Linux 4.1.16
[linux/fpc-iii.git] / drivers / of / base.c
blob5ed97246c2e7f377833872bdebfef03c523de868
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
31 #include "of_private.h"
33 LIST_HEAD(aliases_lookup);
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
42 struct kset *of_kset;
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
50 DEFINE_MUTEX(of_mutex);
52 /* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
55 DEFINE_RAW_SPINLOCK(devtree_lock);
57 int of_n_addr_cells(struct device_node *np)
59 const __be32 *ip;
61 do {
62 if (np->parent)
63 np = np->parent;
64 ip = of_get_property(np, "#address-cells", NULL);
65 if (ip)
66 return be32_to_cpup(ip);
67 } while (np->parent);
68 /* No #address-cells property for the root node */
69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
71 EXPORT_SYMBOL(of_n_addr_cells);
73 int of_n_size_cells(struct device_node *np)
75 const __be32 *ip;
77 do {
78 if (np->parent)
79 np = np->parent;
80 ip = of_get_property(np, "#size-cells", NULL);
81 if (ip)
82 return be32_to_cpup(ip);
83 } while (np->parent);
84 /* No #size-cells property for the root node */
85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
87 EXPORT_SYMBOL(of_n_size_cells);
89 #ifdef CONFIG_NUMA
90 int __weak of_node_to_nid(struct device_node *np)
92 return NUMA_NO_NODE;
94 #endif
96 #ifndef CONFIG_OF_DYNAMIC
97 static void of_node_release(struct kobject *kobj)
99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
101 #endif /* CONFIG_OF_DYNAMIC */
103 struct kobj_type of_node_ktype = {
104 .release = of_node_release,
107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 struct bin_attribute *bin_attr, char *buf,
109 loff_t offset, size_t count)
111 struct property *pp = container_of(bin_attr, struct property, attr);
112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
115 static const char *safe_name(struct kobject *kobj, const char *orig_name)
117 const char *name = orig_name;
118 struct kernfs_node *kn;
119 int i = 0;
121 /* don't be a hero. After 16 tries give up */
122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123 sysfs_put(kn);
124 if (name != orig_name)
125 kfree(name);
126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
129 if (name != orig_name)
130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131 kobject_name(kobj), name);
132 return name;
135 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
137 int rc;
139 /* Important: Don't leak passwords */
140 bool secure = strncmp(pp->name, "security-", 9) == 0;
142 if (!IS_ENABLED(CONFIG_SYSFS))
143 return 0;
145 if (!of_kset || !of_node_is_attached(np))
146 return 0;
148 sysfs_bin_attr_init(&pp->attr);
149 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151 pp->attr.size = secure ? 0 : pp->length;
152 pp->attr.read = of_node_property_read;
154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156 return rc;
159 int __of_attach_node_sysfs(struct device_node *np)
161 const char *name;
162 struct property *pp;
163 int rc;
165 if (!IS_ENABLED(CONFIG_SYSFS))
166 return 0;
168 if (!of_kset)
169 return 0;
171 np->kobj.kset = of_kset;
172 if (!np->parent) {
173 /* Nodes without parents are new top level trees */
174 rc = kobject_add(&np->kobj, NULL, "%s",
175 safe_name(&of_kset->kobj, "base"));
176 } else {
177 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178 if (!name || !name[0])
179 return -EINVAL;
181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
183 if (rc)
184 return rc;
186 for_each_property_of_node(np, pp)
187 __of_add_property_sysfs(np, pp);
189 return 0;
192 void __init of_core_init(void)
194 struct device_node *np;
196 /* Create the kset, and register existing nodes */
197 mutex_lock(&of_mutex);
198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199 if (!of_kset) {
200 mutex_unlock(&of_mutex);
201 pr_err("devicetree: failed to register existing nodes\n");
202 return;
204 for_each_of_allnodes(np)
205 __of_attach_node_sysfs(np);
206 mutex_unlock(&of_mutex);
208 /* Symlink in /proc as required by userspace ABI */
209 if (of_root)
210 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
213 static struct property *__of_find_property(const struct device_node *np,
214 const char *name, int *lenp)
216 struct property *pp;
218 if (!np)
219 return NULL;
221 for (pp = np->properties; pp; pp = pp->next) {
222 if (of_prop_cmp(pp->name, name) == 0) {
223 if (lenp)
224 *lenp = pp->length;
225 break;
229 return pp;
232 struct property *of_find_property(const struct device_node *np,
233 const char *name,
234 int *lenp)
236 struct property *pp;
237 unsigned long flags;
239 raw_spin_lock_irqsave(&devtree_lock, flags);
240 pp = __of_find_property(np, name, lenp);
241 raw_spin_unlock_irqrestore(&devtree_lock, flags);
243 return pp;
245 EXPORT_SYMBOL(of_find_property);
247 struct device_node *__of_find_all_nodes(struct device_node *prev)
249 struct device_node *np;
250 if (!prev) {
251 np = of_root;
252 } else if (prev->child) {
253 np = prev->child;
254 } else {
255 /* Walk back up looking for a sibling, or the end of the structure */
256 np = prev;
257 while (np->parent && !np->sibling)
258 np = np->parent;
259 np = np->sibling; /* Might be null at the end of the tree */
261 return np;
265 * of_find_all_nodes - Get next node in global list
266 * @prev: Previous node or NULL to start iteration
267 * of_node_put() will be called on it
269 * Returns a node pointer with refcount incremented, use
270 * of_node_put() on it when done.
272 struct device_node *of_find_all_nodes(struct device_node *prev)
274 struct device_node *np;
275 unsigned long flags;
277 raw_spin_lock_irqsave(&devtree_lock, flags);
278 np = __of_find_all_nodes(prev);
279 of_node_get(np);
280 of_node_put(prev);
281 raw_spin_unlock_irqrestore(&devtree_lock, flags);
282 return np;
284 EXPORT_SYMBOL(of_find_all_nodes);
287 * Find a property with a given name for a given node
288 * and return the value.
290 const void *__of_get_property(const struct device_node *np,
291 const char *name, int *lenp)
293 struct property *pp = __of_find_property(np, name, lenp);
295 return pp ? pp->value : NULL;
299 * Find a property with a given name for a given node
300 * and return the value.
302 const void *of_get_property(const struct device_node *np, const char *name,
303 int *lenp)
305 struct property *pp = of_find_property(np, name, lenp);
307 return pp ? pp->value : NULL;
309 EXPORT_SYMBOL(of_get_property);
312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
314 * @cpu: logical cpu index of a core/thread
315 * @phys_id: physical identifier of a core/thread
317 * CPU logical to physical index mapping is architecture specific.
318 * However this __weak function provides a default match of physical
319 * id to logical cpu index. phys_id provided here is usually values read
320 * from the device tree which must match the hardware internal registers.
322 * Returns true if the physical identifier and the logical cpu index
323 * correspond to the same core/thread, false otherwise.
325 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
327 return (u32)phys_id == cpu;
331 * Checks if the given "prop_name" property holds the physical id of the
332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
333 * NULL, local thread number within the core is returned in it.
335 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
336 const char *prop_name, int cpu, unsigned int *thread)
338 const __be32 *cell;
339 int ac, prop_len, tid;
340 u64 hwid;
342 ac = of_n_addr_cells(cpun);
343 cell = of_get_property(cpun, prop_name, &prop_len);
344 if (!cell || !ac)
345 return false;
346 prop_len /= sizeof(*cell) * ac;
347 for (tid = 0; tid < prop_len; tid++) {
348 hwid = of_read_number(cell, ac);
349 if (arch_match_cpu_phys_id(cpu, hwid)) {
350 if (thread)
351 *thread = tid;
352 return true;
354 cell += ac;
356 return false;
360 * arch_find_n_match_cpu_physical_id - See if the given device node is
361 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
362 * else false. If 'thread' is non-NULL, the local thread number within the
363 * core is returned in it.
365 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
366 int cpu, unsigned int *thread)
368 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
369 * for thread ids on PowerPC. If it doesn't exist fallback to
370 * standard "reg" property.
372 if (IS_ENABLED(CONFIG_PPC) &&
373 __of_find_n_match_cpu_property(cpun,
374 "ibm,ppc-interrupt-server#s",
375 cpu, thread))
376 return true;
378 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
379 return true;
381 return false;
385 * of_get_cpu_node - Get device node associated with the given logical CPU
387 * @cpu: CPU number(logical index) for which device node is required
388 * @thread: if not NULL, local thread number within the physical core is
389 * returned
391 * The main purpose of this function is to retrieve the device node for the
392 * given logical CPU index. It should be used to initialize the of_node in
393 * cpu device. Once of_node in cpu device is populated, all the further
394 * references can use that instead.
396 * CPU logical to physical index mapping is architecture specific and is built
397 * before booting secondary cores. This function uses arch_match_cpu_phys_id
398 * which can be overridden by architecture specific implementation.
400 * Returns a node pointer for the logical cpu if found, else NULL.
402 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
404 struct device_node *cpun;
406 for_each_node_by_type(cpun, "cpu") {
407 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
408 return cpun;
410 return NULL;
412 EXPORT_SYMBOL(of_get_cpu_node);
415 * __of_device_is_compatible() - Check if the node matches given constraints
416 * @device: pointer to node
417 * @compat: required compatible string, NULL or "" for any match
418 * @type: required device_type value, NULL or "" for any match
419 * @name: required node name, NULL or "" for any match
421 * Checks if the given @compat, @type and @name strings match the
422 * properties of the given @device. A constraints can be skipped by
423 * passing NULL or an empty string as the constraint.
425 * Returns 0 for no match, and a positive integer on match. The return
426 * value is a relative score with larger values indicating better
427 * matches. The score is weighted for the most specific compatible value
428 * to get the highest score. Matching type is next, followed by matching
429 * name. Practically speaking, this results in the following priority
430 * order for matches:
432 * 1. specific compatible && type && name
433 * 2. specific compatible && type
434 * 3. specific compatible && name
435 * 4. specific compatible
436 * 5. general compatible && type && name
437 * 6. general compatible && type
438 * 7. general compatible && name
439 * 8. general compatible
440 * 9. type && name
441 * 10. type
442 * 11. name
444 static int __of_device_is_compatible(const struct device_node *device,
445 const char *compat, const char *type, const char *name)
447 struct property *prop;
448 const char *cp;
449 int index = 0, score = 0;
451 /* Compatible match has highest priority */
452 if (compat && compat[0]) {
453 prop = __of_find_property(device, "compatible", NULL);
454 for (cp = of_prop_next_string(prop, NULL); cp;
455 cp = of_prop_next_string(prop, cp), index++) {
456 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
457 score = INT_MAX/2 - (index << 2);
458 break;
461 if (!score)
462 return 0;
465 /* Matching type is better than matching name */
466 if (type && type[0]) {
467 if (!device->type || of_node_cmp(type, device->type))
468 return 0;
469 score += 2;
472 /* Matching name is a bit better than not */
473 if (name && name[0]) {
474 if (!device->name || of_node_cmp(name, device->name))
475 return 0;
476 score++;
479 return score;
482 /** Checks if the given "compat" string matches one of the strings in
483 * the device's "compatible" property
485 int of_device_is_compatible(const struct device_node *device,
486 const char *compat)
488 unsigned long flags;
489 int res;
491 raw_spin_lock_irqsave(&devtree_lock, flags);
492 res = __of_device_is_compatible(device, compat, NULL, NULL);
493 raw_spin_unlock_irqrestore(&devtree_lock, flags);
494 return res;
496 EXPORT_SYMBOL(of_device_is_compatible);
499 * of_machine_is_compatible - Test root of device tree for a given compatible value
500 * @compat: compatible string to look for in root node's compatible property.
502 * Returns a positive integer if the root node has the given value in its
503 * compatible property.
505 int of_machine_is_compatible(const char *compat)
507 struct device_node *root;
508 int rc = 0;
510 root = of_find_node_by_path("/");
511 if (root) {
512 rc = of_device_is_compatible(root, compat);
513 of_node_put(root);
515 return rc;
517 EXPORT_SYMBOL(of_machine_is_compatible);
520 * __of_device_is_available - check if a device is available for use
522 * @device: Node to check for availability, with locks already held
524 * Returns true if the status property is absent or set to "okay" or "ok",
525 * false otherwise
527 static bool __of_device_is_available(const struct device_node *device)
529 const char *status;
530 int statlen;
532 if (!device)
533 return false;
535 status = __of_get_property(device, "status", &statlen);
536 if (status == NULL)
537 return true;
539 if (statlen > 0) {
540 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
541 return true;
544 return false;
548 * of_device_is_available - check if a device is available for use
550 * @device: Node to check for availability
552 * Returns true if the status property is absent or set to "okay" or "ok",
553 * false otherwise
555 bool of_device_is_available(const struct device_node *device)
557 unsigned long flags;
558 bool res;
560 raw_spin_lock_irqsave(&devtree_lock, flags);
561 res = __of_device_is_available(device);
562 raw_spin_unlock_irqrestore(&devtree_lock, flags);
563 return res;
566 EXPORT_SYMBOL(of_device_is_available);
569 * of_device_is_big_endian - check if a device has BE registers
571 * @device: Node to check for endianness
573 * Returns true if the device has a "big-endian" property, or if the kernel
574 * was compiled for BE *and* the device has a "native-endian" property.
575 * Returns false otherwise.
577 * Callers would nominally use ioread32be/iowrite32be if
578 * of_device_is_big_endian() == true, or readl/writel otherwise.
580 bool of_device_is_big_endian(const struct device_node *device)
582 if (of_property_read_bool(device, "big-endian"))
583 return true;
584 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
585 of_property_read_bool(device, "native-endian"))
586 return true;
587 return false;
589 EXPORT_SYMBOL(of_device_is_big_endian);
592 * of_get_parent - Get a node's parent if any
593 * @node: Node to get parent
595 * Returns a node pointer with refcount incremented, use
596 * of_node_put() on it when done.
598 struct device_node *of_get_parent(const struct device_node *node)
600 struct device_node *np;
601 unsigned long flags;
603 if (!node)
604 return NULL;
606 raw_spin_lock_irqsave(&devtree_lock, flags);
607 np = of_node_get(node->parent);
608 raw_spin_unlock_irqrestore(&devtree_lock, flags);
609 return np;
611 EXPORT_SYMBOL(of_get_parent);
614 * of_get_next_parent - Iterate to a node's parent
615 * @node: Node to get parent of
617 * This is like of_get_parent() except that it drops the
618 * refcount on the passed node, making it suitable for iterating
619 * through a node's parents.
621 * Returns a node pointer with refcount incremented, use
622 * of_node_put() on it when done.
624 struct device_node *of_get_next_parent(struct device_node *node)
626 struct device_node *parent;
627 unsigned long flags;
629 if (!node)
630 return NULL;
632 raw_spin_lock_irqsave(&devtree_lock, flags);
633 parent = of_node_get(node->parent);
634 of_node_put(node);
635 raw_spin_unlock_irqrestore(&devtree_lock, flags);
636 return parent;
638 EXPORT_SYMBOL(of_get_next_parent);
640 static struct device_node *__of_get_next_child(const struct device_node *node,
641 struct device_node *prev)
643 struct device_node *next;
645 if (!node)
646 return NULL;
648 next = prev ? prev->sibling : node->child;
649 for (; next; next = next->sibling)
650 if (of_node_get(next))
651 break;
652 of_node_put(prev);
653 return next;
655 #define __for_each_child_of_node(parent, child) \
656 for (child = __of_get_next_child(parent, NULL); child != NULL; \
657 child = __of_get_next_child(parent, child))
660 * of_get_next_child - Iterate a node childs
661 * @node: parent node
662 * @prev: previous child of the parent node, or NULL to get first
664 * Returns a node pointer with refcount incremented, use of_node_put() on
665 * it when done. Returns NULL when prev is the last child. Decrements the
666 * refcount of prev.
668 struct device_node *of_get_next_child(const struct device_node *node,
669 struct device_node *prev)
671 struct device_node *next;
672 unsigned long flags;
674 raw_spin_lock_irqsave(&devtree_lock, flags);
675 next = __of_get_next_child(node, prev);
676 raw_spin_unlock_irqrestore(&devtree_lock, flags);
677 return next;
679 EXPORT_SYMBOL(of_get_next_child);
682 * of_get_next_available_child - Find the next available child node
683 * @node: parent node
684 * @prev: previous child of the parent node, or NULL to get first
686 * This function is like of_get_next_child(), except that it
687 * automatically skips any disabled nodes (i.e. status = "disabled").
689 struct device_node *of_get_next_available_child(const struct device_node *node,
690 struct device_node *prev)
692 struct device_node *next;
693 unsigned long flags;
695 if (!node)
696 return NULL;
698 raw_spin_lock_irqsave(&devtree_lock, flags);
699 next = prev ? prev->sibling : node->child;
700 for (; next; next = next->sibling) {
701 if (!__of_device_is_available(next))
702 continue;
703 if (of_node_get(next))
704 break;
706 of_node_put(prev);
707 raw_spin_unlock_irqrestore(&devtree_lock, flags);
708 return next;
710 EXPORT_SYMBOL(of_get_next_available_child);
713 * of_get_child_by_name - Find the child node by name for a given parent
714 * @node: parent node
715 * @name: child name to look for.
717 * This function looks for child node for given matching name
719 * Returns a node pointer if found, with refcount incremented, use
720 * of_node_put() on it when done.
721 * Returns NULL if node is not found.
723 struct device_node *of_get_child_by_name(const struct device_node *node,
724 const char *name)
726 struct device_node *child;
728 for_each_child_of_node(node, child)
729 if (child->name && (of_node_cmp(child->name, name) == 0))
730 break;
731 return child;
733 EXPORT_SYMBOL(of_get_child_by_name);
735 static struct device_node *__of_find_node_by_path(struct device_node *parent,
736 const char *path)
738 struct device_node *child;
739 int len;
741 len = strcspn(path, "/:");
742 if (!len)
743 return NULL;
745 __for_each_child_of_node(parent, child) {
746 const char *name = strrchr(child->full_name, '/');
747 if (WARN(!name, "malformed device_node %s\n", child->full_name))
748 continue;
749 name++;
750 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
751 return child;
753 return NULL;
757 * of_find_node_opts_by_path - Find a node matching a full OF path
758 * @path: Either the full path to match, or if the path does not
759 * start with '/', the name of a property of the /aliases
760 * node (an alias). In the case of an alias, the node
761 * matching the alias' value will be returned.
762 * @opts: Address of a pointer into which to store the start of
763 * an options string appended to the end of the path with
764 * a ':' separator.
766 * Valid paths:
767 * /foo/bar Full path
768 * foo Valid alias
769 * foo/bar Valid alias + relative path
771 * Returns a node pointer with refcount incremented, use
772 * of_node_put() on it when done.
774 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
776 struct device_node *np = NULL;
777 struct property *pp;
778 unsigned long flags;
779 const char *separator = strchr(path, ':');
781 if (opts)
782 *opts = separator ? separator + 1 : NULL;
784 if (strcmp(path, "/") == 0)
785 return of_node_get(of_root);
787 /* The path could begin with an alias */
788 if (*path != '/') {
789 int len;
790 const char *p = separator;
792 if (!p)
793 p = strchrnul(path, '/');
794 len = p - path;
796 /* of_aliases must not be NULL */
797 if (!of_aliases)
798 return NULL;
800 for_each_property_of_node(of_aliases, pp) {
801 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
802 np = of_find_node_by_path(pp->value);
803 break;
806 if (!np)
807 return NULL;
808 path = p;
811 /* Step down the tree matching path components */
812 raw_spin_lock_irqsave(&devtree_lock, flags);
813 if (!np)
814 np = of_node_get(of_root);
815 while (np && *path == '/') {
816 path++; /* Increment past '/' delimiter */
817 np = __of_find_node_by_path(np, path);
818 path = strchrnul(path, '/');
819 if (separator && separator < path)
820 break;
822 raw_spin_unlock_irqrestore(&devtree_lock, flags);
823 return np;
825 EXPORT_SYMBOL(of_find_node_opts_by_path);
828 * of_find_node_by_name - Find a node by its "name" property
829 * @from: The node to start searching from or NULL, the node
830 * you pass will not be searched, only the next one
831 * will; typically, you pass what the previous call
832 * returned. of_node_put() will be called on it
833 * @name: The name string to match against
835 * Returns a node pointer with refcount incremented, use
836 * of_node_put() on it when done.
838 struct device_node *of_find_node_by_name(struct device_node *from,
839 const char *name)
841 struct device_node *np;
842 unsigned long flags;
844 raw_spin_lock_irqsave(&devtree_lock, flags);
845 for_each_of_allnodes_from(from, np)
846 if (np->name && (of_node_cmp(np->name, name) == 0)
847 && of_node_get(np))
848 break;
849 of_node_put(from);
850 raw_spin_unlock_irqrestore(&devtree_lock, flags);
851 return np;
853 EXPORT_SYMBOL(of_find_node_by_name);
856 * of_find_node_by_type - Find a node by its "device_type" property
857 * @from: The node to start searching from, or NULL to start searching
858 * the entire device tree. The node you pass will not be
859 * searched, only the next one will; typically, you pass
860 * what the previous call returned. of_node_put() will be
861 * called on from for you.
862 * @type: The type string to match against
864 * Returns a node pointer with refcount incremented, use
865 * of_node_put() on it when done.
867 struct device_node *of_find_node_by_type(struct device_node *from,
868 const char *type)
870 struct device_node *np;
871 unsigned long flags;
873 raw_spin_lock_irqsave(&devtree_lock, flags);
874 for_each_of_allnodes_from(from, np)
875 if (np->type && (of_node_cmp(np->type, type) == 0)
876 && of_node_get(np))
877 break;
878 of_node_put(from);
879 raw_spin_unlock_irqrestore(&devtree_lock, flags);
880 return np;
882 EXPORT_SYMBOL(of_find_node_by_type);
885 * of_find_compatible_node - Find a node based on type and one of the
886 * tokens in its "compatible" property
887 * @from: The node to start searching from or NULL, the node
888 * you pass will not be searched, only the next one
889 * will; typically, you pass what the previous call
890 * returned. of_node_put() will be called on it
891 * @type: The type string to match "device_type" or NULL to ignore
892 * @compatible: The string to match to one of the tokens in the device
893 * "compatible" list.
895 * Returns a node pointer with refcount incremented, use
896 * of_node_put() on it when done.
898 struct device_node *of_find_compatible_node(struct device_node *from,
899 const char *type, const char *compatible)
901 struct device_node *np;
902 unsigned long flags;
904 raw_spin_lock_irqsave(&devtree_lock, flags);
905 for_each_of_allnodes_from(from, np)
906 if (__of_device_is_compatible(np, compatible, type, NULL) &&
907 of_node_get(np))
908 break;
909 of_node_put(from);
910 raw_spin_unlock_irqrestore(&devtree_lock, flags);
911 return np;
913 EXPORT_SYMBOL(of_find_compatible_node);
916 * of_find_node_with_property - Find a node which has a property with
917 * the given name.
918 * @from: The node to start searching from or NULL, the node
919 * you pass will not be searched, only the next one
920 * will; typically, you pass what the previous call
921 * returned. of_node_put() will be called on it
922 * @prop_name: The name of the property to look for.
924 * Returns a node pointer with refcount incremented, use
925 * of_node_put() on it when done.
927 struct device_node *of_find_node_with_property(struct device_node *from,
928 const char *prop_name)
930 struct device_node *np;
931 struct property *pp;
932 unsigned long flags;
934 raw_spin_lock_irqsave(&devtree_lock, flags);
935 for_each_of_allnodes_from(from, np) {
936 for (pp = np->properties; pp; pp = pp->next) {
937 if (of_prop_cmp(pp->name, prop_name) == 0) {
938 of_node_get(np);
939 goto out;
943 out:
944 of_node_put(from);
945 raw_spin_unlock_irqrestore(&devtree_lock, flags);
946 return np;
948 EXPORT_SYMBOL(of_find_node_with_property);
950 static
951 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
952 const struct device_node *node)
954 const struct of_device_id *best_match = NULL;
955 int score, best_score = 0;
957 if (!matches)
958 return NULL;
960 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
961 score = __of_device_is_compatible(node, matches->compatible,
962 matches->type, matches->name);
963 if (score > best_score) {
964 best_match = matches;
965 best_score = score;
969 return best_match;
973 * of_match_node - Tell if a device_node has a matching of_match structure
974 * @matches: array of of device match structures to search in
975 * @node: the of device structure to match against
977 * Low level utility function used by device matching.
979 const struct of_device_id *of_match_node(const struct of_device_id *matches,
980 const struct device_node *node)
982 const struct of_device_id *match;
983 unsigned long flags;
985 raw_spin_lock_irqsave(&devtree_lock, flags);
986 match = __of_match_node(matches, node);
987 raw_spin_unlock_irqrestore(&devtree_lock, flags);
988 return match;
990 EXPORT_SYMBOL(of_match_node);
993 * of_find_matching_node_and_match - Find a node based on an of_device_id
994 * match table.
995 * @from: The node to start searching from or NULL, the node
996 * you pass will not be searched, only the next one
997 * will; typically, you pass what the previous call
998 * returned. of_node_put() will be called on it
999 * @matches: array of of device match structures to search in
1000 * @match Updated to point at the matches entry which matched
1002 * Returns a node pointer with refcount incremented, use
1003 * of_node_put() on it when done.
1005 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1006 const struct of_device_id *matches,
1007 const struct of_device_id **match)
1009 struct device_node *np;
1010 const struct of_device_id *m;
1011 unsigned long flags;
1013 if (match)
1014 *match = NULL;
1016 raw_spin_lock_irqsave(&devtree_lock, flags);
1017 for_each_of_allnodes_from(from, np) {
1018 m = __of_match_node(matches, np);
1019 if (m && of_node_get(np)) {
1020 if (match)
1021 *match = m;
1022 break;
1025 of_node_put(from);
1026 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1027 return np;
1029 EXPORT_SYMBOL(of_find_matching_node_and_match);
1032 * of_modalias_node - Lookup appropriate modalias for a device node
1033 * @node: pointer to a device tree node
1034 * @modalias: Pointer to buffer that modalias value will be copied into
1035 * @len: Length of modalias value
1037 * Based on the value of the compatible property, this routine will attempt
1038 * to choose an appropriate modalias value for a particular device tree node.
1039 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1040 * from the first entry in the compatible list property.
1042 * This routine returns 0 on success, <0 on failure.
1044 int of_modalias_node(struct device_node *node, char *modalias, int len)
1046 const char *compatible, *p;
1047 int cplen;
1049 compatible = of_get_property(node, "compatible", &cplen);
1050 if (!compatible || strlen(compatible) > cplen)
1051 return -ENODEV;
1052 p = strchr(compatible, ',');
1053 strlcpy(modalias, p ? p + 1 : compatible, len);
1054 return 0;
1056 EXPORT_SYMBOL_GPL(of_modalias_node);
1059 * of_find_node_by_phandle - Find a node given a phandle
1060 * @handle: phandle of the node to find
1062 * Returns a node pointer with refcount incremented, use
1063 * of_node_put() on it when done.
1065 struct device_node *of_find_node_by_phandle(phandle handle)
1067 struct device_node *np;
1068 unsigned long flags;
1070 if (!handle)
1071 return NULL;
1073 raw_spin_lock_irqsave(&devtree_lock, flags);
1074 for_each_of_allnodes(np)
1075 if (np->phandle == handle)
1076 break;
1077 of_node_get(np);
1078 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1079 return np;
1081 EXPORT_SYMBOL(of_find_node_by_phandle);
1084 * of_property_count_elems_of_size - Count the number of elements in a property
1086 * @np: device node from which the property value is to be read.
1087 * @propname: name of the property to be searched.
1088 * @elem_size: size of the individual element
1090 * Search for a property in a device node and count the number of elements of
1091 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1092 * property does not exist or its length does not match a multiple of elem_size
1093 * and -ENODATA if the property does not have a value.
1095 int of_property_count_elems_of_size(const struct device_node *np,
1096 const char *propname, int elem_size)
1098 struct property *prop = of_find_property(np, propname, NULL);
1100 if (!prop)
1101 return -EINVAL;
1102 if (!prop->value)
1103 return -ENODATA;
1105 if (prop->length % elem_size != 0) {
1106 pr_err("size of %s in node %s is not a multiple of %d\n",
1107 propname, np->full_name, elem_size);
1108 return -EINVAL;
1111 return prop->length / elem_size;
1113 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1116 * of_find_property_value_of_size
1118 * @np: device node from which the property value is to be read.
1119 * @propname: name of the property to be searched.
1120 * @len: requested length of property value
1122 * Search for a property in a device node and valid the requested size.
1123 * Returns the property value on success, -EINVAL if the property does not
1124 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1125 * property data isn't large enough.
1128 static void *of_find_property_value_of_size(const struct device_node *np,
1129 const char *propname, u32 len)
1131 struct property *prop = of_find_property(np, propname, NULL);
1133 if (!prop)
1134 return ERR_PTR(-EINVAL);
1135 if (!prop->value)
1136 return ERR_PTR(-ENODATA);
1137 if (len > prop->length)
1138 return ERR_PTR(-EOVERFLOW);
1140 return prop->value;
1144 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1146 * @np: device node from which the property value is to be read.
1147 * @propname: name of the property to be searched.
1148 * @index: index of the u32 in the list of values
1149 * @out_value: pointer to return value, modified only if no error.
1151 * Search for a property in a device node and read nth 32-bit value from
1152 * it. Returns 0 on success, -EINVAL if the property does not exist,
1153 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1154 * property data isn't large enough.
1156 * The out_value is modified only if a valid u32 value can be decoded.
1158 int of_property_read_u32_index(const struct device_node *np,
1159 const char *propname,
1160 u32 index, u32 *out_value)
1162 const u32 *val = of_find_property_value_of_size(np, propname,
1163 ((index + 1) * sizeof(*out_value)));
1165 if (IS_ERR(val))
1166 return PTR_ERR(val);
1168 *out_value = be32_to_cpup(((__be32 *)val) + index);
1169 return 0;
1171 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1174 * of_property_read_u8_array - Find and read an array of u8 from a property.
1176 * @np: device node from which the property value is to be read.
1177 * @propname: name of the property to be searched.
1178 * @out_values: pointer to return value, modified only if return value is 0.
1179 * @sz: number of array elements to read
1181 * Search for a property in a device node and read 8-bit value(s) from
1182 * it. Returns 0 on success, -EINVAL if the property does not exist,
1183 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1184 * property data isn't large enough.
1186 * dts entry of array should be like:
1187 * property = /bits/ 8 <0x50 0x60 0x70>;
1189 * The out_values is modified only if a valid u8 value can be decoded.
1191 int of_property_read_u8_array(const struct device_node *np,
1192 const char *propname, u8 *out_values, size_t sz)
1194 const u8 *val = of_find_property_value_of_size(np, propname,
1195 (sz * sizeof(*out_values)));
1197 if (IS_ERR(val))
1198 return PTR_ERR(val);
1200 while (sz--)
1201 *out_values++ = *val++;
1202 return 0;
1204 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1207 * of_property_read_u16_array - Find and read an array of u16 from a property.
1209 * @np: device node from which the property value is to be read.
1210 * @propname: name of the property to be searched.
1211 * @out_values: pointer to return value, modified only if return value is 0.
1212 * @sz: number of array elements to read
1214 * Search for a property in a device node and read 16-bit value(s) from
1215 * it. Returns 0 on success, -EINVAL if the property does not exist,
1216 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1217 * property data isn't large enough.
1219 * dts entry of array should be like:
1220 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1222 * The out_values is modified only if a valid u16 value can be decoded.
1224 int of_property_read_u16_array(const struct device_node *np,
1225 const char *propname, u16 *out_values, size_t sz)
1227 const __be16 *val = of_find_property_value_of_size(np, propname,
1228 (sz * sizeof(*out_values)));
1230 if (IS_ERR(val))
1231 return PTR_ERR(val);
1233 while (sz--)
1234 *out_values++ = be16_to_cpup(val++);
1235 return 0;
1237 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1240 * of_property_read_u32_array - Find and read an array of 32 bit integers
1241 * from a property.
1243 * @np: device node from which the property value is to be read.
1244 * @propname: name of the property to be searched.
1245 * @out_values: pointer to return value, modified only if return value is 0.
1246 * @sz: number of array elements to read
1248 * Search for a property in a device node and read 32-bit value(s) from
1249 * it. Returns 0 on success, -EINVAL if the property does not exist,
1250 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1251 * property data isn't large enough.
1253 * The out_values is modified only if a valid u32 value can be decoded.
1255 int of_property_read_u32_array(const struct device_node *np,
1256 const char *propname, u32 *out_values,
1257 size_t sz)
1259 const __be32 *val = of_find_property_value_of_size(np, propname,
1260 (sz * sizeof(*out_values)));
1262 if (IS_ERR(val))
1263 return PTR_ERR(val);
1265 while (sz--)
1266 *out_values++ = be32_to_cpup(val++);
1267 return 0;
1269 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1272 * of_property_read_u64 - Find and read a 64 bit integer from a property
1273 * @np: device node from which the property value is to be read.
1274 * @propname: name of the property to be searched.
1275 * @out_value: pointer to return value, modified only if return value is 0.
1277 * Search for a property in a device node and read a 64-bit value from
1278 * it. Returns 0 on success, -EINVAL if the property does not exist,
1279 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1280 * property data isn't large enough.
1282 * The out_value is modified only if a valid u64 value can be decoded.
1284 int of_property_read_u64(const struct device_node *np, const char *propname,
1285 u64 *out_value)
1287 const __be32 *val = of_find_property_value_of_size(np, propname,
1288 sizeof(*out_value));
1290 if (IS_ERR(val))
1291 return PTR_ERR(val);
1293 *out_value = of_read_number(val, 2);
1294 return 0;
1296 EXPORT_SYMBOL_GPL(of_property_read_u64);
1299 * of_property_read_u64_array - Find and read an array of 64 bit integers
1300 * from a property.
1302 * @np: device node from which the property value is to be read.
1303 * @propname: name of the property to be searched.
1304 * @out_values: pointer to return value, modified only if return value is 0.
1305 * @sz: number of array elements to read
1307 * Search for a property in a device node and read 64-bit value(s) from
1308 * it. Returns 0 on success, -EINVAL if the property does not exist,
1309 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1310 * property data isn't large enough.
1312 * The out_values is modified only if a valid u64 value can be decoded.
1314 int of_property_read_u64_array(const struct device_node *np,
1315 const char *propname, u64 *out_values,
1316 size_t sz)
1318 const __be32 *val = of_find_property_value_of_size(np, propname,
1319 (sz * sizeof(*out_values)));
1321 if (IS_ERR(val))
1322 return PTR_ERR(val);
1324 while (sz--) {
1325 *out_values++ = of_read_number(val, 2);
1326 val += 2;
1328 return 0;
1330 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1333 * of_property_read_string - Find and read a string from a property
1334 * @np: device node from which the property value is to be read.
1335 * @propname: name of the property to be searched.
1336 * @out_string: pointer to null terminated return string, modified only if
1337 * return value is 0.
1339 * Search for a property in a device tree node and retrieve a null
1340 * terminated string value (pointer to data, not a copy). Returns 0 on
1341 * success, -EINVAL if the property does not exist, -ENODATA if property
1342 * does not have a value, and -EILSEQ if the string is not null-terminated
1343 * within the length of the property data.
1345 * The out_string pointer is modified only if a valid string can be decoded.
1347 int of_property_read_string(struct device_node *np, const char *propname,
1348 const char **out_string)
1350 struct property *prop = of_find_property(np, propname, NULL);
1351 if (!prop)
1352 return -EINVAL;
1353 if (!prop->value)
1354 return -ENODATA;
1355 if (strnlen(prop->value, prop->length) >= prop->length)
1356 return -EILSEQ;
1357 *out_string = prop->value;
1358 return 0;
1360 EXPORT_SYMBOL_GPL(of_property_read_string);
1363 * of_property_match_string() - Find string in a list and return index
1364 * @np: pointer to node containing string list property
1365 * @propname: string list property name
1366 * @string: pointer to string to search for in string list
1368 * This function searches a string list property and returns the index
1369 * of a specific string value.
1371 int of_property_match_string(struct device_node *np, const char *propname,
1372 const char *string)
1374 struct property *prop = of_find_property(np, propname, NULL);
1375 size_t l;
1376 int i;
1377 const char *p, *end;
1379 if (!prop)
1380 return -EINVAL;
1381 if (!prop->value)
1382 return -ENODATA;
1384 p = prop->value;
1385 end = p + prop->length;
1387 for (i = 0; p < end; i++, p += l) {
1388 l = strnlen(p, end - p) + 1;
1389 if (p + l > end)
1390 return -EILSEQ;
1391 pr_debug("comparing %s with %s\n", string, p);
1392 if (strcmp(string, p) == 0)
1393 return i; /* Found it; return index */
1395 return -ENODATA;
1397 EXPORT_SYMBOL_GPL(of_property_match_string);
1400 * of_property_read_string_helper() - Utility helper for parsing string properties
1401 * @np: device node from which the property value is to be read.
1402 * @propname: name of the property to be searched.
1403 * @out_strs: output array of string pointers.
1404 * @sz: number of array elements to read.
1405 * @skip: Number of strings to skip over at beginning of list.
1407 * Don't call this function directly. It is a utility helper for the
1408 * of_property_read_string*() family of functions.
1410 int of_property_read_string_helper(struct device_node *np, const char *propname,
1411 const char **out_strs, size_t sz, int skip)
1413 struct property *prop = of_find_property(np, propname, NULL);
1414 int l = 0, i = 0;
1415 const char *p, *end;
1417 if (!prop)
1418 return -EINVAL;
1419 if (!prop->value)
1420 return -ENODATA;
1421 p = prop->value;
1422 end = p + prop->length;
1424 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1425 l = strnlen(p, end - p) + 1;
1426 if (p + l > end)
1427 return -EILSEQ;
1428 if (out_strs && i >= skip)
1429 *out_strs++ = p;
1431 i -= skip;
1432 return i <= 0 ? -ENODATA : i;
1434 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1436 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1438 int i;
1439 printk("%s %s", msg, of_node_full_name(args->np));
1440 for (i = 0; i < args->args_count; i++)
1441 printk(i ? ",%08x" : ":%08x", args->args[i]);
1442 printk("\n");
1445 static int __of_parse_phandle_with_args(const struct device_node *np,
1446 const char *list_name,
1447 const char *cells_name,
1448 int cell_count, int index,
1449 struct of_phandle_args *out_args)
1451 const __be32 *list, *list_end;
1452 int rc = 0, size, cur_index = 0;
1453 uint32_t count = 0;
1454 struct device_node *node = NULL;
1455 phandle phandle;
1457 /* Retrieve the phandle list property */
1458 list = of_get_property(np, list_name, &size);
1459 if (!list)
1460 return -ENOENT;
1461 list_end = list + size / sizeof(*list);
1463 /* Loop over the phandles until all the requested entry is found */
1464 while (list < list_end) {
1465 rc = -EINVAL;
1466 count = 0;
1469 * If phandle is 0, then it is an empty entry with no
1470 * arguments. Skip forward to the next entry.
1472 phandle = be32_to_cpup(list++);
1473 if (phandle) {
1475 * Find the provider node and parse the #*-cells
1476 * property to determine the argument length.
1478 * This is not needed if the cell count is hard-coded
1479 * (i.e. cells_name not set, but cell_count is set),
1480 * except when we're going to return the found node
1481 * below.
1483 if (cells_name || cur_index == index) {
1484 node = of_find_node_by_phandle(phandle);
1485 if (!node) {
1486 pr_err("%s: could not find phandle\n",
1487 np->full_name);
1488 goto err;
1492 if (cells_name) {
1493 if (of_property_read_u32(node, cells_name,
1494 &count)) {
1495 pr_err("%s: could not get %s for %s\n",
1496 np->full_name, cells_name,
1497 node->full_name);
1498 goto err;
1500 } else {
1501 count = cell_count;
1505 * Make sure that the arguments actually fit in the
1506 * remaining property data length
1508 if (list + count > list_end) {
1509 pr_err("%s: arguments longer than property\n",
1510 np->full_name);
1511 goto err;
1516 * All of the error cases above bail out of the loop, so at
1517 * this point, the parsing is successful. If the requested
1518 * index matches, then fill the out_args structure and return,
1519 * or return -ENOENT for an empty entry.
1521 rc = -ENOENT;
1522 if (cur_index == index) {
1523 if (!phandle)
1524 goto err;
1526 if (out_args) {
1527 int i;
1528 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1529 count = MAX_PHANDLE_ARGS;
1530 out_args->np = node;
1531 out_args->args_count = count;
1532 for (i = 0; i < count; i++)
1533 out_args->args[i] = be32_to_cpup(list++);
1534 } else {
1535 of_node_put(node);
1538 /* Found it! return success */
1539 return 0;
1542 of_node_put(node);
1543 node = NULL;
1544 list += count;
1545 cur_index++;
1549 * Unlock node before returning result; will be one of:
1550 * -ENOENT : index is for empty phandle
1551 * -EINVAL : parsing error on data
1552 * [1..n] : Number of phandle (count mode; when index = -1)
1554 rc = index < 0 ? cur_index : -ENOENT;
1555 err:
1556 if (node)
1557 of_node_put(node);
1558 return rc;
1562 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1563 * @np: Pointer to device node holding phandle property
1564 * @phandle_name: Name of property holding a phandle value
1565 * @index: For properties holding a table of phandles, this is the index into
1566 * the table
1568 * Returns the device_node pointer with refcount incremented. Use
1569 * of_node_put() on it when done.
1571 struct device_node *of_parse_phandle(const struct device_node *np,
1572 const char *phandle_name, int index)
1574 struct of_phandle_args args;
1576 if (index < 0)
1577 return NULL;
1579 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1580 index, &args))
1581 return NULL;
1583 return args.np;
1585 EXPORT_SYMBOL(of_parse_phandle);
1588 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1589 * @np: pointer to a device tree node containing a list
1590 * @list_name: property name that contains a list
1591 * @cells_name: property name that specifies phandles' arguments count
1592 * @index: index of a phandle to parse out
1593 * @out_args: optional pointer to output arguments structure (will be filled)
1595 * This function is useful to parse lists of phandles and their arguments.
1596 * Returns 0 on success and fills out_args, on error returns appropriate
1597 * errno value.
1599 * Caller is responsible to call of_node_put() on the returned out_args->np
1600 * pointer.
1602 * Example:
1604 * phandle1: node1 {
1605 * #list-cells = <2>;
1608 * phandle2: node2 {
1609 * #list-cells = <1>;
1612 * node3 {
1613 * list = <&phandle1 1 2 &phandle2 3>;
1616 * To get a device_node of the `node2' node you may call this:
1617 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1619 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1620 const char *cells_name, int index,
1621 struct of_phandle_args *out_args)
1623 if (index < 0)
1624 return -EINVAL;
1625 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1626 index, out_args);
1628 EXPORT_SYMBOL(of_parse_phandle_with_args);
1631 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1632 * @np: pointer to a device tree node containing a list
1633 * @list_name: property name that contains a list
1634 * @cell_count: number of argument cells following the phandle
1635 * @index: index of a phandle to parse out
1636 * @out_args: optional pointer to output arguments structure (will be filled)
1638 * This function is useful to parse lists of phandles and their arguments.
1639 * Returns 0 on success and fills out_args, on error returns appropriate
1640 * errno value.
1642 * Caller is responsible to call of_node_put() on the returned out_args->np
1643 * pointer.
1645 * Example:
1647 * phandle1: node1 {
1650 * phandle2: node2 {
1653 * node3 {
1654 * list = <&phandle1 0 2 &phandle2 2 3>;
1657 * To get a device_node of the `node2' node you may call this:
1658 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1660 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1661 const char *list_name, int cell_count,
1662 int index, struct of_phandle_args *out_args)
1664 if (index < 0)
1665 return -EINVAL;
1666 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1667 index, out_args);
1669 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1672 * of_count_phandle_with_args() - Find the number of phandles references in a property
1673 * @np: pointer to a device tree node containing a list
1674 * @list_name: property name that contains a list
1675 * @cells_name: property name that specifies phandles' arguments count
1677 * Returns the number of phandle + argument tuples within a property. It
1678 * is a typical pattern to encode a list of phandle and variable
1679 * arguments into a single property. The number of arguments is encoded
1680 * by a property in the phandle-target node. For example, a gpios
1681 * property would contain a list of GPIO specifies consisting of a
1682 * phandle and 1 or more arguments. The number of arguments are
1683 * determined by the #gpio-cells property in the node pointed to by the
1684 * phandle.
1686 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1687 const char *cells_name)
1689 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1690 NULL);
1692 EXPORT_SYMBOL(of_count_phandle_with_args);
1695 * __of_add_property - Add a property to a node without lock operations
1697 int __of_add_property(struct device_node *np, struct property *prop)
1699 struct property **next;
1701 prop->next = NULL;
1702 next = &np->properties;
1703 while (*next) {
1704 if (strcmp(prop->name, (*next)->name) == 0)
1705 /* duplicate ! don't insert it */
1706 return -EEXIST;
1708 next = &(*next)->next;
1710 *next = prop;
1712 return 0;
1716 * of_add_property - Add a property to a node
1718 int of_add_property(struct device_node *np, struct property *prop)
1720 unsigned long flags;
1721 int rc;
1723 mutex_lock(&of_mutex);
1725 raw_spin_lock_irqsave(&devtree_lock, flags);
1726 rc = __of_add_property(np, prop);
1727 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1729 if (!rc)
1730 __of_add_property_sysfs(np, prop);
1732 mutex_unlock(&of_mutex);
1734 if (!rc)
1735 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1737 return rc;
1740 int __of_remove_property(struct device_node *np, struct property *prop)
1742 struct property **next;
1744 for (next = &np->properties; *next; next = &(*next)->next) {
1745 if (*next == prop)
1746 break;
1748 if (*next == NULL)
1749 return -ENODEV;
1751 /* found the node */
1752 *next = prop->next;
1753 prop->next = np->deadprops;
1754 np->deadprops = prop;
1756 return 0;
1759 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1761 if (!IS_ENABLED(CONFIG_SYSFS))
1762 return;
1764 /* at early boot, bail here and defer setup to of_init() */
1765 if (of_kset && of_node_is_attached(np))
1766 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1770 * of_remove_property - Remove a property from a node.
1772 * Note that we don't actually remove it, since we have given out
1773 * who-knows-how-many pointers to the data using get-property.
1774 * Instead we just move the property to the "dead properties"
1775 * list, so it won't be found any more.
1777 int of_remove_property(struct device_node *np, struct property *prop)
1779 unsigned long flags;
1780 int rc;
1782 mutex_lock(&of_mutex);
1784 raw_spin_lock_irqsave(&devtree_lock, flags);
1785 rc = __of_remove_property(np, prop);
1786 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1788 if (!rc)
1789 __of_remove_property_sysfs(np, prop);
1791 mutex_unlock(&of_mutex);
1793 if (!rc)
1794 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1796 return rc;
1799 int __of_update_property(struct device_node *np, struct property *newprop,
1800 struct property **oldpropp)
1802 struct property **next, *oldprop;
1804 for (next = &np->properties; *next; next = &(*next)->next) {
1805 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1806 break;
1808 *oldpropp = oldprop = *next;
1810 if (oldprop) {
1811 /* replace the node */
1812 newprop->next = oldprop->next;
1813 *next = newprop;
1814 oldprop->next = np->deadprops;
1815 np->deadprops = oldprop;
1816 } else {
1817 /* new node */
1818 newprop->next = NULL;
1819 *next = newprop;
1822 return 0;
1825 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1826 struct property *oldprop)
1828 if (!IS_ENABLED(CONFIG_SYSFS))
1829 return;
1831 /* At early boot, bail out and defer setup to of_init() */
1832 if (!of_kset)
1833 return;
1835 if (oldprop)
1836 sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1837 __of_add_property_sysfs(np, newprop);
1841 * of_update_property - Update a property in a node, if the property does
1842 * not exist, add it.
1844 * Note that we don't actually remove it, since we have given out
1845 * who-knows-how-many pointers to the data using get-property.
1846 * Instead we just move the property to the "dead properties" list,
1847 * and add the new property to the property list
1849 int of_update_property(struct device_node *np, struct property *newprop)
1851 struct property *oldprop;
1852 unsigned long flags;
1853 int rc;
1855 if (!newprop->name)
1856 return -EINVAL;
1858 mutex_lock(&of_mutex);
1860 raw_spin_lock_irqsave(&devtree_lock, flags);
1861 rc = __of_update_property(np, newprop, &oldprop);
1862 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1864 if (!rc)
1865 __of_update_property_sysfs(np, newprop, oldprop);
1867 mutex_unlock(&of_mutex);
1869 if (!rc)
1870 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1872 return rc;
1875 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1876 int id, const char *stem, int stem_len)
1878 ap->np = np;
1879 ap->id = id;
1880 strncpy(ap->stem, stem, stem_len);
1881 ap->stem[stem_len] = 0;
1882 list_add_tail(&ap->link, &aliases_lookup);
1883 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1884 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1888 * of_alias_scan - Scan all properties of the 'aliases' node
1890 * The function scans all the properties of the 'aliases' node and populates
1891 * the global lookup table with the properties. It returns the
1892 * number of alias properties found, or an error code in case of failure.
1894 * @dt_alloc: An allocator that provides a virtual address to memory
1895 * for storing the resulting tree
1897 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1899 struct property *pp;
1901 of_aliases = of_find_node_by_path("/aliases");
1902 of_chosen = of_find_node_by_path("/chosen");
1903 if (of_chosen == NULL)
1904 of_chosen = of_find_node_by_path("/chosen@0");
1906 if (of_chosen) {
1907 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1908 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1909 if (!name)
1910 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1911 if (IS_ENABLED(CONFIG_PPC) && !name)
1912 name = of_get_property(of_aliases, "stdout", NULL);
1913 if (name)
1914 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1917 if (!of_aliases)
1918 return;
1920 for_each_property_of_node(of_aliases, pp) {
1921 const char *start = pp->name;
1922 const char *end = start + strlen(start);
1923 struct device_node *np;
1924 struct alias_prop *ap;
1925 int id, len;
1927 /* Skip those we do not want to proceed */
1928 if (!strcmp(pp->name, "name") ||
1929 !strcmp(pp->name, "phandle") ||
1930 !strcmp(pp->name, "linux,phandle"))
1931 continue;
1933 np = of_find_node_by_path(pp->value);
1934 if (!np)
1935 continue;
1937 /* walk the alias backwards to extract the id and work out
1938 * the 'stem' string */
1939 while (isdigit(*(end-1)) && end > start)
1940 end--;
1941 len = end - start;
1943 if (kstrtoint(end, 10, &id) < 0)
1944 continue;
1946 /* Allocate an alias_prop with enough space for the stem */
1947 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1948 if (!ap)
1949 continue;
1950 memset(ap, 0, sizeof(*ap) + len + 1);
1951 ap->alias = start;
1952 of_alias_add(ap, np, id, start, len);
1957 * of_alias_get_id - Get alias id for the given device_node
1958 * @np: Pointer to the given device_node
1959 * @stem: Alias stem of the given device_node
1961 * The function travels the lookup table to get the alias id for the given
1962 * device_node and alias stem. It returns the alias id if found.
1964 int of_alias_get_id(struct device_node *np, const char *stem)
1966 struct alias_prop *app;
1967 int id = -ENODEV;
1969 mutex_lock(&of_mutex);
1970 list_for_each_entry(app, &aliases_lookup, link) {
1971 if (strcmp(app->stem, stem) != 0)
1972 continue;
1974 if (np == app->np) {
1975 id = app->id;
1976 break;
1979 mutex_unlock(&of_mutex);
1981 return id;
1983 EXPORT_SYMBOL_GPL(of_alias_get_id);
1986 * of_alias_get_highest_id - Get highest alias id for the given stem
1987 * @stem: Alias stem to be examined
1989 * The function travels the lookup table to get the highest alias id for the
1990 * given alias stem. It returns the alias id if found.
1992 int of_alias_get_highest_id(const char *stem)
1994 struct alias_prop *app;
1995 int id = -ENODEV;
1997 mutex_lock(&of_mutex);
1998 list_for_each_entry(app, &aliases_lookup, link) {
1999 if (strcmp(app->stem, stem) != 0)
2000 continue;
2002 if (app->id > id)
2003 id = app->id;
2005 mutex_unlock(&of_mutex);
2007 return id;
2009 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2011 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2012 u32 *pu)
2014 const void *curv = cur;
2016 if (!prop)
2017 return NULL;
2019 if (!cur) {
2020 curv = prop->value;
2021 goto out_val;
2024 curv += sizeof(*cur);
2025 if (curv >= prop->value + prop->length)
2026 return NULL;
2028 out_val:
2029 *pu = be32_to_cpup(curv);
2030 return curv;
2032 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2034 const char *of_prop_next_string(struct property *prop, const char *cur)
2036 const void *curv = cur;
2038 if (!prop)
2039 return NULL;
2041 if (!cur)
2042 return prop->value;
2044 curv += strlen(cur) + 1;
2045 if (curv >= prop->value + prop->length)
2046 return NULL;
2048 return curv;
2050 EXPORT_SYMBOL_GPL(of_prop_next_string);
2053 * of_console_check() - Test and setup console for DT setup
2054 * @dn - Pointer to device node
2055 * @name - Name to use for preferred console without index. ex. "ttyS"
2056 * @index - Index to use for preferred console.
2058 * Check if the given device node matches the stdout-path property in the
2059 * /chosen node. If it does then register it as the preferred console and return
2060 * TRUE. Otherwise return FALSE.
2062 bool of_console_check(struct device_node *dn, char *name, int index)
2064 if (!dn || dn != of_stdout || console_set_on_cmdline)
2065 return false;
2066 return !add_preferred_console(name, index,
2067 kstrdup(of_stdout_options, GFP_KERNEL));
2069 EXPORT_SYMBOL_GPL(of_console_check);
2072 * of_find_next_cache_node - Find a node's subsidiary cache
2073 * @np: node of type "cpu" or "cache"
2075 * Returns a node pointer with refcount incremented, use
2076 * of_node_put() on it when done. Caller should hold a reference
2077 * to np.
2079 struct device_node *of_find_next_cache_node(const struct device_node *np)
2081 struct device_node *child;
2082 const phandle *handle;
2084 handle = of_get_property(np, "l2-cache", NULL);
2085 if (!handle)
2086 handle = of_get_property(np, "next-level-cache", NULL);
2088 if (handle)
2089 return of_find_node_by_phandle(be32_to_cpup(handle));
2091 /* OF on pmac has nodes instead of properties named "l2-cache"
2092 * beneath CPU nodes.
2094 if (!strcmp(np->type, "cpu"))
2095 for_each_child_of_node(np, child)
2096 if (!strcmp(child->type, "cache"))
2097 return child;
2099 return NULL;
2103 * of_graph_parse_endpoint() - parse common endpoint node properties
2104 * @node: pointer to endpoint device_node
2105 * @endpoint: pointer to the OF endpoint data structure
2107 * The caller should hold a reference to @node.
2109 int of_graph_parse_endpoint(const struct device_node *node,
2110 struct of_endpoint *endpoint)
2112 struct device_node *port_node = of_get_parent(node);
2114 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2115 __func__, node->full_name);
2117 memset(endpoint, 0, sizeof(*endpoint));
2119 endpoint->local_node = node;
2121 * It doesn't matter whether the two calls below succeed.
2122 * If they don't then the default value 0 is used.
2124 of_property_read_u32(port_node, "reg", &endpoint->port);
2125 of_property_read_u32(node, "reg", &endpoint->id);
2127 of_node_put(port_node);
2129 return 0;
2131 EXPORT_SYMBOL(of_graph_parse_endpoint);
2134 * of_graph_get_port_by_id() - get the port matching a given id
2135 * @parent: pointer to the parent device node
2136 * @id: id of the port
2138 * Return: A 'port' node pointer with refcount incremented. The caller
2139 * has to use of_node_put() on it when done.
2141 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2143 struct device_node *node, *port;
2145 node = of_get_child_by_name(parent, "ports");
2146 if (node)
2147 parent = node;
2149 for_each_child_of_node(parent, port) {
2150 u32 port_id = 0;
2152 if (of_node_cmp(port->name, "port") != 0)
2153 continue;
2154 of_property_read_u32(port, "reg", &port_id);
2155 if (id == port_id)
2156 break;
2159 of_node_put(node);
2161 return port;
2163 EXPORT_SYMBOL(of_graph_get_port_by_id);
2166 * of_graph_get_next_endpoint() - get next endpoint node
2167 * @parent: pointer to the parent device node
2168 * @prev: previous endpoint node, or NULL to get first
2170 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2171 * of the passed @prev node is decremented.
2173 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2174 struct device_node *prev)
2176 struct device_node *endpoint;
2177 struct device_node *port;
2179 if (!parent)
2180 return NULL;
2183 * Start by locating the port node. If no previous endpoint is specified
2184 * search for the first port node, otherwise get the previous endpoint
2185 * parent port node.
2187 if (!prev) {
2188 struct device_node *node;
2190 node = of_get_child_by_name(parent, "ports");
2191 if (node)
2192 parent = node;
2194 port = of_get_child_by_name(parent, "port");
2195 of_node_put(node);
2197 if (!port) {
2198 pr_err("%s(): no port node found in %s\n",
2199 __func__, parent->full_name);
2200 return NULL;
2202 } else {
2203 port = of_get_parent(prev);
2204 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2205 __func__, prev->full_name))
2206 return NULL;
2209 while (1) {
2211 * Now that we have a port node, get the next endpoint by
2212 * getting the next child. If the previous endpoint is NULL this
2213 * will return the first child.
2215 endpoint = of_get_next_child(port, prev);
2216 if (endpoint) {
2217 of_node_put(port);
2218 return endpoint;
2221 /* No more endpoints under this port, try the next one. */
2222 prev = NULL;
2224 do {
2225 port = of_get_next_child(parent, port);
2226 if (!port)
2227 return NULL;
2228 } while (of_node_cmp(port->name, "port"));
2231 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2234 * of_graph_get_remote_port_parent() - get remote port's parent node
2235 * @node: pointer to a local endpoint device_node
2237 * Return: Remote device node associated with remote endpoint node linked
2238 * to @node. Use of_node_put() on it when done.
2240 struct device_node *of_graph_get_remote_port_parent(
2241 const struct device_node *node)
2243 struct device_node *np;
2244 unsigned int depth;
2246 /* Get remote endpoint node. */
2247 np = of_parse_phandle(node, "remote-endpoint", 0);
2249 /* Walk 3 levels up only if there is 'ports' node. */
2250 for (depth = 3; depth && np; depth--) {
2251 np = of_get_next_parent(np);
2252 if (depth == 2 && of_node_cmp(np->name, "ports"))
2253 break;
2255 return np;
2257 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2260 * of_graph_get_remote_port() - get remote port node
2261 * @node: pointer to a local endpoint device_node
2263 * Return: Remote port node associated with remote endpoint node linked
2264 * to @node. Use of_node_put() on it when done.
2266 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2268 struct device_node *np;
2270 /* Get remote endpoint node. */
2271 np = of_parse_phandle(node, "remote-endpoint", 0);
2272 if (!np)
2273 return NULL;
2274 return of_get_next_parent(np);
2276 EXPORT_SYMBOL(of_graph_get_remote_port);