Linux 4.1.16
[linux/fpc-iii.git] / drivers / mtd / chips / cfi_cmdset_0002.c
blobc50d8cf0f60dd01b0b6c25822788b53dd2884bfd
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
9 * 2_by_8 routines added by Simon Munton
11 * 4_by_16 work by Carolyn J. Smith
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
20 * This code is GPL
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
35 #include <linux/of.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
45 #define MAX_WORD_RETRIES 3
47 #define SST49LF004B 0x0060
48 #define SST49LF040B 0x0050
49 #define SST49LF008A 0x005a
50 #define AT49BV6416 0x00d6
52 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
53 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
55 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
56 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
57 static void cfi_amdstd_sync (struct mtd_info *);
58 static int cfi_amdstd_suspend (struct mtd_info *);
59 static void cfi_amdstd_resume (struct mtd_info *);
60 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
61 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
62 size_t *, struct otp_info *);
63 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
64 size_t *, struct otp_info *);
65 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
67 size_t *, u_char *);
68 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
69 size_t *, u_char *);
70 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
71 size_t *, u_char *);
72 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
74 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
75 size_t *retlen, const u_char *buf);
77 static void cfi_amdstd_destroy(struct mtd_info *);
79 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
80 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
82 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
83 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
84 #include "fwh_lock.h"
86 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
87 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
89 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
90 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
91 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
93 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
94 .probe = NULL, /* Not usable directly */
95 .destroy = cfi_amdstd_destroy,
96 .name = "cfi_cmdset_0002",
97 .module = THIS_MODULE
101 /* #define DEBUG_CFI_FEATURES */
104 #ifdef DEBUG_CFI_FEATURES
105 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
107 const char* erase_suspend[3] = {
108 "Not supported", "Read only", "Read/write"
110 const char* top_bottom[6] = {
111 "No WP", "8x8KiB sectors at top & bottom, no WP",
112 "Bottom boot", "Top boot",
113 "Uniform, Bottom WP", "Uniform, Top WP"
116 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
117 printk(" Address sensitive unlock: %s\n",
118 (extp->SiliconRevision & 1) ? "Not required" : "Required");
120 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
121 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
122 else
123 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
125 if (extp->BlkProt == 0)
126 printk(" Block protection: Not supported\n");
127 else
128 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
131 printk(" Temporary block unprotect: %s\n",
132 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
133 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
134 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
135 printk(" Burst mode: %s\n",
136 extp->BurstMode ? "Supported" : "Not supported");
137 if (extp->PageMode == 0)
138 printk(" Page mode: Not supported\n");
139 else
140 printk(" Page mode: %d word page\n", extp->PageMode << 2);
142 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
143 extp->VppMin >> 4, extp->VppMin & 0xf);
144 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
145 extp->VppMax >> 4, extp->VppMax & 0xf);
147 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
148 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
149 else
150 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
152 #endif
154 #ifdef AMD_BOOTLOC_BUG
155 /* Wheee. Bring me the head of someone at AMD. */
156 static void fixup_amd_bootblock(struct mtd_info *mtd)
158 struct map_info *map = mtd->priv;
159 struct cfi_private *cfi = map->fldrv_priv;
160 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
161 __u8 major = extp->MajorVersion;
162 __u8 minor = extp->MinorVersion;
164 if (((major << 8) | minor) < 0x3131) {
165 /* CFI version 1.0 => don't trust bootloc */
167 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
168 map->name, cfi->mfr, cfi->id);
170 /* AFAICS all 29LV400 with a bottom boot block have a device ID
171 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
172 * These were badly detected as they have the 0x80 bit set
173 * so treat them as a special case.
175 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
177 /* Macronix added CFI to their 2nd generation
178 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
179 * Fujitsu, Spansion, EON, ESI and older Macronix)
180 * has CFI.
182 * Therefore also check the manufacturer.
183 * This reduces the risk of false detection due to
184 * the 8-bit device ID.
186 (cfi->mfr == CFI_MFR_MACRONIX)) {
187 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
188 " detected\n", map->name);
189 extp->TopBottom = 2; /* bottom boot */
190 } else
191 if (cfi->id & 0x80) {
192 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
193 extp->TopBottom = 3; /* top boot */
194 } else {
195 extp->TopBottom = 2; /* bottom boot */
198 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
199 " deduced %s from Device ID\n", map->name, major, minor,
200 extp->TopBottom == 2 ? "bottom" : "top");
203 #endif
205 static void fixup_use_write_buffers(struct mtd_info *mtd)
207 struct map_info *map = mtd->priv;
208 struct cfi_private *cfi = map->fldrv_priv;
209 if (cfi->cfiq->BufWriteTimeoutTyp) {
210 pr_debug("Using buffer write method\n" );
211 mtd->_write = cfi_amdstd_write_buffers;
215 /* Atmel chips don't use the same PRI format as AMD chips */
216 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
218 struct map_info *map = mtd->priv;
219 struct cfi_private *cfi = map->fldrv_priv;
220 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
221 struct cfi_pri_atmel atmel_pri;
223 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
224 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
226 if (atmel_pri.Features & 0x02)
227 extp->EraseSuspend = 2;
229 /* Some chips got it backwards... */
230 if (cfi->id == AT49BV6416) {
231 if (atmel_pri.BottomBoot)
232 extp->TopBottom = 3;
233 else
234 extp->TopBottom = 2;
235 } else {
236 if (atmel_pri.BottomBoot)
237 extp->TopBottom = 2;
238 else
239 extp->TopBottom = 3;
242 /* burst write mode not supported */
243 cfi->cfiq->BufWriteTimeoutTyp = 0;
244 cfi->cfiq->BufWriteTimeoutMax = 0;
247 static void fixup_use_secsi(struct mtd_info *mtd)
249 /* Setup for chips with a secsi area */
250 mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
251 mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
254 static void fixup_use_erase_chip(struct mtd_info *mtd)
256 struct map_info *map = mtd->priv;
257 struct cfi_private *cfi = map->fldrv_priv;
258 if ((cfi->cfiq->NumEraseRegions == 1) &&
259 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
260 mtd->_erase = cfi_amdstd_erase_chip;
266 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
267 * locked by default.
269 static void fixup_use_atmel_lock(struct mtd_info *mtd)
271 mtd->_lock = cfi_atmel_lock;
272 mtd->_unlock = cfi_atmel_unlock;
273 mtd->flags |= MTD_POWERUP_LOCK;
276 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
278 struct map_info *map = mtd->priv;
279 struct cfi_private *cfi = map->fldrv_priv;
282 * These flashes report two separate eraseblock regions based on the
283 * sector_erase-size and block_erase-size, although they both operate on the
284 * same memory. This is not allowed according to CFI, so we just pick the
285 * sector_erase-size.
287 cfi->cfiq->NumEraseRegions = 1;
290 static void fixup_sst39vf(struct mtd_info *mtd)
292 struct map_info *map = mtd->priv;
293 struct cfi_private *cfi = map->fldrv_priv;
295 fixup_old_sst_eraseregion(mtd);
297 cfi->addr_unlock1 = 0x5555;
298 cfi->addr_unlock2 = 0x2AAA;
301 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
303 struct map_info *map = mtd->priv;
304 struct cfi_private *cfi = map->fldrv_priv;
306 fixup_old_sst_eraseregion(mtd);
308 cfi->addr_unlock1 = 0x555;
309 cfi->addr_unlock2 = 0x2AA;
311 cfi->sector_erase_cmd = CMD(0x50);
314 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
316 struct map_info *map = mtd->priv;
317 struct cfi_private *cfi = map->fldrv_priv;
319 fixup_sst39vf_rev_b(mtd);
322 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
323 * it should report a size of 8KBytes (0x0020*256).
325 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
326 pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
329 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
331 struct map_info *map = mtd->priv;
332 struct cfi_private *cfi = map->fldrv_priv;
334 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
335 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
336 pr_warning("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", mtd->name);
340 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
342 struct map_info *map = mtd->priv;
343 struct cfi_private *cfi = map->fldrv_priv;
345 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
346 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
347 pr_warning("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", mtd->name);
351 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
353 struct map_info *map = mtd->priv;
354 struct cfi_private *cfi = map->fldrv_priv;
357 * S29NS512P flash uses more than 8bits to report number of sectors,
358 * which is not permitted by CFI.
360 cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
361 pr_warning("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", mtd->name);
364 /* Used to fix CFI-Tables of chips without Extended Query Tables */
365 static struct cfi_fixup cfi_nopri_fixup_table[] = {
366 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
367 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
368 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
369 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
370 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
371 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
372 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
373 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
374 { 0, 0, NULL }
377 static struct cfi_fixup cfi_fixup_table[] = {
378 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
379 #ifdef AMD_BOOTLOC_BUG
380 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
381 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
382 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
383 #endif
384 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
385 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
386 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
387 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
388 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
389 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
390 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
391 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
392 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
393 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
394 { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
395 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
396 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
397 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
398 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
399 #if !FORCE_WORD_WRITE
400 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
401 #endif
402 { 0, 0, NULL }
404 static struct cfi_fixup jedec_fixup_table[] = {
405 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
406 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
407 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
408 { 0, 0, NULL }
411 static struct cfi_fixup fixup_table[] = {
412 /* The CFI vendor ids and the JEDEC vendor IDs appear
413 * to be common. It is like the devices id's are as
414 * well. This table is to pick all cases where
415 * we know that is the case.
417 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
418 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
419 { 0, 0, NULL }
423 static void cfi_fixup_major_minor(struct cfi_private *cfi,
424 struct cfi_pri_amdstd *extp)
426 if (cfi->mfr == CFI_MFR_SAMSUNG) {
427 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
428 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
430 * Samsung K8P2815UQB and K8D6x16UxM chips
431 * report major=0 / minor=0.
432 * K8D3x16UxC chips report major=3 / minor=3.
434 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
435 " Extended Query version to 1.%c\n",
436 extp->MinorVersion);
437 extp->MajorVersion = '1';
442 * SST 38VF640x chips report major=0xFF / minor=0xFF.
444 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
445 extp->MajorVersion = '1';
446 extp->MinorVersion = '0';
450 static int is_m29ew(struct cfi_private *cfi)
452 if (cfi->mfr == CFI_MFR_INTEL &&
453 ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
454 (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
455 return 1;
456 return 0;
460 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
461 * Some revisions of the M29EW suffer from erase suspend hang ups. In
462 * particular, it can occur when the sequence
463 * Erase Confirm -> Suspend -> Program -> Resume
464 * causes a lockup due to internal timing issues. The consequence is that the
465 * erase cannot be resumed without inserting a dummy command after programming
466 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
467 * that writes an F0 command code before the RESUME command.
469 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
470 unsigned long adr)
472 struct cfi_private *cfi = map->fldrv_priv;
473 /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
474 if (is_m29ew(cfi))
475 map_write(map, CMD(0xF0), adr);
479 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
481 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
482 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
483 * command is issued after an ERASE RESUME operation without waiting for a
484 * minimum delay. The result is that once the ERASE seems to be completed
485 * (no bits are toggling), the contents of the Flash memory block on which
486 * the erase was ongoing could be inconsistent with the expected values
487 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
488 * values), causing a consequent failure of the ERASE operation.
489 * The occurrence of this issue could be high, especially when file system
490 * operations on the Flash are intensive. As a result, it is recommended
491 * that a patch be applied. Intensive file system operations can cause many
492 * calls to the garbage routine to free Flash space (also by erasing physical
493 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
494 * commands can occur. The problem disappears when a delay is inserted after
495 * the RESUME command by using the udelay() function available in Linux.
496 * The DELAY value must be tuned based on the customer's platform.
497 * The maximum value that fixes the problem in all cases is 500us.
498 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
499 * in most cases.
500 * We have chosen 500µs because this latency is acceptable.
502 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
505 * Resolving the Delay After Resume Issue see Micron TN-13-07
506 * Worst case delay must be 500µs but 30-50µs should be ok as well
508 if (is_m29ew(cfi))
509 cfi_udelay(500);
512 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
514 struct cfi_private *cfi = map->fldrv_priv;
515 struct device_node __maybe_unused *np = map->device_node;
516 struct mtd_info *mtd;
517 int i;
519 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
520 if (!mtd)
521 return NULL;
522 mtd->priv = map;
523 mtd->type = MTD_NORFLASH;
525 /* Fill in the default mtd operations */
526 mtd->_erase = cfi_amdstd_erase_varsize;
527 mtd->_write = cfi_amdstd_write_words;
528 mtd->_read = cfi_amdstd_read;
529 mtd->_sync = cfi_amdstd_sync;
530 mtd->_suspend = cfi_amdstd_suspend;
531 mtd->_resume = cfi_amdstd_resume;
532 mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
533 mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
534 mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
535 mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
536 mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
537 mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
538 mtd->flags = MTD_CAP_NORFLASH;
539 mtd->name = map->name;
540 mtd->writesize = 1;
541 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
543 pr_debug("MTD %s(): write buffer size %d\n", __func__,
544 mtd->writebufsize);
546 mtd->_panic_write = cfi_amdstd_panic_write;
547 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
549 if (cfi->cfi_mode==CFI_MODE_CFI){
550 unsigned char bootloc;
551 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
552 struct cfi_pri_amdstd *extp;
554 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
555 if (extp) {
557 * It's a real CFI chip, not one for which the probe
558 * routine faked a CFI structure.
560 cfi_fixup_major_minor(cfi, extp);
563 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
564 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
565 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
566 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
567 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
569 if (extp->MajorVersion != '1' ||
570 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
571 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
572 "version %c.%c (%#02x/%#02x).\n",
573 extp->MajorVersion, extp->MinorVersion,
574 extp->MajorVersion, extp->MinorVersion);
575 kfree(extp);
576 kfree(mtd);
577 return NULL;
580 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
581 extp->MajorVersion, extp->MinorVersion);
583 /* Install our own private info structure */
584 cfi->cmdset_priv = extp;
586 /* Apply cfi device specific fixups */
587 cfi_fixup(mtd, cfi_fixup_table);
589 #ifdef DEBUG_CFI_FEATURES
590 /* Tell the user about it in lots of lovely detail */
591 cfi_tell_features(extp);
592 #endif
594 #ifdef CONFIG_OF
595 if (np && of_property_read_bool(
596 np, "use-advanced-sector-protection")
597 && extp->BlkProtUnprot == 8) {
598 printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n");
599 mtd->_lock = cfi_ppb_lock;
600 mtd->_unlock = cfi_ppb_unlock;
601 mtd->_is_locked = cfi_ppb_is_locked;
603 #endif
605 bootloc = extp->TopBottom;
606 if ((bootloc < 2) || (bootloc > 5)) {
607 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
608 "bank location (%d). Assuming bottom.\n",
609 map->name, bootloc);
610 bootloc = 2;
613 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
614 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
616 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
617 int j = (cfi->cfiq->NumEraseRegions-1)-i;
618 __u32 swap;
620 swap = cfi->cfiq->EraseRegionInfo[i];
621 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
622 cfi->cfiq->EraseRegionInfo[j] = swap;
625 /* Set the default CFI lock/unlock addresses */
626 cfi->addr_unlock1 = 0x555;
627 cfi->addr_unlock2 = 0x2aa;
629 cfi_fixup(mtd, cfi_nopri_fixup_table);
631 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
632 kfree(mtd);
633 return NULL;
636 } /* CFI mode */
637 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
638 /* Apply jedec specific fixups */
639 cfi_fixup(mtd, jedec_fixup_table);
641 /* Apply generic fixups */
642 cfi_fixup(mtd, fixup_table);
644 for (i=0; i< cfi->numchips; i++) {
645 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
646 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
647 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
649 * First calculate the timeout max according to timeout field
650 * of struct cfi_ident that probed from chip's CFI aera, if
651 * available. Specify a minimum of 2000us, in case the CFI data
652 * is wrong.
654 if (cfi->cfiq->BufWriteTimeoutTyp &&
655 cfi->cfiq->BufWriteTimeoutMax)
656 cfi->chips[i].buffer_write_time_max =
657 1 << (cfi->cfiq->BufWriteTimeoutTyp +
658 cfi->cfiq->BufWriteTimeoutMax);
659 else
660 cfi->chips[i].buffer_write_time_max = 0;
662 cfi->chips[i].buffer_write_time_max =
663 max(cfi->chips[i].buffer_write_time_max, 2000);
665 cfi->chips[i].ref_point_counter = 0;
666 init_waitqueue_head(&(cfi->chips[i].wq));
669 map->fldrv = &cfi_amdstd_chipdrv;
671 return cfi_amdstd_setup(mtd);
673 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
674 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
675 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
676 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
677 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
679 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
681 struct map_info *map = mtd->priv;
682 struct cfi_private *cfi = map->fldrv_priv;
683 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
684 unsigned long offset = 0;
685 int i,j;
687 printk(KERN_NOTICE "number of %s chips: %d\n",
688 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
689 /* Select the correct geometry setup */
690 mtd->size = devsize * cfi->numchips;
692 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
693 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
694 * mtd->numeraseregions, GFP_KERNEL);
695 if (!mtd->eraseregions)
696 goto setup_err;
698 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
699 unsigned long ernum, ersize;
700 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
701 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
703 if (mtd->erasesize < ersize) {
704 mtd->erasesize = ersize;
706 for (j=0; j<cfi->numchips; j++) {
707 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
708 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
709 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
711 offset += (ersize * ernum);
713 if (offset != devsize) {
714 /* Argh */
715 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
716 goto setup_err;
719 __module_get(THIS_MODULE);
720 register_reboot_notifier(&mtd->reboot_notifier);
721 return mtd;
723 setup_err:
724 kfree(mtd->eraseregions);
725 kfree(mtd);
726 kfree(cfi->cmdset_priv);
727 kfree(cfi->cfiq);
728 return NULL;
732 * Return true if the chip is ready.
734 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
735 * non-suspended sector) and is indicated by no toggle bits toggling.
737 * Note that anything more complicated than checking if no bits are toggling
738 * (including checking DQ5 for an error status) is tricky to get working
739 * correctly and is therefore not done (particularly with interleaved chips
740 * as each chip must be checked independently of the others).
742 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
744 map_word d, t;
746 d = map_read(map, addr);
747 t = map_read(map, addr);
749 return map_word_equal(map, d, t);
753 * Return true if the chip is ready and has the correct value.
755 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
756 * non-suspended sector) and it is indicated by no bits toggling.
758 * Error are indicated by toggling bits or bits held with the wrong value,
759 * or with bits toggling.
761 * Note that anything more complicated than checking if no bits are toggling
762 * (including checking DQ5 for an error status) is tricky to get working
763 * correctly and is therefore not done (particularly with interleaved chips
764 * as each chip must be checked independently of the others).
767 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
769 map_word oldd, curd;
771 oldd = map_read(map, addr);
772 curd = map_read(map, addr);
774 return map_word_equal(map, oldd, curd) &&
775 map_word_equal(map, curd, expected);
778 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
780 DECLARE_WAITQUEUE(wait, current);
781 struct cfi_private *cfi = map->fldrv_priv;
782 unsigned long timeo;
783 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
785 resettime:
786 timeo = jiffies + HZ;
787 retry:
788 switch (chip->state) {
790 case FL_STATUS:
791 for (;;) {
792 if (chip_ready(map, adr))
793 break;
795 if (time_after(jiffies, timeo)) {
796 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
797 return -EIO;
799 mutex_unlock(&chip->mutex);
800 cfi_udelay(1);
801 mutex_lock(&chip->mutex);
802 /* Someone else might have been playing with it. */
803 goto retry;
806 case FL_READY:
807 case FL_CFI_QUERY:
808 case FL_JEDEC_QUERY:
809 return 0;
811 case FL_ERASING:
812 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
813 !(mode == FL_READY || mode == FL_POINT ||
814 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
815 goto sleep;
817 /* We could check to see if we're trying to access the sector
818 * that is currently being erased. However, no user will try
819 * anything like that so we just wait for the timeout. */
821 /* Erase suspend */
822 /* It's harmless to issue the Erase-Suspend and Erase-Resume
823 * commands when the erase algorithm isn't in progress. */
824 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
825 chip->oldstate = FL_ERASING;
826 chip->state = FL_ERASE_SUSPENDING;
827 chip->erase_suspended = 1;
828 for (;;) {
829 if (chip_ready(map, adr))
830 break;
832 if (time_after(jiffies, timeo)) {
833 /* Should have suspended the erase by now.
834 * Send an Erase-Resume command as either
835 * there was an error (so leave the erase
836 * routine to recover from it) or we trying to
837 * use the erase-in-progress sector. */
838 put_chip(map, chip, adr);
839 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
840 return -EIO;
843 mutex_unlock(&chip->mutex);
844 cfi_udelay(1);
845 mutex_lock(&chip->mutex);
846 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
847 So we can just loop here. */
849 chip->state = FL_READY;
850 return 0;
852 case FL_XIP_WHILE_ERASING:
853 if (mode != FL_READY && mode != FL_POINT &&
854 (!cfip || !(cfip->EraseSuspend&2)))
855 goto sleep;
856 chip->oldstate = chip->state;
857 chip->state = FL_READY;
858 return 0;
860 case FL_SHUTDOWN:
861 /* The machine is rebooting */
862 return -EIO;
864 case FL_POINT:
865 /* Only if there's no operation suspended... */
866 if (mode == FL_READY && chip->oldstate == FL_READY)
867 return 0;
869 default:
870 sleep:
871 set_current_state(TASK_UNINTERRUPTIBLE);
872 add_wait_queue(&chip->wq, &wait);
873 mutex_unlock(&chip->mutex);
874 schedule();
875 remove_wait_queue(&chip->wq, &wait);
876 mutex_lock(&chip->mutex);
877 goto resettime;
882 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
884 struct cfi_private *cfi = map->fldrv_priv;
886 switch(chip->oldstate) {
887 case FL_ERASING:
888 cfi_fixup_m29ew_erase_suspend(map,
889 chip->in_progress_block_addr);
890 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
891 cfi_fixup_m29ew_delay_after_resume(cfi);
892 chip->oldstate = FL_READY;
893 chip->state = FL_ERASING;
894 break;
896 case FL_XIP_WHILE_ERASING:
897 chip->state = chip->oldstate;
898 chip->oldstate = FL_READY;
899 break;
901 case FL_READY:
902 case FL_STATUS:
903 break;
904 default:
905 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
907 wake_up(&chip->wq);
910 #ifdef CONFIG_MTD_XIP
913 * No interrupt what so ever can be serviced while the flash isn't in array
914 * mode. This is ensured by the xip_disable() and xip_enable() functions
915 * enclosing any code path where the flash is known not to be in array mode.
916 * And within a XIP disabled code path, only functions marked with __xipram
917 * may be called and nothing else (it's a good thing to inspect generated
918 * assembly to make sure inline functions were actually inlined and that gcc
919 * didn't emit calls to its own support functions). Also configuring MTD CFI
920 * support to a single buswidth and a single interleave is also recommended.
923 static void xip_disable(struct map_info *map, struct flchip *chip,
924 unsigned long adr)
926 /* TODO: chips with no XIP use should ignore and return */
927 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
928 local_irq_disable();
931 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
932 unsigned long adr)
934 struct cfi_private *cfi = map->fldrv_priv;
936 if (chip->state != FL_POINT && chip->state != FL_READY) {
937 map_write(map, CMD(0xf0), adr);
938 chip->state = FL_READY;
940 (void) map_read(map, adr);
941 xip_iprefetch();
942 local_irq_enable();
946 * When a delay is required for the flash operation to complete, the
947 * xip_udelay() function is polling for both the given timeout and pending
948 * (but still masked) hardware interrupts. Whenever there is an interrupt
949 * pending then the flash erase operation is suspended, array mode restored
950 * and interrupts unmasked. Task scheduling might also happen at that
951 * point. The CPU eventually returns from the interrupt or the call to
952 * schedule() and the suspended flash operation is resumed for the remaining
953 * of the delay period.
955 * Warning: this function _will_ fool interrupt latency tracing tools.
958 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
959 unsigned long adr, int usec)
961 struct cfi_private *cfi = map->fldrv_priv;
962 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
963 map_word status, OK = CMD(0x80);
964 unsigned long suspended, start = xip_currtime();
965 flstate_t oldstate;
967 do {
968 cpu_relax();
969 if (xip_irqpending() && extp &&
970 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
971 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
973 * Let's suspend the erase operation when supported.
974 * Note that we currently don't try to suspend
975 * interleaved chips if there is already another
976 * operation suspended (imagine what happens
977 * when one chip was already done with the current
978 * operation while another chip suspended it, then
979 * we resume the whole thing at once). Yes, it
980 * can happen!
982 map_write(map, CMD(0xb0), adr);
983 usec -= xip_elapsed_since(start);
984 suspended = xip_currtime();
985 do {
986 if (xip_elapsed_since(suspended) > 100000) {
988 * The chip doesn't want to suspend
989 * after waiting for 100 msecs.
990 * This is a critical error but there
991 * is not much we can do here.
993 return;
995 status = map_read(map, adr);
996 } while (!map_word_andequal(map, status, OK, OK));
998 /* Suspend succeeded */
999 oldstate = chip->state;
1000 if (!map_word_bitsset(map, status, CMD(0x40)))
1001 break;
1002 chip->state = FL_XIP_WHILE_ERASING;
1003 chip->erase_suspended = 1;
1004 map_write(map, CMD(0xf0), adr);
1005 (void) map_read(map, adr);
1006 xip_iprefetch();
1007 local_irq_enable();
1008 mutex_unlock(&chip->mutex);
1009 xip_iprefetch();
1010 cond_resched();
1013 * We're back. However someone else might have
1014 * decided to go write to the chip if we are in
1015 * a suspended erase state. If so let's wait
1016 * until it's done.
1018 mutex_lock(&chip->mutex);
1019 while (chip->state != FL_XIP_WHILE_ERASING) {
1020 DECLARE_WAITQUEUE(wait, current);
1021 set_current_state(TASK_UNINTERRUPTIBLE);
1022 add_wait_queue(&chip->wq, &wait);
1023 mutex_unlock(&chip->mutex);
1024 schedule();
1025 remove_wait_queue(&chip->wq, &wait);
1026 mutex_lock(&chip->mutex);
1028 /* Disallow XIP again */
1029 local_irq_disable();
1031 /* Correct Erase Suspend Hangups for M29EW */
1032 cfi_fixup_m29ew_erase_suspend(map, adr);
1033 /* Resume the write or erase operation */
1034 map_write(map, cfi->sector_erase_cmd, adr);
1035 chip->state = oldstate;
1036 start = xip_currtime();
1037 } else if (usec >= 1000000/HZ) {
1039 * Try to save on CPU power when waiting delay
1040 * is at least a system timer tick period.
1041 * No need to be extremely accurate here.
1043 xip_cpu_idle();
1045 status = map_read(map, adr);
1046 } while (!map_word_andequal(map, status, OK, OK)
1047 && xip_elapsed_since(start) < usec);
1050 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1053 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1054 * the flash is actively programming or erasing since we have to poll for
1055 * the operation to complete anyway. We can't do that in a generic way with
1056 * a XIP setup so do it before the actual flash operation in this case
1057 * and stub it out from INVALIDATE_CACHE_UDELAY.
1059 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1060 INVALIDATE_CACHED_RANGE(map, from, size)
1062 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1063 UDELAY(map, chip, adr, usec)
1066 * Extra notes:
1068 * Activating this XIP support changes the way the code works a bit. For
1069 * example the code to suspend the current process when concurrent access
1070 * happens is never executed because xip_udelay() will always return with the
1071 * same chip state as it was entered with. This is why there is no care for
1072 * the presence of add_wait_queue() or schedule() calls from within a couple
1073 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1074 * The queueing and scheduling are always happening within xip_udelay().
1076 * Similarly, get_chip() and put_chip() just happen to always be executed
1077 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1078 * is in array mode, therefore never executing many cases therein and not
1079 * causing any problem with XIP.
1082 #else
1084 #define xip_disable(map, chip, adr)
1085 #define xip_enable(map, chip, adr)
1086 #define XIP_INVAL_CACHED_RANGE(x...)
1088 #define UDELAY(map, chip, adr, usec) \
1089 do { \
1090 mutex_unlock(&chip->mutex); \
1091 cfi_udelay(usec); \
1092 mutex_lock(&chip->mutex); \
1093 } while (0)
1095 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1096 do { \
1097 mutex_unlock(&chip->mutex); \
1098 INVALIDATE_CACHED_RANGE(map, adr, len); \
1099 cfi_udelay(usec); \
1100 mutex_lock(&chip->mutex); \
1101 } while (0)
1103 #endif
1105 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1107 unsigned long cmd_addr;
1108 struct cfi_private *cfi = map->fldrv_priv;
1109 int ret;
1111 adr += chip->start;
1113 /* Ensure cmd read/writes are aligned. */
1114 cmd_addr = adr & ~(map_bankwidth(map)-1);
1116 mutex_lock(&chip->mutex);
1117 ret = get_chip(map, chip, cmd_addr, FL_READY);
1118 if (ret) {
1119 mutex_unlock(&chip->mutex);
1120 return ret;
1123 if (chip->state != FL_POINT && chip->state != FL_READY) {
1124 map_write(map, CMD(0xf0), cmd_addr);
1125 chip->state = FL_READY;
1128 map_copy_from(map, buf, adr, len);
1130 put_chip(map, chip, cmd_addr);
1132 mutex_unlock(&chip->mutex);
1133 return 0;
1137 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1139 struct map_info *map = mtd->priv;
1140 struct cfi_private *cfi = map->fldrv_priv;
1141 unsigned long ofs;
1142 int chipnum;
1143 int ret = 0;
1145 /* ofs: offset within the first chip that the first read should start */
1146 chipnum = (from >> cfi->chipshift);
1147 ofs = from - (chipnum << cfi->chipshift);
1149 while (len) {
1150 unsigned long thislen;
1152 if (chipnum >= cfi->numchips)
1153 break;
1155 if ((len + ofs -1) >> cfi->chipshift)
1156 thislen = (1<<cfi->chipshift) - ofs;
1157 else
1158 thislen = len;
1160 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1161 if (ret)
1162 break;
1164 *retlen += thislen;
1165 len -= thislen;
1166 buf += thislen;
1168 ofs = 0;
1169 chipnum++;
1171 return ret;
1174 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1175 loff_t adr, size_t len, u_char *buf, size_t grouplen);
1177 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1178 loff_t adr, size_t len)
1180 struct cfi_private *cfi = map->fldrv_priv;
1182 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1183 cfi->device_type, NULL);
1184 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1185 cfi->device_type, NULL);
1186 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1187 cfi->device_type, NULL);
1189 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1192 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1193 loff_t adr, size_t len)
1195 struct cfi_private *cfi = map->fldrv_priv;
1197 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1198 cfi->device_type, NULL);
1199 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1200 cfi->device_type, NULL);
1201 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1202 cfi->device_type, NULL);
1203 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1204 cfi->device_type, NULL);
1206 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1209 static inline int do_read_secsi_onechip(struct map_info *map,
1210 struct flchip *chip, loff_t adr,
1211 size_t len, u_char *buf,
1212 size_t grouplen)
1214 DECLARE_WAITQUEUE(wait, current);
1215 unsigned long timeo = jiffies + HZ;
1217 retry:
1218 mutex_lock(&chip->mutex);
1220 if (chip->state != FL_READY){
1221 set_current_state(TASK_UNINTERRUPTIBLE);
1222 add_wait_queue(&chip->wq, &wait);
1224 mutex_unlock(&chip->mutex);
1226 schedule();
1227 remove_wait_queue(&chip->wq, &wait);
1228 timeo = jiffies + HZ;
1230 goto retry;
1233 adr += chip->start;
1235 chip->state = FL_READY;
1237 otp_enter(map, chip, adr, len);
1238 map_copy_from(map, buf, adr, len);
1239 otp_exit(map, chip, adr, len);
1241 wake_up(&chip->wq);
1242 mutex_unlock(&chip->mutex);
1244 return 0;
1247 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1249 struct map_info *map = mtd->priv;
1250 struct cfi_private *cfi = map->fldrv_priv;
1251 unsigned long ofs;
1252 int chipnum;
1253 int ret = 0;
1255 /* ofs: offset within the first chip that the first read should start */
1256 /* 8 secsi bytes per chip */
1257 chipnum=from>>3;
1258 ofs=from & 7;
1260 while (len) {
1261 unsigned long thislen;
1263 if (chipnum >= cfi->numchips)
1264 break;
1266 if ((len + ofs -1) >> 3)
1267 thislen = (1<<3) - ofs;
1268 else
1269 thislen = len;
1271 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1272 thislen, buf, 0);
1273 if (ret)
1274 break;
1276 *retlen += thislen;
1277 len -= thislen;
1278 buf += thislen;
1280 ofs = 0;
1281 chipnum++;
1283 return ret;
1286 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1287 unsigned long adr, map_word datum,
1288 int mode);
1290 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1291 size_t len, u_char *buf, size_t grouplen)
1293 int ret;
1294 while (len) {
1295 unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1296 int gap = adr - bus_ofs;
1297 int n = min_t(int, len, map_bankwidth(map) - gap);
1298 map_word datum;
1300 if (n != map_bankwidth(map)) {
1301 /* partial write of a word, load old contents */
1302 otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1303 datum = map_read(map, bus_ofs);
1304 otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1307 datum = map_word_load_partial(map, datum, buf, gap, n);
1308 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1309 if (ret)
1310 return ret;
1312 adr += n;
1313 buf += n;
1314 len -= n;
1317 return 0;
1320 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1321 size_t len, u_char *buf, size_t grouplen)
1323 struct cfi_private *cfi = map->fldrv_priv;
1324 uint8_t lockreg;
1325 unsigned long timeo;
1326 int ret;
1328 /* make sure area matches group boundaries */
1329 if ((adr != 0) || (len != grouplen))
1330 return -EINVAL;
1332 mutex_lock(&chip->mutex);
1333 ret = get_chip(map, chip, chip->start, FL_LOCKING);
1334 if (ret) {
1335 mutex_unlock(&chip->mutex);
1336 return ret;
1338 chip->state = FL_LOCKING;
1340 /* Enter lock register command */
1341 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1342 cfi->device_type, NULL);
1343 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1344 cfi->device_type, NULL);
1345 cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1346 cfi->device_type, NULL);
1348 /* read lock register */
1349 lockreg = cfi_read_query(map, 0);
1351 /* set bit 0 to protect extended memory block */
1352 lockreg &= ~0x01;
1354 /* set bit 0 to protect extended memory block */
1355 /* write lock register */
1356 map_write(map, CMD(0xA0), chip->start);
1357 map_write(map, CMD(lockreg), chip->start);
1359 /* wait for chip to become ready */
1360 timeo = jiffies + msecs_to_jiffies(2);
1361 for (;;) {
1362 if (chip_ready(map, adr))
1363 break;
1365 if (time_after(jiffies, timeo)) {
1366 pr_err("Waiting for chip to be ready timed out.\n");
1367 ret = -EIO;
1368 break;
1370 UDELAY(map, chip, 0, 1);
1373 /* exit protection commands */
1374 map_write(map, CMD(0x90), chip->start);
1375 map_write(map, CMD(0x00), chip->start);
1377 chip->state = FL_READY;
1378 put_chip(map, chip, chip->start);
1379 mutex_unlock(&chip->mutex);
1381 return ret;
1384 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1385 size_t *retlen, u_char *buf,
1386 otp_op_t action, int user_regs)
1388 struct map_info *map = mtd->priv;
1389 struct cfi_private *cfi = map->fldrv_priv;
1390 int ofs_factor = cfi->interleave * cfi->device_type;
1391 unsigned long base;
1392 int chipnum;
1393 struct flchip *chip;
1394 uint8_t otp, lockreg;
1395 int ret;
1397 size_t user_size, factory_size, otpsize;
1398 loff_t user_offset, factory_offset, otpoffset;
1399 int user_locked = 0, otplocked;
1401 *retlen = 0;
1403 for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1404 chip = &cfi->chips[chipnum];
1405 factory_size = 0;
1406 user_size = 0;
1408 /* Micron M29EW family */
1409 if (is_m29ew(cfi)) {
1410 base = chip->start;
1412 /* check whether secsi area is factory locked
1413 or user lockable */
1414 mutex_lock(&chip->mutex);
1415 ret = get_chip(map, chip, base, FL_CFI_QUERY);
1416 if (ret) {
1417 mutex_unlock(&chip->mutex);
1418 return ret;
1420 cfi_qry_mode_on(base, map, cfi);
1421 otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1422 cfi_qry_mode_off(base, map, cfi);
1423 put_chip(map, chip, base);
1424 mutex_unlock(&chip->mutex);
1426 if (otp & 0x80) {
1427 /* factory locked */
1428 factory_offset = 0;
1429 factory_size = 0x100;
1430 } else {
1431 /* customer lockable */
1432 user_offset = 0;
1433 user_size = 0x100;
1435 mutex_lock(&chip->mutex);
1436 ret = get_chip(map, chip, base, FL_LOCKING);
1437 if (ret) {
1438 mutex_unlock(&chip->mutex);
1439 return ret;
1442 /* Enter lock register command */
1443 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1444 chip->start, map, cfi,
1445 cfi->device_type, NULL);
1446 cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1447 chip->start, map, cfi,
1448 cfi->device_type, NULL);
1449 cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1450 chip->start, map, cfi,
1451 cfi->device_type, NULL);
1452 /* read lock register */
1453 lockreg = cfi_read_query(map, 0);
1454 /* exit protection commands */
1455 map_write(map, CMD(0x90), chip->start);
1456 map_write(map, CMD(0x00), chip->start);
1457 put_chip(map, chip, chip->start);
1458 mutex_unlock(&chip->mutex);
1460 user_locked = ((lockreg & 0x01) == 0x00);
1464 otpsize = user_regs ? user_size : factory_size;
1465 if (!otpsize)
1466 continue;
1467 otpoffset = user_regs ? user_offset : factory_offset;
1468 otplocked = user_regs ? user_locked : 1;
1470 if (!action) {
1471 /* return otpinfo */
1472 struct otp_info *otpinfo;
1473 len -= sizeof(*otpinfo);
1474 if (len <= 0)
1475 return -ENOSPC;
1476 otpinfo = (struct otp_info *)buf;
1477 otpinfo->start = from;
1478 otpinfo->length = otpsize;
1479 otpinfo->locked = otplocked;
1480 buf += sizeof(*otpinfo);
1481 *retlen += sizeof(*otpinfo);
1482 from += otpsize;
1483 } else if ((from < otpsize) && (len > 0)) {
1484 size_t size;
1485 size = (len < otpsize - from) ? len : otpsize - from;
1486 ret = action(map, chip, otpoffset + from, size, buf,
1487 otpsize);
1488 if (ret < 0)
1489 return ret;
1491 buf += size;
1492 len -= size;
1493 *retlen += size;
1494 from = 0;
1495 } else {
1496 from -= otpsize;
1499 return 0;
1502 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1503 size_t *retlen, struct otp_info *buf)
1505 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1506 NULL, 0);
1509 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1510 size_t *retlen, struct otp_info *buf)
1512 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1513 NULL, 1);
1516 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1517 size_t len, size_t *retlen,
1518 u_char *buf)
1520 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1521 buf, do_read_secsi_onechip, 0);
1524 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1525 size_t len, size_t *retlen,
1526 u_char *buf)
1528 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1529 buf, do_read_secsi_onechip, 1);
1532 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1533 size_t len, size_t *retlen,
1534 u_char *buf)
1536 return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1537 do_otp_write, 1);
1540 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1541 size_t len)
1543 size_t retlen;
1544 return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1545 do_otp_lock, 1);
1548 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1549 unsigned long adr, map_word datum,
1550 int mode)
1552 struct cfi_private *cfi = map->fldrv_priv;
1553 unsigned long timeo = jiffies + HZ;
1555 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1556 * have a max write time of a few hundreds usec). However, we should
1557 * use the maximum timeout value given by the chip at probe time
1558 * instead. Unfortunately, struct flchip does have a field for
1559 * maximum timeout, only for typical which can be far too short
1560 * depending of the conditions. The ' + 1' is to avoid having a
1561 * timeout of 0 jiffies if HZ is smaller than 1000.
1563 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1564 int ret = 0;
1565 map_word oldd;
1566 int retry_cnt = 0;
1568 adr += chip->start;
1570 mutex_lock(&chip->mutex);
1571 ret = get_chip(map, chip, adr, mode);
1572 if (ret) {
1573 mutex_unlock(&chip->mutex);
1574 return ret;
1577 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1578 __func__, adr, datum.x[0] );
1580 if (mode == FL_OTP_WRITE)
1581 otp_enter(map, chip, adr, map_bankwidth(map));
1584 * Check for a NOP for the case when the datum to write is already
1585 * present - it saves time and works around buggy chips that corrupt
1586 * data at other locations when 0xff is written to a location that
1587 * already contains 0xff.
1589 oldd = map_read(map, adr);
1590 if (map_word_equal(map, oldd, datum)) {
1591 pr_debug("MTD %s(): NOP\n",
1592 __func__);
1593 goto op_done;
1596 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1597 ENABLE_VPP(map);
1598 xip_disable(map, chip, adr);
1600 retry:
1601 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1602 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1603 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1604 map_write(map, datum, adr);
1605 chip->state = mode;
1607 INVALIDATE_CACHE_UDELAY(map, chip,
1608 adr, map_bankwidth(map),
1609 chip->word_write_time);
1611 /* See comment above for timeout value. */
1612 timeo = jiffies + uWriteTimeout;
1613 for (;;) {
1614 if (chip->state != mode) {
1615 /* Someone's suspended the write. Sleep */
1616 DECLARE_WAITQUEUE(wait, current);
1618 set_current_state(TASK_UNINTERRUPTIBLE);
1619 add_wait_queue(&chip->wq, &wait);
1620 mutex_unlock(&chip->mutex);
1621 schedule();
1622 remove_wait_queue(&chip->wq, &wait);
1623 timeo = jiffies + (HZ / 2); /* FIXME */
1624 mutex_lock(&chip->mutex);
1625 continue;
1628 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1629 xip_enable(map, chip, adr);
1630 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1631 xip_disable(map, chip, adr);
1632 break;
1635 if (chip_ready(map, adr))
1636 break;
1638 /* Latency issues. Drop the lock, wait a while and retry */
1639 UDELAY(map, chip, adr, 1);
1641 /* Did we succeed? */
1642 if (!chip_good(map, adr, datum)) {
1643 /* reset on all failures. */
1644 map_write( map, CMD(0xF0), chip->start );
1645 /* FIXME - should have reset delay before continuing */
1647 if (++retry_cnt <= MAX_WORD_RETRIES)
1648 goto retry;
1650 ret = -EIO;
1652 xip_enable(map, chip, adr);
1653 op_done:
1654 if (mode == FL_OTP_WRITE)
1655 otp_exit(map, chip, adr, map_bankwidth(map));
1656 chip->state = FL_READY;
1657 DISABLE_VPP(map);
1658 put_chip(map, chip, adr);
1659 mutex_unlock(&chip->mutex);
1661 return ret;
1665 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1666 size_t *retlen, const u_char *buf)
1668 struct map_info *map = mtd->priv;
1669 struct cfi_private *cfi = map->fldrv_priv;
1670 int ret = 0;
1671 int chipnum;
1672 unsigned long ofs, chipstart;
1673 DECLARE_WAITQUEUE(wait, current);
1675 chipnum = to >> cfi->chipshift;
1676 ofs = to - (chipnum << cfi->chipshift);
1677 chipstart = cfi->chips[chipnum].start;
1679 /* If it's not bus-aligned, do the first byte write */
1680 if (ofs & (map_bankwidth(map)-1)) {
1681 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1682 int i = ofs - bus_ofs;
1683 int n = 0;
1684 map_word tmp_buf;
1686 retry:
1687 mutex_lock(&cfi->chips[chipnum].mutex);
1689 if (cfi->chips[chipnum].state != FL_READY) {
1690 set_current_state(TASK_UNINTERRUPTIBLE);
1691 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1693 mutex_unlock(&cfi->chips[chipnum].mutex);
1695 schedule();
1696 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1697 goto retry;
1700 /* Load 'tmp_buf' with old contents of flash */
1701 tmp_buf = map_read(map, bus_ofs+chipstart);
1703 mutex_unlock(&cfi->chips[chipnum].mutex);
1705 /* Number of bytes to copy from buffer */
1706 n = min_t(int, len, map_bankwidth(map)-i);
1708 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1710 ret = do_write_oneword(map, &cfi->chips[chipnum],
1711 bus_ofs, tmp_buf, FL_WRITING);
1712 if (ret)
1713 return ret;
1715 ofs += n;
1716 buf += n;
1717 (*retlen) += n;
1718 len -= n;
1720 if (ofs >> cfi->chipshift) {
1721 chipnum ++;
1722 ofs = 0;
1723 if (chipnum == cfi->numchips)
1724 return 0;
1728 /* We are now aligned, write as much as possible */
1729 while(len >= map_bankwidth(map)) {
1730 map_word datum;
1732 datum = map_word_load(map, buf);
1734 ret = do_write_oneword(map, &cfi->chips[chipnum],
1735 ofs, datum, FL_WRITING);
1736 if (ret)
1737 return ret;
1739 ofs += map_bankwidth(map);
1740 buf += map_bankwidth(map);
1741 (*retlen) += map_bankwidth(map);
1742 len -= map_bankwidth(map);
1744 if (ofs >> cfi->chipshift) {
1745 chipnum ++;
1746 ofs = 0;
1747 if (chipnum == cfi->numchips)
1748 return 0;
1749 chipstart = cfi->chips[chipnum].start;
1753 /* Write the trailing bytes if any */
1754 if (len & (map_bankwidth(map)-1)) {
1755 map_word tmp_buf;
1757 retry1:
1758 mutex_lock(&cfi->chips[chipnum].mutex);
1760 if (cfi->chips[chipnum].state != FL_READY) {
1761 set_current_state(TASK_UNINTERRUPTIBLE);
1762 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1764 mutex_unlock(&cfi->chips[chipnum].mutex);
1766 schedule();
1767 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1768 goto retry1;
1771 tmp_buf = map_read(map, ofs + chipstart);
1773 mutex_unlock(&cfi->chips[chipnum].mutex);
1775 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1777 ret = do_write_oneword(map, &cfi->chips[chipnum],
1778 ofs, tmp_buf, FL_WRITING);
1779 if (ret)
1780 return ret;
1782 (*retlen) += len;
1785 return 0;
1790 * FIXME: interleaved mode not tested, and probably not supported!
1792 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1793 unsigned long adr, const u_char *buf,
1794 int len)
1796 struct cfi_private *cfi = map->fldrv_priv;
1797 unsigned long timeo = jiffies + HZ;
1799 * Timeout is calculated according to CFI data, if available.
1800 * See more comments in cfi_cmdset_0002().
1802 unsigned long uWriteTimeout =
1803 usecs_to_jiffies(chip->buffer_write_time_max);
1804 int ret = -EIO;
1805 unsigned long cmd_adr;
1806 int z, words;
1807 map_word datum;
1809 adr += chip->start;
1810 cmd_adr = adr;
1812 mutex_lock(&chip->mutex);
1813 ret = get_chip(map, chip, adr, FL_WRITING);
1814 if (ret) {
1815 mutex_unlock(&chip->mutex);
1816 return ret;
1819 datum = map_word_load(map, buf);
1821 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1822 __func__, adr, datum.x[0] );
1824 XIP_INVAL_CACHED_RANGE(map, adr, len);
1825 ENABLE_VPP(map);
1826 xip_disable(map, chip, cmd_adr);
1828 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1829 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1831 /* Write Buffer Load */
1832 map_write(map, CMD(0x25), cmd_adr);
1834 chip->state = FL_WRITING_TO_BUFFER;
1836 /* Write length of data to come */
1837 words = len / map_bankwidth(map);
1838 map_write(map, CMD(words - 1), cmd_adr);
1839 /* Write data */
1840 z = 0;
1841 while(z < words * map_bankwidth(map)) {
1842 datum = map_word_load(map, buf);
1843 map_write(map, datum, adr + z);
1845 z += map_bankwidth(map);
1846 buf += map_bankwidth(map);
1848 z -= map_bankwidth(map);
1850 adr += z;
1852 /* Write Buffer Program Confirm: GO GO GO */
1853 map_write(map, CMD(0x29), cmd_adr);
1854 chip->state = FL_WRITING;
1856 INVALIDATE_CACHE_UDELAY(map, chip,
1857 adr, map_bankwidth(map),
1858 chip->word_write_time);
1860 timeo = jiffies + uWriteTimeout;
1862 for (;;) {
1863 if (chip->state != FL_WRITING) {
1864 /* Someone's suspended the write. Sleep */
1865 DECLARE_WAITQUEUE(wait, current);
1867 set_current_state(TASK_UNINTERRUPTIBLE);
1868 add_wait_queue(&chip->wq, &wait);
1869 mutex_unlock(&chip->mutex);
1870 schedule();
1871 remove_wait_queue(&chip->wq, &wait);
1872 timeo = jiffies + (HZ / 2); /* FIXME */
1873 mutex_lock(&chip->mutex);
1874 continue;
1877 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1878 break;
1880 if (chip_ready(map, adr)) {
1881 xip_enable(map, chip, adr);
1882 goto op_done;
1885 /* Latency issues. Drop the lock, wait a while and retry */
1886 UDELAY(map, chip, adr, 1);
1890 * Recovery from write-buffer programming failures requires
1891 * the write-to-buffer-reset sequence. Since the last part
1892 * of the sequence also works as a normal reset, we can run
1893 * the same commands regardless of why we are here.
1894 * See e.g.
1895 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1897 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1898 cfi->device_type, NULL);
1899 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1900 cfi->device_type, NULL);
1901 cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
1902 cfi->device_type, NULL);
1903 xip_enable(map, chip, adr);
1904 /* FIXME - should have reset delay before continuing */
1906 printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
1907 __func__, adr);
1909 ret = -EIO;
1910 op_done:
1911 chip->state = FL_READY;
1912 DISABLE_VPP(map);
1913 put_chip(map, chip, adr);
1914 mutex_unlock(&chip->mutex);
1916 return ret;
1920 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1921 size_t *retlen, const u_char *buf)
1923 struct map_info *map = mtd->priv;
1924 struct cfi_private *cfi = map->fldrv_priv;
1925 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1926 int ret = 0;
1927 int chipnum;
1928 unsigned long ofs;
1930 chipnum = to >> cfi->chipshift;
1931 ofs = to - (chipnum << cfi->chipshift);
1933 /* If it's not bus-aligned, do the first word write */
1934 if (ofs & (map_bankwidth(map)-1)) {
1935 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1936 if (local_len > len)
1937 local_len = len;
1938 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1939 local_len, retlen, buf);
1940 if (ret)
1941 return ret;
1942 ofs += local_len;
1943 buf += local_len;
1944 len -= local_len;
1946 if (ofs >> cfi->chipshift) {
1947 chipnum ++;
1948 ofs = 0;
1949 if (chipnum == cfi->numchips)
1950 return 0;
1954 /* Write buffer is worth it only if more than one word to write... */
1955 while (len >= map_bankwidth(map) * 2) {
1956 /* We must not cross write block boundaries */
1957 int size = wbufsize - (ofs & (wbufsize-1));
1959 if (size > len)
1960 size = len;
1961 if (size % map_bankwidth(map))
1962 size -= size % map_bankwidth(map);
1964 ret = do_write_buffer(map, &cfi->chips[chipnum],
1965 ofs, buf, size);
1966 if (ret)
1967 return ret;
1969 ofs += size;
1970 buf += size;
1971 (*retlen) += size;
1972 len -= size;
1974 if (ofs >> cfi->chipshift) {
1975 chipnum ++;
1976 ofs = 0;
1977 if (chipnum == cfi->numchips)
1978 return 0;
1982 if (len) {
1983 size_t retlen_dregs = 0;
1985 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1986 len, &retlen_dregs, buf);
1988 *retlen += retlen_dregs;
1989 return ret;
1992 return 0;
1996 * Wait for the flash chip to become ready to write data
1998 * This is only called during the panic_write() path. When panic_write()
1999 * is called, the kernel is in the process of a panic, and will soon be
2000 * dead. Therefore we don't take any locks, and attempt to get access
2001 * to the chip as soon as possible.
2003 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2004 unsigned long adr)
2006 struct cfi_private *cfi = map->fldrv_priv;
2007 int retries = 10;
2008 int i;
2011 * If the driver thinks the chip is idle, and no toggle bits
2012 * are changing, then the chip is actually idle for sure.
2014 if (chip->state == FL_READY && chip_ready(map, adr))
2015 return 0;
2018 * Try several times to reset the chip and then wait for it
2019 * to become idle. The upper limit of a few milliseconds of
2020 * delay isn't a big problem: the kernel is dying anyway. It
2021 * is more important to save the messages.
2023 while (retries > 0) {
2024 const unsigned long timeo = (HZ / 1000) + 1;
2026 /* send the reset command */
2027 map_write(map, CMD(0xF0), chip->start);
2029 /* wait for the chip to become ready */
2030 for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2031 if (chip_ready(map, adr))
2032 return 0;
2034 udelay(1);
2037 retries--;
2040 /* the chip never became ready */
2041 return -EBUSY;
2045 * Write out one word of data to a single flash chip during a kernel panic
2047 * This is only called during the panic_write() path. When panic_write()
2048 * is called, the kernel is in the process of a panic, and will soon be
2049 * dead. Therefore we don't take any locks, and attempt to get access
2050 * to the chip as soon as possible.
2052 * The implementation of this routine is intentionally similar to
2053 * do_write_oneword(), in order to ease code maintenance.
2055 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2056 unsigned long adr, map_word datum)
2058 const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2059 struct cfi_private *cfi = map->fldrv_priv;
2060 int retry_cnt = 0;
2061 map_word oldd;
2062 int ret = 0;
2063 int i;
2065 adr += chip->start;
2067 ret = cfi_amdstd_panic_wait(map, chip, adr);
2068 if (ret)
2069 return ret;
2071 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2072 __func__, adr, datum.x[0]);
2075 * Check for a NOP for the case when the datum to write is already
2076 * present - it saves time and works around buggy chips that corrupt
2077 * data at other locations when 0xff is written to a location that
2078 * already contains 0xff.
2080 oldd = map_read(map, adr);
2081 if (map_word_equal(map, oldd, datum)) {
2082 pr_debug("MTD %s(): NOP\n", __func__);
2083 goto op_done;
2086 ENABLE_VPP(map);
2088 retry:
2089 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2090 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2091 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2092 map_write(map, datum, adr);
2094 for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2095 if (chip_ready(map, adr))
2096 break;
2098 udelay(1);
2101 if (!chip_good(map, adr, datum)) {
2102 /* reset on all failures. */
2103 map_write(map, CMD(0xF0), chip->start);
2104 /* FIXME - should have reset delay before continuing */
2106 if (++retry_cnt <= MAX_WORD_RETRIES)
2107 goto retry;
2109 ret = -EIO;
2112 op_done:
2113 DISABLE_VPP(map);
2114 return ret;
2118 * Write out some data during a kernel panic
2120 * This is used by the mtdoops driver to save the dying messages from a
2121 * kernel which has panic'd.
2123 * This routine ignores all of the locking used throughout the rest of the
2124 * driver, in order to ensure that the data gets written out no matter what
2125 * state this driver (and the flash chip itself) was in when the kernel crashed.
2127 * The implementation of this routine is intentionally similar to
2128 * cfi_amdstd_write_words(), in order to ease code maintenance.
2130 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2131 size_t *retlen, const u_char *buf)
2133 struct map_info *map = mtd->priv;
2134 struct cfi_private *cfi = map->fldrv_priv;
2135 unsigned long ofs, chipstart;
2136 int ret = 0;
2137 int chipnum;
2139 chipnum = to >> cfi->chipshift;
2140 ofs = to - (chipnum << cfi->chipshift);
2141 chipstart = cfi->chips[chipnum].start;
2143 /* If it's not bus aligned, do the first byte write */
2144 if (ofs & (map_bankwidth(map) - 1)) {
2145 unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2146 int i = ofs - bus_ofs;
2147 int n = 0;
2148 map_word tmp_buf;
2150 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2151 if (ret)
2152 return ret;
2154 /* Load 'tmp_buf' with old contents of flash */
2155 tmp_buf = map_read(map, bus_ofs + chipstart);
2157 /* Number of bytes to copy from buffer */
2158 n = min_t(int, len, map_bankwidth(map) - i);
2160 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2162 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2163 bus_ofs, tmp_buf);
2164 if (ret)
2165 return ret;
2167 ofs += n;
2168 buf += n;
2169 (*retlen) += n;
2170 len -= n;
2172 if (ofs >> cfi->chipshift) {
2173 chipnum++;
2174 ofs = 0;
2175 if (chipnum == cfi->numchips)
2176 return 0;
2180 /* We are now aligned, write as much as possible */
2181 while (len >= map_bankwidth(map)) {
2182 map_word datum;
2184 datum = map_word_load(map, buf);
2186 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2187 ofs, datum);
2188 if (ret)
2189 return ret;
2191 ofs += map_bankwidth(map);
2192 buf += map_bankwidth(map);
2193 (*retlen) += map_bankwidth(map);
2194 len -= map_bankwidth(map);
2196 if (ofs >> cfi->chipshift) {
2197 chipnum++;
2198 ofs = 0;
2199 if (chipnum == cfi->numchips)
2200 return 0;
2202 chipstart = cfi->chips[chipnum].start;
2206 /* Write the trailing bytes if any */
2207 if (len & (map_bankwidth(map) - 1)) {
2208 map_word tmp_buf;
2210 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2211 if (ret)
2212 return ret;
2214 tmp_buf = map_read(map, ofs + chipstart);
2216 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2218 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2219 ofs, tmp_buf);
2220 if (ret)
2221 return ret;
2223 (*retlen) += len;
2226 return 0;
2231 * Handle devices with one erase region, that only implement
2232 * the chip erase command.
2234 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2236 struct cfi_private *cfi = map->fldrv_priv;
2237 unsigned long timeo = jiffies + HZ;
2238 unsigned long int adr;
2239 DECLARE_WAITQUEUE(wait, current);
2240 int ret = 0;
2242 adr = cfi->addr_unlock1;
2244 mutex_lock(&chip->mutex);
2245 ret = get_chip(map, chip, adr, FL_WRITING);
2246 if (ret) {
2247 mutex_unlock(&chip->mutex);
2248 return ret;
2251 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2252 __func__, chip->start );
2254 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2255 ENABLE_VPP(map);
2256 xip_disable(map, chip, adr);
2258 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2259 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2260 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2261 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2262 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2263 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2265 chip->state = FL_ERASING;
2266 chip->erase_suspended = 0;
2267 chip->in_progress_block_addr = adr;
2269 INVALIDATE_CACHE_UDELAY(map, chip,
2270 adr, map->size,
2271 chip->erase_time*500);
2273 timeo = jiffies + (HZ*20);
2275 for (;;) {
2276 if (chip->state != FL_ERASING) {
2277 /* Someone's suspended the erase. Sleep */
2278 set_current_state(TASK_UNINTERRUPTIBLE);
2279 add_wait_queue(&chip->wq, &wait);
2280 mutex_unlock(&chip->mutex);
2281 schedule();
2282 remove_wait_queue(&chip->wq, &wait);
2283 mutex_lock(&chip->mutex);
2284 continue;
2286 if (chip->erase_suspended) {
2287 /* This erase was suspended and resumed.
2288 Adjust the timeout */
2289 timeo = jiffies + (HZ*20); /* FIXME */
2290 chip->erase_suspended = 0;
2293 if (chip_ready(map, adr))
2294 break;
2296 if (time_after(jiffies, timeo)) {
2297 printk(KERN_WARNING "MTD %s(): software timeout\n",
2298 __func__ );
2299 break;
2302 /* Latency issues. Drop the lock, wait a while and retry */
2303 UDELAY(map, chip, adr, 1000000/HZ);
2305 /* Did we succeed? */
2306 if (!chip_good(map, adr, map_word_ff(map))) {
2307 /* reset on all failures. */
2308 map_write( map, CMD(0xF0), chip->start );
2309 /* FIXME - should have reset delay before continuing */
2311 ret = -EIO;
2314 chip->state = FL_READY;
2315 xip_enable(map, chip, adr);
2316 DISABLE_VPP(map);
2317 put_chip(map, chip, adr);
2318 mutex_unlock(&chip->mutex);
2320 return ret;
2324 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2326 struct cfi_private *cfi = map->fldrv_priv;
2327 unsigned long timeo = jiffies + HZ;
2328 DECLARE_WAITQUEUE(wait, current);
2329 int ret = 0;
2331 adr += chip->start;
2333 mutex_lock(&chip->mutex);
2334 ret = get_chip(map, chip, adr, FL_ERASING);
2335 if (ret) {
2336 mutex_unlock(&chip->mutex);
2337 return ret;
2340 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2341 __func__, adr );
2343 XIP_INVAL_CACHED_RANGE(map, adr, len);
2344 ENABLE_VPP(map);
2345 xip_disable(map, chip, adr);
2347 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2348 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2349 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2350 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2351 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2352 map_write(map, cfi->sector_erase_cmd, adr);
2354 chip->state = FL_ERASING;
2355 chip->erase_suspended = 0;
2356 chip->in_progress_block_addr = adr;
2358 INVALIDATE_CACHE_UDELAY(map, chip,
2359 adr, len,
2360 chip->erase_time*500);
2362 timeo = jiffies + (HZ*20);
2364 for (;;) {
2365 if (chip->state != FL_ERASING) {
2366 /* Someone's suspended the erase. Sleep */
2367 set_current_state(TASK_UNINTERRUPTIBLE);
2368 add_wait_queue(&chip->wq, &wait);
2369 mutex_unlock(&chip->mutex);
2370 schedule();
2371 remove_wait_queue(&chip->wq, &wait);
2372 mutex_lock(&chip->mutex);
2373 continue;
2375 if (chip->erase_suspended) {
2376 /* This erase was suspended and resumed.
2377 Adjust the timeout */
2378 timeo = jiffies + (HZ*20); /* FIXME */
2379 chip->erase_suspended = 0;
2382 if (chip_ready(map, adr)) {
2383 xip_enable(map, chip, adr);
2384 break;
2387 if (time_after(jiffies, timeo)) {
2388 xip_enable(map, chip, adr);
2389 printk(KERN_WARNING "MTD %s(): software timeout\n",
2390 __func__ );
2391 break;
2394 /* Latency issues. Drop the lock, wait a while and retry */
2395 UDELAY(map, chip, adr, 1000000/HZ);
2397 /* Did we succeed? */
2398 if (!chip_good(map, adr, map_word_ff(map))) {
2399 /* reset on all failures. */
2400 map_write( map, CMD(0xF0), chip->start );
2401 /* FIXME - should have reset delay before continuing */
2403 ret = -EIO;
2406 chip->state = FL_READY;
2407 DISABLE_VPP(map);
2408 put_chip(map, chip, adr);
2409 mutex_unlock(&chip->mutex);
2410 return ret;
2414 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2416 unsigned long ofs, len;
2417 int ret;
2419 ofs = instr->addr;
2420 len = instr->len;
2422 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
2423 if (ret)
2424 return ret;
2426 instr->state = MTD_ERASE_DONE;
2427 mtd_erase_callback(instr);
2429 return 0;
2433 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2435 struct map_info *map = mtd->priv;
2436 struct cfi_private *cfi = map->fldrv_priv;
2437 int ret = 0;
2439 if (instr->addr != 0)
2440 return -EINVAL;
2442 if (instr->len != mtd->size)
2443 return -EINVAL;
2445 ret = do_erase_chip(map, &cfi->chips[0]);
2446 if (ret)
2447 return ret;
2449 instr->state = MTD_ERASE_DONE;
2450 mtd_erase_callback(instr);
2452 return 0;
2455 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2456 unsigned long adr, int len, void *thunk)
2458 struct cfi_private *cfi = map->fldrv_priv;
2459 int ret;
2461 mutex_lock(&chip->mutex);
2462 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2463 if (ret)
2464 goto out_unlock;
2465 chip->state = FL_LOCKING;
2467 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2469 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2470 cfi->device_type, NULL);
2471 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2472 cfi->device_type, NULL);
2473 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2474 cfi->device_type, NULL);
2475 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2476 cfi->device_type, NULL);
2477 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2478 cfi->device_type, NULL);
2479 map_write(map, CMD(0x40), chip->start + adr);
2481 chip->state = FL_READY;
2482 put_chip(map, chip, adr + chip->start);
2483 ret = 0;
2485 out_unlock:
2486 mutex_unlock(&chip->mutex);
2487 return ret;
2490 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2491 unsigned long adr, int len, void *thunk)
2493 struct cfi_private *cfi = map->fldrv_priv;
2494 int ret;
2496 mutex_lock(&chip->mutex);
2497 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2498 if (ret)
2499 goto out_unlock;
2500 chip->state = FL_UNLOCKING;
2502 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2504 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2505 cfi->device_type, NULL);
2506 map_write(map, CMD(0x70), adr);
2508 chip->state = FL_READY;
2509 put_chip(map, chip, adr + chip->start);
2510 ret = 0;
2512 out_unlock:
2513 mutex_unlock(&chip->mutex);
2514 return ret;
2517 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2519 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2522 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2524 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2528 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2531 struct ppb_lock {
2532 struct flchip *chip;
2533 loff_t offset;
2534 int locked;
2537 #define MAX_SECTORS 512
2539 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
2540 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
2541 #define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
2543 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2544 struct flchip *chip,
2545 unsigned long adr, int len, void *thunk)
2547 struct cfi_private *cfi = map->fldrv_priv;
2548 unsigned long timeo;
2549 int ret;
2551 mutex_lock(&chip->mutex);
2552 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2553 if (ret) {
2554 mutex_unlock(&chip->mutex);
2555 return ret;
2558 pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2560 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2561 cfi->device_type, NULL);
2562 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2563 cfi->device_type, NULL);
2564 /* PPB entry command */
2565 cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2566 cfi->device_type, NULL);
2568 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2569 chip->state = FL_LOCKING;
2570 map_write(map, CMD(0xA0), chip->start + adr);
2571 map_write(map, CMD(0x00), chip->start + adr);
2572 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2574 * Unlocking of one specific sector is not supported, so we
2575 * have to unlock all sectors of this device instead
2577 chip->state = FL_UNLOCKING;
2578 map_write(map, CMD(0x80), chip->start);
2579 map_write(map, CMD(0x30), chip->start);
2580 } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2581 chip->state = FL_JEDEC_QUERY;
2582 /* Return locked status: 0->locked, 1->unlocked */
2583 ret = !cfi_read_query(map, adr);
2584 } else
2585 BUG();
2588 * Wait for some time as unlocking of all sectors takes quite long
2590 timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
2591 for (;;) {
2592 if (chip_ready(map, adr))
2593 break;
2595 if (time_after(jiffies, timeo)) {
2596 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2597 ret = -EIO;
2598 break;
2601 UDELAY(map, chip, adr, 1);
2604 /* Exit BC commands */
2605 map_write(map, CMD(0x90), chip->start);
2606 map_write(map, CMD(0x00), chip->start);
2608 chip->state = FL_READY;
2609 put_chip(map, chip, adr + chip->start);
2610 mutex_unlock(&chip->mutex);
2612 return ret;
2615 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2616 uint64_t len)
2618 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2619 DO_XXLOCK_ONEBLOCK_LOCK);
2622 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2623 uint64_t len)
2625 struct mtd_erase_region_info *regions = mtd->eraseregions;
2626 struct map_info *map = mtd->priv;
2627 struct cfi_private *cfi = map->fldrv_priv;
2628 struct ppb_lock *sect;
2629 unsigned long adr;
2630 loff_t offset;
2631 uint64_t length;
2632 int chipnum;
2633 int i;
2634 int sectors;
2635 int ret;
2638 * PPB unlocking always unlocks all sectors of the flash chip.
2639 * We need to re-lock all previously locked sectors. So lets
2640 * first check the locking status of all sectors and save
2641 * it for future use.
2643 sect = kzalloc(MAX_SECTORS * sizeof(struct ppb_lock), GFP_KERNEL);
2644 if (!sect)
2645 return -ENOMEM;
2648 * This code to walk all sectors is a slightly modified version
2649 * of the cfi_varsize_frob() code.
2651 i = 0;
2652 chipnum = 0;
2653 adr = 0;
2654 sectors = 0;
2655 offset = 0;
2656 length = mtd->size;
2658 while (length) {
2659 int size = regions[i].erasesize;
2662 * Only test sectors that shall not be unlocked. The other
2663 * sectors shall be unlocked, so lets keep their locking
2664 * status at "unlocked" (locked=0) for the final re-locking.
2666 if ((adr < ofs) || (adr >= (ofs + len))) {
2667 sect[sectors].chip = &cfi->chips[chipnum];
2668 sect[sectors].offset = offset;
2669 sect[sectors].locked = do_ppb_xxlock(
2670 map, &cfi->chips[chipnum], adr, 0,
2671 DO_XXLOCK_ONEBLOCK_GETLOCK);
2674 adr += size;
2675 offset += size;
2676 length -= size;
2678 if (offset == regions[i].offset + size * regions[i].numblocks)
2679 i++;
2681 if (adr >> cfi->chipshift) {
2682 adr = 0;
2683 chipnum++;
2685 if (chipnum >= cfi->numchips)
2686 break;
2689 sectors++;
2690 if (sectors >= MAX_SECTORS) {
2691 printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2692 MAX_SECTORS);
2693 kfree(sect);
2694 return -EINVAL;
2698 /* Now unlock the whole chip */
2699 ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2700 DO_XXLOCK_ONEBLOCK_UNLOCK);
2701 if (ret) {
2702 kfree(sect);
2703 return ret;
2707 * PPB unlocking always unlocks all sectors of the flash chip.
2708 * We need to re-lock all previously locked sectors.
2710 for (i = 0; i < sectors; i++) {
2711 if (sect[i].locked)
2712 do_ppb_xxlock(map, sect[i].chip, sect[i].offset, 0,
2713 DO_XXLOCK_ONEBLOCK_LOCK);
2716 kfree(sect);
2717 return ret;
2720 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2721 uint64_t len)
2723 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2724 DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2727 static void cfi_amdstd_sync (struct mtd_info *mtd)
2729 struct map_info *map = mtd->priv;
2730 struct cfi_private *cfi = map->fldrv_priv;
2731 int i;
2732 struct flchip *chip;
2733 int ret = 0;
2734 DECLARE_WAITQUEUE(wait, current);
2736 for (i=0; !ret && i<cfi->numchips; i++) {
2737 chip = &cfi->chips[i];
2739 retry:
2740 mutex_lock(&chip->mutex);
2742 switch(chip->state) {
2743 case FL_READY:
2744 case FL_STATUS:
2745 case FL_CFI_QUERY:
2746 case FL_JEDEC_QUERY:
2747 chip->oldstate = chip->state;
2748 chip->state = FL_SYNCING;
2749 /* No need to wake_up() on this state change -
2750 * as the whole point is that nobody can do anything
2751 * with the chip now anyway.
2753 case FL_SYNCING:
2754 mutex_unlock(&chip->mutex);
2755 break;
2757 default:
2758 /* Not an idle state */
2759 set_current_state(TASK_UNINTERRUPTIBLE);
2760 add_wait_queue(&chip->wq, &wait);
2762 mutex_unlock(&chip->mutex);
2764 schedule();
2766 remove_wait_queue(&chip->wq, &wait);
2768 goto retry;
2772 /* Unlock the chips again */
2774 for (i--; i >=0; i--) {
2775 chip = &cfi->chips[i];
2777 mutex_lock(&chip->mutex);
2779 if (chip->state == FL_SYNCING) {
2780 chip->state = chip->oldstate;
2781 wake_up(&chip->wq);
2783 mutex_unlock(&chip->mutex);
2788 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2790 struct map_info *map = mtd->priv;
2791 struct cfi_private *cfi = map->fldrv_priv;
2792 int i;
2793 struct flchip *chip;
2794 int ret = 0;
2796 for (i=0; !ret && i<cfi->numchips; i++) {
2797 chip = &cfi->chips[i];
2799 mutex_lock(&chip->mutex);
2801 switch(chip->state) {
2802 case FL_READY:
2803 case FL_STATUS:
2804 case FL_CFI_QUERY:
2805 case FL_JEDEC_QUERY:
2806 chip->oldstate = chip->state;
2807 chip->state = FL_PM_SUSPENDED;
2808 /* No need to wake_up() on this state change -
2809 * as the whole point is that nobody can do anything
2810 * with the chip now anyway.
2812 case FL_PM_SUSPENDED:
2813 break;
2815 default:
2816 ret = -EAGAIN;
2817 break;
2819 mutex_unlock(&chip->mutex);
2822 /* Unlock the chips again */
2824 if (ret) {
2825 for (i--; i >=0; i--) {
2826 chip = &cfi->chips[i];
2828 mutex_lock(&chip->mutex);
2830 if (chip->state == FL_PM_SUSPENDED) {
2831 chip->state = chip->oldstate;
2832 wake_up(&chip->wq);
2834 mutex_unlock(&chip->mutex);
2838 return ret;
2842 static void cfi_amdstd_resume(struct mtd_info *mtd)
2844 struct map_info *map = mtd->priv;
2845 struct cfi_private *cfi = map->fldrv_priv;
2846 int i;
2847 struct flchip *chip;
2849 for (i=0; i<cfi->numchips; i++) {
2851 chip = &cfi->chips[i];
2853 mutex_lock(&chip->mutex);
2855 if (chip->state == FL_PM_SUSPENDED) {
2856 chip->state = FL_READY;
2857 map_write(map, CMD(0xF0), chip->start);
2858 wake_up(&chip->wq);
2860 else
2861 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2863 mutex_unlock(&chip->mutex);
2869 * Ensure that the flash device is put back into read array mode before
2870 * unloading the driver or rebooting. On some systems, rebooting while
2871 * the flash is in query/program/erase mode will prevent the CPU from
2872 * fetching the bootloader code, requiring a hard reset or power cycle.
2874 static int cfi_amdstd_reset(struct mtd_info *mtd)
2876 struct map_info *map = mtd->priv;
2877 struct cfi_private *cfi = map->fldrv_priv;
2878 int i, ret;
2879 struct flchip *chip;
2881 for (i = 0; i < cfi->numchips; i++) {
2883 chip = &cfi->chips[i];
2885 mutex_lock(&chip->mutex);
2887 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2888 if (!ret) {
2889 map_write(map, CMD(0xF0), chip->start);
2890 chip->state = FL_SHUTDOWN;
2891 put_chip(map, chip, chip->start);
2894 mutex_unlock(&chip->mutex);
2897 return 0;
2901 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2902 void *v)
2904 struct mtd_info *mtd;
2906 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2907 cfi_amdstd_reset(mtd);
2908 return NOTIFY_DONE;
2912 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2914 struct map_info *map = mtd->priv;
2915 struct cfi_private *cfi = map->fldrv_priv;
2917 cfi_amdstd_reset(mtd);
2918 unregister_reboot_notifier(&mtd->reboot_notifier);
2919 kfree(cfi->cmdset_priv);
2920 kfree(cfi->cfiq);
2921 kfree(cfi);
2922 kfree(mtd->eraseregions);
2925 MODULE_LICENSE("GPL");
2926 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2927 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2928 MODULE_ALIAS("cfi_cmdset_0006");
2929 MODULE_ALIAS("cfi_cmdset_0701");