2 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
4 * Copyright (C) 2011 Weinmann Medical GmbH
5 * Author: Nikolaus Voss <n.voss@weinmann.de>
7 * Evolved from original work by:
8 * Copyright (C) 2004 Rick Bronson
9 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
11 * Borrowed heavily from original work by:
12 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
20 #include <linux/clk.h>
21 #include <linux/completion.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/err.h>
25 #include <linux/i2c.h>
26 #include <linux/interrupt.h>
28 #include <linux/module.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/platform_data/dma-atmel.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/pinctrl/consumer.h>
37 #define DEFAULT_TWI_CLK_HZ 100000 /* max 400 Kbits/s */
38 #define AT91_I2C_TIMEOUT msecs_to_jiffies(100) /* transfer timeout */
39 #define AT91_I2C_DMA_THRESHOLD 8 /* enable DMA if transfer size is bigger than this threshold */
40 #define AUTOSUSPEND_TIMEOUT 2000
42 /* AT91 TWI register definitions */
43 #define AT91_TWI_CR 0x0000 /* Control Register */
44 #define AT91_TWI_START 0x0001 /* Send a Start Condition */
45 #define AT91_TWI_STOP 0x0002 /* Send a Stop Condition */
46 #define AT91_TWI_MSEN 0x0004 /* Master Transfer Enable */
47 #define AT91_TWI_SVDIS 0x0020 /* Slave Transfer Disable */
48 #define AT91_TWI_QUICK 0x0040 /* SMBus quick command */
49 #define AT91_TWI_SWRST 0x0080 /* Software Reset */
51 #define AT91_TWI_MMR 0x0004 /* Master Mode Register */
52 #define AT91_TWI_IADRSZ_1 0x0100 /* Internal Device Address Size */
53 #define AT91_TWI_MREAD 0x1000 /* Master Read Direction */
55 #define AT91_TWI_IADR 0x000c /* Internal Address Register */
57 #define AT91_TWI_CWGR 0x0010 /* Clock Waveform Generator Reg */
59 #define AT91_TWI_SR 0x0020 /* Status Register */
60 #define AT91_TWI_TXCOMP 0x0001 /* Transmission Complete */
61 #define AT91_TWI_RXRDY 0x0002 /* Receive Holding Register Ready */
62 #define AT91_TWI_TXRDY 0x0004 /* Transmit Holding Register Ready */
64 #define AT91_TWI_OVRE 0x0040 /* Overrun Error */
65 #define AT91_TWI_UNRE 0x0080 /* Underrun Error */
66 #define AT91_TWI_NACK 0x0100 /* Not Acknowledged */
68 #define AT91_TWI_INT_MASK \
69 (AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
71 #define AT91_TWI_IER 0x0024 /* Interrupt Enable Register */
72 #define AT91_TWI_IDR 0x0028 /* Interrupt Disable Register */
73 #define AT91_TWI_IMR 0x002c /* Interrupt Mask Register */
74 #define AT91_TWI_RHR 0x0030 /* Receive Holding Register */
75 #define AT91_TWI_THR 0x0034 /* Transmit Holding Register */
77 struct at91_twi_pdata
{
81 struct at_dma_slave dma_slave
;
85 struct dma_chan
*chan_rx
;
86 struct dma_chan
*chan_tx
;
87 struct scatterlist sg
;
88 struct dma_async_tx_descriptor
*data_desc
;
89 enum dma_data_direction direction
;
91 bool xfer_in_progress
;
97 struct completion cmd_complete
;
104 unsigned transfer_status
;
105 struct i2c_adapter adapter
;
106 unsigned twi_cwgr_reg
;
107 struct at91_twi_pdata
*pdata
;
110 struct at91_twi_dma dma
;
113 static unsigned at91_twi_read(struct at91_twi_dev
*dev
, unsigned reg
)
115 return readl_relaxed(dev
->base
+ reg
);
118 static void at91_twi_write(struct at91_twi_dev
*dev
, unsigned reg
, unsigned val
)
120 writel_relaxed(val
, dev
->base
+ reg
);
123 static void at91_disable_twi_interrupts(struct at91_twi_dev
*dev
)
125 at91_twi_write(dev
, AT91_TWI_IDR
, AT91_TWI_INT_MASK
);
128 static void at91_twi_irq_save(struct at91_twi_dev
*dev
)
130 dev
->imr
= at91_twi_read(dev
, AT91_TWI_IMR
) & AT91_TWI_INT_MASK
;
131 at91_disable_twi_interrupts(dev
);
134 static void at91_twi_irq_restore(struct at91_twi_dev
*dev
)
136 at91_twi_write(dev
, AT91_TWI_IER
, dev
->imr
);
139 static void at91_init_twi_bus(struct at91_twi_dev
*dev
)
141 at91_disable_twi_interrupts(dev
);
142 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_SWRST
);
143 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_MSEN
);
144 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_SVDIS
);
145 at91_twi_write(dev
, AT91_TWI_CWGR
, dev
->twi_cwgr_reg
);
149 * Calculate symmetric clock as stated in datasheet:
150 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
152 static void at91_calc_twi_clock(struct at91_twi_dev
*dev
, int twi_clk
)
154 int ckdiv
, cdiv
, div
;
155 struct at91_twi_pdata
*pdata
= dev
->pdata
;
156 int offset
= pdata
->clk_offset
;
157 int max_ckdiv
= pdata
->clk_max_div
;
159 div
= max(0, (int)DIV_ROUND_UP(clk_get_rate(dev
->clk
),
160 2 * twi_clk
) - offset
);
161 ckdiv
= fls(div
>> 8);
164 if (ckdiv
> max_ckdiv
) {
165 dev_warn(dev
->dev
, "%d exceeds ckdiv max value which is %d.\n",
171 dev
->twi_cwgr_reg
= (ckdiv
<< 16) | (cdiv
<< 8) | cdiv
;
172 dev_dbg(dev
->dev
, "cdiv %d ckdiv %d\n", cdiv
, ckdiv
);
175 static void at91_twi_dma_cleanup(struct at91_twi_dev
*dev
)
177 struct at91_twi_dma
*dma
= &dev
->dma
;
179 at91_twi_irq_save(dev
);
181 if (dma
->xfer_in_progress
) {
182 if (dma
->direction
== DMA_FROM_DEVICE
)
183 dmaengine_terminate_all(dma
->chan_rx
);
185 dmaengine_terminate_all(dma
->chan_tx
);
186 dma
->xfer_in_progress
= false;
188 if (dma
->buf_mapped
) {
189 dma_unmap_single(dev
->dev
, sg_dma_address(&dma
->sg
),
190 dev
->buf_len
, dma
->direction
);
191 dma
->buf_mapped
= false;
194 at91_twi_irq_restore(dev
);
197 static void at91_twi_write_next_byte(struct at91_twi_dev
*dev
)
199 if (dev
->buf_len
<= 0)
202 at91_twi_write(dev
, AT91_TWI_THR
, *dev
->buf
);
204 /* send stop when last byte has been written */
205 if (--dev
->buf_len
== 0)
206 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
208 dev_dbg(dev
->dev
, "wrote 0x%x, to go %d\n", *dev
->buf
, dev
->buf_len
);
213 static void at91_twi_write_data_dma_callback(void *data
)
215 struct at91_twi_dev
*dev
= (struct at91_twi_dev
*)data
;
217 dma_unmap_single(dev
->dev
, sg_dma_address(&dev
->dma
.sg
),
218 dev
->buf_len
, DMA_TO_DEVICE
);
221 * When this callback is called, THR/TX FIFO is likely not to be empty
222 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
223 * Status Register to be sure that the STOP bit has been sent and the
224 * transfer is completed. The NACK interrupt has already been enabled,
225 * we just have to enable TXCOMP one.
227 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_TXCOMP
);
228 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
231 static void at91_twi_write_data_dma(struct at91_twi_dev
*dev
)
234 struct dma_async_tx_descriptor
*txdesc
;
235 struct at91_twi_dma
*dma
= &dev
->dma
;
236 struct dma_chan
*chan_tx
= dma
->chan_tx
;
238 if (dev
->buf_len
<= 0)
241 dma
->direction
= DMA_TO_DEVICE
;
243 at91_twi_irq_save(dev
);
244 dma_addr
= dma_map_single(dev
->dev
, dev
->buf
, dev
->buf_len
,
246 if (dma_mapping_error(dev
->dev
, dma_addr
)) {
247 dev_err(dev
->dev
, "dma map failed\n");
250 dma
->buf_mapped
= true;
251 at91_twi_irq_restore(dev
);
252 sg_dma_len(&dma
->sg
) = dev
->buf_len
;
253 sg_dma_address(&dma
->sg
) = dma_addr
;
255 txdesc
= dmaengine_prep_slave_sg(chan_tx
, &dma
->sg
, 1, DMA_MEM_TO_DEV
,
256 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
258 dev_err(dev
->dev
, "dma prep slave sg failed\n");
262 txdesc
->callback
= at91_twi_write_data_dma_callback
;
263 txdesc
->callback_param
= dev
;
265 dma
->xfer_in_progress
= true;
266 dmaengine_submit(txdesc
);
267 dma_async_issue_pending(chan_tx
);
272 at91_twi_dma_cleanup(dev
);
275 static void at91_twi_read_next_byte(struct at91_twi_dev
*dev
)
277 if (dev
->buf_len
<= 0)
280 *dev
->buf
= at91_twi_read(dev
, AT91_TWI_RHR
) & 0xff;
283 /* return if aborting, we only needed to read RHR to clear RXRDY*/
284 if (dev
->recv_len_abort
)
287 /* handle I2C_SMBUS_BLOCK_DATA */
288 if (unlikely(dev
->msg
->flags
& I2C_M_RECV_LEN
)) {
289 /* ensure length byte is a valid value */
290 if (*dev
->buf
<= I2C_SMBUS_BLOCK_MAX
&& *dev
->buf
> 0) {
291 dev
->msg
->flags
&= ~I2C_M_RECV_LEN
;
292 dev
->buf_len
+= *dev
->buf
;
293 dev
->msg
->len
= dev
->buf_len
+ 1;
294 dev_dbg(dev
->dev
, "received block length %d\n",
297 /* abort and send the stop by reading one more byte */
298 dev
->recv_len_abort
= true;
303 /* send stop if second but last byte has been read */
304 if (dev
->buf_len
== 1)
305 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
307 dev_dbg(dev
->dev
, "read 0x%x, to go %d\n", *dev
->buf
, dev
->buf_len
);
312 static void at91_twi_read_data_dma_callback(void *data
)
314 struct at91_twi_dev
*dev
= (struct at91_twi_dev
*)data
;
316 dma_unmap_single(dev
->dev
, sg_dma_address(&dev
->dma
.sg
),
317 dev
->buf_len
, DMA_FROM_DEVICE
);
319 /* The last two bytes have to be read without using dma */
320 dev
->buf
+= dev
->buf_len
- 2;
322 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_RXRDY
| AT91_TWI_TXCOMP
);
325 static void at91_twi_read_data_dma(struct at91_twi_dev
*dev
)
328 struct dma_async_tx_descriptor
*rxdesc
;
329 struct at91_twi_dma
*dma
= &dev
->dma
;
330 struct dma_chan
*chan_rx
= dma
->chan_rx
;
332 dma
->direction
= DMA_FROM_DEVICE
;
334 /* Keep in mind that we won't use dma to read the last two bytes */
335 at91_twi_irq_save(dev
);
336 dma_addr
= dma_map_single(dev
->dev
, dev
->buf
, dev
->buf_len
- 2,
338 if (dma_mapping_error(dev
->dev
, dma_addr
)) {
339 dev_err(dev
->dev
, "dma map failed\n");
342 dma
->buf_mapped
= true;
343 at91_twi_irq_restore(dev
);
344 dma
->sg
.dma_address
= dma_addr
;
345 sg_dma_len(&dma
->sg
) = dev
->buf_len
- 2;
347 rxdesc
= dmaengine_prep_slave_sg(chan_rx
, &dma
->sg
, 1, DMA_DEV_TO_MEM
,
348 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
350 dev_err(dev
->dev
, "dma prep slave sg failed\n");
354 rxdesc
->callback
= at91_twi_read_data_dma_callback
;
355 rxdesc
->callback_param
= dev
;
357 dma
->xfer_in_progress
= true;
358 dmaengine_submit(rxdesc
);
359 dma_async_issue_pending(dma
->chan_rx
);
364 at91_twi_dma_cleanup(dev
);
367 static irqreturn_t
atmel_twi_interrupt(int irq
, void *dev_id
)
369 struct at91_twi_dev
*dev
= dev_id
;
370 const unsigned status
= at91_twi_read(dev
, AT91_TWI_SR
);
371 const unsigned irqstatus
= status
& at91_twi_read(dev
, AT91_TWI_IMR
);
375 else if (irqstatus
& AT91_TWI_RXRDY
)
376 at91_twi_read_next_byte(dev
);
377 else if (irqstatus
& AT91_TWI_TXRDY
)
378 at91_twi_write_next_byte(dev
);
380 /* catch error flags */
381 dev
->transfer_status
|= status
;
383 if (irqstatus
& (AT91_TWI_TXCOMP
| AT91_TWI_NACK
)) {
384 at91_disable_twi_interrupts(dev
);
385 complete(&dev
->cmd_complete
);
391 static int at91_do_twi_transfer(struct at91_twi_dev
*dev
)
394 unsigned long time_left
;
395 bool has_unre_flag
= dev
->pdata
->has_unre_flag
;
398 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
399 * read flag but shows the state of the transmission at the time the
400 * Status Register is read. According to the programmer datasheet,
401 * TXCOMP is set when both holding register and internal shifter are
402 * empty and STOP condition has been sent.
403 * Consequently, we should enable NACK interrupt rather than TXCOMP to
404 * detect transmission failure.
406 * Besides, the TXCOMP bit is already set before the i2c transaction
407 * has been started. For read transactions, this bit is cleared when
408 * writing the START bit into the Control Register. So the
409 * corresponding interrupt can safely be enabled just after.
410 * However for write transactions managed by the CPU, we first write
411 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
412 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
413 * the interrupt handler would be called immediately and the i2c command
414 * would be reported as completed.
415 * Also when a write transaction is managed by the DMA controller,
416 * enabling the TXCOMP interrupt in this function may lead to a race
417 * condition since we don't know whether the TXCOMP interrupt is enabled
418 * before or after the DMA has started to write into THR. So the TXCOMP
419 * interrupt is enabled later by at91_twi_write_data_dma_callback().
420 * Immediately after in that DMA callback, we still need to send the
421 * STOP condition manually writing the corresponding bit into the
425 dev_dbg(dev
->dev
, "transfer: %s %d bytes.\n",
426 (dev
->msg
->flags
& I2C_M_RD
) ? "read" : "write", dev
->buf_len
);
428 reinit_completion(&dev
->cmd_complete
);
429 dev
->transfer_status
= 0;
432 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_QUICK
);
433 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_TXCOMP
);
434 } else if (dev
->msg
->flags
& I2C_M_RD
) {
435 unsigned start_flags
= AT91_TWI_START
;
437 if (at91_twi_read(dev
, AT91_TWI_SR
) & AT91_TWI_RXRDY
) {
438 dev_err(dev
->dev
, "RXRDY still set!");
439 at91_twi_read(dev
, AT91_TWI_RHR
);
442 /* if only one byte is to be read, immediately stop transfer */
443 if (dev
->buf_len
<= 1 && !(dev
->msg
->flags
& I2C_M_RECV_LEN
))
444 start_flags
|= AT91_TWI_STOP
;
445 at91_twi_write(dev
, AT91_TWI_CR
, start_flags
);
447 * When using dma, the last byte has to be read manually in
448 * order to not send the stop command too late and then
449 * to receive extra data. In practice, there are some issues
450 * if you use the dma to read n-1 bytes because of latency.
451 * Reading n-2 bytes with dma and the two last ones manually
452 * seems to be the best solution.
454 if (dev
->use_dma
&& (dev
->buf_len
> AT91_I2C_DMA_THRESHOLD
)) {
455 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_NACK
);
456 at91_twi_read_data_dma(dev
);
458 at91_twi_write(dev
, AT91_TWI_IER
,
464 if (dev
->use_dma
&& (dev
->buf_len
> AT91_I2C_DMA_THRESHOLD
)) {
465 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_NACK
);
466 at91_twi_write_data_dma(dev
);
468 at91_twi_write_next_byte(dev
);
469 at91_twi_write(dev
, AT91_TWI_IER
,
476 time_left
= wait_for_completion_timeout(&dev
->cmd_complete
,
477 dev
->adapter
.timeout
);
478 if (time_left
== 0) {
479 dev_err(dev
->dev
, "controller timed out\n");
480 at91_init_twi_bus(dev
);
484 if (dev
->transfer_status
& AT91_TWI_NACK
) {
485 dev_dbg(dev
->dev
, "received nack\n");
489 if (dev
->transfer_status
& AT91_TWI_OVRE
) {
490 dev_err(dev
->dev
, "overrun while reading\n");
494 if (has_unre_flag
&& dev
->transfer_status
& AT91_TWI_UNRE
) {
495 dev_err(dev
->dev
, "underrun while writing\n");
499 if (dev
->recv_len_abort
) {
500 dev_err(dev
->dev
, "invalid smbus block length recvd\n");
505 dev_dbg(dev
->dev
, "transfer complete\n");
510 at91_twi_dma_cleanup(dev
);
514 static int at91_twi_xfer(struct i2c_adapter
*adap
, struct i2c_msg
*msg
, int num
)
516 struct at91_twi_dev
*dev
= i2c_get_adapdata(adap
);
518 unsigned int_addr_flag
= 0;
519 struct i2c_msg
*m_start
= msg
;
521 dev_dbg(&adap
->dev
, "at91_xfer: processing %d messages:\n", num
);
523 ret
= pm_runtime_get_sync(dev
->dev
);
528 int internal_address
= 0;
531 /* 1st msg is put into the internal address, start with 2nd */
533 for (i
= 0; i
< msg
->len
; ++i
) {
534 const unsigned addr
= msg
->buf
[msg
->len
- 1 - i
];
536 internal_address
|= addr
<< (8 * i
);
537 int_addr_flag
+= AT91_TWI_IADRSZ_1
;
539 at91_twi_write(dev
, AT91_TWI_IADR
, internal_address
);
542 at91_twi_write(dev
, AT91_TWI_MMR
, (m_start
->addr
<< 16) | int_addr_flag
543 | ((m_start
->flags
& I2C_M_RD
) ? AT91_TWI_MREAD
: 0));
545 dev
->buf_len
= m_start
->len
;
546 dev
->buf
= m_start
->buf
;
548 dev
->recv_len_abort
= false;
550 ret
= at91_do_twi_transfer(dev
);
552 ret
= (ret
< 0) ? ret
: num
;
554 pm_runtime_mark_last_busy(dev
->dev
);
555 pm_runtime_put_autosuspend(dev
->dev
);
561 * The hardware can handle at most two messages concatenated by a
562 * repeated start via it's internal address feature.
564 static struct i2c_adapter_quirks at91_twi_quirks
= {
565 .flags
= I2C_AQ_COMB
| I2C_AQ_COMB_WRITE_FIRST
| I2C_AQ_COMB_SAME_ADDR
,
566 .max_comb_1st_msg_len
= 3,
569 static u32
at91_twi_func(struct i2c_adapter
*adapter
)
571 return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
572 | I2C_FUNC_SMBUS_READ_BLOCK_DATA
;
575 static struct i2c_algorithm at91_twi_algorithm
= {
576 .master_xfer
= at91_twi_xfer
,
577 .functionality
= at91_twi_func
,
580 static struct at91_twi_pdata at91rm9200_config
= {
583 .has_unre_flag
= true,
586 static struct at91_twi_pdata at91sam9261_config
= {
589 .has_unre_flag
= false,
592 static struct at91_twi_pdata at91sam9260_config
= {
595 .has_unre_flag
= false,
598 static struct at91_twi_pdata at91sam9g20_config
= {
601 .has_unre_flag
= false,
604 static struct at91_twi_pdata at91sam9g10_config
= {
607 .has_unre_flag
= false,
610 static const struct platform_device_id at91_twi_devtypes
[] = {
612 .name
= "i2c-at91rm9200",
613 .driver_data
= (unsigned long) &at91rm9200_config
,
615 .name
= "i2c-at91sam9261",
616 .driver_data
= (unsigned long) &at91sam9261_config
,
618 .name
= "i2c-at91sam9260",
619 .driver_data
= (unsigned long) &at91sam9260_config
,
621 .name
= "i2c-at91sam9g20",
622 .driver_data
= (unsigned long) &at91sam9g20_config
,
624 .name
= "i2c-at91sam9g10",
625 .driver_data
= (unsigned long) &at91sam9g10_config
,
631 #if defined(CONFIG_OF)
632 static struct at91_twi_pdata at91sam9x5_config
= {
635 .has_unre_flag
= false,
638 static const struct of_device_id atmel_twi_dt_ids
[] = {
640 .compatible
= "atmel,at91rm9200-i2c",
641 .data
= &at91rm9200_config
,
643 .compatible
= "atmel,at91sam9260-i2c",
644 .data
= &at91sam9260_config
,
646 .compatible
= "atmel,at91sam9261-i2c",
647 .data
= &at91sam9261_config
,
649 .compatible
= "atmel,at91sam9g20-i2c",
650 .data
= &at91sam9g20_config
,
652 .compatible
= "atmel,at91sam9g10-i2c",
653 .data
= &at91sam9g10_config
,
655 .compatible
= "atmel,at91sam9x5-i2c",
656 .data
= &at91sam9x5_config
,
661 MODULE_DEVICE_TABLE(of
, atmel_twi_dt_ids
);
664 static int at91_twi_configure_dma(struct at91_twi_dev
*dev
, u32 phy_addr
)
667 struct dma_slave_config slave_config
;
668 struct at91_twi_dma
*dma
= &dev
->dma
;
670 memset(&slave_config
, 0, sizeof(slave_config
));
671 slave_config
.src_addr
= (dma_addr_t
)phy_addr
+ AT91_TWI_RHR
;
672 slave_config
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
673 slave_config
.src_maxburst
= 1;
674 slave_config
.dst_addr
= (dma_addr_t
)phy_addr
+ AT91_TWI_THR
;
675 slave_config
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
676 slave_config
.dst_maxburst
= 1;
677 slave_config
.device_fc
= false;
679 dma
->chan_tx
= dma_request_slave_channel_reason(dev
->dev
, "tx");
680 if (IS_ERR(dma
->chan_tx
)) {
681 ret
= PTR_ERR(dma
->chan_tx
);
686 dma
->chan_rx
= dma_request_slave_channel_reason(dev
->dev
, "rx");
687 if (IS_ERR(dma
->chan_rx
)) {
688 ret
= PTR_ERR(dma
->chan_rx
);
693 slave_config
.direction
= DMA_MEM_TO_DEV
;
694 if (dmaengine_slave_config(dma
->chan_tx
, &slave_config
)) {
695 dev_err(dev
->dev
, "failed to configure tx channel\n");
700 slave_config
.direction
= DMA_DEV_TO_MEM
;
701 if (dmaengine_slave_config(dma
->chan_rx
, &slave_config
)) {
702 dev_err(dev
->dev
, "failed to configure rx channel\n");
707 sg_init_table(&dma
->sg
, 1);
708 dma
->buf_mapped
= false;
709 dma
->xfer_in_progress
= false;
712 dev_info(dev
->dev
, "using %s (tx) and %s (rx) for DMA transfers\n",
713 dma_chan_name(dma
->chan_tx
), dma_chan_name(dma
->chan_rx
));
718 if (ret
!= -EPROBE_DEFER
)
719 dev_info(dev
->dev
, "can't use DMA, error %d\n", ret
);
721 dma_release_channel(dma
->chan_rx
);
723 dma_release_channel(dma
->chan_tx
);
727 static struct at91_twi_pdata
*at91_twi_get_driver_data(
728 struct platform_device
*pdev
)
730 if (pdev
->dev
.of_node
) {
731 const struct of_device_id
*match
;
732 match
= of_match_node(atmel_twi_dt_ids
, pdev
->dev
.of_node
);
735 return (struct at91_twi_pdata
*)match
->data
;
737 return (struct at91_twi_pdata
*) platform_get_device_id(pdev
)->driver_data
;
740 static int at91_twi_probe(struct platform_device
*pdev
)
742 struct at91_twi_dev
*dev
;
743 struct resource
*mem
;
748 dev
= devm_kzalloc(&pdev
->dev
, sizeof(*dev
), GFP_KERNEL
);
751 init_completion(&dev
->cmd_complete
);
752 dev
->dev
= &pdev
->dev
;
754 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
757 phy_addr
= mem
->start
;
759 dev
->pdata
= at91_twi_get_driver_data(pdev
);
763 dev
->base
= devm_ioremap_resource(&pdev
->dev
, mem
);
764 if (IS_ERR(dev
->base
))
765 return PTR_ERR(dev
->base
);
767 dev
->irq
= platform_get_irq(pdev
, 0);
771 rc
= devm_request_irq(&pdev
->dev
, dev
->irq
, atmel_twi_interrupt
, 0,
772 dev_name(dev
->dev
), dev
);
774 dev_err(dev
->dev
, "Cannot get irq %d: %d\n", dev
->irq
, rc
);
778 platform_set_drvdata(pdev
, dev
);
780 dev
->clk
= devm_clk_get(dev
->dev
, NULL
);
781 if (IS_ERR(dev
->clk
)) {
782 dev_err(dev
->dev
, "no clock defined\n");
785 clk_prepare_enable(dev
->clk
);
787 if (dev
->dev
->of_node
) {
788 rc
= at91_twi_configure_dma(dev
, phy_addr
);
789 if (rc
== -EPROBE_DEFER
)
793 rc
= of_property_read_u32(dev
->dev
->of_node
, "clock-frequency",
796 bus_clk_rate
= DEFAULT_TWI_CLK_HZ
;
798 at91_calc_twi_clock(dev
, bus_clk_rate
);
799 at91_init_twi_bus(dev
);
801 snprintf(dev
->adapter
.name
, sizeof(dev
->adapter
.name
), "AT91");
802 i2c_set_adapdata(&dev
->adapter
, dev
);
803 dev
->adapter
.owner
= THIS_MODULE
;
804 dev
->adapter
.class = I2C_CLASS_DEPRECATED
;
805 dev
->adapter
.algo
= &at91_twi_algorithm
;
806 dev
->adapter
.quirks
= &at91_twi_quirks
;
807 dev
->adapter
.dev
.parent
= dev
->dev
;
808 dev
->adapter
.nr
= pdev
->id
;
809 dev
->adapter
.timeout
= AT91_I2C_TIMEOUT
;
810 dev
->adapter
.dev
.of_node
= pdev
->dev
.of_node
;
812 pm_runtime_set_autosuspend_delay(dev
->dev
, AUTOSUSPEND_TIMEOUT
);
813 pm_runtime_use_autosuspend(dev
->dev
);
814 pm_runtime_set_active(dev
->dev
);
815 pm_runtime_enable(dev
->dev
);
817 rc
= i2c_add_numbered_adapter(&dev
->adapter
);
819 dev_err(dev
->dev
, "Adapter %s registration failed\n",
821 clk_disable_unprepare(dev
->clk
);
823 pm_runtime_disable(dev
->dev
);
824 pm_runtime_set_suspended(dev
->dev
);
829 dev_info(dev
->dev
, "AT91 i2c bus driver.\n");
833 static int at91_twi_remove(struct platform_device
*pdev
)
835 struct at91_twi_dev
*dev
= platform_get_drvdata(pdev
);
837 i2c_del_adapter(&dev
->adapter
);
838 clk_disable_unprepare(dev
->clk
);
840 pm_runtime_disable(dev
->dev
);
841 pm_runtime_set_suspended(dev
->dev
);
848 static int at91_twi_runtime_suspend(struct device
*dev
)
850 struct at91_twi_dev
*twi_dev
= dev_get_drvdata(dev
);
852 clk_disable_unprepare(twi_dev
->clk
);
854 pinctrl_pm_select_sleep_state(dev
);
859 static int at91_twi_runtime_resume(struct device
*dev
)
861 struct at91_twi_dev
*twi_dev
= dev_get_drvdata(dev
);
863 pinctrl_pm_select_default_state(dev
);
865 return clk_prepare_enable(twi_dev
->clk
);
868 static int at91_twi_suspend_noirq(struct device
*dev
)
870 if (!pm_runtime_status_suspended(dev
))
871 at91_twi_runtime_suspend(dev
);
876 static int at91_twi_resume_noirq(struct device
*dev
)
880 if (!pm_runtime_status_suspended(dev
)) {
881 ret
= at91_twi_runtime_resume(dev
);
886 pm_runtime_mark_last_busy(dev
);
887 pm_request_autosuspend(dev
);
892 static const struct dev_pm_ops at91_twi_pm
= {
893 .suspend_noirq
= at91_twi_suspend_noirq
,
894 .resume_noirq
= at91_twi_resume_noirq
,
895 .runtime_suspend
= at91_twi_runtime_suspend
,
896 .runtime_resume
= at91_twi_runtime_resume
,
899 #define at91_twi_pm_ops (&at91_twi_pm)
901 #define at91_twi_pm_ops NULL
904 static struct platform_driver at91_twi_driver
= {
905 .probe
= at91_twi_probe
,
906 .remove
= at91_twi_remove
,
907 .id_table
= at91_twi_devtypes
,
910 .of_match_table
= of_match_ptr(atmel_twi_dt_ids
),
911 .pm
= at91_twi_pm_ops
,
915 static int __init
at91_twi_init(void)
917 return platform_driver_register(&at91_twi_driver
);
920 static void __exit
at91_twi_exit(void)
922 platform_driver_unregister(&at91_twi_driver
);
925 subsys_initcall(at91_twi_init
);
926 module_exit(at91_twi_exit
);
928 MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
929 MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
930 MODULE_LICENSE("GPL");
931 MODULE_ALIAS("platform:at91_i2c");