
;
2680 if (pvt
->nbcap
& NBCAP_CHIPKILL
)
2681 mci
->edac_ctl_cap
|= EDAC_FLAG_S4ECD4ED
;
2683 mci
->edac_cap
= determine_edac_cap(pvt
);
2684 mci
->mod_name
= EDAC_MOD_STR
;
2685 mci
->mod_ver
= EDAC_AMD64_VERSION
;
2686 mci
->ctl_name
= fam
->ctl_name
;
2687 mci
->dev_name
= pci_name(pvt
->F2
);
2688 mci
->ctl_page_to_phys
= NULL
;
2690 /* memory scrubber interface */
2691 mci
->set_sdram_scrub_rate
= set_scrub_rate
;
2692 mci
->get_sdram_scrub_rate
= get_scrub_rate
;
2696 * returns a pointer to the family descriptor on success, NULL otherwise.
2698 static struct amd64_family_type
*per_family_init(struct amd64_pvt
*pvt
)
2700 struct amd64_family_type
*fam_type
= NULL
;
2702 pvt
->ext_model
= boot_cpu_data
.x86_model
>> 4;
2703 pvt
->stepping
= boot_cpu_data
.x86_mask
;
2704 pvt
->model
= boot_cpu_data
.x86_model
;
2705 pvt
->fam
= boot_cpu_data
.x86
;
2709 fam_type
= &family_types
[K8_CPUS
];
2710 pvt
->ops
= &family_types
[K8_CPUS
].ops
;
2714 fam_type
= &family_types
[F10_CPUS
];
2715 pvt
->ops
= &family_types
[F10_CPUS
].ops
;
2719 if (pvt
->model
== 0x30) {
2720 fam_type
= &family_types
[F15_M30H_CPUS
];
2721 pvt
->ops
= &family_types
[F15_M30H_CPUS
].ops
;
2723 } else if (pvt
->model
== 0x60) {
2724 fam_type
= &family_types
[F15_M60H_CPUS
];
2725 pvt
->ops
= &family_types
[F15_M60H_CPUS
].ops
;
2729 fam_type
= &family_types
[F15_CPUS
];
2730 pvt
->ops
= &family_types
[F15_CPUS
].ops
;
2734 if (pvt
->model
== 0x30) {
2735 fam_type
= &family_types
[F16_M30H_CPUS
];
2736 pvt
->ops
= &family_types
[F16_M30H_CPUS
].ops
;
2739 fam_type
= &family_types
[F16_CPUS
];
2740 pvt
->ops
= &family_types
[F16_CPUS
].ops
;
2744 amd64_err("Unsupported family!\n");
2748 amd64_info("%s %sdetected (node %d).\n", fam_type
->ctl_name
,
2750 (pvt
->ext_model
>= K8_REV_F
? "revF or later "
2751 : "revE or earlier ")
2752 : ""), pvt
->mc_node_id
);
2756 static const struct attribute_group
*amd64_edac_attr_groups
[] = {
2757 #ifdef CONFIG_EDAC_DEBUG
2758 &amd64_edac_dbg_group
,
2760 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
2761 &amd64_edac_inj_group
,
2766 static int init_one_instance(struct pci_dev
*F2
)
2768 struct amd64_pvt
*pvt
= NULL
;
2769 struct amd64_family_type
*fam_type
= NULL
;
2770 struct mem_ctl_info
*mci
= NULL
;
2771 struct edac_mc_layer layers
[2];
2773 u16 nid
= amd_get_node_id(F2
);
2776 pvt
= kzalloc(sizeof(struct amd64_pvt
), GFP_KERNEL
);
2780 pvt
->mc_node_id
= nid
;
2784 fam_type
= per_family_init(pvt
);
2789 err
= reserve_mc_sibling_devs(pvt
, fam_type
->f1_id
, fam_type
->f3_id
);
2796 * We need to determine how many memory channels there are. Then use
2797 * that information for calculating the size of the dynamic instance
2798 * tables in the 'mci' structure.
2801 pvt
->channel_count
= pvt
->ops
->early_channel_count(pvt
);
2802 if (pvt
->channel_count
< 0)
2806 layers
[0].type
= EDAC_MC_LAYER_CHIP_SELECT
;
2807 layers
[0].size
= pvt
->csels
[0].b_cnt
;
2808 layers
[0].is_virt_csrow
= true;
2809 layers
[1].type
= EDAC_MC_LAYER_CHANNEL
;
2812 * Always allocate two channels since we can have setups with DIMMs on
2813 * only one channel. Also, this simplifies handling later for the price
2814 * of a couple of KBs tops.
2817 layers
[1].is_virt_csrow
= false;
2819 mci
= edac_mc_alloc(nid
, ARRAY_SIZE(layers
), layers
, 0);
2823 mci
->pvt_info
= pvt
;
2824 mci
->pdev
= &pvt
->F2
->dev
;
2826 setup_mci_misc_attrs(mci
, fam_type
);
2828 if (init_csrows(mci
))
2829 mci
->edac_cap
= EDAC_FLAG_NONE
;
2832 if (edac_mc_add_mc_with_groups(mci
, amd64_edac_attr_groups
)) {
2833 edac_dbg(1, "failed edac_mc_add_mc()\n");
2837 /* register stuff with EDAC MCE */
2838 if (report_gart_errors
)
2839 amd_report_gart_errors(true);
2841 amd_register_ecc_decoder(decode_bus_error
);
2843 atomic_inc(&drv_instances
);
2851 free_mc_sibling_devs(pvt
);
2860 static int probe_one_instance(struct pci_dev
*pdev
,
2861 const struct pci_device_id
*mc_type
)
2863 u16 nid
= amd_get_node_id(pdev
);
2864 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
2865 struct ecc_settings
*s
;
2868 ret
= pci_enable_device(pdev
);
2870 edac_dbg(0, "ret=%d\n", ret
);
2875 s
= kzalloc(sizeof(struct ecc_settings
), GFP_KERNEL
);
2881 if (!ecc_enabled(F3
, nid
)) {
2884 if (!ecc_enable_override
)
2887 amd64_warn("Forcing ECC on!\n");
2889 if (!enable_ecc_error_reporting(s
, nid
, F3
))
2893 ret
= init_one_instance(pdev
);
2895 amd64_err("Error probing instance: %d\n", nid
);
2896 restore_ecc_error_reporting(s
, nid
, F3
);
2903 ecc_stngs
[nid
] = NULL
;
2909 static void remove_one_instance(struct pci_dev
*pdev
)
2911 struct mem_ctl_info
*mci
;
2912 struct amd64_pvt
*pvt
;
2913 u16 nid
= amd_get_node_id(pdev
);
2914 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
2915 struct ecc_settings
*s
= ecc_stngs
[nid
];
2917 mci
= find_mci_by_dev(&pdev
->dev
);
2920 /* Remove from EDAC CORE tracking list */
2921 mci
= edac_mc_del_mc(&pdev
->dev
);
2925 pvt
= mci
->pvt_info
;
2927 restore_ecc_error_reporting(s
, nid
, F3
);
2929 free_mc_sibling_devs(pvt
);
2931 /* unregister from EDAC MCE */
2932 amd_report_gart_errors(false);
2933 amd_unregister_ecc_decoder(decode_bus_error
);
2935 kfree(ecc_stngs
[nid
]);
2936 ecc_stngs
[nid
] = NULL
;
2938 /* Free the EDAC CORE resources */
2939 mci
->pvt_info
= NULL
;
2946 * This table is part of the interface for loading drivers for PCI devices. The
2947 * PCI core identifies what devices are on a system during boot, and then
2948 * inquiry this table to see if this driver is for a given device found.
2950 static const struct pci_device_id amd64_pci_table
[] = {
2951 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_K8_NB_MEMCTL
) },
2952 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_10H_NB_DRAM
) },
2953 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_15H_NB_F2
) },
2954 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_15H_M30H_NB_F2
) },
2955 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_15H_M60H_NB_F2
) },
2956 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_16H_NB_F2
) },
2957 { PCI_VDEVICE(AMD
, PCI_DEVICE_ID_AMD_16H_M30H_NB_F2
) },
2960 MODULE_DEVICE_TABLE(pci
, amd64_pci_table
);
2962 static struct pci_driver amd64_pci_driver
= {
2963 .name
= EDAC_MOD_STR
,
2964 .probe
= probe_one_instance
,
2965 .remove
= remove_one_instance
,
2966 .id_table
= amd64_pci_table
,
2969 static void setup_pci_device(void)
2971 struct mem_ctl_info
*mci
;
2972 struct amd64_pvt
*pvt
;
2977 mci
= edac_mc_find(0);
2981 pvt
= mci
->pvt_info
;
2982 pci_ctl
= edac_pci_create_generic_ctl(&pvt
->F2
->dev
, EDAC_MOD_STR
);
2984 pr_warn("%s(): Unable to create PCI control\n", __func__
);
2985 pr_warn("%s(): PCI error report via EDAC not set\n", __func__
);
2989 static int __init
amd64_edac_init(void)
2993 printk(KERN_INFO
"AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION
);
2997 if (amd_cache_northbridges() < 0)
3001 ecc_stngs
= kzalloc(amd_nb_num() * sizeof(ecc_stngs
[0]), GFP_KERNEL
);
3005 msrs
= msrs_alloc();
3009 err
= pci_register_driver(&amd64_pci_driver
);
3014 if (!atomic_read(&drv_instances
))
3015 goto err_no_instances
;
3019 #ifdef CONFIG_X86_32
3020 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR
);
3026 pci_unregister_driver(&amd64_pci_driver
);
3040 static void __exit
amd64_edac_exit(void)
3043 edac_pci_release_generic_ctl(pci_ctl
);
3045 pci_unregister_driver(&amd64_pci_driver
);
3054 module_init(amd64_edac_init
);
3055 module_exit(amd64_edac_exit
);
3057 MODULE_LICENSE("GPL");
3058 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3059 "Dave Peterson, Thayne Harbaugh");
3060 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3061 EDAC_AMD64_VERSION
);
3063 module_param(edac_op_state
, int, 0444);
3064 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");