Linux 4.1.16
[linux/fpc-iii.git] / drivers / hv / ring_buffer.c
blob6361d124f67dc71efc5b2e4e020bc208a54acc12
1 /*
3 * Copyright (c) 2009, Microsoft Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
31 #include "hyperv_vmbus.h"
33 void hv_begin_read(struct hv_ring_buffer_info *rbi)
35 rbi->ring_buffer->interrupt_mask = 1;
36 mb();
39 u32 hv_end_read(struct hv_ring_buffer_info *rbi)
41 u32 read;
42 u32 write;
44 rbi->ring_buffer->interrupt_mask = 0;
45 mb();
48 * Now check to see if the ring buffer is still empty.
49 * If it is not, we raced and we need to process new
50 * incoming messages.
52 hv_get_ringbuffer_availbytes(rbi, &read, &write);
54 return read;
58 * When we write to the ring buffer, check if the host needs to
59 * be signaled. Here is the details of this protocol:
61 * 1. The host guarantees that while it is draining the
62 * ring buffer, it will set the interrupt_mask to
63 * indicate it does not need to be interrupted when
64 * new data is placed.
66 * 2. The host guarantees that it will completely drain
67 * the ring buffer before exiting the read loop. Further,
68 * once the ring buffer is empty, it will clear the
69 * interrupt_mask and re-check to see if new data has
70 * arrived.
73 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
75 mb();
76 if (rbi->ring_buffer->interrupt_mask)
77 return false;
79 /* check interrupt_mask before read_index */
80 rmb();
82 * This is the only case we need to signal when the
83 * ring transitions from being empty to non-empty.
85 if (old_write == rbi->ring_buffer->read_index)
86 return true;
88 return false;
92 * To optimize the flow management on the send-side,
93 * when the sender is blocked because of lack of
94 * sufficient space in the ring buffer, potential the
95 * consumer of the ring buffer can signal the producer.
96 * This is controlled by the following parameters:
98 * 1. pending_send_sz: This is the size in bytes that the
99 * producer is trying to send.
100 * 2. The feature bit feat_pending_send_sz set to indicate if
101 * the consumer of the ring will signal when the ring
102 * state transitions from being full to a state where
103 * there is room for the producer to send the pending packet.
106 static bool hv_need_to_signal_on_read(u32 old_rd,
107 struct hv_ring_buffer_info *rbi)
109 u32 prev_write_sz;
110 u32 cur_write_sz;
111 u32 r_size;
112 u32 write_loc = rbi->ring_buffer->write_index;
113 u32 read_loc = rbi->ring_buffer->read_index;
114 u32 pending_sz = rbi->ring_buffer->pending_send_sz;
117 * If the other end is not blocked on write don't bother.
119 if (pending_sz == 0)
120 return false;
122 r_size = rbi->ring_datasize;
123 cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
124 read_loc - write_loc;
126 prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) :
127 old_rd - write_loc;
130 if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz))
131 return true;
133 return false;
137 * hv_get_next_write_location()
139 * Get the next write location for the specified ring buffer
142 static inline u32
143 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
145 u32 next = ring_info->ring_buffer->write_index;
147 return next;
151 * hv_set_next_write_location()
153 * Set the next write location for the specified ring buffer
156 static inline void
157 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
158 u32 next_write_location)
160 ring_info->ring_buffer->write_index = next_write_location;
164 * hv_get_next_read_location()
166 * Get the next read location for the specified ring buffer
168 static inline u32
169 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
171 u32 next = ring_info->ring_buffer->read_index;
173 return next;
177 * hv_get_next_readlocation_withoffset()
179 * Get the next read location + offset for the specified ring buffer.
180 * This allows the caller to skip
182 static inline u32
183 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
184 u32 offset)
186 u32 next = ring_info->ring_buffer->read_index;
188 next += offset;
189 next %= ring_info->ring_datasize;
191 return next;
196 * hv_set_next_read_location()
198 * Set the next read location for the specified ring buffer
201 static inline void
202 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
203 u32 next_read_location)
205 ring_info->ring_buffer->read_index = next_read_location;
211 * hv_get_ring_buffer()
213 * Get the start of the ring buffer
215 static inline void *
216 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
218 return (void *)ring_info->ring_buffer->buffer;
224 * hv_get_ring_buffersize()
226 * Get the size of the ring buffer
228 static inline u32
229 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
231 return ring_info->ring_datasize;
236 * hv_get_ring_bufferindices()
238 * Get the read and write indices as u64 of the specified ring buffer
241 static inline u64
242 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
244 return (u64)ring_info->ring_buffer->write_index << 32;
249 * hv_copyfrom_ringbuffer()
251 * Helper routine to copy to source from ring buffer.
252 * Assume there is enough room. Handles wrap-around in src case only!!
255 static u32 hv_copyfrom_ringbuffer(
256 struct hv_ring_buffer_info *ring_info,
257 void *dest,
258 u32 destlen,
259 u32 start_read_offset)
261 void *ring_buffer = hv_get_ring_buffer(ring_info);
262 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
264 u32 frag_len;
266 /* wrap-around detected at the src */
267 if (destlen > ring_buffer_size - start_read_offset) {
268 frag_len = ring_buffer_size - start_read_offset;
270 memcpy(dest, ring_buffer + start_read_offset, frag_len);
271 memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
272 } else
274 memcpy(dest, ring_buffer + start_read_offset, destlen);
277 start_read_offset += destlen;
278 start_read_offset %= ring_buffer_size;
280 return start_read_offset;
286 * hv_copyto_ringbuffer()
288 * Helper routine to copy from source to ring buffer.
289 * Assume there is enough room. Handles wrap-around in dest case only!!
292 static u32 hv_copyto_ringbuffer(
293 struct hv_ring_buffer_info *ring_info,
294 u32 start_write_offset,
295 void *src,
296 u32 srclen)
298 void *ring_buffer = hv_get_ring_buffer(ring_info);
299 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
300 u32 frag_len;
302 /* wrap-around detected! */
303 if (srclen > ring_buffer_size - start_write_offset) {
304 frag_len = ring_buffer_size - start_write_offset;
305 memcpy(ring_buffer + start_write_offset, src, frag_len);
306 memcpy(ring_buffer, src + frag_len, srclen - frag_len);
307 } else
308 memcpy(ring_buffer + start_write_offset, src, srclen);
310 start_write_offset += srclen;
311 start_write_offset %= ring_buffer_size;
313 return start_write_offset;
318 * hv_ringbuffer_get_debuginfo()
320 * Get various debug metrics for the specified ring buffer
323 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
324 struct hv_ring_buffer_debug_info *debug_info)
326 u32 bytes_avail_towrite;
327 u32 bytes_avail_toread;
329 if (ring_info->ring_buffer) {
330 hv_get_ringbuffer_availbytes(ring_info,
331 &bytes_avail_toread,
332 &bytes_avail_towrite);
334 debug_info->bytes_avail_toread = bytes_avail_toread;
335 debug_info->bytes_avail_towrite = bytes_avail_towrite;
336 debug_info->current_read_index =
337 ring_info->ring_buffer->read_index;
338 debug_info->current_write_index =
339 ring_info->ring_buffer->write_index;
340 debug_info->current_interrupt_mask =
341 ring_info->ring_buffer->interrupt_mask;
347 * hv_ringbuffer_init()
349 *Initialize the ring buffer
352 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
353 void *buffer, u32 buflen)
355 if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
356 return -EINVAL;
358 memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
360 ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
361 ring_info->ring_buffer->read_index =
362 ring_info->ring_buffer->write_index = 0;
365 * Set the feature bit for enabling flow control.
367 ring_info->ring_buffer->feature_bits.value = 1;
369 ring_info->ring_size = buflen;
370 ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
372 spin_lock_init(&ring_info->ring_lock);
374 return 0;
379 * hv_ringbuffer_cleanup()
381 * Cleanup the ring buffer
384 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
390 * hv_ringbuffer_write()
392 * Write to the ring buffer
395 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
396 struct kvec *kv_list, u32 kv_count, bool *signal)
398 int i = 0;
399 u32 bytes_avail_towrite;
400 u32 bytes_avail_toread;
401 u32 totalbytes_towrite = 0;
403 u32 next_write_location;
404 u32 old_write;
405 u64 prev_indices = 0;
406 unsigned long flags;
408 for (i = 0; i < kv_count; i++)
409 totalbytes_towrite += kv_list[i].iov_len;
411 totalbytes_towrite += sizeof(u64);
413 spin_lock_irqsave(&outring_info->ring_lock, flags);
415 hv_get_ringbuffer_availbytes(outring_info,
416 &bytes_avail_toread,
417 &bytes_avail_towrite);
420 /* If there is only room for the packet, assume it is full. */
421 /* Otherwise, the next time around, we think the ring buffer */
422 /* is empty since the read index == write index */
423 if (bytes_avail_towrite <= totalbytes_towrite) {
424 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
425 return -EAGAIN;
428 /* Write to the ring buffer */
429 next_write_location = hv_get_next_write_location(outring_info);
431 old_write = next_write_location;
433 for (i = 0; i < kv_count; i++) {
434 next_write_location = hv_copyto_ringbuffer(outring_info,
435 next_write_location,
436 kv_list[i].iov_base,
437 kv_list[i].iov_len);
440 /* Set previous packet start */
441 prev_indices = hv_get_ring_bufferindices(outring_info);
443 next_write_location = hv_copyto_ringbuffer(outring_info,
444 next_write_location,
445 &prev_indices,
446 sizeof(u64));
448 /* Issue a full memory barrier before updating the write index */
449 mb();
451 /* Now, update the write location */
452 hv_set_next_write_location(outring_info, next_write_location);
455 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
457 *signal = hv_need_to_signal(old_write, outring_info);
458 return 0;
464 * hv_ringbuffer_peek()
466 * Read without advancing the read index
469 int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info,
470 void *Buffer, u32 buflen)
472 u32 bytes_avail_towrite;
473 u32 bytes_avail_toread;
474 u32 next_read_location = 0;
475 unsigned long flags;
477 spin_lock_irqsave(&Inring_info->ring_lock, flags);
479 hv_get_ringbuffer_availbytes(Inring_info,
480 &bytes_avail_toread,
481 &bytes_avail_towrite);
483 /* Make sure there is something to read */
484 if (bytes_avail_toread < buflen) {
486 spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
488 return -EAGAIN;
491 /* Convert to byte offset */
492 next_read_location = hv_get_next_read_location(Inring_info);
494 next_read_location = hv_copyfrom_ringbuffer(Inring_info,
495 Buffer,
496 buflen,
497 next_read_location);
499 spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
501 return 0;
507 * hv_ringbuffer_read()
509 * Read and advance the read index
512 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer,
513 u32 buflen, u32 offset, bool *signal)
515 u32 bytes_avail_towrite;
516 u32 bytes_avail_toread;
517 u32 next_read_location = 0;
518 u64 prev_indices = 0;
519 unsigned long flags;
520 u32 old_read;
522 if (buflen <= 0)
523 return -EINVAL;
525 spin_lock_irqsave(&inring_info->ring_lock, flags);
527 hv_get_ringbuffer_availbytes(inring_info,
528 &bytes_avail_toread,
529 &bytes_avail_towrite);
531 old_read = bytes_avail_toread;
533 /* Make sure there is something to read */
534 if (bytes_avail_toread < buflen) {
535 spin_unlock_irqrestore(&inring_info->ring_lock, flags);
537 return -EAGAIN;
540 next_read_location =
541 hv_get_next_readlocation_withoffset(inring_info, offset);
543 next_read_location = hv_copyfrom_ringbuffer(inring_info,
544 buffer,
545 buflen,
546 next_read_location);
548 next_read_location = hv_copyfrom_ringbuffer(inring_info,
549 &prev_indices,
550 sizeof(u64),
551 next_read_location);
553 /* Make sure all reads are done before we update the read index since */
554 /* the writer may start writing to the read area once the read index */
555 /*is updated */
556 mb();
558 /* Update the read index */
559 hv_set_next_read_location(inring_info, next_read_location);
561 spin_unlock_irqrestore(&inring_info->ring_lock, flags);
563 *signal = hv_need_to_signal_on_read(old_read, inring_info);
565 return 0;