Linux 4.1.16
[linux/fpc-iii.git] / drivers / gpu / drm / ttm / ttm_bo_util.c
blob882cccdad27249c8e3afa992419fb0fb16bec97b
1 /**************************************************************************
3 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 **************************************************************************/
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
31 #include <drm/ttm/ttm_bo_driver.h>
32 #include <drm/ttm/ttm_placement.h>
33 #include <drm/drm_vma_manager.h>
34 #include <linux/io.h>
35 #include <linux/highmem.h>
36 #include <linux/wait.h>
37 #include <linux/slab.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/reservation.h>
42 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
44 ttm_bo_mem_put(bo, &bo->mem);
47 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
48 bool evict,
49 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
51 struct ttm_tt *ttm = bo->ttm;
52 struct ttm_mem_reg *old_mem = &bo->mem;
53 int ret;
55 if (old_mem->mem_type != TTM_PL_SYSTEM) {
56 ttm_tt_unbind(ttm);
57 ttm_bo_free_old_node(bo);
58 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
59 TTM_PL_MASK_MEM);
60 old_mem->mem_type = TTM_PL_SYSTEM;
63 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
64 if (unlikely(ret != 0))
65 return ret;
67 if (new_mem->mem_type != TTM_PL_SYSTEM) {
68 ret = ttm_tt_bind(ttm, new_mem);
69 if (unlikely(ret != 0))
70 return ret;
73 *old_mem = *new_mem;
74 new_mem->mm_node = NULL;
76 return 0;
78 EXPORT_SYMBOL(ttm_bo_move_ttm);
80 int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
82 if (likely(man->io_reserve_fastpath))
83 return 0;
85 if (interruptible)
86 return mutex_lock_interruptible(&man->io_reserve_mutex);
88 mutex_lock(&man->io_reserve_mutex);
89 return 0;
91 EXPORT_SYMBOL(ttm_mem_io_lock);
93 void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
95 if (likely(man->io_reserve_fastpath))
96 return;
98 mutex_unlock(&man->io_reserve_mutex);
100 EXPORT_SYMBOL(ttm_mem_io_unlock);
102 static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
104 struct ttm_buffer_object *bo;
106 if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
107 return -EAGAIN;
109 bo = list_first_entry(&man->io_reserve_lru,
110 struct ttm_buffer_object,
111 io_reserve_lru);
112 list_del_init(&bo->io_reserve_lru);
113 ttm_bo_unmap_virtual_locked(bo);
115 return 0;
119 int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
120 struct ttm_mem_reg *mem)
122 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
123 int ret = 0;
125 if (!bdev->driver->io_mem_reserve)
126 return 0;
127 if (likely(man->io_reserve_fastpath))
128 return bdev->driver->io_mem_reserve(bdev, mem);
130 if (bdev->driver->io_mem_reserve &&
131 mem->bus.io_reserved_count++ == 0) {
132 retry:
133 ret = bdev->driver->io_mem_reserve(bdev, mem);
134 if (ret == -EAGAIN) {
135 ret = ttm_mem_io_evict(man);
136 if (ret == 0)
137 goto retry;
140 return ret;
142 EXPORT_SYMBOL(ttm_mem_io_reserve);
144 void ttm_mem_io_free(struct ttm_bo_device *bdev,
145 struct ttm_mem_reg *mem)
147 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
149 if (likely(man->io_reserve_fastpath))
150 return;
152 if (bdev->driver->io_mem_reserve &&
153 --mem->bus.io_reserved_count == 0 &&
154 bdev->driver->io_mem_free)
155 bdev->driver->io_mem_free(bdev, mem);
158 EXPORT_SYMBOL(ttm_mem_io_free);
160 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
162 struct ttm_mem_reg *mem = &bo->mem;
163 int ret;
165 if (!mem->bus.io_reserved_vm) {
166 struct ttm_mem_type_manager *man =
167 &bo->bdev->man[mem->mem_type];
169 ret = ttm_mem_io_reserve(bo->bdev, mem);
170 if (unlikely(ret != 0))
171 return ret;
172 mem->bus.io_reserved_vm = true;
173 if (man->use_io_reserve_lru)
174 list_add_tail(&bo->io_reserve_lru,
175 &man->io_reserve_lru);
177 return 0;
180 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
182 struct ttm_mem_reg *mem = &bo->mem;
184 if (mem->bus.io_reserved_vm) {
185 mem->bus.io_reserved_vm = false;
186 list_del_init(&bo->io_reserve_lru);
187 ttm_mem_io_free(bo->bdev, mem);
191 static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
192 void **virtual)
194 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
195 int ret;
196 void *addr;
198 *virtual = NULL;
199 (void) ttm_mem_io_lock(man, false);
200 ret = ttm_mem_io_reserve(bdev, mem);
201 ttm_mem_io_unlock(man);
202 if (ret || !mem->bus.is_iomem)
203 return ret;
205 if (mem->bus.addr) {
206 addr = mem->bus.addr;
207 } else {
208 if (mem->placement & TTM_PL_FLAG_WC)
209 addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
210 else
211 addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
212 if (!addr) {
213 (void) ttm_mem_io_lock(man, false);
214 ttm_mem_io_free(bdev, mem);
215 ttm_mem_io_unlock(man);
216 return -ENOMEM;
219 *virtual = addr;
220 return 0;
223 static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
224 void *virtual)
226 struct ttm_mem_type_manager *man;
228 man = &bdev->man[mem->mem_type];
230 if (virtual && mem->bus.addr == NULL)
231 iounmap(virtual);
232 (void) ttm_mem_io_lock(man, false);
233 ttm_mem_io_free(bdev, mem);
234 ttm_mem_io_unlock(man);
237 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
239 uint32_t *dstP =
240 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
241 uint32_t *srcP =
242 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
244 int i;
245 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
246 iowrite32(ioread32(srcP++), dstP++);
247 return 0;
250 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
251 unsigned long page,
252 pgprot_t prot)
254 struct page *d = ttm->pages[page];
255 void *dst;
257 if (!d)
258 return -ENOMEM;
260 src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
262 #ifdef CONFIG_X86
263 dst = kmap_atomic_prot(d, prot);
264 #else
265 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
266 dst = vmap(&d, 1, 0, prot);
267 else
268 dst = kmap(d);
269 #endif
270 if (!dst)
271 return -ENOMEM;
273 memcpy_fromio(dst, src, PAGE_SIZE);
275 #ifdef CONFIG_X86
276 kunmap_atomic(dst);
277 #else
278 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
279 vunmap(dst);
280 else
281 kunmap(d);
282 #endif
284 return 0;
287 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
288 unsigned long page,
289 pgprot_t prot)
291 struct page *s = ttm->pages[page];
292 void *src;
294 if (!s)
295 return -ENOMEM;
297 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
298 #ifdef CONFIG_X86
299 src = kmap_atomic_prot(s, prot);
300 #else
301 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
302 src = vmap(&s, 1, 0, prot);
303 else
304 src = kmap(s);
305 #endif
306 if (!src)
307 return -ENOMEM;
309 memcpy_toio(dst, src, PAGE_SIZE);
311 #ifdef CONFIG_X86
312 kunmap_atomic(src);
313 #else
314 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
315 vunmap(src);
316 else
317 kunmap(s);
318 #endif
320 return 0;
323 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
324 bool evict, bool no_wait_gpu,
325 struct ttm_mem_reg *new_mem)
327 struct ttm_bo_device *bdev = bo->bdev;
328 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
329 struct ttm_tt *ttm = bo->ttm;
330 struct ttm_mem_reg *old_mem = &bo->mem;
331 struct ttm_mem_reg old_copy = *old_mem;
332 void *old_iomap;
333 void *new_iomap;
334 int ret;
335 unsigned long i;
336 unsigned long page;
337 unsigned long add = 0;
338 int dir;
340 ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
341 if (ret)
342 return ret;
343 ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
344 if (ret)
345 goto out;
348 * Single TTM move. NOP.
350 if (old_iomap == NULL && new_iomap == NULL)
351 goto out2;
354 * Don't move nonexistent data. Clear destination instead.
356 if (old_iomap == NULL &&
357 (ttm == NULL || (ttm->state == tt_unpopulated &&
358 !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
359 memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
360 goto out2;
364 * TTM might be null for moves within the same region.
366 if (ttm && ttm->state == tt_unpopulated) {
367 ret = ttm->bdev->driver->ttm_tt_populate(ttm);
368 if (ret)
369 goto out1;
372 add = 0;
373 dir = 1;
375 if ((old_mem->mem_type == new_mem->mem_type) &&
376 (new_mem->start < old_mem->start + old_mem->size)) {
377 dir = -1;
378 add = new_mem->num_pages - 1;
381 for (i = 0; i < new_mem->num_pages; ++i) {
382 page = i * dir + add;
383 if (old_iomap == NULL) {
384 pgprot_t prot = ttm_io_prot(old_mem->placement,
385 PAGE_KERNEL);
386 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
387 prot);
388 } else if (new_iomap == NULL) {
389 pgprot_t prot = ttm_io_prot(new_mem->placement,
390 PAGE_KERNEL);
391 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
392 prot);
393 } else
394 ret = ttm_copy_io_page(new_iomap, old_iomap, page);
395 if (ret)
396 goto out1;
398 mb();
399 out2:
400 old_copy = *old_mem;
401 *old_mem = *new_mem;
402 new_mem->mm_node = NULL;
404 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && (ttm != NULL)) {
405 ttm_tt_unbind(ttm);
406 ttm_tt_destroy(ttm);
407 bo->ttm = NULL;
410 out1:
411 ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
412 out:
413 ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
416 * On error, keep the mm node!
418 if (!ret)
419 ttm_bo_mem_put(bo, &old_copy);
420 return ret;
422 EXPORT_SYMBOL(ttm_bo_move_memcpy);
424 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
426 kfree(bo);
430 * ttm_buffer_object_transfer
432 * @bo: A pointer to a struct ttm_buffer_object.
433 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
434 * holding the data of @bo with the old placement.
436 * This is a utility function that may be called after an accelerated move
437 * has been scheduled. A new buffer object is created as a placeholder for
438 * the old data while it's being copied. When that buffer object is idle,
439 * it can be destroyed, releasing the space of the old placement.
440 * Returns:
441 * !0: Failure.
444 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
445 struct ttm_buffer_object **new_obj)
447 struct ttm_buffer_object *fbo;
448 int ret;
450 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
451 if (!fbo)
452 return -ENOMEM;
454 *fbo = *bo;
457 * Fix up members that we shouldn't copy directly:
458 * TODO: Explicit member copy would probably be better here.
461 INIT_LIST_HEAD(&fbo->ddestroy);
462 INIT_LIST_HEAD(&fbo->lru);
463 INIT_LIST_HEAD(&fbo->swap);
464 INIT_LIST_HEAD(&fbo->io_reserve_lru);
465 drm_vma_node_reset(&fbo->vma_node);
466 atomic_set(&fbo->cpu_writers, 0);
468 kref_init(&fbo->list_kref);
469 kref_init(&fbo->kref);
470 fbo->destroy = &ttm_transfered_destroy;
471 fbo->acc_size = 0;
472 fbo->resv = &fbo->ttm_resv;
473 reservation_object_init(fbo->resv);
474 ret = ww_mutex_trylock(&fbo->resv->lock);
475 WARN_ON(!ret);
477 *new_obj = fbo;
478 return 0;
481 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
483 /* Cached mappings need no adjustment */
484 if (caching_flags & TTM_PL_FLAG_CACHED)
485 return tmp;
487 #if defined(__i386__) || defined(__x86_64__)
488 if (caching_flags & TTM_PL_FLAG_WC)
489 tmp = pgprot_writecombine(tmp);
490 else if (boot_cpu_data.x86 > 3)
491 tmp = pgprot_noncached(tmp);
492 #endif
493 #if defined(__ia64__) || defined(__arm__) || defined(__powerpc__)
494 if (caching_flags & TTM_PL_FLAG_WC)
495 tmp = pgprot_writecombine(tmp);
496 else
497 tmp = pgprot_noncached(tmp);
498 #endif
499 #if defined(__sparc__) || defined(__mips__)
500 tmp = pgprot_noncached(tmp);
501 #endif
502 return tmp;
504 EXPORT_SYMBOL(ttm_io_prot);
506 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
507 unsigned long offset,
508 unsigned long size,
509 struct ttm_bo_kmap_obj *map)
511 struct ttm_mem_reg *mem = &bo->mem;
513 if (bo->mem.bus.addr) {
514 map->bo_kmap_type = ttm_bo_map_premapped;
515 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
516 } else {
517 map->bo_kmap_type = ttm_bo_map_iomap;
518 if (mem->placement & TTM_PL_FLAG_WC)
519 map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
520 size);
521 else
522 map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
523 size);
525 return (!map->virtual) ? -ENOMEM : 0;
528 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
529 unsigned long start_page,
530 unsigned long num_pages,
531 struct ttm_bo_kmap_obj *map)
533 struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot;
534 struct ttm_tt *ttm = bo->ttm;
535 int ret;
537 BUG_ON(!ttm);
539 if (ttm->state == tt_unpopulated) {
540 ret = ttm->bdev->driver->ttm_tt_populate(ttm);
541 if (ret)
542 return ret;
545 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
547 * We're mapping a single page, and the desired
548 * page protection is consistent with the bo.
551 map->bo_kmap_type = ttm_bo_map_kmap;
552 map->page = ttm->pages[start_page];
553 map->virtual = kmap(map->page);
554 } else {
556 * We need to use vmap to get the desired page protection
557 * or to make the buffer object look contiguous.
559 prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
560 map->bo_kmap_type = ttm_bo_map_vmap;
561 map->virtual = vmap(ttm->pages + start_page, num_pages,
562 0, prot);
564 return (!map->virtual) ? -ENOMEM : 0;
567 int ttm_bo_kmap(struct ttm_buffer_object *bo,
568 unsigned long start_page, unsigned long num_pages,
569 struct ttm_bo_kmap_obj *map)
571 struct ttm_mem_type_manager *man =
572 &bo->bdev->man[bo->mem.mem_type];
573 unsigned long offset, size;
574 int ret;
576 BUG_ON(!list_empty(&bo->swap));
577 map->virtual = NULL;
578 map->bo = bo;
579 if (num_pages > bo->num_pages)
580 return -EINVAL;
581 if (start_page > bo->num_pages)
582 return -EINVAL;
583 #if 0
584 if (num_pages > 1 && !capable(CAP_SYS_ADMIN))
585 return -EPERM;
586 #endif
587 (void) ttm_mem_io_lock(man, false);
588 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
589 ttm_mem_io_unlock(man);
590 if (ret)
591 return ret;
592 if (!bo->mem.bus.is_iomem) {
593 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
594 } else {
595 offset = start_page << PAGE_SHIFT;
596 size = num_pages << PAGE_SHIFT;
597 return ttm_bo_ioremap(bo, offset, size, map);
600 EXPORT_SYMBOL(ttm_bo_kmap);
602 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
604 struct ttm_buffer_object *bo = map->bo;
605 struct ttm_mem_type_manager *man =
606 &bo->bdev->man[bo->mem.mem_type];
608 if (!map->virtual)
609 return;
610 switch (map->bo_kmap_type) {
611 case ttm_bo_map_iomap:
612 iounmap(map->virtual);
613 break;
614 case ttm_bo_map_vmap:
615 vunmap(map->virtual);
616 break;
617 case ttm_bo_map_kmap:
618 kunmap(map->page);
619 break;
620 case ttm_bo_map_premapped:
621 break;
622 default:
623 BUG();
625 (void) ttm_mem_io_lock(man, false);
626 ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
627 ttm_mem_io_unlock(man);
628 map->virtual = NULL;
629 map->page = NULL;
631 EXPORT_SYMBOL(ttm_bo_kunmap);
633 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
634 struct fence *fence,
635 bool evict,
636 bool no_wait_gpu,
637 struct ttm_mem_reg *new_mem)
639 struct ttm_bo_device *bdev = bo->bdev;
640 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
641 struct ttm_mem_reg *old_mem = &bo->mem;
642 int ret;
643 struct ttm_buffer_object *ghost_obj;
645 reservation_object_add_excl_fence(bo->resv, fence);
646 if (evict) {
647 ret = ttm_bo_wait(bo, false, false, false);
648 if (ret)
649 return ret;
651 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
652 (bo->ttm != NULL)) {
653 ttm_tt_unbind(bo->ttm);
654 ttm_tt_destroy(bo->ttm);
655 bo->ttm = NULL;
657 ttm_bo_free_old_node(bo);
658 } else {
660 * This should help pipeline ordinary buffer moves.
662 * Hang old buffer memory on a new buffer object,
663 * and leave it to be released when the GPU
664 * operation has completed.
667 set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
669 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
670 if (ret)
671 return ret;
673 reservation_object_add_excl_fence(ghost_obj->resv, fence);
676 * If we're not moving to fixed memory, the TTM object
677 * needs to stay alive. Otherwhise hang it on the ghost
678 * bo to be unbound and destroyed.
681 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
682 ghost_obj->ttm = NULL;
683 else
684 bo->ttm = NULL;
686 ttm_bo_unreserve(ghost_obj);
687 ttm_bo_unref(&ghost_obj);
690 *old_mem = *new_mem;
691 new_mem->mm_node = NULL;
693 return 0;
695 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);