Linux 4.1.16
[linux/fpc-iii.git] / drivers / mfd / db8500-prcmu.c
blobcc1a404328c294d6ed119801e3dbf613c832c0ba
1 /*
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
10 * U8500 PRCM Unit interface driver
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/of_irq.h>
29 #include <linux/platform_device.h>
30 #include <linux/uaccess.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/dbx500-prcmu.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/regulator/db8500-prcmu.h>
35 #include <linux/regulator/machine.h>
36 #include <linux/cpufreq.h>
37 #include <linux/platform_data/ux500_wdt.h>
38 #include <linux/platform_data/db8500_thermal.h>
39 #include "dbx500-prcmu-regs.h"
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE 0x2FC
43 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
57 #define PRCM_AVS_VOLTAGE 0
58 #define PRCM_AVS_VOLTAGE_MASK 0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP 6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE 7
62 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
64 #define PRCM_BOOT_STATUS 0xFFF
65 #define PRCM_ROMCODE_A2P 0xFFE
66 #define PRCM_ROMCODE_P2A 0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
80 /* Req Mailboxes */
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
88 /* Ack Mailboxes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS 0
98 #define MB0H_CONFIG_WAKEUPS_EXE 1
99 #define MB0H_READ_WAKEUP_ACK 3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
105 /* Mailbox 0 REQs */
106 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
113 /* Mailbox 0 ACKs */
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF 0x1
135 #define PLL_SOC0_ON 0x2
136 #define PLL_SOC1_OFF 0x4
137 #define PLL_SOC1_ON 0x8
139 /* Mailbox 1 ACKs */
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
145 /* Mailbox 2 headers */
146 #define MB2H_DPS 0x0
147 #define MB2H_AUTO_PWR 0x1
149 /* Mailbox 2 REQs */
150 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
161 /* Mailbox 2 ACKs */
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
165 /* Mailbox 3 headers */
166 #define MB3H_ANC 0x0
167 #define MB3H_SIDETONE 0x1
168 #define MB3H_SYSCLK 0xE
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT 0x0
181 #define MB4H_MEM_ST 0x1
182 #define MB4H_HOTDOG 0x12
183 #define MB4H_HOTMON 0x13
184 #define MB4H_HOT_PERIOD 0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN 0x17
187 #define MB4H_A9WDOG_DIS 0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW BIT(0)
201 #define HOTMON_CONFIG_HIGH BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS 0
208 #define A9WDOG_ID_MASK 0xf
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN BIT(3)
219 /* Mailbox 5 ACKs */
220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
225 #define NUM_MB 8
226 #define MBOX_BIT BIT
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
230 * Wakeups/IRQs
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
263 static struct {
264 bool valid;
265 struct prcmu_fw_version version;
266 } fw_info;
268 static struct irq_domain *db8500_irq_domain;
271 * This vector maps irq numbers to the bits in the bit field used in
272 * communication with the PRCMU firmware.
274 * The reason for having this is to keep the irq numbers contiguous even though
275 * the bits in the bit field are not. (The bits also have a tendency to move
276 * around, to further complicate matters.)
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307 IRQ_ENTRY(RTC),
308 IRQ_ENTRY(RTT0),
309 IRQ_ENTRY(RTT1),
310 IRQ_ENTRY(HSI0),
311 IRQ_ENTRY(HSI1),
312 IRQ_ENTRY(CA_WAKE),
313 IRQ_ENTRY(USB),
314 IRQ_ENTRY(ABB),
315 IRQ_ENTRY(ABB_FIFO),
316 IRQ_ENTRY(CA_SLEEP),
317 IRQ_ENTRY(ARM),
318 IRQ_ENTRY(HOTMON_LOW),
319 IRQ_ENTRY(HOTMON_HIGH),
320 IRQ_ENTRY(MODEM_SW_RESET_REQ),
321 IRQ_ENTRY(GPIO0),
322 IRQ_ENTRY(GPIO1),
323 IRQ_ENTRY(GPIO2),
324 IRQ_ENTRY(GPIO3),
325 IRQ_ENTRY(GPIO4),
326 IRQ_ENTRY(GPIO5),
327 IRQ_ENTRY(GPIO6),
328 IRQ_ENTRY(GPIO7),
329 IRQ_ENTRY(GPIO8)
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335 WAKEUP_ENTRY(RTC),
336 WAKEUP_ENTRY(RTT0),
337 WAKEUP_ENTRY(RTT1),
338 WAKEUP_ENTRY(HSI0),
339 WAKEUP_ENTRY(HSI1),
340 WAKEUP_ENTRY(USB),
341 WAKEUP_ENTRY(ABB),
342 WAKEUP_ENTRY(ABB_FIFO),
343 WAKEUP_ENTRY(ARM)
347 * mb0_transfer - state needed for mailbox 0 communication.
348 * @lock: The transaction lock.
349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
350 * the request data.
351 * @mask_work: Work structure used for (un)masking wakeup interrupts.
352 * @req: Request data that need to persist between requests.
354 static struct {
355 spinlock_t lock;
356 spinlock_t dbb_irqs_lock;
357 struct work_struct mask_work;
358 struct mutex ac_wake_lock;
359 struct completion ac_wake_work;
360 struct {
361 u32 dbb_irqs;
362 u32 dbb_wakeups;
363 u32 abb_events;
364 } req;
365 } mb0_transfer;
368 * mb1_transfer - state needed for mailbox 1 communication.
369 * @lock: The transaction lock.
370 * @work: The transaction completion structure.
371 * @ape_opp: The current APE OPP.
372 * @ack: Reply ("acknowledge") data.
374 static struct {
375 struct mutex lock;
376 struct completion work;
377 u8 ape_opp;
378 struct {
379 u8 header;
380 u8 arm_opp;
381 u8 ape_opp;
382 u8 ape_voltage_status;
383 } ack;
384 } mb1_transfer;
387 * mb2_transfer - state needed for mailbox 2 communication.
388 * @lock: The transaction lock.
389 * @work: The transaction completion structure.
390 * @auto_pm_lock: The autonomous power management configuration lock.
391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392 * @req: Request data that need to persist between requests.
393 * @ack: Reply ("acknowledge") data.
395 static struct {
396 struct mutex lock;
397 struct completion work;
398 spinlock_t auto_pm_lock;
399 bool auto_pm_enabled;
400 struct {
401 u8 status;
402 } ack;
403 } mb2_transfer;
406 * mb3_transfer - state needed for mailbox 3 communication.
407 * @lock: The request lock.
408 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
409 * @sysclk_work: Work structure used for sysclk requests.
411 static struct {
412 spinlock_t lock;
413 struct mutex sysclk_lock;
414 struct completion sysclk_work;
415 } mb3_transfer;
418 * mb4_transfer - state needed for mailbox 4 communication.
419 * @lock: The transaction lock.
420 * @work: The transaction completion structure.
422 static struct {
423 struct mutex lock;
424 struct completion work;
425 } mb4_transfer;
428 * mb5_transfer - state needed for mailbox 5 communication.
429 * @lock: The transaction lock.
430 * @work: The transaction completion structure.
431 * @ack: Reply ("acknowledge") data.
433 static struct {
434 struct mutex lock;
435 struct completion work;
436 struct {
437 u8 status;
438 u8 value;
439 } ack;
440 } mb5_transfer;
442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
444 /* Spinlocks */
445 static DEFINE_SPINLOCK(prcmu_lock);
446 static DEFINE_SPINLOCK(clkout_lock);
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem void *tcdm_base;
450 static __iomem void *prcmu_base;
452 struct clk_mgt {
453 u32 offset;
454 u32 pllsw;
455 int branch;
456 bool clk38div;
459 enum {
460 PLL_RAW,
461 PLL_FIX,
462 PLL_DIV
465 static DEFINE_SPINLOCK(clk_mgt_lock);
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
501 struct dsiclk {
502 u32 divsel_mask;
503 u32 divsel_shift;
504 u32 divsel;
507 static struct dsiclk dsiclk[2] = {
509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
520 struct dsiescclk {
521 u32 en;
522 u32 div_mask;
523 u32 div_shift;
526 static struct dsiescclk dsiescclk[3] = {
528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
546 * Used by MCDE to setup all necessary PRCMU registers
548 #define PRCMU_RESET_DSIPLL 0x00004000
549 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
551 #define PRCMU_CLK_PLL_DIV_SHIFT 0
552 #define PRCMU_CLK_PLL_SW_SHIFT 5
553 #define PRCMU_CLK_38 (1 << 9)
554 #define PRCMU_CLK_38_SRC (1 << 10)
555 #define PRCMU_CLK_38_DIV (1 << 11)
557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
558 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
560 /* DPI 50000000 Hz */
561 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
565 /* D=101, N=1, R=4, SELDIV2=0 */
566 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
568 #define PRCMU_ENABLE_PLLDSI 0x00000001
569 #define PRCMU_DISABLE_PLLDSI 0x00000000
570 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
571 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
572 /* ESC clk, div0=1, div1=1, div2=3 */
573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
575 #define PRCMU_DSI_RESET_SW 0x00000007
577 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
579 int db8500_prcmu_enable_dsipll(void)
581 int i;
583 /* Clear DSIPLL_RESETN */
584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585 /* Unclamp DSIPLL in/out */
586 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
588 /* Set DSI PLL FREQ */
589 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591 /* Enable Escape clocks */
592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
594 /* Start DSI PLL */
595 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596 /* Reset DSI PLL */
597 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598 for (i = 0; i < 10; i++) {
599 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600 == PRCMU_PLLDSI_LOCKP_LOCKED)
601 break;
602 udelay(100);
604 /* Set DSIPLL_RESETN */
605 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606 return 0;
609 int db8500_prcmu_disable_dsipll(void)
611 /* Disable dsi pll */
612 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613 /* Disable escapeclock */
614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615 return 0;
618 int db8500_prcmu_set_display_clocks(void)
620 unsigned long flags;
622 spin_lock_irqsave(&clk_mgt_lock, flags);
624 /* Grab the HW semaphore. */
625 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626 cpu_relax();
628 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
632 /* Release the HW semaphore. */
633 writel(0, PRCM_SEM);
635 spin_unlock_irqrestore(&clk_mgt_lock, flags);
637 return 0;
640 u32 db8500_prcmu_read(unsigned int reg)
642 return readl(prcmu_base + reg);
645 void db8500_prcmu_write(unsigned int reg, u32 value)
647 unsigned long flags;
649 spin_lock_irqsave(&prcmu_lock, flags);
650 writel(value, (prcmu_base + reg));
651 spin_unlock_irqrestore(&prcmu_lock, flags);
654 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
656 u32 val;
657 unsigned long flags;
659 spin_lock_irqsave(&prcmu_lock, flags);
660 val = readl(prcmu_base + reg);
661 val = ((val & ~mask) | (value & mask));
662 writel(val, (prcmu_base + reg));
663 spin_unlock_irqrestore(&prcmu_lock, flags);
666 struct prcmu_fw_version *prcmu_get_fw_version(void)
668 return fw_info.valid ? &fw_info.version : NULL;
671 bool prcmu_has_arm_maxopp(void)
673 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
678 * prcmu_set_rc_a2p - This function is used to run few power state sequences
679 * @val: Value to be set, i.e. transition requested
680 * Returns: 0 on success, -EINVAL on invalid argument
682 * This function is used to run the following power state sequences -
683 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
685 int prcmu_set_rc_a2p(enum romcode_write val)
687 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
688 return -EINVAL;
689 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
690 return 0;
694 * prcmu_get_rc_p2a - This function is used to get power state sequences
695 * Returns: the power transition that has last happened
697 * This function can return the following transitions-
698 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
700 enum romcode_read prcmu_get_rc_p2a(void)
702 return readb(tcdm_base + PRCM_ROMCODE_P2A);
706 * prcmu_get_current_mode - Return the current XP70 power mode
707 * Returns: Returns the current AP(ARM) power mode: init,
708 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
710 enum ap_pwrst prcmu_get_xp70_current_state(void)
712 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
716 * prcmu_config_clkout - Configure one of the programmable clock outputs.
717 * @clkout: The CLKOUT number (0 or 1).
718 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
719 * @div: The divider to be applied.
721 * Configures one of the programmable clock outputs (CLKOUTs).
722 * @div should be in the range [1,63] to request a configuration, or 0 to
723 * inform that the configuration is no longer requested.
725 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
727 static int requests[2];
728 int r = 0;
729 unsigned long flags;
730 u32 val;
731 u32 bits;
732 u32 mask;
733 u32 div_mask;
735 BUG_ON(clkout > 1);
736 BUG_ON(div > 63);
737 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
739 if (!div && !requests[clkout])
740 return -EINVAL;
742 switch (clkout) {
743 case 0:
744 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
745 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
746 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
747 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
748 break;
749 case 1:
750 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
751 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
752 PRCM_CLKOCR_CLK1TYPE);
753 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
754 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
755 break;
757 bits &= mask;
759 spin_lock_irqsave(&clkout_lock, flags);
761 val = readl(PRCM_CLKOCR);
762 if (val & div_mask) {
763 if (div) {
764 if ((val & mask) != bits) {
765 r = -EBUSY;
766 goto unlock_and_return;
768 } else {
769 if ((val & mask & ~div_mask) != bits) {
770 r = -EINVAL;
771 goto unlock_and_return;
775 writel((bits | (val & ~mask)), PRCM_CLKOCR);
776 requests[clkout] += (div ? 1 : -1);
778 unlock_and_return:
779 spin_unlock_irqrestore(&clkout_lock, flags);
781 return r;
784 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
786 unsigned long flags;
788 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
790 spin_lock_irqsave(&mb0_transfer.lock, flags);
792 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
793 cpu_relax();
795 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
796 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
797 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
798 writeb((keep_ulp_clk ? 1 : 0),
799 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
800 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
801 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
803 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
805 return 0;
808 u8 db8500_prcmu_get_power_state_result(void)
810 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
813 /* This function should only be called while mb0_transfer.lock is held. */
814 static void config_wakeups(void)
816 const u8 header[2] = {
817 MB0H_CONFIG_WAKEUPS_EXE,
818 MB0H_CONFIG_WAKEUPS_SLEEP
820 static u32 last_dbb_events;
821 static u32 last_abb_events;
822 u32 dbb_events;
823 u32 abb_events;
824 unsigned int i;
826 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
827 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
829 abb_events = mb0_transfer.req.abb_events;
831 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
832 return;
834 for (i = 0; i < 2; i++) {
835 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
836 cpu_relax();
837 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
838 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
839 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
840 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
842 last_dbb_events = dbb_events;
843 last_abb_events = abb_events;
846 void db8500_prcmu_enable_wakeups(u32 wakeups)
848 unsigned long flags;
849 u32 bits;
850 int i;
852 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
854 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
855 if (wakeups & BIT(i))
856 bits |= prcmu_wakeup_bit[i];
859 spin_lock_irqsave(&mb0_transfer.lock, flags);
861 mb0_transfer.req.dbb_wakeups = bits;
862 config_wakeups();
864 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
867 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
869 unsigned long flags;
871 spin_lock_irqsave(&mb0_transfer.lock, flags);
873 mb0_transfer.req.abb_events = abb_events;
874 config_wakeups();
876 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
879 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
881 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
882 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
883 else
884 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
888 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
889 * @opp: The new ARM operating point to which transition is to be made
890 * Returns: 0 on success, non-zero on failure
892 * This function sets the the operating point of the ARM.
894 int db8500_prcmu_set_arm_opp(u8 opp)
896 int r;
898 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
899 return -EINVAL;
901 r = 0;
903 mutex_lock(&mb1_transfer.lock);
905 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
906 cpu_relax();
908 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
909 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
910 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
912 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
913 wait_for_completion(&mb1_transfer.work);
915 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
916 (mb1_transfer.ack.arm_opp != opp))
917 r = -EIO;
919 mutex_unlock(&mb1_transfer.lock);
921 return r;
925 * db8500_prcmu_get_arm_opp - get the current ARM OPP
927 * Returns: the current ARM OPP
929 int db8500_prcmu_get_arm_opp(void)
931 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
935 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
937 * Returns: the current DDR OPP
939 int db8500_prcmu_get_ddr_opp(void)
941 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
945 * db8500_set_ddr_opp - set the appropriate DDR OPP
946 * @opp: The new DDR operating point to which transition is to be made
947 * Returns: 0 on success, non-zero on failure
949 * This function sets the operating point of the DDR.
951 static bool enable_set_ddr_opp;
952 int db8500_prcmu_set_ddr_opp(u8 opp)
954 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
955 return -EINVAL;
956 /* Changing the DDR OPP can hang the hardware pre-v21 */
957 if (enable_set_ddr_opp)
958 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
960 return 0;
963 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
964 static void request_even_slower_clocks(bool enable)
966 u32 clock_reg[] = {
967 PRCM_ACLK_MGT,
968 PRCM_DMACLK_MGT
970 unsigned long flags;
971 unsigned int i;
973 spin_lock_irqsave(&clk_mgt_lock, flags);
975 /* Grab the HW semaphore. */
976 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
977 cpu_relax();
979 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
980 u32 val;
981 u32 div;
983 val = readl(prcmu_base + clock_reg[i]);
984 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
985 if (enable) {
986 if ((div <= 1) || (div > 15)) {
987 pr_err("prcmu: Bad clock divider %d in %s\n",
988 div, __func__);
989 goto unlock_and_return;
991 div <<= 1;
992 } else {
993 if (div <= 2)
994 goto unlock_and_return;
995 div >>= 1;
997 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
998 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
999 writel(val, prcmu_base + clock_reg[i]);
1002 unlock_and_return:
1003 /* Release the HW semaphore. */
1004 writel(0, PRCM_SEM);
1006 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1010 * db8500_set_ape_opp - set the appropriate APE OPP
1011 * @opp: The new APE operating point to which transition is to be made
1012 * Returns: 0 on success, non-zero on failure
1014 * This function sets the operating point of the APE.
1016 int db8500_prcmu_set_ape_opp(u8 opp)
1018 int r = 0;
1020 if (opp == mb1_transfer.ape_opp)
1021 return 0;
1023 mutex_lock(&mb1_transfer.lock);
1025 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1026 request_even_slower_clocks(false);
1028 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1029 goto skip_message;
1031 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1032 cpu_relax();
1034 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1035 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1036 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1037 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1039 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1040 wait_for_completion(&mb1_transfer.work);
1042 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1043 (mb1_transfer.ack.ape_opp != opp))
1044 r = -EIO;
1046 skip_message:
1047 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1048 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1049 request_even_slower_clocks(true);
1050 if (!r)
1051 mb1_transfer.ape_opp = opp;
1053 mutex_unlock(&mb1_transfer.lock);
1055 return r;
1059 * db8500_prcmu_get_ape_opp - get the current APE OPP
1061 * Returns: the current APE OPP
1063 int db8500_prcmu_get_ape_opp(void)
1065 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1069 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1070 * @enable: true to request the higher voltage, false to drop a request.
1072 * Calls to this function to enable and disable requests must be balanced.
1074 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1076 int r = 0;
1077 u8 header;
1078 static unsigned int requests;
1080 mutex_lock(&mb1_transfer.lock);
1082 if (enable) {
1083 if (0 != requests++)
1084 goto unlock_and_return;
1085 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1086 } else {
1087 if (requests == 0) {
1088 r = -EIO;
1089 goto unlock_and_return;
1090 } else if (1 != requests--) {
1091 goto unlock_and_return;
1093 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1096 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1097 cpu_relax();
1099 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1101 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1102 wait_for_completion(&mb1_transfer.work);
1104 if ((mb1_transfer.ack.header != header) ||
1105 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1106 r = -EIO;
1108 unlock_and_return:
1109 mutex_unlock(&mb1_transfer.lock);
1111 return r;
1115 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1117 * This function releases the power state requirements of a USB wakeup.
1119 int prcmu_release_usb_wakeup_state(void)
1121 int r = 0;
1123 mutex_lock(&mb1_transfer.lock);
1125 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1126 cpu_relax();
1128 writeb(MB1H_RELEASE_USB_WAKEUP,
1129 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1131 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1132 wait_for_completion(&mb1_transfer.work);
1134 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1135 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1136 r = -EIO;
1138 mutex_unlock(&mb1_transfer.lock);
1140 return r;
1143 static int request_pll(u8 clock, bool enable)
1145 int r = 0;
1147 if (clock == PRCMU_PLLSOC0)
1148 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1149 else if (clock == PRCMU_PLLSOC1)
1150 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1151 else
1152 return -EINVAL;
1154 mutex_lock(&mb1_transfer.lock);
1156 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1157 cpu_relax();
1159 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1160 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1162 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1163 wait_for_completion(&mb1_transfer.work);
1165 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1166 r = -EIO;
1168 mutex_unlock(&mb1_transfer.lock);
1170 return r;
1174 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1175 * @epod_id: The EPOD to set
1176 * @epod_state: The new EPOD state
1178 * This function sets the state of a EPOD (power domain). It may not be called
1179 * from interrupt context.
1181 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1183 int r = 0;
1184 bool ram_retention = false;
1185 int i;
1187 /* check argument */
1188 BUG_ON(epod_id >= NUM_EPOD_ID);
1190 /* set flag if retention is possible */
1191 switch (epod_id) {
1192 case EPOD_ID_SVAMMDSP:
1193 case EPOD_ID_SIAMMDSP:
1194 case EPOD_ID_ESRAM12:
1195 case EPOD_ID_ESRAM34:
1196 ram_retention = true;
1197 break;
1200 /* check argument */
1201 BUG_ON(epod_state > EPOD_STATE_ON);
1202 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1204 /* get lock */
1205 mutex_lock(&mb2_transfer.lock);
1207 /* wait for mailbox */
1208 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1209 cpu_relax();
1211 /* fill in mailbox */
1212 for (i = 0; i < NUM_EPOD_ID; i++)
1213 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1214 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1216 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1218 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1221 * The current firmware version does not handle errors correctly,
1222 * and we cannot recover if there is an error.
1223 * This is expected to change when the firmware is updated.
1225 if (!wait_for_completion_timeout(&mb2_transfer.work,
1226 msecs_to_jiffies(20000))) {
1227 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1228 __func__);
1229 r = -EIO;
1230 goto unlock_and_return;
1233 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1234 r = -EIO;
1236 unlock_and_return:
1237 mutex_unlock(&mb2_transfer.lock);
1238 return r;
1242 * prcmu_configure_auto_pm - Configure autonomous power management.
1243 * @sleep: Configuration for ApSleep.
1244 * @idle: Configuration for ApIdle.
1246 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1247 struct prcmu_auto_pm_config *idle)
1249 u32 sleep_cfg;
1250 u32 idle_cfg;
1251 unsigned long flags;
1253 BUG_ON((sleep == NULL) || (idle == NULL));
1255 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1256 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1257 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1258 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1259 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1260 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1262 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1263 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1264 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1265 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1266 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1267 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1269 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1272 * The autonomous power management configuration is done through
1273 * fields in mailbox 2, but these fields are only used as shared
1274 * variables - i.e. there is no need to send a message.
1276 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1277 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1279 mb2_transfer.auto_pm_enabled =
1280 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1281 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1282 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1283 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1285 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1287 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1289 bool prcmu_is_auto_pm_enabled(void)
1291 return mb2_transfer.auto_pm_enabled;
1294 static int request_sysclk(bool enable)
1296 int r;
1297 unsigned long flags;
1299 r = 0;
1301 mutex_lock(&mb3_transfer.sysclk_lock);
1303 spin_lock_irqsave(&mb3_transfer.lock, flags);
1305 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1306 cpu_relax();
1308 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1310 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1311 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1313 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1316 * The firmware only sends an ACK if we want to enable the
1317 * SysClk, and it succeeds.
1319 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1320 msecs_to_jiffies(20000))) {
1321 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1322 __func__);
1323 r = -EIO;
1326 mutex_unlock(&mb3_transfer.sysclk_lock);
1328 return r;
1331 static int request_timclk(bool enable)
1333 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1335 if (!enable)
1336 val |= PRCM_TCR_STOP_TIMERS;
1337 writel(val, PRCM_TCR);
1339 return 0;
1342 static int request_clock(u8 clock, bool enable)
1344 u32 val;
1345 unsigned long flags;
1347 spin_lock_irqsave(&clk_mgt_lock, flags);
1349 /* Grab the HW semaphore. */
1350 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1351 cpu_relax();
1353 val = readl(prcmu_base + clk_mgt[clock].offset);
1354 if (enable) {
1355 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1356 } else {
1357 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1358 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1360 writel(val, prcmu_base + clk_mgt[clock].offset);
1362 /* Release the HW semaphore. */
1363 writel(0, PRCM_SEM);
1365 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1367 return 0;
1370 static int request_sga_clock(u8 clock, bool enable)
1372 u32 val;
1373 int ret;
1375 if (enable) {
1376 val = readl(PRCM_CGATING_BYPASS);
1377 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1380 ret = request_clock(clock, enable);
1382 if (!ret && !enable) {
1383 val = readl(PRCM_CGATING_BYPASS);
1384 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1387 return ret;
1390 static inline bool plldsi_locked(void)
1392 return (readl(PRCM_PLLDSI_LOCKP) &
1393 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1394 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1395 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1396 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1399 static int request_plldsi(bool enable)
1401 int r = 0;
1402 u32 val;
1404 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1405 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1406 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1408 val = readl(PRCM_PLLDSI_ENABLE);
1409 if (enable)
1410 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1411 else
1412 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1413 writel(val, PRCM_PLLDSI_ENABLE);
1415 if (enable) {
1416 unsigned int i;
1417 bool locked = plldsi_locked();
1419 for (i = 10; !locked && (i > 0); --i) {
1420 udelay(100);
1421 locked = plldsi_locked();
1423 if (locked) {
1424 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1425 PRCM_APE_RESETN_SET);
1426 } else {
1427 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1428 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1429 PRCM_MMIP_LS_CLAMP_SET);
1430 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1431 writel(val, PRCM_PLLDSI_ENABLE);
1432 r = -EAGAIN;
1434 } else {
1435 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1437 return r;
1440 static int request_dsiclk(u8 n, bool enable)
1442 u32 val;
1444 val = readl(PRCM_DSI_PLLOUT_SEL);
1445 val &= ~dsiclk[n].divsel_mask;
1446 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1447 dsiclk[n].divsel_shift);
1448 writel(val, PRCM_DSI_PLLOUT_SEL);
1449 return 0;
1452 static int request_dsiescclk(u8 n, bool enable)
1454 u32 val;
1456 val = readl(PRCM_DSITVCLK_DIV);
1457 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1458 writel(val, PRCM_DSITVCLK_DIV);
1459 return 0;
1463 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1464 * @clock: The clock for which the request is made.
1465 * @enable: Whether the clock should be enabled (true) or disabled (false).
1467 * This function should only be used by the clock implementation.
1468 * Do not use it from any other place!
1470 int db8500_prcmu_request_clock(u8 clock, bool enable)
1472 if (clock == PRCMU_SGACLK)
1473 return request_sga_clock(clock, enable);
1474 else if (clock < PRCMU_NUM_REG_CLOCKS)
1475 return request_clock(clock, enable);
1476 else if (clock == PRCMU_TIMCLK)
1477 return request_timclk(enable);
1478 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1479 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1480 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1481 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1482 else if (clock == PRCMU_PLLDSI)
1483 return request_plldsi(enable);
1484 else if (clock == PRCMU_SYSCLK)
1485 return request_sysclk(enable);
1486 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1487 return request_pll(clock, enable);
1488 else
1489 return -EINVAL;
1492 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1493 int branch)
1495 u64 rate;
1496 u32 val;
1497 u32 d;
1498 u32 div = 1;
1500 val = readl(reg);
1502 rate = src_rate;
1503 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1505 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1506 if (d > 1)
1507 div *= d;
1509 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1510 if (d > 1)
1511 div *= d;
1513 if (val & PRCM_PLL_FREQ_SELDIV2)
1514 div *= 2;
1516 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1517 (val & PRCM_PLL_FREQ_DIV2EN) &&
1518 ((reg == PRCM_PLLSOC0_FREQ) ||
1519 (reg == PRCM_PLLARM_FREQ) ||
1520 (reg == PRCM_PLLDDR_FREQ))))
1521 div *= 2;
1523 (void)do_div(rate, div);
1525 return (unsigned long)rate;
1528 #define ROOT_CLOCK_RATE 38400000
1530 static unsigned long clock_rate(u8 clock)
1532 u32 val;
1533 u32 pllsw;
1534 unsigned long rate = ROOT_CLOCK_RATE;
1536 val = readl(prcmu_base + clk_mgt[clock].offset);
1538 if (val & PRCM_CLK_MGT_CLK38) {
1539 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1540 rate /= 2;
1541 return rate;
1544 val |= clk_mgt[clock].pllsw;
1545 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1547 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1548 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1549 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1550 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1551 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1552 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1553 else
1554 return 0;
1556 if ((clock == PRCMU_SGACLK) &&
1557 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1558 u64 r = (rate * 10);
1560 (void)do_div(r, 25);
1561 return (unsigned long)r;
1563 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1564 if (val)
1565 return rate / val;
1566 else
1567 return 0;
1570 static unsigned long armss_rate(void)
1572 u32 r;
1573 unsigned long rate;
1575 r = readl(PRCM_ARM_CHGCLKREQ);
1577 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1578 /* External ARMCLKFIX clock */
1580 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1582 /* Check PRCM_ARM_CHGCLKREQ divider */
1583 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1584 rate /= 2;
1586 /* Check PRCM_ARMCLKFIX_MGT divider */
1587 r = readl(PRCM_ARMCLKFIX_MGT);
1588 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1589 rate /= r;
1591 } else {/* ARM PLL */
1592 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1595 return rate;
1598 static unsigned long dsiclk_rate(u8 n)
1600 u32 divsel;
1601 u32 div = 1;
1603 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1604 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1606 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1607 divsel = dsiclk[n].divsel;
1608 else
1609 dsiclk[n].divsel = divsel;
1611 switch (divsel) {
1612 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1613 div *= 2;
1614 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1615 div *= 2;
1616 case PRCM_DSI_PLLOUT_SEL_PHI:
1617 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1618 PLL_RAW) / div;
1619 default:
1620 return 0;
1624 static unsigned long dsiescclk_rate(u8 n)
1626 u32 div;
1628 div = readl(PRCM_DSITVCLK_DIV);
1629 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1630 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1633 unsigned long prcmu_clock_rate(u8 clock)
1635 if (clock < PRCMU_NUM_REG_CLOCKS)
1636 return clock_rate(clock);
1637 else if (clock == PRCMU_TIMCLK)
1638 return ROOT_CLOCK_RATE / 16;
1639 else if (clock == PRCMU_SYSCLK)
1640 return ROOT_CLOCK_RATE;
1641 else if (clock == PRCMU_PLLSOC0)
1642 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1643 else if (clock == PRCMU_PLLSOC1)
1644 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1645 else if (clock == PRCMU_ARMSS)
1646 return armss_rate();
1647 else if (clock == PRCMU_PLLDDR)
1648 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1649 else if (clock == PRCMU_PLLDSI)
1650 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1651 PLL_RAW);
1652 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1653 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1654 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1655 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1656 else
1657 return 0;
1660 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1662 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1663 return ROOT_CLOCK_RATE;
1664 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1665 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1666 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1667 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1668 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1669 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1670 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1671 else
1672 return 0;
1675 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1677 u32 div;
1679 div = (src_rate / rate);
1680 if (div == 0)
1681 return 1;
1682 if (rate < (src_rate / div))
1683 div++;
1684 return div;
1687 static long round_clock_rate(u8 clock, unsigned long rate)
1689 u32 val;
1690 u32 div;
1691 unsigned long src_rate;
1692 long rounded_rate;
1694 val = readl(prcmu_base + clk_mgt[clock].offset);
1695 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1696 clk_mgt[clock].branch);
1697 div = clock_divider(src_rate, rate);
1698 if (val & PRCM_CLK_MGT_CLK38) {
1699 if (clk_mgt[clock].clk38div) {
1700 if (div > 2)
1701 div = 2;
1702 } else {
1703 div = 1;
1705 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1706 u64 r = (src_rate * 10);
1708 (void)do_div(r, 25);
1709 if (r <= rate)
1710 return (unsigned long)r;
1712 rounded_rate = (src_rate / min(div, (u32)31));
1714 return rounded_rate;
1717 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1718 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1719 { .frequency = 200000, .driver_data = ARM_EXTCLK,},
1720 { .frequency = 400000, .driver_data = ARM_50_OPP,},
1721 { .frequency = 800000, .driver_data = ARM_100_OPP,},
1722 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1723 { .frequency = CPUFREQ_TABLE_END,},
1726 static long round_armss_rate(unsigned long rate)
1728 struct cpufreq_frequency_table *pos;
1729 long freq = 0;
1731 /* cpufreq table frequencies is in KHz. */
1732 rate = rate / 1000;
1734 /* Find the corresponding arm opp from the cpufreq table. */
1735 cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
1736 freq = pos->frequency;
1737 if (freq == rate)
1738 break;
1741 /* Return the last valid value, even if a match was not found. */
1742 return freq * 1000;
1745 #define MIN_PLL_VCO_RATE 600000000ULL
1746 #define MAX_PLL_VCO_RATE 1680640000ULL
1748 static long round_plldsi_rate(unsigned long rate)
1750 long rounded_rate = 0;
1751 unsigned long src_rate;
1752 unsigned long rem;
1753 u32 r;
1755 src_rate = clock_rate(PRCMU_HDMICLK);
1756 rem = rate;
1758 for (r = 7; (rem > 0) && (r > 0); r--) {
1759 u64 d;
1761 d = (r * rate);
1762 (void)do_div(d, src_rate);
1763 if (d < 6)
1764 d = 6;
1765 else if (d > 255)
1766 d = 255;
1767 d *= src_rate;
1768 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1769 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1770 continue;
1771 (void)do_div(d, r);
1772 if (rate < d) {
1773 if (rounded_rate == 0)
1774 rounded_rate = (long)d;
1775 break;
1777 if ((rate - d) < rem) {
1778 rem = (rate - d);
1779 rounded_rate = (long)d;
1782 return rounded_rate;
1785 static long round_dsiclk_rate(unsigned long rate)
1787 u32 div;
1788 unsigned long src_rate;
1789 long rounded_rate;
1791 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1792 PLL_RAW);
1793 div = clock_divider(src_rate, rate);
1794 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1796 return rounded_rate;
1799 static long round_dsiescclk_rate(unsigned long rate)
1801 u32 div;
1802 unsigned long src_rate;
1803 long rounded_rate;
1805 src_rate = clock_rate(PRCMU_TVCLK);
1806 div = clock_divider(src_rate, rate);
1807 rounded_rate = (src_rate / min(div, (u32)255));
1809 return rounded_rate;
1812 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1814 if (clock < PRCMU_NUM_REG_CLOCKS)
1815 return round_clock_rate(clock, rate);
1816 else if (clock == PRCMU_ARMSS)
1817 return round_armss_rate(rate);
1818 else if (clock == PRCMU_PLLDSI)
1819 return round_plldsi_rate(rate);
1820 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1821 return round_dsiclk_rate(rate);
1822 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1823 return round_dsiescclk_rate(rate);
1824 else
1825 return (long)prcmu_clock_rate(clock);
1828 static void set_clock_rate(u8 clock, unsigned long rate)
1830 u32 val;
1831 u32 div;
1832 unsigned long src_rate;
1833 unsigned long flags;
1835 spin_lock_irqsave(&clk_mgt_lock, flags);
1837 /* Grab the HW semaphore. */
1838 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1839 cpu_relax();
1841 val = readl(prcmu_base + clk_mgt[clock].offset);
1842 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1843 clk_mgt[clock].branch);
1844 div = clock_divider(src_rate, rate);
1845 if (val & PRCM_CLK_MGT_CLK38) {
1846 if (clk_mgt[clock].clk38div) {
1847 if (div > 1)
1848 val |= PRCM_CLK_MGT_CLK38DIV;
1849 else
1850 val &= ~PRCM_CLK_MGT_CLK38DIV;
1852 } else if (clock == PRCMU_SGACLK) {
1853 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1854 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1855 if (div == 3) {
1856 u64 r = (src_rate * 10);
1858 (void)do_div(r, 25);
1859 if (r <= rate) {
1860 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1861 div = 0;
1864 val |= min(div, (u32)31);
1865 } else {
1866 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1867 val |= min(div, (u32)31);
1869 writel(val, prcmu_base + clk_mgt[clock].offset);
1871 /* Release the HW semaphore. */
1872 writel(0, PRCM_SEM);
1874 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1877 static int set_armss_rate(unsigned long rate)
1879 struct cpufreq_frequency_table *pos;
1881 /* cpufreq table frequencies is in KHz. */
1882 rate = rate / 1000;
1884 /* Find the corresponding arm opp from the cpufreq table. */
1885 cpufreq_for_each_entry(pos, db8500_cpufreq_table)
1886 if (pos->frequency == rate)
1887 break;
1889 if (pos->frequency != rate)
1890 return -EINVAL;
1892 /* Set the new arm opp. */
1893 return db8500_prcmu_set_arm_opp(pos->driver_data);
1896 static int set_plldsi_rate(unsigned long rate)
1898 unsigned long src_rate;
1899 unsigned long rem;
1900 u32 pll_freq = 0;
1901 u32 r;
1903 src_rate = clock_rate(PRCMU_HDMICLK);
1904 rem = rate;
1906 for (r = 7; (rem > 0) && (r > 0); r--) {
1907 u64 d;
1908 u64 hwrate;
1910 d = (r * rate);
1911 (void)do_div(d, src_rate);
1912 if (d < 6)
1913 d = 6;
1914 else if (d > 255)
1915 d = 255;
1916 hwrate = (d * src_rate);
1917 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1918 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1919 continue;
1920 (void)do_div(hwrate, r);
1921 if (rate < hwrate) {
1922 if (pll_freq == 0)
1923 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1924 (r << PRCM_PLL_FREQ_R_SHIFT));
1925 break;
1927 if ((rate - hwrate) < rem) {
1928 rem = (rate - hwrate);
1929 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1930 (r << PRCM_PLL_FREQ_R_SHIFT));
1933 if (pll_freq == 0)
1934 return -EINVAL;
1936 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1937 writel(pll_freq, PRCM_PLLDSI_FREQ);
1939 return 0;
1942 static void set_dsiclk_rate(u8 n, unsigned long rate)
1944 u32 val;
1945 u32 div;
1947 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1948 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1950 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1951 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1952 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1954 val = readl(PRCM_DSI_PLLOUT_SEL);
1955 val &= ~dsiclk[n].divsel_mask;
1956 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1957 writel(val, PRCM_DSI_PLLOUT_SEL);
1960 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1962 u32 val;
1963 u32 div;
1965 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1966 val = readl(PRCM_DSITVCLK_DIV);
1967 val &= ~dsiescclk[n].div_mask;
1968 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1969 writel(val, PRCM_DSITVCLK_DIV);
1972 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1974 if (clock < PRCMU_NUM_REG_CLOCKS)
1975 set_clock_rate(clock, rate);
1976 else if (clock == PRCMU_ARMSS)
1977 return set_armss_rate(rate);
1978 else if (clock == PRCMU_PLLDSI)
1979 return set_plldsi_rate(rate);
1980 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1981 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1982 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1983 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1984 return 0;
1987 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1989 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1990 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1991 return -EINVAL;
1993 mutex_lock(&mb4_transfer.lock);
1995 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1996 cpu_relax();
1998 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1999 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2000 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2001 writeb(DDR_PWR_STATE_ON,
2002 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2003 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2005 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2006 wait_for_completion(&mb4_transfer.work);
2008 mutex_unlock(&mb4_transfer.lock);
2010 return 0;
2013 int db8500_prcmu_config_hotdog(u8 threshold)
2015 mutex_lock(&mb4_transfer.lock);
2017 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2018 cpu_relax();
2020 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2021 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2023 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2024 wait_for_completion(&mb4_transfer.work);
2026 mutex_unlock(&mb4_transfer.lock);
2028 return 0;
2031 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2033 mutex_lock(&mb4_transfer.lock);
2035 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2036 cpu_relax();
2038 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2039 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2040 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2041 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2042 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2044 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2045 wait_for_completion(&mb4_transfer.work);
2047 mutex_unlock(&mb4_transfer.lock);
2049 return 0;
2052 static int config_hot_period(u16 val)
2054 mutex_lock(&mb4_transfer.lock);
2056 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2057 cpu_relax();
2059 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2060 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2062 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2063 wait_for_completion(&mb4_transfer.work);
2065 mutex_unlock(&mb4_transfer.lock);
2067 return 0;
2070 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2072 if (cycles32k == 0xFFFF)
2073 return -EINVAL;
2075 return config_hot_period(cycles32k);
2078 int db8500_prcmu_stop_temp_sense(void)
2080 return config_hot_period(0xFFFF);
2083 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2086 mutex_lock(&mb4_transfer.lock);
2088 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2089 cpu_relax();
2091 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2092 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2093 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2094 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2096 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2098 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2099 wait_for_completion(&mb4_transfer.work);
2101 mutex_unlock(&mb4_transfer.lock);
2103 return 0;
2107 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2109 BUG_ON(num == 0 || num > 0xf);
2110 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2111 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2112 A9WDOG_AUTO_OFF_DIS);
2114 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2116 int db8500_prcmu_enable_a9wdog(u8 id)
2118 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2120 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2122 int db8500_prcmu_disable_a9wdog(u8 id)
2124 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2126 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2128 int db8500_prcmu_kick_a9wdog(u8 id)
2130 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2132 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2135 * timeout is 28 bit, in ms.
2137 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2139 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2140 (id & A9WDOG_ID_MASK) |
2142 * Put the lowest 28 bits of timeout at
2143 * offset 4. Four first bits are used for id.
2145 (u8)((timeout << 4) & 0xf0),
2146 (u8)((timeout >> 4) & 0xff),
2147 (u8)((timeout >> 12) & 0xff),
2148 (u8)((timeout >> 20) & 0xff));
2150 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2153 * prcmu_abb_read() - Read register value(s) from the ABB.
2154 * @slave: The I2C slave address.
2155 * @reg: The (start) register address.
2156 * @value: The read out value(s).
2157 * @size: The number of registers to read.
2159 * Reads register value(s) from the ABB.
2160 * @size has to be 1 for the current firmware version.
2162 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2164 int r;
2166 if (size != 1)
2167 return -EINVAL;
2169 mutex_lock(&mb5_transfer.lock);
2171 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2172 cpu_relax();
2174 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2175 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2176 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2177 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2178 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2180 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2182 if (!wait_for_completion_timeout(&mb5_transfer.work,
2183 msecs_to_jiffies(20000))) {
2184 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2185 __func__);
2186 r = -EIO;
2187 } else {
2188 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2191 if (!r)
2192 *value = mb5_transfer.ack.value;
2194 mutex_unlock(&mb5_transfer.lock);
2196 return r;
2200 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2201 * @slave: The I2C slave address.
2202 * @reg: The (start) register address.
2203 * @value: The value(s) to write.
2204 * @mask: The mask(s) to use.
2205 * @size: The number of registers to write.
2207 * Writes masked register value(s) to the ABB.
2208 * For each @value, only the bits set to 1 in the corresponding @mask
2209 * will be written. The other bits are not changed.
2210 * @size has to be 1 for the current firmware version.
2212 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2214 int r;
2216 if (size != 1)
2217 return -EINVAL;
2219 mutex_lock(&mb5_transfer.lock);
2221 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2222 cpu_relax();
2224 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2225 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2226 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2227 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2228 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2230 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2232 if (!wait_for_completion_timeout(&mb5_transfer.work,
2233 msecs_to_jiffies(20000))) {
2234 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2235 __func__);
2236 r = -EIO;
2237 } else {
2238 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2241 mutex_unlock(&mb5_transfer.lock);
2243 return r;
2247 * prcmu_abb_write() - Write register value(s) to the ABB.
2248 * @slave: The I2C slave address.
2249 * @reg: The (start) register address.
2250 * @value: The value(s) to write.
2251 * @size: The number of registers to write.
2253 * Writes register value(s) to the ABB.
2254 * @size has to be 1 for the current firmware version.
2256 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2258 u8 mask = ~0;
2260 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2264 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2266 int prcmu_ac_wake_req(void)
2268 u32 val;
2269 int ret = 0;
2271 mutex_lock(&mb0_transfer.ac_wake_lock);
2273 val = readl(PRCM_HOSTACCESS_REQ);
2274 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2275 goto unlock_and_return;
2277 atomic_set(&ac_wake_req_state, 1);
2280 * Force Modem Wake-up before hostaccess_req ping-pong.
2281 * It prevents Modem to enter in Sleep while acking the hostaccess
2282 * request. The 31us delay has been calculated by HWI.
2284 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2285 writel(val, PRCM_HOSTACCESS_REQ);
2287 udelay(31);
2289 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2290 writel(val, PRCM_HOSTACCESS_REQ);
2292 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2293 msecs_to_jiffies(5000))) {
2294 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2295 __func__);
2296 ret = -EFAULT;
2299 unlock_and_return:
2300 mutex_unlock(&mb0_transfer.ac_wake_lock);
2301 return ret;
2305 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2307 void prcmu_ac_sleep_req(void)
2309 u32 val;
2311 mutex_lock(&mb0_transfer.ac_wake_lock);
2313 val = readl(PRCM_HOSTACCESS_REQ);
2314 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2315 goto unlock_and_return;
2317 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2318 PRCM_HOSTACCESS_REQ);
2320 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2321 msecs_to_jiffies(5000))) {
2322 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2323 __func__);
2326 atomic_set(&ac_wake_req_state, 0);
2328 unlock_and_return:
2329 mutex_unlock(&mb0_transfer.ac_wake_lock);
2332 bool db8500_prcmu_is_ac_wake_requested(void)
2334 return (atomic_read(&ac_wake_req_state) != 0);
2338 * db8500_prcmu_system_reset - System reset
2340 * Saves the reset reason code and then sets the APE_SOFTRST register which
2341 * fires interrupt to fw
2343 void db8500_prcmu_system_reset(u16 reset_code)
2345 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2346 writel(1, PRCM_APE_SOFTRST);
2350 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2352 * Retrieves the reset reason code stored by prcmu_system_reset() before
2353 * last restart.
2355 u16 db8500_prcmu_get_reset_code(void)
2357 return readw(tcdm_base + PRCM_SW_RST_REASON);
2361 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2363 void db8500_prcmu_modem_reset(void)
2365 mutex_lock(&mb1_transfer.lock);
2367 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2368 cpu_relax();
2370 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2371 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2372 wait_for_completion(&mb1_transfer.work);
2375 * No need to check return from PRCMU as modem should go in reset state
2376 * This state is already managed by upper layer
2379 mutex_unlock(&mb1_transfer.lock);
2382 static void ack_dbb_wakeup(void)
2384 unsigned long flags;
2386 spin_lock_irqsave(&mb0_transfer.lock, flags);
2388 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2389 cpu_relax();
2391 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2392 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2394 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2397 static inline void print_unknown_header_warning(u8 n, u8 header)
2399 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2400 header, n);
2403 static bool read_mailbox_0(void)
2405 bool r;
2406 u32 ev;
2407 unsigned int n;
2408 u8 header;
2410 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2411 switch (header) {
2412 case MB0H_WAKEUP_EXE:
2413 case MB0H_WAKEUP_SLEEP:
2414 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2415 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2416 else
2417 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2419 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2420 complete(&mb0_transfer.ac_wake_work);
2421 if (ev & WAKEUP_BIT_SYSCLK_OK)
2422 complete(&mb3_transfer.sysclk_work);
2424 ev &= mb0_transfer.req.dbb_irqs;
2426 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2427 if (ev & prcmu_irq_bit[n])
2428 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2430 r = true;
2431 break;
2432 default:
2433 print_unknown_header_warning(0, header);
2434 r = false;
2435 break;
2437 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2438 return r;
2441 static bool read_mailbox_1(void)
2443 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2444 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2445 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2446 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2447 PRCM_ACK_MB1_CURRENT_APE_OPP);
2448 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2449 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2450 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2451 complete(&mb1_transfer.work);
2452 return false;
2455 static bool read_mailbox_2(void)
2457 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2458 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2459 complete(&mb2_transfer.work);
2460 return false;
2463 static bool read_mailbox_3(void)
2465 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2466 return false;
2469 static bool read_mailbox_4(void)
2471 u8 header;
2472 bool do_complete = true;
2474 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2475 switch (header) {
2476 case MB4H_MEM_ST:
2477 case MB4H_HOTDOG:
2478 case MB4H_HOTMON:
2479 case MB4H_HOT_PERIOD:
2480 case MB4H_A9WDOG_CONF:
2481 case MB4H_A9WDOG_EN:
2482 case MB4H_A9WDOG_DIS:
2483 case MB4H_A9WDOG_LOAD:
2484 case MB4H_A9WDOG_KICK:
2485 break;
2486 default:
2487 print_unknown_header_warning(4, header);
2488 do_complete = false;
2489 break;
2492 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2494 if (do_complete)
2495 complete(&mb4_transfer.work);
2497 return false;
2500 static bool read_mailbox_5(void)
2502 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2503 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2504 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2505 complete(&mb5_transfer.work);
2506 return false;
2509 static bool read_mailbox_6(void)
2511 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2512 return false;
2515 static bool read_mailbox_7(void)
2517 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2518 return false;
2521 static bool (* const read_mailbox[NUM_MB])(void) = {
2522 read_mailbox_0,
2523 read_mailbox_1,
2524 read_mailbox_2,
2525 read_mailbox_3,
2526 read_mailbox_4,
2527 read_mailbox_5,
2528 read_mailbox_6,
2529 read_mailbox_7
2532 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2534 u32 bits;
2535 u8 n;
2536 irqreturn_t r;
2538 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2539 if (unlikely(!bits))
2540 return IRQ_NONE;
2542 r = IRQ_HANDLED;
2543 for (n = 0; bits; n++) {
2544 if (bits & MBOX_BIT(n)) {
2545 bits -= MBOX_BIT(n);
2546 if (read_mailbox[n]())
2547 r = IRQ_WAKE_THREAD;
2550 return r;
2553 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2555 ack_dbb_wakeup();
2556 return IRQ_HANDLED;
2559 static void prcmu_mask_work(struct work_struct *work)
2561 unsigned long flags;
2563 spin_lock_irqsave(&mb0_transfer.lock, flags);
2565 config_wakeups();
2567 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2570 static void prcmu_irq_mask(struct irq_data *d)
2572 unsigned long flags;
2574 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2576 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2578 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2580 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2581 schedule_work(&mb0_transfer.mask_work);
2584 static void prcmu_irq_unmask(struct irq_data *d)
2586 unsigned long flags;
2588 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2590 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2592 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2594 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2595 schedule_work(&mb0_transfer.mask_work);
2598 static void noop(struct irq_data *d)
2602 static struct irq_chip prcmu_irq_chip = {
2603 .name = "prcmu",
2604 .irq_disable = prcmu_irq_mask,
2605 .irq_ack = noop,
2606 .irq_mask = prcmu_irq_mask,
2607 .irq_unmask = prcmu_irq_unmask,
2610 static __init char *fw_project_name(u32 project)
2612 switch (project) {
2613 case PRCMU_FW_PROJECT_U8500:
2614 return "U8500";
2615 case PRCMU_FW_PROJECT_U8400:
2616 return "U8400";
2617 case PRCMU_FW_PROJECT_U9500:
2618 return "U9500";
2619 case PRCMU_FW_PROJECT_U8500_MBB:
2620 return "U8500 MBB";
2621 case PRCMU_FW_PROJECT_U8500_C1:
2622 return "U8500 C1";
2623 case PRCMU_FW_PROJECT_U8500_C2:
2624 return "U8500 C2";
2625 case PRCMU_FW_PROJECT_U8500_C3:
2626 return "U8500 C3";
2627 case PRCMU_FW_PROJECT_U8500_C4:
2628 return "U8500 C4";
2629 case PRCMU_FW_PROJECT_U9500_MBL:
2630 return "U9500 MBL";
2631 case PRCMU_FW_PROJECT_U8500_MBL:
2632 return "U8500 MBL";
2633 case PRCMU_FW_PROJECT_U8500_MBL2:
2634 return "U8500 MBL2";
2635 case PRCMU_FW_PROJECT_U8520:
2636 return "U8520 MBL";
2637 case PRCMU_FW_PROJECT_U8420:
2638 return "U8420";
2639 case PRCMU_FW_PROJECT_U9540:
2640 return "U9540";
2641 case PRCMU_FW_PROJECT_A9420:
2642 return "A9420";
2643 case PRCMU_FW_PROJECT_L8540:
2644 return "L8540";
2645 case PRCMU_FW_PROJECT_L8580:
2646 return "L8580";
2647 default:
2648 return "Unknown";
2652 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2653 irq_hw_number_t hwirq)
2655 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2656 handle_simple_irq);
2657 set_irq_flags(virq, IRQF_VALID);
2659 return 0;
2662 static struct irq_domain_ops db8500_irq_ops = {
2663 .map = db8500_irq_map,
2664 .xlate = irq_domain_xlate_twocell,
2667 static int db8500_irq_init(struct device_node *np)
2669 int i;
2671 db8500_irq_domain = irq_domain_add_simple(
2672 np, NUM_PRCMU_WAKEUPS, 0,
2673 &db8500_irq_ops, NULL);
2675 if (!db8500_irq_domain) {
2676 pr_err("Failed to create irqdomain\n");
2677 return -ENOSYS;
2680 /* All wakeups will be used, so create mappings for all */
2681 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2682 irq_create_mapping(db8500_irq_domain, i);
2684 return 0;
2687 static void dbx500_fw_version_init(struct platform_device *pdev,
2688 u32 version_offset)
2690 struct resource *res;
2691 void __iomem *tcpm_base;
2692 u32 version;
2694 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2695 "prcmu-tcpm");
2696 if (!res) {
2697 dev_err(&pdev->dev,
2698 "Error: no prcmu tcpm memory region provided\n");
2699 return;
2701 tcpm_base = ioremap(res->start, resource_size(res));
2702 if (!tcpm_base) {
2703 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2704 return;
2707 version = readl(tcpm_base + version_offset);
2708 fw_info.version.project = (version & 0xFF);
2709 fw_info.version.api_version = (version >> 8) & 0xFF;
2710 fw_info.version.func_version = (version >> 16) & 0xFF;
2711 fw_info.version.errata = (version >> 24) & 0xFF;
2712 strncpy(fw_info.version.project_name,
2713 fw_project_name(fw_info.version.project),
2714 PRCMU_FW_PROJECT_NAME_LEN);
2715 fw_info.valid = true;
2716 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2717 fw_info.version.project_name,
2718 fw_info.version.project,
2719 fw_info.version.api_version,
2720 fw_info.version.func_version,
2721 fw_info.version.errata);
2722 iounmap(tcpm_base);
2725 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2728 * This is a temporary remap to bring up the clocks. It is
2729 * subsequently replaces with a real remap. After the merge of
2730 * the mailbox subsystem all of this early code goes away, and the
2731 * clock driver can probe independently. An early initcall will
2732 * still be needed, but it can be diverted into drivers/clk/ux500.
2734 prcmu_base = ioremap(phy_base, size);
2735 if (!prcmu_base)
2736 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2738 spin_lock_init(&mb0_transfer.lock);
2739 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2740 mutex_init(&mb0_transfer.ac_wake_lock);
2741 init_completion(&mb0_transfer.ac_wake_work);
2742 mutex_init(&mb1_transfer.lock);
2743 init_completion(&mb1_transfer.work);
2744 mb1_transfer.ape_opp = APE_NO_CHANGE;
2745 mutex_init(&mb2_transfer.lock);
2746 init_completion(&mb2_transfer.work);
2747 spin_lock_init(&mb2_transfer.auto_pm_lock);
2748 spin_lock_init(&mb3_transfer.lock);
2749 mutex_init(&mb3_transfer.sysclk_lock);
2750 init_completion(&mb3_transfer.sysclk_work);
2751 mutex_init(&mb4_transfer.lock);
2752 init_completion(&mb4_transfer.work);
2753 mutex_init(&mb5_transfer.lock);
2754 init_completion(&mb5_transfer.work);
2756 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2759 static void __init init_prcm_registers(void)
2761 u32 val;
2763 val = readl(PRCM_A9PL_FORCE_CLKEN);
2764 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2765 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2766 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2770 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2772 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2773 REGULATOR_SUPPLY("v-ape", NULL),
2774 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2775 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2776 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2777 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2778 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2779 /* "v-mmc" changed to "vcore" in the mainline kernel */
2780 REGULATOR_SUPPLY("vcore", "sdi0"),
2781 REGULATOR_SUPPLY("vcore", "sdi1"),
2782 REGULATOR_SUPPLY("vcore", "sdi2"),
2783 REGULATOR_SUPPLY("vcore", "sdi3"),
2784 REGULATOR_SUPPLY("vcore", "sdi4"),
2785 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2786 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2787 /* "v-uart" changed to "vcore" in the mainline kernel */
2788 REGULATOR_SUPPLY("vcore", "uart0"),
2789 REGULATOR_SUPPLY("vcore", "uart1"),
2790 REGULATOR_SUPPLY("vcore", "uart2"),
2791 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2792 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2793 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2796 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2797 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2798 /* AV8100 regulator */
2799 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2802 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2803 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2804 REGULATOR_SUPPLY("vsupply", "mcde"),
2807 /* SVA MMDSP regulator switch */
2808 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2809 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2812 /* SVA pipe regulator switch */
2813 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2814 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2817 /* SIA MMDSP regulator switch */
2818 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2819 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2822 /* SIA pipe regulator switch */
2823 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2824 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2827 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2828 REGULATOR_SUPPLY("v-mali", NULL),
2831 /* ESRAM1 and 2 regulator switch */
2832 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2833 REGULATOR_SUPPLY("esram12", "cm_control"),
2836 /* ESRAM3 and 4 regulator switch */
2837 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2838 REGULATOR_SUPPLY("v-esram34", "mcde"),
2839 REGULATOR_SUPPLY("esram34", "cm_control"),
2840 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2843 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2844 [DB8500_REGULATOR_VAPE] = {
2845 .constraints = {
2846 .name = "db8500-vape",
2847 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2848 .always_on = true,
2850 .consumer_supplies = db8500_vape_consumers,
2851 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2853 [DB8500_REGULATOR_VARM] = {
2854 .constraints = {
2855 .name = "db8500-varm",
2856 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2859 [DB8500_REGULATOR_VMODEM] = {
2860 .constraints = {
2861 .name = "db8500-vmodem",
2862 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865 [DB8500_REGULATOR_VPLL] = {
2866 .constraints = {
2867 .name = "db8500-vpll",
2868 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2871 [DB8500_REGULATOR_VSMPS1] = {
2872 .constraints = {
2873 .name = "db8500-vsmps1",
2874 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2877 [DB8500_REGULATOR_VSMPS2] = {
2878 .constraints = {
2879 .name = "db8500-vsmps2",
2880 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882 .consumer_supplies = db8500_vsmps2_consumers,
2883 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2885 [DB8500_REGULATOR_VSMPS3] = {
2886 .constraints = {
2887 .name = "db8500-vsmps3",
2888 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2891 [DB8500_REGULATOR_VRF1] = {
2892 .constraints = {
2893 .name = "db8500-vrf1",
2894 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2897 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2898 /* dependency to u8500-vape is handled outside regulator framework */
2899 .constraints = {
2900 .name = "db8500-sva-mmdsp",
2901 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2903 .consumer_supplies = db8500_svammdsp_consumers,
2904 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2906 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2907 .constraints = {
2908 /* "ret" means "retention" */
2909 .name = "db8500-sva-mmdsp-ret",
2910 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2913 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2914 /* dependency to u8500-vape is handled outside regulator framework */
2915 .constraints = {
2916 .name = "db8500-sva-pipe",
2917 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919 .consumer_supplies = db8500_svapipe_consumers,
2920 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2922 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2923 /* dependency to u8500-vape is handled outside regulator framework */
2924 .constraints = {
2925 .name = "db8500-sia-mmdsp",
2926 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2928 .consumer_supplies = db8500_siammdsp_consumers,
2929 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2931 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2932 .constraints = {
2933 .name = "db8500-sia-mmdsp-ret",
2934 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2938 /* dependency to u8500-vape is handled outside regulator framework */
2939 .constraints = {
2940 .name = "db8500-sia-pipe",
2941 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2943 .consumer_supplies = db8500_siapipe_consumers,
2944 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2946 [DB8500_REGULATOR_SWITCH_SGA] = {
2947 .supply_regulator = "db8500-vape",
2948 .constraints = {
2949 .name = "db8500-sga",
2950 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2952 .consumer_supplies = db8500_sga_consumers,
2953 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2956 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2957 .supply_regulator = "db8500-vape",
2958 .constraints = {
2959 .name = "db8500-b2r2-mcde",
2960 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2962 .consumer_supplies = db8500_b2r2_mcde_consumers,
2963 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2965 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2967 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2968 * no need to hold Vape
2970 .constraints = {
2971 .name = "db8500-esram12",
2972 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2974 .consumer_supplies = db8500_esram12_consumers,
2975 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2977 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2978 .constraints = {
2979 .name = "db8500-esram12-ret",
2980 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2983 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2985 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2986 * no need to hold Vape
2988 .constraints = {
2989 .name = "db8500-esram34",
2990 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2992 .consumer_supplies = db8500_esram34_consumers,
2993 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2995 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2996 .constraints = {
2997 .name = "db8500-esram34-ret",
2998 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3003 static struct ux500_wdt_data db8500_wdt_pdata = {
3004 .timeout = 600, /* 10 minutes */
3005 .has_28_bits_resolution = true,
3008 * Thermal Sensor
3011 static struct resource db8500_thsens_resources[] = {
3013 .name = "IRQ_HOTMON_LOW",
3014 .start = IRQ_PRCMU_HOTMON_LOW,
3015 .end = IRQ_PRCMU_HOTMON_LOW,
3016 .flags = IORESOURCE_IRQ,
3019 .name = "IRQ_HOTMON_HIGH",
3020 .start = IRQ_PRCMU_HOTMON_HIGH,
3021 .end = IRQ_PRCMU_HOTMON_HIGH,
3022 .flags = IORESOURCE_IRQ,
3026 static struct db8500_thsens_platform_data db8500_thsens_data = {
3027 .trip_points[0] = {
3028 .temp = 70000,
3029 .type = THERMAL_TRIP_ACTIVE,
3030 .cdev_name = {
3031 [0] = "thermal-cpufreq-0",
3034 .trip_points[1] = {
3035 .temp = 75000,
3036 .type = THERMAL_TRIP_ACTIVE,
3037 .cdev_name = {
3038 [0] = "thermal-cpufreq-0",
3041 .trip_points[2] = {
3042 .temp = 80000,
3043 .type = THERMAL_TRIP_ACTIVE,
3044 .cdev_name = {
3045 [0] = "thermal-cpufreq-0",
3048 .trip_points[3] = {
3049 .temp = 85000,
3050 .type = THERMAL_TRIP_CRITICAL,
3052 .num_trips = 4,
3055 static const struct mfd_cell common_prcmu_devs[] = {
3057 .name = "ux500_wdt",
3058 .platform_data = &db8500_wdt_pdata,
3059 .pdata_size = sizeof(db8500_wdt_pdata),
3060 .id = -1,
3064 static const struct mfd_cell db8500_prcmu_devs[] = {
3066 .name = "db8500-prcmu-regulators",
3067 .of_compatible = "stericsson,db8500-prcmu-regulator",
3068 .platform_data = &db8500_regulators,
3069 .pdata_size = sizeof(db8500_regulators),
3072 .name = "cpufreq-ux500",
3073 .of_compatible = "stericsson,cpufreq-ux500",
3074 .platform_data = &db8500_cpufreq_table,
3075 .pdata_size = sizeof(db8500_cpufreq_table),
3078 .name = "cpuidle-dbx500",
3079 .of_compatible = "stericsson,cpuidle-dbx500",
3082 .name = "db8500-thermal",
3083 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3084 .resources = db8500_thsens_resources,
3085 .platform_data = &db8500_thsens_data,
3086 .pdata_size = sizeof(db8500_thsens_data),
3090 static void db8500_prcmu_update_cpufreq(void)
3092 if (prcmu_has_arm_maxopp()) {
3093 db8500_cpufreq_table[3].frequency = 1000000;
3094 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3098 static int db8500_prcmu_register_ab8500(struct device *parent,
3099 struct ab8500_platform_data *pdata)
3101 struct device_node *np;
3102 struct resource ab8500_resource;
3103 const struct mfd_cell ab8500_cell = {
3104 .name = "ab8500-core",
3105 .of_compatible = "stericsson,ab8500",
3106 .id = AB8500_VERSION_AB8500,
3107 .platform_data = pdata,
3108 .pdata_size = sizeof(struct ab8500_platform_data),
3109 .resources = &ab8500_resource,
3110 .num_resources = 1,
3113 if (!parent->of_node)
3114 return -ENODEV;
3116 /* Look up the device node, sneak the IRQ out of it */
3117 for_each_child_of_node(parent->of_node, np) {
3118 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3119 break;
3121 if (!np) {
3122 dev_info(parent, "could not find AB8500 node in the device tree\n");
3123 return -ENODEV;
3125 of_irq_to_resource_table(np, &ab8500_resource, 1);
3127 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3131 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3134 static int db8500_prcmu_probe(struct platform_device *pdev)
3136 struct device_node *np = pdev->dev.of_node;
3137 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3138 int irq = 0, err = 0;
3139 struct resource *res;
3141 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3142 if (!res) {
3143 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3144 return -EINVAL;
3146 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3147 if (!prcmu_base) {
3148 dev_err(&pdev->dev,
3149 "failed to ioremap prcmu register memory\n");
3150 return -ENOMEM;
3152 init_prcm_registers();
3153 dbx500_fw_version_init(pdev, pdata->version_offset);
3154 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3155 if (!res) {
3156 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3157 return -EINVAL;
3159 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3160 resource_size(res));
3161 if (!tcdm_base) {
3162 dev_err(&pdev->dev,
3163 "failed to ioremap prcmu-tcdm register memory\n");
3164 return -ENOMEM;
3167 /* Clean up the mailbox interrupts after pre-kernel code. */
3168 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3170 irq = platform_get_irq(pdev, 0);
3171 if (irq <= 0) {
3172 dev_err(&pdev->dev, "no prcmu irq provided\n");
3173 return irq;
3176 err = request_threaded_irq(irq, prcmu_irq_handler,
3177 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3178 if (err < 0) {
3179 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3180 return err;
3183 db8500_irq_init(np);
3185 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3187 db8500_prcmu_update_cpufreq();
3189 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3190 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3191 if (err) {
3192 pr_err("prcmu: Failed to add subdevices\n");
3193 return err;
3196 /* TODO: Remove restriction when clk definitions are available. */
3197 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3198 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3199 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3200 db8500_irq_domain);
3201 if (err) {
3202 mfd_remove_devices(&pdev->dev);
3203 pr_err("prcmu: Failed to add subdevices\n");
3204 return err;
3208 err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata);
3209 if (err) {
3210 mfd_remove_devices(&pdev->dev);
3211 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3212 return err;
3215 pr_info("DB8500 PRCMU initialized\n");
3216 return err;
3218 static const struct of_device_id db8500_prcmu_match[] = {
3219 { .compatible = "stericsson,db8500-prcmu"},
3220 { },
3223 static struct platform_driver db8500_prcmu_driver = {
3224 .driver = {
3225 .name = "db8500-prcmu",
3226 .of_match_table = db8500_prcmu_match,
3228 .probe = db8500_prcmu_probe,
3231 static int __init db8500_prcmu_init(void)
3233 return platform_driver_register(&db8500_prcmu_driver);
3236 core_initcall(db8500_prcmu_init);
3238 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3239 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3240 MODULE_LICENSE("GPL v2");