2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * This file includes volume table manipulation code. The volume table is an
24 * on-flash table containing volume meta-data like name, number of reserved
25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
28 * The layout volume is an internal volume which is organized as follows. It
29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31 * other. This redundancy guarantees robustness to unclean reboots. The volume
32 * table is basically an array of volume table records. Each record contains
33 * full information about the volume and protected by a CRC checksum. Note,
34 * nowadays we use the atomic LEB change operation when updating the volume
35 * table, so we do not really need 2 LEBs anymore, but we preserve the older
36 * design for the backward compatibility reasons.
38 * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
39 * erased, and the updated volume table is written back to LEB 0. Then same for
40 * LEB 1. This scheme guarantees recoverability from unclean reboots.
42 * In this UBI implementation the on-flash volume table does not contain any
43 * information about how much data static volumes contain.
45 * But it would still be beneficial to store this information in the volume
46 * table. For example, suppose we have a static volume X, and all its physical
47 * eraseblocks became bad for some reasons. Suppose we are attaching the
48 * corresponding MTD device, for some reason we find no logical eraseblocks
49 * corresponding to the volume X. According to the volume table volume X does
50 * exist. So we don't know whether it is just empty or all its physical
51 * eraseblocks went bad. So we cannot alarm the user properly.
53 * The volume table also stores so-called "update marker", which is used for
54 * volume updates. Before updating the volume, the update marker is set, and
55 * after the update operation is finished, the update marker is cleared. So if
56 * the update operation was interrupted (e.g. by an unclean reboot) - the
57 * update marker is still there and we know that the volume's contents is
61 #include <linux/crc32.h>
62 #include <linux/err.h>
63 #include <linux/slab.h>
64 #include <asm/div64.h>
67 static void self_vtbl_check(const struct ubi_device
*ubi
);
69 /* Empty volume table record */
70 static struct ubi_vtbl_record empty_vtbl_record
;
73 * ubi_change_vtbl_record - change volume table record.
74 * @ubi: UBI device description object
75 * @idx: table index to change
76 * @vtbl_rec: new volume table record
78 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
79 * volume table record is written. The caller does not have to calculate CRC of
80 * the record as it is done by this function. Returns zero in case of success
81 * and a negative error code in case of failure.
83 int ubi_change_vtbl_record(struct ubi_device
*ubi
, int idx
,
84 struct ubi_vtbl_record
*vtbl_rec
)
88 struct ubi_volume
*layout_vol
;
90 ubi_assert(idx
>= 0 && idx
< ubi
->vtbl_slots
);
91 layout_vol
= ubi
->volumes
[vol_id2idx(ubi
, UBI_LAYOUT_VOLUME_ID
)];
94 vtbl_rec
= &empty_vtbl_record
;
96 crc
= crc32(UBI_CRC32_INIT
, vtbl_rec
, UBI_VTBL_RECORD_SIZE_CRC
);
97 vtbl_rec
->crc
= cpu_to_be32(crc
);
100 memcpy(&ubi
->vtbl
[idx
], vtbl_rec
, sizeof(struct ubi_vtbl_record
));
101 for (i
= 0; i
< UBI_LAYOUT_VOLUME_EBS
; i
++) {
102 err
= ubi_eba_atomic_leb_change(ubi
, layout_vol
, i
, ubi
->vtbl
,
108 self_vtbl_check(ubi
);
113 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
114 * @ubi: UBI device description object
115 * @rename_list: list of &struct ubi_rename_entry objects
117 * This function re-names multiple volumes specified in @req in the volume
118 * table. Returns zero in case of success and a negative error code in case of
121 int ubi_vtbl_rename_volumes(struct ubi_device
*ubi
,
122 struct list_head
*rename_list
)
125 struct ubi_rename_entry
*re
;
126 struct ubi_volume
*layout_vol
;
128 list_for_each_entry(re
, rename_list
, list
) {
130 struct ubi_volume
*vol
= re
->desc
->vol
;
131 struct ubi_vtbl_record
*vtbl_rec
= &ubi
->vtbl
[vol
->vol_id
];
134 memcpy(vtbl_rec
, &empty_vtbl_record
,
135 sizeof(struct ubi_vtbl_record
));
139 vtbl_rec
->name_len
= cpu_to_be16(re
->new_name_len
);
140 memcpy(vtbl_rec
->name
, re
->new_name
, re
->new_name_len
);
141 memset(vtbl_rec
->name
+ re
->new_name_len
, 0,
142 UBI_VOL_NAME_MAX
+ 1 - re
->new_name_len
);
143 crc
= crc32(UBI_CRC32_INIT
, vtbl_rec
,
144 UBI_VTBL_RECORD_SIZE_CRC
);
145 vtbl_rec
->crc
= cpu_to_be32(crc
);
148 layout_vol
= ubi
->volumes
[vol_id2idx(ubi
, UBI_LAYOUT_VOLUME_ID
)];
149 for (i
= 0; i
< UBI_LAYOUT_VOLUME_EBS
; i
++) {
150 err
= ubi_eba_atomic_leb_change(ubi
, layout_vol
, i
, ubi
->vtbl
,
160 * vtbl_check - check if volume table is not corrupted and sensible.
161 * @ubi: UBI device description object
162 * @vtbl: volume table
164 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
165 * and %-EINVAL if it contains inconsistent data.
167 static int vtbl_check(const struct ubi_device
*ubi
,
168 const struct ubi_vtbl_record
*vtbl
)
170 int i
, n
, reserved_pebs
, alignment
, data_pad
, vol_type
, name_len
;
175 for (i
= 0; i
< ubi
->vtbl_slots
; i
++) {
178 reserved_pebs
= be32_to_cpu(vtbl
[i
].reserved_pebs
);
179 alignment
= be32_to_cpu(vtbl
[i
].alignment
);
180 data_pad
= be32_to_cpu(vtbl
[i
].data_pad
);
181 upd_marker
= vtbl
[i
].upd_marker
;
182 vol_type
= vtbl
[i
].vol_type
;
183 name_len
= be16_to_cpu(vtbl
[i
].name_len
);
184 name
= &vtbl
[i
].name
[0];
186 crc
= crc32(UBI_CRC32_INIT
, &vtbl
[i
], UBI_VTBL_RECORD_SIZE_CRC
);
187 if (be32_to_cpu(vtbl
[i
].crc
) != crc
) {
188 ubi_err(ubi
, "bad CRC at record %u: %#08x, not %#08x",
189 i
, crc
, be32_to_cpu(vtbl
[i
].crc
));
190 ubi_dump_vtbl_record(&vtbl
[i
], i
);
194 if (reserved_pebs
== 0) {
195 if (memcmp(&vtbl
[i
], &empty_vtbl_record
,
196 UBI_VTBL_RECORD_SIZE
)) {
203 if (reserved_pebs
< 0 || alignment
< 0 || data_pad
< 0 ||
209 if (alignment
> ubi
->leb_size
|| alignment
== 0) {
214 n
= alignment
& (ubi
->min_io_size
- 1);
215 if (alignment
!= 1 && n
) {
220 n
= ubi
->leb_size
% alignment
;
222 ubi_err(ubi
, "bad data_pad, has to be %d", n
);
227 if (vol_type
!= UBI_VID_DYNAMIC
&& vol_type
!= UBI_VID_STATIC
) {
232 if (upd_marker
!= 0 && upd_marker
!= 1) {
237 if (reserved_pebs
> ubi
->good_peb_count
) {
238 ubi_err(ubi
, "too large reserved_pebs %d, good PEBs %d",
239 reserved_pebs
, ubi
->good_peb_count
);
244 if (name_len
> UBI_VOL_NAME_MAX
) {
249 if (name
[0] == '\0') {
254 if (name_len
!= strnlen(name
, name_len
+ 1)) {
260 /* Checks that all names are unique */
261 for (i
= 0; i
< ubi
->vtbl_slots
- 1; i
++) {
262 for (n
= i
+ 1; n
< ubi
->vtbl_slots
; n
++) {
263 int len1
= be16_to_cpu(vtbl
[i
].name_len
);
264 int len2
= be16_to_cpu(vtbl
[n
].name_len
);
266 if (len1
> 0 && len1
== len2
&&
267 !strncmp(vtbl
[i
].name
, vtbl
[n
].name
, len1
)) {
268 ubi_err(ubi
, "volumes %d and %d have the same name \"%s\"",
270 ubi_dump_vtbl_record(&vtbl
[i
], i
);
271 ubi_dump_vtbl_record(&vtbl
[n
], n
);
280 ubi_err(ubi
, "volume table check failed: record %d, error %d", i
, err
);
281 ubi_dump_vtbl_record(&vtbl
[i
], i
);
286 * create_vtbl - create a copy of volume table.
287 * @ubi: UBI device description object
288 * @ai: attaching information
289 * @copy: number of the volume table copy
290 * @vtbl: contents of the volume table
292 * This function returns zero in case of success and a negative error code in
295 static int create_vtbl(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
,
296 int copy
, void *vtbl
)
299 struct ubi_vid_hdr
*vid_hdr
;
300 struct ubi_ainf_peb
*new_aeb
;
302 dbg_gen("create volume table (copy #%d)", copy
+ 1);
304 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_KERNEL
);
309 new_aeb
= ubi_early_get_peb(ubi
, ai
);
310 if (IS_ERR(new_aeb
)) {
311 err
= PTR_ERR(new_aeb
);
315 vid_hdr
->vol_type
= UBI_LAYOUT_VOLUME_TYPE
;
316 vid_hdr
->vol_id
= cpu_to_be32(UBI_LAYOUT_VOLUME_ID
);
317 vid_hdr
->compat
= UBI_LAYOUT_VOLUME_COMPAT
;
318 vid_hdr
->data_size
= vid_hdr
->used_ebs
=
319 vid_hdr
->data_pad
= cpu_to_be32(0);
320 vid_hdr
->lnum
= cpu_to_be32(copy
);
321 vid_hdr
->sqnum
= cpu_to_be64(++ai
->max_sqnum
);
323 /* The EC header is already there, write the VID header */
324 err
= ubi_io_write_vid_hdr(ubi
, new_aeb
->pnum
, vid_hdr
);
328 /* Write the layout volume contents */
329 err
= ubi_io_write_data(ubi
, vtbl
, new_aeb
->pnum
, 0, ubi
->vtbl_size
);
334 * And add it to the attaching information. Don't delete the old version
335 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
337 err
= ubi_add_to_av(ubi
, ai
, new_aeb
->pnum
, new_aeb
->ec
, vid_hdr
, 0);
338 kmem_cache_free(ai
->aeb_slab_cache
, new_aeb
);
339 ubi_free_vid_hdr(ubi
, vid_hdr
);
343 if (err
== -EIO
&& ++tries
<= 5) {
345 * Probably this physical eraseblock went bad, try to pick
348 list_add(&new_aeb
->u
.list
, &ai
->erase
);
351 kmem_cache_free(ai
->aeb_slab_cache
, new_aeb
);
353 ubi_free_vid_hdr(ubi
, vid_hdr
);
359 * process_lvol - process the layout volume.
360 * @ubi: UBI device description object
361 * @ai: attaching information
362 * @av: layout volume attaching information
364 * This function is responsible for reading the layout volume, ensuring it is
365 * not corrupted, and recovering from corruptions if needed. Returns volume
366 * table in case of success and a negative error code in case of failure.
368 static struct ubi_vtbl_record
*process_lvol(struct ubi_device
*ubi
,
369 struct ubi_attach_info
*ai
,
370 struct ubi_ainf_volume
*av
)
374 struct ubi_ainf_peb
*aeb
;
375 struct ubi_vtbl_record
*leb
[UBI_LAYOUT_VOLUME_EBS
] = { NULL
, NULL
};
376 int leb_corrupted
[UBI_LAYOUT_VOLUME_EBS
] = {1, 1};
379 * UBI goes through the following steps when it changes the layout
382 * b. write new data to LEB 0;
384 * d. write new data to LEB 1.
386 * Before the change, both LEBs contain the same data.
388 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
389 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
390 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
391 * finally, unclean reboots may result in a situation when neither LEB
392 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
393 * 0 contains more recent information.
395 * So the plan is to first check LEB 0. Then
396 * a. if LEB 0 is OK, it must be containing the most recent data; then
397 * we compare it with LEB 1, and if they are different, we copy LEB
399 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
403 dbg_gen("check layout volume");
405 /* Read both LEB 0 and LEB 1 into memory */
406 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
) {
407 leb
[aeb
->lnum
] = vzalloc(ubi
->vtbl_size
);
408 if (!leb
[aeb
->lnum
]) {
413 err
= ubi_io_read_data(ubi
, leb
[aeb
->lnum
], aeb
->pnum
, 0,
415 if (err
== UBI_IO_BITFLIPS
|| mtd_is_eccerr(err
))
417 * Scrub the PEB later. Note, -EBADMSG indicates an
418 * uncorrectable ECC error, but we have our own CRC and
419 * the data will be checked later. If the data is OK,
420 * the PEB will be scrubbed (because we set
421 * aeb->scrub). If the data is not OK, the contents of
422 * the PEB will be recovered from the second copy, and
423 * aeb->scrub will be cleared in
433 leb_corrupted
[0] = vtbl_check(ubi
, leb
[0]);
434 if (leb_corrupted
[0] < 0)
438 if (!leb_corrupted
[0]) {
441 leb_corrupted
[1] = memcmp(leb
[0], leb
[1],
443 if (leb_corrupted
[1]) {
444 ubi_warn(ubi
, "volume table copy #2 is corrupted");
445 err
= create_vtbl(ubi
, ai
, 1, leb
[0]);
448 ubi_msg(ubi
, "volume table was restored");
451 /* Both LEB 1 and LEB 2 are OK and consistent */
455 /* LEB 0 is corrupted or does not exist */
457 leb_corrupted
[1] = vtbl_check(ubi
, leb
[1]);
458 if (leb_corrupted
[1] < 0)
461 if (leb_corrupted
[1]) {
462 /* Both LEB 0 and LEB 1 are corrupted */
463 ubi_err(ubi
, "both volume tables are corrupted");
467 ubi_warn(ubi
, "volume table copy #1 is corrupted");
468 err
= create_vtbl(ubi
, ai
, 0, leb
[1]);
471 ubi_msg(ubi
, "volume table was restored");
484 * create_empty_lvol - create empty layout volume.
485 * @ubi: UBI device description object
486 * @ai: attaching information
488 * This function returns volume table contents in case of success and a
489 * negative error code in case of failure.
491 static struct ubi_vtbl_record
*create_empty_lvol(struct ubi_device
*ubi
,
492 struct ubi_attach_info
*ai
)
495 struct ubi_vtbl_record
*vtbl
;
497 vtbl
= vzalloc(ubi
->vtbl_size
);
499 return ERR_PTR(-ENOMEM
);
501 for (i
= 0; i
< ubi
->vtbl_slots
; i
++)
502 memcpy(&vtbl
[i
], &empty_vtbl_record
, UBI_VTBL_RECORD_SIZE
);
504 for (i
= 0; i
< UBI_LAYOUT_VOLUME_EBS
; i
++) {
507 err
= create_vtbl(ubi
, ai
, i
, vtbl
);
518 * init_volumes - initialize volume information for existing volumes.
519 * @ubi: UBI device description object
520 * @ai: scanning information
521 * @vtbl: volume table
523 * This function allocates volume description objects for existing volumes.
524 * Returns zero in case of success and a negative error code in case of
527 static int init_volumes(struct ubi_device
*ubi
,
528 const struct ubi_attach_info
*ai
,
529 const struct ubi_vtbl_record
*vtbl
)
531 int i
, reserved_pebs
= 0;
532 struct ubi_ainf_volume
*av
;
533 struct ubi_volume
*vol
;
535 for (i
= 0; i
< ubi
->vtbl_slots
; i
++) {
538 if (be32_to_cpu(vtbl
[i
].reserved_pebs
) == 0)
539 continue; /* Empty record */
541 vol
= kzalloc(sizeof(struct ubi_volume
), GFP_KERNEL
);
545 vol
->reserved_pebs
= be32_to_cpu(vtbl
[i
].reserved_pebs
);
546 vol
->alignment
= be32_to_cpu(vtbl
[i
].alignment
);
547 vol
->data_pad
= be32_to_cpu(vtbl
[i
].data_pad
);
548 vol
->upd_marker
= vtbl
[i
].upd_marker
;
549 vol
->vol_type
= vtbl
[i
].vol_type
== UBI_VID_DYNAMIC
?
550 UBI_DYNAMIC_VOLUME
: UBI_STATIC_VOLUME
;
551 vol
->name_len
= be16_to_cpu(vtbl
[i
].name_len
);
552 vol
->usable_leb_size
= ubi
->leb_size
- vol
->data_pad
;
553 memcpy(vol
->name
, vtbl
[i
].name
, vol
->name_len
);
554 vol
->name
[vol
->name_len
] = '\0';
557 if (vtbl
[i
].flags
& UBI_VTBL_AUTORESIZE_FLG
) {
558 /* Auto re-size flag may be set only for one volume */
559 if (ubi
->autoresize_vol_id
!= -1) {
560 ubi_err(ubi
, "more than one auto-resize volume (%d and %d)",
561 ubi
->autoresize_vol_id
, i
);
566 ubi
->autoresize_vol_id
= i
;
569 ubi_assert(!ubi
->volumes
[i
]);
570 ubi
->volumes
[i
] = vol
;
573 reserved_pebs
+= vol
->reserved_pebs
;
576 * In case of dynamic volume UBI knows nothing about how many
577 * data is stored there. So assume the whole volume is used.
579 if (vol
->vol_type
== UBI_DYNAMIC_VOLUME
) {
580 vol
->used_ebs
= vol
->reserved_pebs
;
581 vol
->last_eb_bytes
= vol
->usable_leb_size
;
583 (long long)vol
->used_ebs
* vol
->usable_leb_size
;
587 /* Static volumes only */
588 av
= ubi_find_av(ai
, i
);
589 if (!av
|| !av
->leb_count
) {
591 * No eraseblocks belonging to this volume found. We
592 * don't actually know whether this static volume is
593 * completely corrupted or just contains no data. And
594 * we cannot know this as long as data size is not
595 * stored on flash. So we just assume the volume is
596 * empty. FIXME: this should be handled.
601 if (av
->leb_count
!= av
->used_ebs
) {
603 * We found a static volume which misses several
604 * eraseblocks. Treat it as corrupted.
606 ubi_warn(ubi
, "static volume %d misses %d LEBs - corrupted",
607 av
->vol_id
, av
->used_ebs
- av
->leb_count
);
612 vol
->used_ebs
= av
->used_ebs
;
614 (long long)(vol
->used_ebs
- 1) * vol
->usable_leb_size
;
615 vol
->used_bytes
+= av
->last_data_size
;
616 vol
->last_eb_bytes
= av
->last_data_size
;
619 /* And add the layout volume */
620 vol
= kzalloc(sizeof(struct ubi_volume
), GFP_KERNEL
);
624 vol
->reserved_pebs
= UBI_LAYOUT_VOLUME_EBS
;
625 vol
->alignment
= UBI_LAYOUT_VOLUME_ALIGN
;
626 vol
->vol_type
= UBI_DYNAMIC_VOLUME
;
627 vol
->name_len
= sizeof(UBI_LAYOUT_VOLUME_NAME
) - 1;
628 memcpy(vol
->name
, UBI_LAYOUT_VOLUME_NAME
, vol
->name_len
+ 1);
629 vol
->usable_leb_size
= ubi
->leb_size
;
630 vol
->used_ebs
= vol
->reserved_pebs
;
631 vol
->last_eb_bytes
= vol
->reserved_pebs
;
633 (long long)vol
->used_ebs
* (ubi
->leb_size
- vol
->data_pad
);
634 vol
->vol_id
= UBI_LAYOUT_VOLUME_ID
;
637 ubi_assert(!ubi
->volumes
[i
]);
638 ubi
->volumes
[vol_id2idx(ubi
, vol
->vol_id
)] = vol
;
639 reserved_pebs
+= vol
->reserved_pebs
;
643 if (reserved_pebs
> ubi
->avail_pebs
) {
644 ubi_err(ubi
, "not enough PEBs, required %d, available %d",
645 reserved_pebs
, ubi
->avail_pebs
);
646 if (ubi
->corr_peb_count
)
647 ubi_err(ubi
, "%d PEBs are corrupted and not used",
648 ubi
->corr_peb_count
);
651 ubi
->rsvd_pebs
+= reserved_pebs
;
652 ubi
->avail_pebs
-= reserved_pebs
;
658 * check_av - check volume attaching information.
659 * @vol: UBI volume description object
660 * @av: volume attaching information
662 * This function returns zero if the volume attaching information is consistent
663 * to the data read from the volume tabla, and %-EINVAL if not.
665 static int check_av(const struct ubi_volume
*vol
,
666 const struct ubi_ainf_volume
*av
)
670 if (av
->highest_lnum
>= vol
->reserved_pebs
) {
674 if (av
->leb_count
> vol
->reserved_pebs
) {
678 if (av
->vol_type
!= vol
->vol_type
) {
682 if (av
->used_ebs
> vol
->reserved_pebs
) {
686 if (av
->data_pad
!= vol
->data_pad
) {
693 ubi_err(vol
->ubi
, "bad attaching information, error %d", err
);
695 ubi_dump_vol_info(vol
);
700 * check_attaching_info - check that attaching information.
701 * @ubi: UBI device description object
702 * @ai: attaching information
704 * Even though we protect on-flash data by CRC checksums, we still don't trust
705 * the media. This function ensures that attaching information is consistent to
706 * the information read from the volume table. Returns zero if the attaching
707 * information is OK and %-EINVAL if it is not.
709 static int check_attaching_info(const struct ubi_device
*ubi
,
710 struct ubi_attach_info
*ai
)
713 struct ubi_ainf_volume
*av
;
714 struct ubi_volume
*vol
;
716 if (ai
->vols_found
> UBI_INT_VOL_COUNT
+ ubi
->vtbl_slots
) {
717 ubi_err(ubi
, "found %d volumes while attaching, maximum is %d + %d",
718 ai
->vols_found
, UBI_INT_VOL_COUNT
, ubi
->vtbl_slots
);
722 if (ai
->highest_vol_id
>= ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
&&
723 ai
->highest_vol_id
< UBI_INTERNAL_VOL_START
) {
724 ubi_err(ubi
, "too large volume ID %d found",
729 for (i
= 0; i
< ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
; i
++) {
732 av
= ubi_find_av(ai
, i
);
733 vol
= ubi
->volumes
[i
];
736 ubi_remove_av(ai
, av
);
740 if (vol
->reserved_pebs
== 0) {
741 ubi_assert(i
< ubi
->vtbl_slots
);
747 * During attaching we found a volume which does not
748 * exist according to the information in the volume
749 * table. This must have happened due to an unclean
750 * reboot while the volume was being removed. Discard
753 ubi_msg(ubi
, "finish volume %d removal", av
->vol_id
);
754 ubi_remove_av(ai
, av
);
756 err
= check_av(vol
, av
);
766 * ubi_read_volume_table - read the volume table.
767 * @ubi: UBI device description object
768 * @ai: attaching information
770 * This function reads volume table, checks it, recover from errors if needed,
771 * or creates it if needed. Returns zero in case of success and a negative
772 * error code in case of failure.
774 int ubi_read_volume_table(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
777 struct ubi_ainf_volume
*av
;
779 empty_vtbl_record
.crc
= cpu_to_be32(0xf116c36b);
782 * The number of supported volumes is limited by the eraseblock size
783 * and by the UBI_MAX_VOLUMES constant.
785 ubi
->vtbl_slots
= ubi
->leb_size
/ UBI_VTBL_RECORD_SIZE
;
786 if (ubi
->vtbl_slots
> UBI_MAX_VOLUMES
)
787 ubi
->vtbl_slots
= UBI_MAX_VOLUMES
;
789 ubi
->vtbl_size
= ubi
->vtbl_slots
* UBI_VTBL_RECORD_SIZE
;
790 ubi
->vtbl_size
= ALIGN(ubi
->vtbl_size
, ubi
->min_io_size
);
792 av
= ubi_find_av(ai
, UBI_LAYOUT_VOLUME_ID
);
795 * No logical eraseblocks belonging to the layout volume were
796 * found. This could mean that the flash is just empty. In
797 * this case we create empty layout volume.
799 * But if flash is not empty this must be a corruption or the
800 * MTD device just contains garbage.
803 ubi
->vtbl
= create_empty_lvol(ubi
, ai
);
804 if (IS_ERR(ubi
->vtbl
))
805 return PTR_ERR(ubi
->vtbl
);
807 ubi_err(ubi
, "the layout volume was not found");
811 if (av
->leb_count
> UBI_LAYOUT_VOLUME_EBS
) {
812 /* This must not happen with proper UBI images */
813 ubi_err(ubi
, "too many LEBs (%d) in layout volume",
818 ubi
->vtbl
= process_lvol(ubi
, ai
, av
);
819 if (IS_ERR(ubi
->vtbl
))
820 return PTR_ERR(ubi
->vtbl
);
823 ubi
->avail_pebs
= ubi
->good_peb_count
- ubi
->corr_peb_count
;
826 * The layout volume is OK, initialize the corresponding in-RAM data
829 err
= init_volumes(ubi
, ai
, ubi
->vtbl
);
834 * Make sure that the attaching information is consistent to the
835 * information stored in the volume table.
837 err
= check_attaching_info(ubi
, ai
);
845 for (i
= 0; i
< ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
; i
++) {
846 kfree(ubi
->volumes
[i
]);
847 ubi
->volumes
[i
] = NULL
;
853 * self_vtbl_check - check volume table.
854 * @ubi: UBI device description object
856 static void self_vtbl_check(const struct ubi_device
*ubi
)
858 if (!ubi_dbg_chk_gen(ubi
))
861 if (vtbl_check(ubi
, ubi
->vtbl
)) {
862 ubi_err(ubi
, "self-check failed");