Linux 4.1.16
[linux/fpc-iii.git] / drivers / mtd / spi-nor / spi-nor.c
blob14a5d2325dac0cdf0558d881a99fee2727b7a7bb
1 /*
2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/math64.h>
20 #include <linux/mtd/cfi.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/of_platform.h>
23 #include <linux/spi/flash.h>
24 #include <linux/mtd/spi-nor.h>
26 /* Define max times to check status register before we give up. */
27 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
29 #define SPI_NOR_MAX_ID_LEN 6
31 struct flash_info {
33 * This array stores the ID bytes.
34 * The first three bytes are the JEDIC ID.
35 * JEDEC ID zero means "no ID" (mostly older chips).
37 u8 id[SPI_NOR_MAX_ID_LEN];
38 u8 id_len;
40 /* The size listed here is what works with SPINOR_OP_SE, which isn't
41 * necessarily called a "sector" by the vendor.
43 unsigned sector_size;
44 u16 n_sectors;
46 u16 page_size;
47 u16 addr_width;
49 u16 flags;
50 #define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
51 #define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
52 #define SST_WRITE 0x04 /* use SST byte programming */
53 #define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
54 #define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
55 #define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
56 #define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
57 #define USE_FSR 0x80 /* use flag status register */
60 #define JEDEC_MFR(info) ((info)->id[0])
62 static const struct spi_device_id *spi_nor_match_id(const char *name);
65 * Read the status register, returning its value in the location
66 * Return the status register value.
67 * Returns negative if error occurred.
69 static int read_sr(struct spi_nor *nor)
71 int ret;
72 u8 val;
74 ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
75 if (ret < 0) {
76 pr_err("error %d reading SR\n", (int) ret);
77 return ret;
80 return val;
84 * Read the flag status register, returning its value in the location
85 * Return the status register value.
86 * Returns negative if error occurred.
88 static int read_fsr(struct spi_nor *nor)
90 int ret;
91 u8 val;
93 ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
94 if (ret < 0) {
95 pr_err("error %d reading FSR\n", ret);
96 return ret;
99 return val;
103 * Read configuration register, returning its value in the
104 * location. Return the configuration register value.
105 * Returns negative if error occured.
107 static int read_cr(struct spi_nor *nor)
109 int ret;
110 u8 val;
112 ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
113 if (ret < 0) {
114 dev_err(nor->dev, "error %d reading CR\n", ret);
115 return ret;
118 return val;
122 * Dummy Cycle calculation for different type of read.
123 * It can be used to support more commands with
124 * different dummy cycle requirements.
126 static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
128 switch (nor->flash_read) {
129 case SPI_NOR_FAST:
130 case SPI_NOR_DUAL:
131 case SPI_NOR_QUAD:
132 return 8;
133 case SPI_NOR_NORMAL:
134 return 0;
136 return 0;
140 * Write status register 1 byte
141 * Returns negative if error occurred.
143 static inline int write_sr(struct spi_nor *nor, u8 val)
145 nor->cmd_buf[0] = val;
146 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
150 * Set write enable latch with Write Enable command.
151 * Returns negative if error occurred.
153 static inline int write_enable(struct spi_nor *nor)
155 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
159 * Send write disble instruction to the chip.
161 static inline int write_disable(struct spi_nor *nor)
163 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
166 static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
168 return mtd->priv;
171 /* Enable/disable 4-byte addressing mode. */
172 static inline int set_4byte(struct spi_nor *nor, struct flash_info *info,
173 int enable)
175 int status;
176 bool need_wren = false;
177 u8 cmd;
179 switch (JEDEC_MFR(info)) {
180 case CFI_MFR_ST: /* Micron, actually */
181 /* Some Micron need WREN command; all will accept it */
182 need_wren = true;
183 case CFI_MFR_MACRONIX:
184 case 0xEF /* winbond */:
185 if (need_wren)
186 write_enable(nor);
188 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
189 status = nor->write_reg(nor, cmd, NULL, 0, 0);
190 if (need_wren)
191 write_disable(nor);
193 return status;
194 default:
195 /* Spansion style */
196 nor->cmd_buf[0] = enable << 7;
197 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
200 static inline int spi_nor_sr_ready(struct spi_nor *nor)
202 int sr = read_sr(nor);
203 if (sr < 0)
204 return sr;
205 else
206 return !(sr & SR_WIP);
209 static inline int spi_nor_fsr_ready(struct spi_nor *nor)
211 int fsr = read_fsr(nor);
212 if (fsr < 0)
213 return fsr;
214 else
215 return fsr & FSR_READY;
218 static int spi_nor_ready(struct spi_nor *nor)
220 int sr, fsr;
221 sr = spi_nor_sr_ready(nor);
222 if (sr < 0)
223 return sr;
224 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
225 if (fsr < 0)
226 return fsr;
227 return sr && fsr;
231 * Service routine to read status register until ready, or timeout occurs.
232 * Returns non-zero if error.
234 static int spi_nor_wait_till_ready(struct spi_nor *nor)
236 unsigned long deadline;
237 int timeout = 0, ret;
239 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
241 while (!timeout) {
242 if (time_after_eq(jiffies, deadline))
243 timeout = 1;
245 ret = spi_nor_ready(nor);
246 if (ret < 0)
247 return ret;
248 if (ret)
249 return 0;
251 cond_resched();
254 dev_err(nor->dev, "flash operation timed out\n");
256 return -ETIMEDOUT;
260 * Erase the whole flash memory
262 * Returns 0 if successful, non-zero otherwise.
264 static int erase_chip(struct spi_nor *nor)
266 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
268 return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
271 static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
273 int ret = 0;
275 mutex_lock(&nor->lock);
277 if (nor->prepare) {
278 ret = nor->prepare(nor, ops);
279 if (ret) {
280 dev_err(nor->dev, "failed in the preparation.\n");
281 mutex_unlock(&nor->lock);
282 return ret;
285 return ret;
288 static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
290 if (nor->unprepare)
291 nor->unprepare(nor, ops);
292 mutex_unlock(&nor->lock);
296 * Erase an address range on the nor chip. The address range may extend
297 * one or more erase sectors. Return an error is there is a problem erasing.
299 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
301 struct spi_nor *nor = mtd_to_spi_nor(mtd);
302 u32 addr, len;
303 uint32_t rem;
304 int ret;
306 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
307 (long long)instr->len);
309 div_u64_rem(instr->len, mtd->erasesize, &rem);
310 if (rem)
311 return -EINVAL;
313 addr = instr->addr;
314 len = instr->len;
316 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
317 if (ret)
318 return ret;
320 /* whole-chip erase? */
321 if (len == mtd->size) {
322 write_enable(nor);
324 if (erase_chip(nor)) {
325 ret = -EIO;
326 goto erase_err;
329 ret = spi_nor_wait_till_ready(nor);
330 if (ret)
331 goto erase_err;
333 /* REVISIT in some cases we could speed up erasing large regions
334 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
335 * to use "small sector erase", but that's not always optimal.
338 /* "sector"-at-a-time erase */
339 } else {
340 while (len) {
341 write_enable(nor);
343 if (nor->erase(nor, addr)) {
344 ret = -EIO;
345 goto erase_err;
348 addr += mtd->erasesize;
349 len -= mtd->erasesize;
351 ret = spi_nor_wait_till_ready(nor);
352 if (ret)
353 goto erase_err;
357 write_disable(nor);
359 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
361 instr->state = MTD_ERASE_DONE;
362 mtd_erase_callback(instr);
364 return ret;
366 erase_err:
367 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
368 instr->state = MTD_ERASE_FAILED;
369 return ret;
372 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
374 struct mtd_info *mtd = nor->mtd;
375 uint32_t offset = ofs;
376 uint8_t status_old, status_new;
377 int ret = 0;
379 status_old = read_sr(nor);
381 if (offset < mtd->size - (mtd->size / 2))
382 status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
383 else if (offset < mtd->size - (mtd->size / 4))
384 status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
385 else if (offset < mtd->size - (mtd->size / 8))
386 status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
387 else if (offset < mtd->size - (mtd->size / 16))
388 status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
389 else if (offset < mtd->size - (mtd->size / 32))
390 status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
391 else if (offset < mtd->size - (mtd->size / 64))
392 status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
393 else
394 status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
396 /* Only modify protection if it will not unlock other areas */
397 if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
398 (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
399 write_enable(nor);
400 ret = write_sr(nor, status_new);
403 return ret;
406 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
408 struct mtd_info *mtd = nor->mtd;
409 uint32_t offset = ofs;
410 uint8_t status_old, status_new;
411 int ret = 0;
413 status_old = read_sr(nor);
415 if (offset+len > mtd->size - (mtd->size / 64))
416 status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
417 else if (offset+len > mtd->size - (mtd->size / 32))
418 status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
419 else if (offset+len > mtd->size - (mtd->size / 16))
420 status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
421 else if (offset+len > mtd->size - (mtd->size / 8))
422 status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
423 else if (offset+len > mtd->size - (mtd->size / 4))
424 status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
425 else if (offset+len > mtd->size - (mtd->size / 2))
426 status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
427 else
428 status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
430 /* Only modify protection if it will not lock other areas */
431 if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
432 (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
433 write_enable(nor);
434 ret = write_sr(nor, status_new);
437 return ret;
440 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
442 struct spi_nor *nor = mtd_to_spi_nor(mtd);
443 int ret;
445 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
446 if (ret)
447 return ret;
449 ret = nor->flash_lock(nor, ofs, len);
451 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
452 return ret;
455 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
457 struct spi_nor *nor = mtd_to_spi_nor(mtd);
458 int ret;
460 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
461 if (ret)
462 return ret;
464 ret = nor->flash_unlock(nor, ofs, len);
466 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
467 return ret;
470 /* Used when the "_ext_id" is two bytes at most */
471 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
472 ((kernel_ulong_t)&(struct flash_info) { \
473 .id = { \
474 ((_jedec_id) >> 16) & 0xff, \
475 ((_jedec_id) >> 8) & 0xff, \
476 (_jedec_id) & 0xff, \
477 ((_ext_id) >> 8) & 0xff, \
478 (_ext_id) & 0xff, \
479 }, \
480 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
481 .sector_size = (_sector_size), \
482 .n_sectors = (_n_sectors), \
483 .page_size = 256, \
484 .flags = (_flags), \
487 #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
488 ((kernel_ulong_t)&(struct flash_info) { \
489 .id = { \
490 ((_jedec_id) >> 16) & 0xff, \
491 ((_jedec_id) >> 8) & 0xff, \
492 (_jedec_id) & 0xff, \
493 ((_ext_id) >> 16) & 0xff, \
494 ((_ext_id) >> 8) & 0xff, \
495 (_ext_id) & 0xff, \
496 }, \
497 .id_len = 6, \
498 .sector_size = (_sector_size), \
499 .n_sectors = (_n_sectors), \
500 .page_size = 256, \
501 .flags = (_flags), \
504 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
505 ((kernel_ulong_t)&(struct flash_info) { \
506 .sector_size = (_sector_size), \
507 .n_sectors = (_n_sectors), \
508 .page_size = (_page_size), \
509 .addr_width = (_addr_width), \
510 .flags = (_flags), \
513 /* NOTE: double check command sets and memory organization when you add
514 * more nor chips. This current list focusses on newer chips, which
515 * have been converging on command sets which including JEDEC ID.
517 static const struct spi_device_id spi_nor_ids[] = {
518 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
519 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
520 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
522 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
523 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
524 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
526 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
527 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
528 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
529 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
531 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
533 /* EON -- en25xxx */
534 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
535 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
536 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
537 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
538 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
539 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
540 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
541 { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, 0) },
543 /* ESMT */
544 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
546 /* Everspin */
547 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
548 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
550 /* Fujitsu */
551 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
553 /* GigaDevice */
554 { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
555 { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
556 { "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
558 /* Intel/Numonyx -- xxxs33b */
559 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
560 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
561 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
563 /* Macronix */
564 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
565 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
566 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
567 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
568 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
569 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
570 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
571 { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
572 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
573 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
574 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
575 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
576 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
577 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
579 /* Micron */
580 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
581 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SPI_NOR_QUAD_READ) },
582 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
583 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
584 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
585 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
586 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
587 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
589 /* PMC */
590 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
591 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
592 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
594 /* Spansion -- single (large) sector size only, at least
595 * for the chips listed here (without boot sectors).
597 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
598 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
599 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
600 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
601 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
602 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
603 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
604 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
605 { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
606 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
607 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
608 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
609 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
610 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
611 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
612 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
613 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
614 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
615 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
616 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, 0) },
618 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
619 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
620 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
621 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
622 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
623 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
624 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
625 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
626 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
627 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
628 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
630 /* ST Microelectronics -- newer production may have feature updates */
631 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
632 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
633 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
634 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
635 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
636 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
637 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
638 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
639 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
641 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
642 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
643 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
644 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
645 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
646 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
647 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
648 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
649 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
651 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
652 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
653 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
655 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
656 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
657 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
659 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
660 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
661 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
662 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
663 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
664 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
666 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
667 { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
668 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
669 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
670 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
671 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
672 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
673 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
674 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
675 { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
676 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
677 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
678 { "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K) },
679 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
680 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
681 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
682 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
684 /* Catalyst / On Semiconductor -- non-JEDEC */
685 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
686 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
687 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
688 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
689 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
690 { },
693 static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
695 int tmp;
696 u8 id[SPI_NOR_MAX_ID_LEN];
697 struct flash_info *info;
699 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
700 if (tmp < 0) {
701 dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
702 return ERR_PTR(tmp);
705 for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
706 info = (void *)spi_nor_ids[tmp].driver_data;
707 if (info->id_len) {
708 if (!memcmp(info->id, id, info->id_len))
709 return &spi_nor_ids[tmp];
712 dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n",
713 id[0], id[1], id[2]);
714 return ERR_PTR(-ENODEV);
717 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
718 size_t *retlen, u_char *buf)
720 struct spi_nor *nor = mtd_to_spi_nor(mtd);
721 int ret;
723 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
725 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
726 if (ret)
727 return ret;
729 ret = nor->read(nor, from, len, retlen, buf);
731 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
732 return ret;
735 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
736 size_t *retlen, const u_char *buf)
738 struct spi_nor *nor = mtd_to_spi_nor(mtd);
739 size_t actual;
740 int ret;
742 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
744 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
745 if (ret)
746 return ret;
748 write_enable(nor);
750 nor->sst_write_second = false;
752 actual = to % 2;
753 /* Start write from odd address. */
754 if (actual) {
755 nor->program_opcode = SPINOR_OP_BP;
757 /* write one byte. */
758 nor->write(nor, to, 1, retlen, buf);
759 ret = spi_nor_wait_till_ready(nor);
760 if (ret)
761 goto time_out;
763 to += actual;
765 /* Write out most of the data here. */
766 for (; actual < len - 1; actual += 2) {
767 nor->program_opcode = SPINOR_OP_AAI_WP;
769 /* write two bytes. */
770 nor->write(nor, to, 2, retlen, buf + actual);
771 ret = spi_nor_wait_till_ready(nor);
772 if (ret)
773 goto time_out;
774 to += 2;
775 nor->sst_write_second = true;
777 nor->sst_write_second = false;
779 write_disable(nor);
780 ret = spi_nor_wait_till_ready(nor);
781 if (ret)
782 goto time_out;
784 /* Write out trailing byte if it exists. */
785 if (actual != len) {
786 write_enable(nor);
788 nor->program_opcode = SPINOR_OP_BP;
789 nor->write(nor, to, 1, retlen, buf + actual);
791 ret = spi_nor_wait_till_ready(nor);
792 if (ret)
793 goto time_out;
794 write_disable(nor);
796 time_out:
797 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
798 return ret;
802 * Write an address range to the nor chip. Data must be written in
803 * FLASH_PAGESIZE chunks. The address range may be any size provided
804 * it is within the physical boundaries.
806 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
807 size_t *retlen, const u_char *buf)
809 struct spi_nor *nor = mtd_to_spi_nor(mtd);
810 u32 page_offset, page_size, i;
811 int ret;
813 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
815 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
816 if (ret)
817 return ret;
819 write_enable(nor);
821 page_offset = to & (nor->page_size - 1);
823 /* do all the bytes fit onto one page? */
824 if (page_offset + len <= nor->page_size) {
825 nor->write(nor, to, len, retlen, buf);
826 } else {
827 /* the size of data remaining on the first page */
828 page_size = nor->page_size - page_offset;
829 nor->write(nor, to, page_size, retlen, buf);
831 /* write everything in nor->page_size chunks */
832 for (i = page_size; i < len; i += page_size) {
833 page_size = len - i;
834 if (page_size > nor->page_size)
835 page_size = nor->page_size;
837 ret = spi_nor_wait_till_ready(nor);
838 if (ret)
839 goto write_err;
841 write_enable(nor);
843 nor->write(nor, to + i, page_size, retlen, buf + i);
847 ret = spi_nor_wait_till_ready(nor);
848 write_err:
849 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
850 return ret;
853 static int macronix_quad_enable(struct spi_nor *nor)
855 int ret, val;
857 val = read_sr(nor);
858 write_enable(nor);
860 nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
861 nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
863 if (spi_nor_wait_till_ready(nor))
864 return 1;
866 ret = read_sr(nor);
867 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
868 dev_err(nor->dev, "Macronix Quad bit not set\n");
869 return -EINVAL;
872 return 0;
876 * Write status Register and configuration register with 2 bytes
877 * The first byte will be written to the status register, while the
878 * second byte will be written to the configuration register.
879 * Return negative if error occured.
881 static int write_sr_cr(struct spi_nor *nor, u16 val)
883 nor->cmd_buf[0] = val & 0xff;
884 nor->cmd_buf[1] = (val >> 8);
886 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
889 static int spansion_quad_enable(struct spi_nor *nor)
891 int ret;
892 int quad_en = CR_QUAD_EN_SPAN << 8;
894 write_enable(nor);
896 ret = write_sr_cr(nor, quad_en);
897 if (ret < 0) {
898 dev_err(nor->dev,
899 "error while writing configuration register\n");
900 return -EINVAL;
903 /* read back and check it */
904 ret = read_cr(nor);
905 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
906 dev_err(nor->dev, "Spansion Quad bit not set\n");
907 return -EINVAL;
910 return 0;
913 static int micron_quad_enable(struct spi_nor *nor)
915 int ret;
916 u8 val;
918 ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
919 if (ret < 0) {
920 dev_err(nor->dev, "error %d reading EVCR\n", ret);
921 return ret;
924 write_enable(nor);
926 /* set EVCR, enable quad I/O */
927 nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON;
928 ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1, 0);
929 if (ret < 0) {
930 dev_err(nor->dev, "error while writing EVCR register\n");
931 return ret;
934 ret = spi_nor_wait_till_ready(nor);
935 if (ret)
936 return ret;
938 /* read EVCR and check it */
939 ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
940 if (ret < 0) {
941 dev_err(nor->dev, "error %d reading EVCR\n", ret);
942 return ret;
944 if (val & EVCR_QUAD_EN_MICRON) {
945 dev_err(nor->dev, "Micron EVCR Quad bit not clear\n");
946 return -EINVAL;
949 return 0;
952 static int set_quad_mode(struct spi_nor *nor, struct flash_info *info)
954 int status;
956 switch (JEDEC_MFR(info)) {
957 case CFI_MFR_MACRONIX:
958 status = macronix_quad_enable(nor);
959 if (status) {
960 dev_err(nor->dev, "Macronix quad-read not enabled\n");
961 return -EINVAL;
963 return status;
964 case CFI_MFR_ST:
965 status = micron_quad_enable(nor);
966 if (status) {
967 dev_err(nor->dev, "Micron quad-read not enabled\n");
968 return -EINVAL;
970 return status;
971 default:
972 status = spansion_quad_enable(nor);
973 if (status) {
974 dev_err(nor->dev, "Spansion quad-read not enabled\n");
975 return -EINVAL;
977 return status;
981 static int spi_nor_check(struct spi_nor *nor)
983 if (!nor->dev || !nor->read || !nor->write ||
984 !nor->read_reg || !nor->write_reg || !nor->erase) {
985 pr_err("spi-nor: please fill all the necessary fields!\n");
986 return -EINVAL;
989 return 0;
992 int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
994 const struct spi_device_id *id = NULL;
995 struct flash_info *info;
996 struct device *dev = nor->dev;
997 struct mtd_info *mtd = nor->mtd;
998 struct device_node *np = dev->of_node;
999 int ret;
1000 int i;
1002 ret = spi_nor_check(nor);
1003 if (ret)
1004 return ret;
1006 /* Try to auto-detect if chip name wasn't specified */
1007 if (!name)
1008 id = spi_nor_read_id(nor);
1009 else
1010 id = spi_nor_match_id(name);
1011 if (IS_ERR_OR_NULL(id))
1012 return -ENOENT;
1014 info = (void *)id->driver_data;
1017 * If caller has specified name of flash model that can normally be
1018 * detected using JEDEC, let's verify it.
1020 if (name && info->id_len) {
1021 const struct spi_device_id *jid;
1023 jid = spi_nor_read_id(nor);
1024 if (IS_ERR(jid)) {
1025 return PTR_ERR(jid);
1026 } else if (jid != id) {
1028 * JEDEC knows better, so overwrite platform ID. We
1029 * can't trust partitions any longer, but we'll let
1030 * mtd apply them anyway, since some partitions may be
1031 * marked read-only, and we don't want to lose that
1032 * information, even if it's not 100% accurate.
1034 dev_warn(dev, "found %s, expected %s\n",
1035 jid->name, id->name);
1036 id = jid;
1037 info = (void *)jid->driver_data;
1041 mutex_init(&nor->lock);
1044 * Atmel, SST and Intel/Numonyx serial nor tend to power
1045 * up with the software protection bits set
1048 if (JEDEC_MFR(info) == CFI_MFR_ATMEL ||
1049 JEDEC_MFR(info) == CFI_MFR_INTEL ||
1050 JEDEC_MFR(info) == CFI_MFR_SST) {
1051 write_enable(nor);
1052 write_sr(nor, 0);
1055 if (!mtd->name)
1056 mtd->name = dev_name(dev);
1057 mtd->type = MTD_NORFLASH;
1058 mtd->writesize = 1;
1059 mtd->flags = MTD_CAP_NORFLASH;
1060 mtd->size = info->sector_size * info->n_sectors;
1061 mtd->_erase = spi_nor_erase;
1062 mtd->_read = spi_nor_read;
1064 /* nor protection support for STmicro chips */
1065 if (JEDEC_MFR(info) == CFI_MFR_ST) {
1066 nor->flash_lock = stm_lock;
1067 nor->flash_unlock = stm_unlock;
1070 if (nor->flash_lock && nor->flash_unlock) {
1071 mtd->_lock = spi_nor_lock;
1072 mtd->_unlock = spi_nor_unlock;
1075 /* sst nor chips use AAI word program */
1076 if (info->flags & SST_WRITE)
1077 mtd->_write = sst_write;
1078 else
1079 mtd->_write = spi_nor_write;
1081 if (info->flags & USE_FSR)
1082 nor->flags |= SNOR_F_USE_FSR;
1084 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1085 /* prefer "small sector" erase if possible */
1086 if (info->flags & SECT_4K) {
1087 nor->erase_opcode = SPINOR_OP_BE_4K;
1088 mtd->erasesize = 4096;
1089 } else if (info->flags & SECT_4K_PMC) {
1090 nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1091 mtd->erasesize = 4096;
1092 } else
1093 #endif
1095 nor->erase_opcode = SPINOR_OP_SE;
1096 mtd->erasesize = info->sector_size;
1099 if (info->flags & SPI_NOR_NO_ERASE)
1100 mtd->flags |= MTD_NO_ERASE;
1102 mtd->dev.parent = dev;
1103 nor->page_size = info->page_size;
1104 mtd->writebufsize = nor->page_size;
1106 if (np) {
1107 /* If we were instantiated by DT, use it */
1108 if (of_property_read_bool(np, "m25p,fast-read"))
1109 nor->flash_read = SPI_NOR_FAST;
1110 else
1111 nor->flash_read = SPI_NOR_NORMAL;
1112 } else {
1113 /* If we weren't instantiated by DT, default to fast-read */
1114 nor->flash_read = SPI_NOR_FAST;
1117 /* Some devices cannot do fast-read, no matter what DT tells us */
1118 if (info->flags & SPI_NOR_NO_FR)
1119 nor->flash_read = SPI_NOR_NORMAL;
1121 /* Quad/Dual-read mode takes precedence over fast/normal */
1122 if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1123 ret = set_quad_mode(nor, info);
1124 if (ret) {
1125 dev_err(dev, "quad mode not supported\n");
1126 return ret;
1128 nor->flash_read = SPI_NOR_QUAD;
1129 } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1130 nor->flash_read = SPI_NOR_DUAL;
1133 /* Default commands */
1134 switch (nor->flash_read) {
1135 case SPI_NOR_QUAD:
1136 nor->read_opcode = SPINOR_OP_READ_1_1_4;
1137 break;
1138 case SPI_NOR_DUAL:
1139 nor->read_opcode = SPINOR_OP_READ_1_1_2;
1140 break;
1141 case SPI_NOR_FAST:
1142 nor->read_opcode = SPINOR_OP_READ_FAST;
1143 break;
1144 case SPI_NOR_NORMAL:
1145 nor->read_opcode = SPINOR_OP_READ;
1146 break;
1147 default:
1148 dev_err(dev, "No Read opcode defined\n");
1149 return -EINVAL;
1152 nor->program_opcode = SPINOR_OP_PP;
1154 if (info->addr_width)
1155 nor->addr_width = info->addr_width;
1156 else if (mtd->size > 0x1000000) {
1157 /* enable 4-byte addressing if the device exceeds 16MiB */
1158 nor->addr_width = 4;
1159 if (JEDEC_MFR(info) == CFI_MFR_AMD) {
1160 /* Dedicated 4-byte command set */
1161 switch (nor->flash_read) {
1162 case SPI_NOR_QUAD:
1163 nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1164 break;
1165 case SPI_NOR_DUAL:
1166 nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1167 break;
1168 case SPI_NOR_FAST:
1169 nor->read_opcode = SPINOR_OP_READ4_FAST;
1170 break;
1171 case SPI_NOR_NORMAL:
1172 nor->read_opcode = SPINOR_OP_READ4;
1173 break;
1175 nor->program_opcode = SPINOR_OP_PP_4B;
1176 /* No small sector erase for 4-byte command set */
1177 nor->erase_opcode = SPINOR_OP_SE_4B;
1178 mtd->erasesize = info->sector_size;
1179 } else
1180 set_4byte(nor, info, 1);
1181 } else {
1182 nor->addr_width = 3;
1185 nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1187 dev_info(dev, "%s (%lld Kbytes)\n", id->name,
1188 (long long)mtd->size >> 10);
1190 dev_dbg(dev,
1191 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
1192 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1193 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1194 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1196 if (mtd->numeraseregions)
1197 for (i = 0; i < mtd->numeraseregions; i++)
1198 dev_dbg(dev,
1199 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
1200 ".erasesize = 0x%.8x (%uKiB), "
1201 ".numblocks = %d }\n",
1202 i, (long long)mtd->eraseregions[i].offset,
1203 mtd->eraseregions[i].erasesize,
1204 mtd->eraseregions[i].erasesize / 1024,
1205 mtd->eraseregions[i].numblocks);
1206 return 0;
1208 EXPORT_SYMBOL_GPL(spi_nor_scan);
1210 static const struct spi_device_id *spi_nor_match_id(const char *name)
1212 const struct spi_device_id *id = spi_nor_ids;
1214 while (id->name[0]) {
1215 if (!strcmp(name, id->name))
1216 return id;
1217 id++;
1219 return NULL;
1222 MODULE_LICENSE("GPL");
1223 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1224 MODULE_AUTHOR("Mike Lavender");
1225 MODULE_DESCRIPTION("framework for SPI NOR");