2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36 #include <ras/ras_event.h>
38 /* lock to memory controller's control array */
39 static DEFINE_MUTEX(mem_ctls_mutex
);
40 static LIST_HEAD(mc_devices
);
43 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
44 * apei/ghes and i7core_edac to be used at the same time.
46 static void const *edac_mc_owner
;
48 static struct bus_type mc_bus
[EDAC_MAX_MCS
];
50 unsigned edac_dimm_info_location(struct dimm_info
*dimm
, char *buf
,
53 struct mem_ctl_info
*mci
= dimm
->mci
;
57 for (i
= 0; i
< mci
->n_layers
; i
++) {
58 n
= snprintf(p
, len
, "%s %d ",
59 edac_layer_name
[mci
->layers
[i
].type
],
71 #ifdef CONFIG_EDAC_DEBUG
73 static void edac_mc_dump_channel(struct rank_info
*chan
)
75 edac_dbg(4, " channel->chan_idx = %d\n", chan
->chan_idx
);
76 edac_dbg(4, " channel = %p\n", chan
);
77 edac_dbg(4, " channel->csrow = %p\n", chan
->csrow
);
78 edac_dbg(4, " channel->dimm = %p\n", chan
->dimm
);
81 static void edac_mc_dump_dimm(struct dimm_info
*dimm
, int number
)
85 edac_dimm_info_location(dimm
, location
, sizeof(location
));
87 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
88 dimm
->mci
->csbased
? "rank" : "dimm",
89 number
, location
, dimm
->csrow
, dimm
->cschannel
);
90 edac_dbg(4, " dimm = %p\n", dimm
);
91 edac_dbg(4, " dimm->label = '%s'\n", dimm
->label
);
92 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
93 edac_dbg(4, " dimm->grain = %d\n", dimm
->grain
);
94 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
97 static void edac_mc_dump_csrow(struct csrow_info
*csrow
)
99 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow
->csrow_idx
);
100 edac_dbg(4, " csrow = %p\n", csrow
);
101 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow
->first_page
);
102 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow
->last_page
);
103 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow
->page_mask
);
104 edac_dbg(4, " csrow->nr_channels = %d\n", csrow
->nr_channels
);
105 edac_dbg(4, " csrow->channels = %p\n", csrow
->channels
);
106 edac_dbg(4, " csrow->mci = %p\n", csrow
->mci
);
109 static void edac_mc_dump_mci(struct mem_ctl_info
*mci
)
111 edac_dbg(3, "\tmci = %p\n", mci
);
112 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci
->mtype_cap
);
113 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci
->edac_ctl_cap
);
114 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci
->edac_cap
);
115 edac_dbg(4, "\tmci->edac_check = %p\n", mci
->edac_check
);
116 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
117 mci
->nr_csrows
, mci
->csrows
);
118 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
119 mci
->tot_dimms
, mci
->dimms
);
120 edac_dbg(3, "\tdev = %p\n", mci
->pdev
);
121 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
122 mci
->mod_name
, mci
->ctl_name
);
123 edac_dbg(3, "\tpvt_info = %p\n\n", mci
->pvt_info
);
126 #endif /* CONFIG_EDAC_DEBUG */
128 const char * const edac_mem_types
[] = {
129 [MEM_EMPTY
] = "Empty csrow",
130 [MEM_RESERVED
] = "Reserved csrow type",
131 [MEM_UNKNOWN
] = "Unknown csrow type",
132 [MEM_FPM
] = "Fast page mode RAM",
133 [MEM_EDO
] = "Extended data out RAM",
134 [MEM_BEDO
] = "Burst Extended data out RAM",
135 [MEM_SDR
] = "Single data rate SDRAM",
136 [MEM_RDR
] = "Registered single data rate SDRAM",
137 [MEM_DDR
] = "Double data rate SDRAM",
138 [MEM_RDDR
] = "Registered Double data rate SDRAM",
139 [MEM_RMBS
] = "Rambus DRAM",
140 [MEM_DDR2
] = "Unbuffered DDR2 RAM",
141 [MEM_FB_DDR2
] = "Fully buffered DDR2",
142 [MEM_RDDR2
] = "Registered DDR2 RAM",
143 [MEM_XDR
] = "Rambus XDR",
144 [MEM_DDR3
] = "Unbuffered DDR3 RAM",
145 [MEM_RDDR3
] = "Registered DDR3 RAM",
146 [MEM_LRDDR3
] = "Load-Reduced DDR3 RAM",
147 [MEM_DDR4
] = "Unbuffered DDR4 RAM",
148 [MEM_RDDR4
] = "Registered DDR4 RAM",
150 EXPORT_SYMBOL_GPL(edac_mem_types
);
153 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
154 * @p: pointer to a pointer with the memory offset to be used. At
155 * return, this will be incremented to point to the next offset
156 * @size: Size of the data structure to be reserved
157 * @n_elems: Number of elements that should be reserved
159 * If 'size' is a constant, the compiler will optimize this whole function
160 * down to either a no-op or the addition of a constant to the value of '*p'.
162 * The 'p' pointer is absolutely needed to keep the proper advancing
163 * further in memory to the proper offsets when allocating the struct along
164 * with its embedded structs, as edac_device_alloc_ctl_info() does it
165 * above, for example.
167 * At return, the pointer 'p' will be incremented to be used on a next call
170 void *edac_align_ptr(void **p
, unsigned size
, int n_elems
)
175 *p
+= size
* n_elems
;
178 * 'p' can possibly be an unaligned item X such that sizeof(X) is
179 * 'size'. Adjust 'p' so that its alignment is at least as
180 * stringent as what the compiler would provide for X and return
181 * the aligned result.
182 * Here we assume that the alignment of a "long long" is the most
183 * stringent alignment that the compiler will ever provide by default.
184 * As far as I know, this is a reasonable assumption.
186 if (size
> sizeof(long))
187 align
= sizeof(long long);
188 else if (size
> sizeof(int))
189 align
= sizeof(long);
190 else if (size
> sizeof(short))
192 else if (size
> sizeof(char))
193 align
= sizeof(short);
197 r
= (unsigned long)p
% align
;
204 return (void *)(((unsigned long)ptr
) + align
- r
);
207 static void _edac_mc_free(struct mem_ctl_info
*mci
)
210 struct csrow_info
*csr
;
211 const unsigned int tot_dimms
= mci
->tot_dimms
;
212 const unsigned int tot_channels
= mci
->num_cschannel
;
213 const unsigned int tot_csrows
= mci
->nr_csrows
;
216 for (i
= 0; i
< tot_dimms
; i
++)
217 kfree(mci
->dimms
[i
]);
221 for (row
= 0; row
< tot_csrows
; row
++) {
222 csr
= mci
->csrows
[row
];
225 for (chn
= 0; chn
< tot_channels
; chn
++)
226 kfree(csr
->channels
[chn
]);
227 kfree(csr
->channels
);
238 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
239 * @mc_num: Memory controller number
240 * @n_layers: Number of MC hierarchy layers
241 * layers: Describes each layer as seen by the Memory Controller
242 * @size_pvt: size of private storage needed
245 * Everything is kmalloc'ed as one big chunk - more efficient.
246 * Only can be used if all structures have the same lifetime - otherwise
247 * you have to allocate and initialize your own structures.
249 * Use edac_mc_free() to free mc structures allocated by this function.
251 * NOTE: drivers handle multi-rank memories in different ways: in some
252 * drivers, one multi-rank memory stick is mapped as one entry, while, in
253 * others, a single multi-rank memory stick would be mapped into several
254 * entries. Currently, this function will allocate multiple struct dimm_info
255 * on such scenarios, as grouping the multiple ranks require drivers change.
259 * On success: struct mem_ctl_info pointer
261 struct mem_ctl_info
*edac_mc_alloc(unsigned mc_num
,
263 struct edac_mc_layer
*layers
,
266 struct mem_ctl_info
*mci
;
267 struct edac_mc_layer
*layer
;
268 struct csrow_info
*csr
;
269 struct rank_info
*chan
;
270 struct dimm_info
*dimm
;
271 u32
*ce_per_layer
[EDAC_MAX_LAYERS
], *ue_per_layer
[EDAC_MAX_LAYERS
];
272 unsigned pos
[EDAC_MAX_LAYERS
];
273 unsigned size
, tot_dimms
= 1, count
= 1;
274 unsigned tot_csrows
= 1, tot_channels
= 1, tot_errcount
= 0;
275 void *pvt
, *p
, *ptr
= NULL
;
276 int i
, j
, row
, chn
, n
, len
, off
;
277 bool per_rank
= false;
279 BUG_ON(n_layers
> EDAC_MAX_LAYERS
|| n_layers
== 0);
281 * Calculate the total amount of dimms and csrows/cschannels while
282 * in the old API emulation mode
284 for (i
= 0; i
< n_layers
; i
++) {
285 tot_dimms
*= layers
[i
].size
;
286 if (layers
[i
].is_virt_csrow
)
287 tot_csrows
*= layers
[i
].size
;
289 tot_channels
*= layers
[i
].size
;
291 if (layers
[i
].type
== EDAC_MC_LAYER_CHIP_SELECT
)
295 /* Figure out the offsets of the various items from the start of an mc
296 * structure. We want the alignment of each item to be at least as
297 * stringent as what the compiler would provide if we could simply
298 * hardcode everything into a single struct.
300 mci
= edac_align_ptr(&ptr
, sizeof(*mci
), 1);
301 layer
= edac_align_ptr(&ptr
, sizeof(*layer
), n_layers
);
302 for (i
= 0; i
< n_layers
; i
++) {
303 count
*= layers
[i
].size
;
304 edac_dbg(4, "errcount layer %d size %d\n", i
, count
);
305 ce_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
306 ue_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
307 tot_errcount
+= 2 * count
;
310 edac_dbg(4, "allocating %d error counters\n", tot_errcount
);
311 pvt
= edac_align_ptr(&ptr
, sz_pvt
, 1);
312 size
= ((unsigned long)pvt
) + sz_pvt
;
314 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
317 per_rank
? "ranks" : "dimms",
318 tot_csrows
* tot_channels
);
320 mci
= kzalloc(size
, GFP_KERNEL
);
324 /* Adjust pointers so they point within the memory we just allocated
325 * rather than an imaginary chunk of memory located at address 0.
327 layer
= (struct edac_mc_layer
*)(((char *)mci
) + ((unsigned long)layer
));
328 for (i
= 0; i
< n_layers
; i
++) {
329 mci
->ce_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ce_per_layer
[i
]));
330 mci
->ue_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ue_per_layer
[i
]));
332 pvt
= sz_pvt
? (((char *)mci
) + ((unsigned long)pvt
)) : NULL
;
334 /* setup index and various internal pointers */
335 mci
->mc_idx
= mc_num
;
336 mci
->tot_dimms
= tot_dimms
;
338 mci
->n_layers
= n_layers
;
340 memcpy(mci
->layers
, layers
, sizeof(*layer
) * n_layers
);
341 mci
->nr_csrows
= tot_csrows
;
342 mci
->num_cschannel
= tot_channels
;
343 mci
->csbased
= per_rank
;
346 * Alocate and fill the csrow/channels structs
348 mci
->csrows
= kcalloc(tot_csrows
, sizeof(*mci
->csrows
), GFP_KERNEL
);
351 for (row
= 0; row
< tot_csrows
; row
++) {
352 csr
= kzalloc(sizeof(**mci
->csrows
), GFP_KERNEL
);
355 mci
->csrows
[row
] = csr
;
356 csr
->csrow_idx
= row
;
358 csr
->nr_channels
= tot_channels
;
359 csr
->channels
= kcalloc(tot_channels
, sizeof(*csr
->channels
),
364 for (chn
= 0; chn
< tot_channels
; chn
++) {
365 chan
= kzalloc(sizeof(**csr
->channels
), GFP_KERNEL
);
368 csr
->channels
[chn
] = chan
;
369 chan
->chan_idx
= chn
;
375 * Allocate and fill the dimm structs
377 mci
->dimms
= kcalloc(tot_dimms
, sizeof(*mci
->dimms
), GFP_KERNEL
);
381 memset(&pos
, 0, sizeof(pos
));
384 for (i
= 0; i
< tot_dimms
; i
++) {
385 chan
= mci
->csrows
[row
]->channels
[chn
];
386 off
= EDAC_DIMM_OFF(layer
, n_layers
, pos
[0], pos
[1], pos
[2]);
387 if (off
< 0 || off
>= tot_dimms
) {
388 edac_mc_printk(mci
, KERN_ERR
, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
392 dimm
= kzalloc(sizeof(**mci
->dimms
), GFP_KERNEL
);
395 mci
->dimms
[off
] = dimm
;
399 * Copy DIMM location and initialize it.
401 len
= sizeof(dimm
->label
);
403 n
= snprintf(p
, len
, "mc#%u", mc_num
);
406 for (j
= 0; j
< n_layers
; j
++) {
407 n
= snprintf(p
, len
, "%s#%u",
408 edac_layer_name
[layers
[j
].type
],
412 dimm
->location
[j
] = pos
[j
];
418 /* Link it to the csrows old API data */
421 dimm
->cschannel
= chn
;
423 /* Increment csrow location */
424 if (layers
[0].is_virt_csrow
) {
426 if (chn
== tot_channels
) {
432 if (row
== tot_csrows
) {
438 /* Increment dimm location */
439 for (j
= n_layers
- 1; j
>= 0; j
--) {
441 if (pos
[j
] < layers
[j
].size
)
447 mci
->op_state
= OP_ALLOC
;
456 EXPORT_SYMBOL_GPL(edac_mc_alloc
);
460 * 'Free' a previously allocated 'mci' structure
461 * @mci: pointer to a struct mem_ctl_info structure
463 void edac_mc_free(struct mem_ctl_info
*mci
)
467 /* If we're not yet registered with sysfs free only what was allocated
468 * in edac_mc_alloc().
470 if (!device_is_registered(&mci
->dev
)) {
475 /* the mci instance is freed here, when the sysfs object is dropped */
476 edac_unregister_sysfs(mci
);
478 EXPORT_SYMBOL_GPL(edac_mc_free
);
484 * scan list of controllers looking for the one that manages
486 * @dev: pointer to a struct device related with the MCI
488 struct mem_ctl_info
*find_mci_by_dev(struct device
*dev
)
490 struct mem_ctl_info
*mci
;
491 struct list_head
*item
;
495 list_for_each(item
, &mc_devices
) {
496 mci
= list_entry(item
, struct mem_ctl_info
, link
);
498 if (mci
->pdev
== dev
)
504 EXPORT_SYMBOL_GPL(find_mci_by_dev
);
507 * handler for EDAC to check if NMI type handler has asserted interrupt
509 static int edac_mc_assert_error_check_and_clear(void)
513 if (edac_op_state
== EDAC_OPSTATE_POLL
)
516 old_state
= edac_err_assert
;
523 * edac_mc_workq_function
524 * performs the operation scheduled by a workq request
526 static void edac_mc_workq_function(struct work_struct
*work_req
)
528 struct delayed_work
*d_work
= to_delayed_work(work_req
);
529 struct mem_ctl_info
*mci
= to_edac_mem_ctl_work(d_work
);
531 mutex_lock(&mem_ctls_mutex
);
533 /* if this control struct has movd to offline state, we are done */
534 if (mci
->op_state
== OP_OFFLINE
) {
535 mutex_unlock(&mem_ctls_mutex
);
539 /* Only poll controllers that are running polled and have a check */
540 if (edac_mc_assert_error_check_and_clear() && (mci
->edac_check
!= NULL
))
541 mci
->edac_check(mci
);
543 mutex_unlock(&mem_ctls_mutex
);
546 queue_delayed_work(edac_workqueue
, &mci
->work
,
547 msecs_to_jiffies(edac_mc_get_poll_msec()));
551 * edac_mc_workq_setup
552 * initialize a workq item for this mci
553 * passing in the new delay period in msec
557 * called with the mem_ctls_mutex held
559 static void edac_mc_workq_setup(struct mem_ctl_info
*mci
, unsigned msec
,
564 /* if this instance is not in the POLL state, then simply return */
565 if (mci
->op_state
!= OP_RUNNING_POLL
)
569 INIT_DELAYED_WORK(&mci
->work
, edac_mc_workq_function
);
571 mod_delayed_work(edac_workqueue
, &mci
->work
, msecs_to_jiffies(msec
));
575 * edac_mc_workq_teardown
576 * stop the workq processing on this mci
580 * called WITHOUT lock held
582 static void edac_mc_workq_teardown(struct mem_ctl_info
*mci
)
586 if (mci
->op_state
!= OP_RUNNING_POLL
)
589 status
= cancel_delayed_work(&mci
->work
);
591 edac_dbg(0, "not canceled, flush the queue\n");
593 /* workq instance might be running, wait for it */
594 flush_workqueue(edac_workqueue
);
599 * edac_mc_reset_delay_period(unsigned long value)
601 * user space has updated our poll period value, need to
602 * reset our workq delays
604 void edac_mc_reset_delay_period(unsigned long value
)
606 struct mem_ctl_info
*mci
;
607 struct list_head
*item
;
609 mutex_lock(&mem_ctls_mutex
);
611 list_for_each(item
, &mc_devices
) {
612 mci
= list_entry(item
, struct mem_ctl_info
, link
);
614 edac_mc_workq_setup(mci
, value
, false);
617 mutex_unlock(&mem_ctls_mutex
);
622 /* Return 0 on success, 1 on failure.
623 * Before calling this function, caller must
624 * assign a unique value to mci->mc_idx.
628 * called with the mem_ctls_mutex lock held
630 static int add_mc_to_global_list(struct mem_ctl_info
*mci
)
632 struct list_head
*item
, *insert_before
;
633 struct mem_ctl_info
*p
;
635 insert_before
= &mc_devices
;
637 p
= find_mci_by_dev(mci
->pdev
);
638 if (unlikely(p
!= NULL
))
641 list_for_each(item
, &mc_devices
) {
642 p
= list_entry(item
, struct mem_ctl_info
, link
);
644 if (p
->mc_idx
>= mci
->mc_idx
) {
645 if (unlikely(p
->mc_idx
== mci
->mc_idx
))
648 insert_before
= item
;
653 list_add_tail_rcu(&mci
->link
, insert_before
);
654 atomic_inc(&edac_handlers
);
658 edac_printk(KERN_WARNING
, EDAC_MC
,
659 "%s (%s) %s %s already assigned %d\n", dev_name(p
->pdev
),
660 edac_dev_name(mci
), p
->mod_name
, p
->ctl_name
, p
->mc_idx
);
664 edac_printk(KERN_WARNING
, EDAC_MC
,
665 "bug in low-level driver: attempt to assign\n"
666 " duplicate mc_idx %d in %s()\n", p
->mc_idx
, __func__
);
670 static int del_mc_from_global_list(struct mem_ctl_info
*mci
)
672 int handlers
= atomic_dec_return(&edac_handlers
);
673 list_del_rcu(&mci
->link
);
675 /* these are for safe removal of devices from global list while
676 * NMI handlers may be traversing list
679 INIT_LIST_HEAD(&mci
->link
);
685 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
687 * If found, return a pointer to the structure.
690 * Caller must hold mem_ctls_mutex.
692 struct mem_ctl_info
*edac_mc_find(int idx
)
694 struct list_head
*item
;
695 struct mem_ctl_info
*mci
;
697 list_for_each(item
, &mc_devices
) {
698 mci
= list_entry(item
, struct mem_ctl_info
, link
);
700 if (mci
->mc_idx
>= idx
) {
701 if (mci
->mc_idx
== idx
)
710 EXPORT_SYMBOL(edac_mc_find
);
713 * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci
714 * global list and create sysfs entries associated with mci structure
715 * @mci: pointer to the mci structure to be added to the list
716 * @groups: optional attribute groups for the driver-specific sysfs entries
723 /* FIXME - should a warning be printed if no error detection? correction? */
724 int edac_mc_add_mc_with_groups(struct mem_ctl_info
*mci
,
725 const struct attribute_group
**groups
)
730 if (mci
->mc_idx
>= EDAC_MAX_MCS
) {
731 pr_warn_once("Too many memory controllers: %d\n", mci
->mc_idx
);
735 #ifdef CONFIG_EDAC_DEBUG
736 if (edac_debug_level
>= 3)
737 edac_mc_dump_mci(mci
);
739 if (edac_debug_level
>= 4) {
742 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
743 struct csrow_info
*csrow
= mci
->csrows
[i
];
747 for (j
= 0; j
< csrow
->nr_channels
; j
++)
748 nr_pages
+= csrow
->channels
[j
]->dimm
->nr_pages
;
751 edac_mc_dump_csrow(csrow
);
752 for (j
= 0; j
< csrow
->nr_channels
; j
++)
753 if (csrow
->channels
[j
]->dimm
->nr_pages
)
754 edac_mc_dump_channel(csrow
->channels
[j
]);
756 for (i
= 0; i
< mci
->tot_dimms
; i
++)
757 if (mci
->dimms
[i
]->nr_pages
)
758 edac_mc_dump_dimm(mci
->dimms
[i
], i
);
761 mutex_lock(&mem_ctls_mutex
);
763 if (edac_mc_owner
&& edac_mc_owner
!= mci
->mod_name
) {
768 if (add_mc_to_global_list(mci
))
771 /* set load time so that error rate can be tracked */
772 mci
->start_time
= jiffies
;
774 mci
->bus
= &mc_bus
[mci
->mc_idx
];
776 if (edac_create_sysfs_mci_device(mci
, groups
)) {
777 edac_mc_printk(mci
, KERN_WARNING
,
778 "failed to create sysfs device\n");
782 /* If there IS a check routine, then we are running POLLED */
783 if (mci
->edac_check
!= NULL
) {
784 /* This instance is NOW RUNNING */
785 mci
->op_state
= OP_RUNNING_POLL
;
787 edac_mc_workq_setup(mci
, edac_mc_get_poll_msec(), true);
789 mci
->op_state
= OP_RUNNING_INTERRUPT
;
792 /* Report action taken */
793 edac_mc_printk(mci
, KERN_INFO
,
794 "Giving out device to module %s controller %s: DEV %s (%s)\n",
795 mci
->mod_name
, mci
->ctl_name
, mci
->dev_name
,
796 edac_op_state_to_string(mci
->op_state
));
798 edac_mc_owner
= mci
->mod_name
;
800 mutex_unlock(&mem_ctls_mutex
);
804 del_mc_from_global_list(mci
);
807 mutex_unlock(&mem_ctls_mutex
);
810 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups
);
813 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
814 * remove mci structure from global list
815 * @pdev: Pointer to 'struct device' representing mci structure to remove.
817 * Return pointer to removed mci structure, or NULL if device not found.
819 struct mem_ctl_info
*edac_mc_del_mc(struct device
*dev
)
821 struct mem_ctl_info
*mci
;
825 mutex_lock(&mem_ctls_mutex
);
827 /* find the requested mci struct in the global list */
828 mci
= find_mci_by_dev(dev
);
830 mutex_unlock(&mem_ctls_mutex
);
834 if (!del_mc_from_global_list(mci
))
835 edac_mc_owner
= NULL
;
836 mutex_unlock(&mem_ctls_mutex
);
838 /* flush workq processes */
839 edac_mc_workq_teardown(mci
);
841 /* marking MCI offline */
842 mci
->op_state
= OP_OFFLINE
;
844 /* remove from sysfs */
845 edac_remove_sysfs_mci_device(mci
);
847 edac_printk(KERN_INFO
, EDAC_MC
,
848 "Removed device %d for %s %s: DEV %s\n", mci
->mc_idx
,
849 mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
853 EXPORT_SYMBOL_GPL(edac_mc_del_mc
);
855 static void edac_mc_scrub_block(unsigned long page
, unsigned long offset
,
860 unsigned long flags
= 0;
864 /* ECC error page was not in our memory. Ignore it. */
865 if (!pfn_valid(page
))
868 /* Find the actual page structure then map it and fix */
869 pg
= pfn_to_page(page
);
872 local_irq_save(flags
);
874 virt_addr
= kmap_atomic(pg
);
876 /* Perform architecture specific atomic scrub operation */
877 atomic_scrub(virt_addr
+ offset
, size
);
879 /* Unmap and complete */
880 kunmap_atomic(virt_addr
);
883 local_irq_restore(flags
);
886 /* FIXME - should return -1 */
887 int edac_mc_find_csrow_by_page(struct mem_ctl_info
*mci
, unsigned long page
)
889 struct csrow_info
**csrows
= mci
->csrows
;
892 edac_dbg(1, "MC%d: 0x%lx\n", mci
->mc_idx
, page
);
895 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
896 struct csrow_info
*csrow
= csrows
[i
];
898 for (j
= 0; j
< csrow
->nr_channels
; j
++) {
899 struct dimm_info
*dimm
= csrow
->channels
[j
]->dimm
;
905 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
907 csrow
->first_page
, page
, csrow
->last_page
,
910 if ((page
>= csrow
->first_page
) &&
911 (page
<= csrow
->last_page
) &&
912 ((page
& csrow
->page_mask
) ==
913 (csrow
->first_page
& csrow
->page_mask
))) {
920 edac_mc_printk(mci
, KERN_ERR
,
921 "could not look up page error address %lx\n",
922 (unsigned long)page
);
926 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page
);
928 const char *edac_layer_name
[] = {
929 [EDAC_MC_LAYER_BRANCH
] = "branch",
930 [EDAC_MC_LAYER_CHANNEL
] = "channel",
931 [EDAC_MC_LAYER_SLOT
] = "slot",
932 [EDAC_MC_LAYER_CHIP_SELECT
] = "csrow",
933 [EDAC_MC_LAYER_ALL_MEM
] = "memory",
935 EXPORT_SYMBOL_GPL(edac_layer_name
);
937 static void edac_inc_ce_error(struct mem_ctl_info
*mci
,
938 bool enable_per_layer_report
,
939 const int pos
[EDAC_MAX_LAYERS
],
946 if (!enable_per_layer_report
) {
947 mci
->ce_noinfo_count
+= count
;
951 for (i
= 0; i
< mci
->n_layers
; i
++) {
955 mci
->ce_per_layer
[i
][index
] += count
;
957 if (i
< mci
->n_layers
- 1)
958 index
*= mci
->layers
[i
+ 1].size
;
962 static void edac_inc_ue_error(struct mem_ctl_info
*mci
,
963 bool enable_per_layer_report
,
964 const int pos
[EDAC_MAX_LAYERS
],
971 if (!enable_per_layer_report
) {
972 mci
->ce_noinfo_count
+= count
;
976 for (i
= 0; i
< mci
->n_layers
; i
++) {
980 mci
->ue_per_layer
[i
][index
] += count
;
982 if (i
< mci
->n_layers
- 1)
983 index
*= mci
->layers
[i
+ 1].size
;
987 static void edac_ce_error(struct mem_ctl_info
*mci
,
988 const u16 error_count
,
989 const int pos
[EDAC_MAX_LAYERS
],
991 const char *location
,
994 const char *other_detail
,
995 const bool enable_per_layer_report
,
996 const unsigned long page_frame_number
,
997 const unsigned long offset_in_page
,
1000 unsigned long remapped_page
;
1006 if (edac_mc_get_log_ce()) {
1007 if (other_detail
&& *other_detail
)
1008 edac_mc_printk(mci
, KERN_WARNING
,
1009 "%d CE %s%son %s (%s %s - %s)\n",
1010 error_count
, msg
, msg_aux
, label
,
1011 location
, detail
, other_detail
);
1013 edac_mc_printk(mci
, KERN_WARNING
,
1014 "%d CE %s%son %s (%s %s)\n",
1015 error_count
, msg
, msg_aux
, label
,
1018 edac_inc_ce_error(mci
, enable_per_layer_report
, pos
, error_count
);
1020 if (mci
->scrub_mode
== SCRUB_SW_SRC
) {
1022 * Some memory controllers (called MCs below) can remap
1023 * memory so that it is still available at a different
1024 * address when PCI devices map into memory.
1025 * MC's that can't do this, lose the memory where PCI
1026 * devices are mapped. This mapping is MC-dependent
1027 * and so we call back into the MC driver for it to
1028 * map the MC page to a physical (CPU) page which can
1029 * then be mapped to a virtual page - which can then
1032 remapped_page
= mci
->ctl_page_to_phys
?
1033 mci
->ctl_page_to_phys(mci
, page_frame_number
) :
1036 edac_mc_scrub_block(remapped_page
,
1037 offset_in_page
, grain
);
1041 static void edac_ue_error(struct mem_ctl_info
*mci
,
1042 const u16 error_count
,
1043 const int pos
[EDAC_MAX_LAYERS
],
1045 const char *location
,
1048 const char *other_detail
,
1049 const bool enable_per_layer_report
)
1056 if (edac_mc_get_log_ue()) {
1057 if (other_detail
&& *other_detail
)
1058 edac_mc_printk(mci
, KERN_WARNING
,
1059 "%d UE %s%son %s (%s %s - %s)\n",
1060 error_count
, msg
, msg_aux
, label
,
1061 location
, detail
, other_detail
);
1063 edac_mc_printk(mci
, KERN_WARNING
,
1064 "%d UE %s%son %s (%s %s)\n",
1065 error_count
, msg
, msg_aux
, label
,
1069 if (edac_mc_get_panic_on_ue()) {
1070 if (other_detail
&& *other_detail
)
1071 panic("UE %s%son %s (%s%s - %s)\n",
1072 msg
, msg_aux
, label
, location
, detail
, other_detail
);
1074 panic("UE %s%son %s (%s%s)\n",
1075 msg
, msg_aux
, label
, location
, detail
);
1078 edac_inc_ue_error(mci
, enable_per_layer_report
, pos
, error_count
);
1082 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1083 * anything to discover the error location
1085 * @type: severity of the error (CE/UE/Fatal)
1086 * @mci: a struct mem_ctl_info pointer
1087 * @e: error description
1089 * This raw function is used internally by edac_mc_handle_error(). It should
1090 * only be called directly when the hardware error come directly from BIOS,
1091 * like in the case of APEI GHES driver.
1093 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type
,
1094 struct mem_ctl_info
*mci
,
1095 struct edac_raw_error_desc
*e
)
1098 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
1100 /* Memory type dependent details about the error */
1101 if (type
== HW_EVENT_ERR_CORRECTED
) {
1102 snprintf(detail
, sizeof(detail
),
1103 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1104 e
->page_frame_number
, e
->offset_in_page
,
1105 e
->grain
, e
->syndrome
);
1106 edac_ce_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1107 detail
, e
->other_detail
, e
->enable_per_layer_report
,
1108 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1110 snprintf(detail
, sizeof(detail
),
1111 "page:0x%lx offset:0x%lx grain:%ld",
1112 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1114 edac_ue_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1115 detail
, e
->other_detail
, e
->enable_per_layer_report
);
1120 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error
);
1123 * edac_mc_handle_error - reports a memory event to userspace
1125 * @type: severity of the error (CE/UE/Fatal)
1126 * @mci: a struct mem_ctl_info pointer
1127 * @error_count: Number of errors of the same type
1128 * @page_frame_number: mem page where the error occurred
1129 * @offset_in_page: offset of the error inside the page
1130 * @syndrome: ECC syndrome
1131 * @top_layer: Memory layer[0] position
1132 * @mid_layer: Memory layer[1] position
1133 * @low_layer: Memory layer[2] position
1134 * @msg: Message meaningful to the end users that
1135 * explains the event
1136 * @other_detail: Technical details about the event that
1137 * may help hardware manufacturers and
1138 * EDAC developers to analyse the event
1140 void edac_mc_handle_error(const enum hw_event_mc_err_type type
,
1141 struct mem_ctl_info
*mci
,
1142 const u16 error_count
,
1143 const unsigned long page_frame_number
,
1144 const unsigned long offset_in_page
,
1145 const unsigned long syndrome
,
1146 const int top_layer
,
1147 const int mid_layer
,
1148 const int low_layer
,
1150 const char *other_detail
)
1153 int row
= -1, chan
= -1;
1154 int pos
[EDAC_MAX_LAYERS
] = { top_layer
, mid_layer
, low_layer
};
1155 int i
, n_labels
= 0;
1157 struct edac_raw_error_desc
*e
= &mci
->error_desc
;
1159 edac_dbg(3, "MC%d\n", mci
->mc_idx
);
1161 /* Fills the error report buffer */
1162 memset(e
, 0, sizeof (*e
));
1163 e
->error_count
= error_count
;
1164 e
->top_layer
= top_layer
;
1165 e
->mid_layer
= mid_layer
;
1166 e
->low_layer
= low_layer
;
1167 e
->page_frame_number
= page_frame_number
;
1168 e
->offset_in_page
= offset_in_page
;
1169 e
->syndrome
= syndrome
;
1171 e
->other_detail
= other_detail
;
1174 * Check if the event report is consistent and if the memory
1175 * location is known. If it is known, enable_per_layer_report will be
1176 * true, the DIMM(s) label info will be filled and the per-layer
1177 * error counters will be incremented.
1179 for (i
= 0; i
< mci
->n_layers
; i
++) {
1180 if (pos
[i
] >= (int)mci
->layers
[i
].size
) {
1182 edac_mc_printk(mci
, KERN_ERR
,
1183 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1184 edac_layer_name
[mci
->layers
[i
].type
],
1185 pos
[i
], mci
->layers
[i
].size
);
1187 * Instead of just returning it, let's use what's
1188 * known about the error. The increment routines and
1189 * the DIMM filter logic will do the right thing by
1190 * pointing the likely damaged DIMMs.
1195 e
->enable_per_layer_report
= true;
1199 * Get the dimm label/grain that applies to the match criteria.
1200 * As the error algorithm may not be able to point to just one memory
1201 * stick, the logic here will get all possible labels that could
1202 * pottentially be affected by the error.
1203 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1204 * to have only the MC channel and the MC dimm (also called "branch")
1205 * but the channel is not known, as the memory is arranged in pairs,
1206 * where each memory belongs to a separate channel within the same
1212 for (i
= 0; i
< mci
->tot_dimms
; i
++) {
1213 struct dimm_info
*dimm
= mci
->dimms
[i
];
1215 if (top_layer
>= 0 && top_layer
!= dimm
->location
[0])
1217 if (mid_layer
>= 0 && mid_layer
!= dimm
->location
[1])
1219 if (low_layer
>= 0 && low_layer
!= dimm
->location
[2])
1222 /* get the max grain, over the error match range */
1223 if (dimm
->grain
> e
->grain
)
1224 e
->grain
= dimm
->grain
;
1227 * If the error is memory-controller wide, there's no need to
1228 * seek for the affected DIMMs because the whole
1229 * channel/memory controller/... may be affected.
1230 * Also, don't show errors for empty DIMM slots.
1232 if (e
->enable_per_layer_report
&& dimm
->nr_pages
) {
1233 if (n_labels
>= EDAC_MAX_LABELS
) {
1234 e
->enable_per_layer_report
= false;
1238 if (p
!= e
->label
) {
1239 strcpy(p
, OTHER_LABEL
);
1240 p
+= strlen(OTHER_LABEL
);
1242 strcpy(p
, dimm
->label
);
1247 * get csrow/channel of the DIMM, in order to allow
1248 * incrementing the compat API counters
1250 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1251 mci
->csbased
? "rank" : "dimm",
1252 dimm
->csrow
, dimm
->cschannel
);
1255 else if (row
>= 0 && row
!= dimm
->csrow
)
1259 chan
= dimm
->cschannel
;
1260 else if (chan
>= 0 && chan
!= dimm
->cschannel
)
1265 if (!e
->enable_per_layer_report
) {
1266 strcpy(e
->label
, "any memory");
1268 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row
, chan
);
1270 strcpy(e
->label
, "unknown memory");
1271 if (type
== HW_EVENT_ERR_CORRECTED
) {
1273 mci
->csrows
[row
]->ce_count
+= error_count
;
1275 mci
->csrows
[row
]->channels
[chan
]->ce_count
+= error_count
;
1279 mci
->csrows
[row
]->ue_count
+= error_count
;
1282 /* Fill the RAM location data */
1285 for (i
= 0; i
< mci
->n_layers
; i
++) {
1289 p
+= sprintf(p
, "%s:%d ",
1290 edac_layer_name
[mci
->layers
[i
].type
],
1293 if (p
> e
->location
)
1296 /* Report the error via the trace interface */
1297 grain_bits
= fls_long(e
->grain
) + 1;
1298 trace_mc_event(type
, e
->msg
, e
->label
, e
->error_count
,
1299 mci
->mc_idx
, e
->top_layer
, e
->mid_layer
, e
->low_layer
,
1300 PAGES_TO_MiB(e
->page_frame_number
) | e
->offset_in_page
,
1301 grain_bits
, e
->syndrome
, e
->other_detail
);
1303 edac_raw_mc_handle_error(type
, mci
, e
);
1305 EXPORT_SYMBOL_GPL(edac_mc_handle_error
);