3 ** DMA management routines for first generation cache-coherent machines.
4 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
6 ** (c) Copyright 2000 Grant Grundler
7 ** (c) Copyright 2000 Ryan Bradetich
8 ** (c) Copyright 2000 Hewlett-Packard Company
10 ** This program is free software; you can redistribute it and/or modify
11 ** it under the terms of the GNU General Public License as published by
12 ** the Free Software Foundation; either version 2 of the License, or
13 ** (at your option) any later version.
16 ** "Real Mode" operation refers to U2/Uturn chip operation.
17 ** U2/Uturn were designed to perform coherency checks w/o using
18 ** the I/O MMU - basically what x86 does.
20 ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21 ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22 ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
24 ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
26 ** Drawbacks of using Real Mode are:
27 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29 ** o Ability to do scatter/gather in HW is lost.
30 ** o Doesn't work under PCX-U/U+ machines since they didn't follow
31 ** the coherency design originally worked out. Only PCX-W does.
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/pci.h>
42 #include <linux/reboot.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/scatterlist.h>
46 #include <linux/iommu-helper.h>
47 #include <linux/export.h>
49 #include <asm/byteorder.h>
50 #include <asm/cache.h> /* for L1_CACHE_BYTES */
51 #include <asm/uaccess.h>
55 #include <asm/hardware.h> /* for register_module() */
56 #include <asm/parisc-device.h>
59 ** Choose "ccio" since that's what HP-UX calls it.
60 ** Make it easier for folks to migrate from one to the other :^)
62 #define MODULE_NAME "ccio"
66 #undef DEBUG_CCIO_INIT
67 #undef DEBUG_CCIO_RUN_SG
70 /* depends on proc fs support. But costs CPU performance. */
71 #undef CCIO_COLLECT_STATS
74 #include <asm/runway.h> /* for proc_runway_root */
76 #ifdef DEBUG_CCIO_INIT
77 #define DBG_INIT(x...) printk(x)
79 #define DBG_INIT(x...)
83 #define DBG_RUN(x...) printk(x)
89 #define DBG_RES(x...) printk(x)
94 #ifdef DEBUG_CCIO_RUN_SG
95 #define DBG_RUN_SG(x...) printk(x)
97 #define DBG_RUN_SG(x...)
100 #define CCIO_INLINE inline
101 #define WRITE_U32(value, addr) __raw_writel(value, addr)
102 #define READ_U32(addr) __raw_readl(addr)
104 #define U2_IOA_RUNWAY 0x580
105 #define U2_BC_GSC 0x501
106 #define UTURN_IOA_RUNWAY 0x581
107 #define UTURN_BC_GSC 0x502
109 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
110 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
111 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
113 struct ioa_registers
{
114 /* Runway Supervisory Set */
116 uint32_t io_command
; /* Offset 12 */
117 uint32_t io_status
; /* Offset 13 */
118 uint32_t io_control
; /* Offset 14 */
121 /* Runway Auxiliary Register Set */
122 uint32_t io_err_resp
; /* Offset 0 */
123 uint32_t io_err_info
; /* Offset 1 */
124 uint32_t io_err_req
; /* Offset 2 */
125 uint32_t io_err_resp_hi
; /* Offset 3 */
126 uint32_t io_tlb_entry_m
; /* Offset 4 */
127 uint32_t io_tlb_entry_l
; /* Offset 5 */
129 uint32_t io_pdir_base
; /* Offset 7 */
130 uint32_t io_io_low_hv
; /* Offset 8 */
131 uint32_t io_io_high_hv
; /* Offset 9 */
133 uint32_t io_chain_id_mask
; /* Offset 11 */
135 uint32_t io_io_low
; /* Offset 14 */
136 uint32_t io_io_high
; /* Offset 15 */
143 ** Runway IO_CONTROL Register (+0x38)
145 ** The Runway IO_CONTROL register controls the forwarding of transactions.
147 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
148 ** | HV | TLB | reserved | HV | mode | reserved |
150 ** o mode field indicates the address translation of transactions
151 ** forwarded from Runway to GSC+:
152 ** Mode Name Value Definition
153 ** Off (default) 0 Opaque to matching addresses.
154 ** Include 1 Transparent for matching addresses.
155 ** Peek 3 Map matching addresses.
157 ** + "Off" mode: Runway transactions which match the I/O range
158 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
159 ** + "Include" mode: all addresses within the I/O range specified
160 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
161 ** forwarded. This is the I/O Adapter's normal operating mode.
162 ** + "Peek" mode: used during system configuration to initialize the
163 ** GSC+ bus. Runway Write_Shorts in the address range specified by
164 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
165 ** *AND* the GSC+ address is remapped to the Broadcast Physical
166 ** Address space by setting the 14 high order address bits of the
167 ** 32 bit GSC+ address to ones.
169 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
170 ** "Real" mode is the poweron default.
172 ** TLB Mode Value Description
173 ** Real 0 No TLB translation. Address is directly mapped and the
174 ** virtual address is composed of selected physical bits.
175 ** Error 1 Software fills the TLB manually.
176 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
179 ** IO_IO_LOW_HV +0x60 (HV dependent)
180 ** IO_IO_HIGH_HV +0x64 (HV dependent)
181 ** IO_IO_LOW +0x78 (Architected register)
182 ** IO_IO_HIGH +0x7c (Architected register)
184 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
185 ** I/O Adapter address space, respectively.
187 ** 0 ... 7 | 8 ... 15 | 16 ... 31 |
188 ** 11111111 | 11111111 | address |
190 ** Each LOW/HIGH pair describes a disjoint address space region.
191 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
192 ** with both sets of LOW/HIGH registers. If the address is in the range
193 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
194 ** for forwarded to the respective GSC+ bus.
195 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
196 ** an address space region.
198 ** In order for a Runway address to reside within GSC+ extended address space:
199 ** Runway Address [0:7] must identically compare to 8'b11111111
200 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
201 ** Runway Address [12:23] must be greater than or equal to
202 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
203 ** Runway Address [24:39] is not used in the comparison.
205 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
207 ** GSC+ Address[0:3] 4'b1111
208 ** GSC+ Address[4:29] Runway Address[12:37]
209 ** GSC+ Address[30:31] 2'b00
211 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
212 ** is interrogated and address space is defined. The operating system will
213 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
214 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW
215 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
217 ** Writes to both sets of registers will take effect immediately, bypassing
218 ** the queues, which ensures that subsequent Runway transactions are checked
219 ** against the updated bounds values. However reads are queued, introducing
220 ** the possibility of a read being bypassed by a subsequent write to the same
221 ** register. This sequence can be avoided by having software wait for read
222 ** returns before issuing subsequent writes.
226 struct ioa_registers __iomem
*ioc_regs
; /* I/O MMU base address */
227 u8
*res_map
; /* resource map, bit == pdir entry */
228 u64
*pdir_base
; /* physical base address */
229 u32 pdir_size
; /* bytes, function of IOV Space size */
230 u32 res_hint
; /* next available IOVP -
232 u32 res_size
; /* size of resource map in bytes */
235 #ifdef CCIO_COLLECT_STATS
236 #define CCIO_SEARCH_SAMPLE 0x100
237 unsigned long avg_search
[CCIO_SEARCH_SAMPLE
];
238 unsigned long avg_idx
; /* current index into avg_search */
239 unsigned long used_pages
;
240 unsigned long msingle_calls
;
241 unsigned long msingle_pages
;
242 unsigned long msg_calls
;
243 unsigned long msg_pages
;
244 unsigned long usingle_calls
;
245 unsigned long usingle_pages
;
246 unsigned long usg_calls
;
247 unsigned long usg_pages
;
249 unsigned short cujo20_bug
;
251 /* STUFF We don't need in performance path */
252 u32 chainid_shift
; /* specify bit location of chain_id */
253 struct ioc
*next
; /* Linked list of discovered iocs */
254 const char *name
; /* device name from firmware */
255 unsigned int hw_path
; /* the hardware path this ioc is associatd with */
256 struct pci_dev
*fake_pci_dev
; /* the fake pci_dev for non-pci devs */
257 struct resource mmio_region
[2]; /* The "routed" MMIO regions */
260 static struct ioc
*ioc_list
;
261 static int ioc_count
;
263 /**************************************************************
265 * I/O Pdir Resource Management
267 * Bits set in the resource map are in use.
268 * Each bit can represent a number of pages.
269 * LSbs represent lower addresses (IOVA's).
271 * This was was copied from sba_iommu.c. Don't try to unify
272 * the two resource managers unless a way to have different
273 * allocation policies is also adjusted. We'd like to avoid
274 * I/O TLB thrashing by having resource allocation policy
275 * match the I/O TLB replacement policy.
277 ***************************************************************/
278 #define IOVP_SIZE PAGE_SIZE
279 #define IOVP_SHIFT PAGE_SHIFT
280 #define IOVP_MASK PAGE_MASK
282 /* Convert from IOVP to IOVA and vice versa. */
283 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
284 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
286 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
287 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
288 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
291 ** Don't worry about the 150% average search length on a miss.
292 ** If the search wraps around, and passes the res_hint, it will
293 ** cause the kernel to panic anyhow.
295 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
296 for(; res_ptr < res_end; ++res_ptr) { \
299 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
300 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
301 if ((0 == (*res_ptr & mask)) && !ret) { \
304 ioc->res_hint = res_idx + (size >> 3); \
305 goto resource_found; \
309 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
310 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
311 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
312 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
313 res_ptr = (u##size *)&(ioc)->res_map[0]; \
314 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
317 ** Find available bit in this ioa's resource map.
318 ** Use a "circular" search:
319 ** o Most IOVA's are "temporary" - avg search time should be small.
320 ** o keep a history of what happened for debugging
323 ** Perf optimizations:
324 ** o search for log2(size) bits at a time.
325 ** o search for available resource bits using byte/word/whatever.
326 ** o use different search for "large" (eg > 4 pages) or "very large"
327 ** (eg > 16 pages) mappings.
331 * ccio_alloc_range - Allocate pages in the ioc's resource map.
332 * @ioc: The I/O Controller.
333 * @pages_needed: The requested number of pages to be mapped into the
336 * This function searches the resource map of the ioc to locate a range
337 * of available pages for the requested size.
340 ccio_alloc_range(struct ioc
*ioc
, struct device
*dev
, size_t size
)
342 unsigned int pages_needed
= size
>> IOVP_SHIFT
;
343 unsigned int res_idx
;
344 unsigned long boundary_size
;
345 #ifdef CCIO_COLLECT_STATS
346 unsigned long cr_start
= mfctl(16);
349 BUG_ON(pages_needed
== 0);
350 BUG_ON((pages_needed
* IOVP_SIZE
) > DMA_CHUNK_SIZE
);
352 DBG_RES("%s() size: %d pages_needed %d\n",
353 __func__
, size
, pages_needed
);
356 ** "seek and ye shall find"...praying never hurts either...
357 ** ggg sacrifices another 710 to the computer gods.
360 boundary_size
= ALIGN((unsigned long long)dma_get_seg_boundary(dev
) + 1,
361 1ULL << IOVP_SHIFT
) >> IOVP_SHIFT
;
363 if (pages_needed
<= 8) {
365 * LAN traffic will not thrash the TLB IFF the same NIC
366 * uses 8 adjacent pages to map separate payload data.
367 * ie the same byte in the resource bit map.
370 /* FIXME: bit search should shift it's way through
371 * an unsigned long - not byte at a time. As it is now,
372 * we effectively allocate this byte to this mapping.
374 unsigned long mask
= ~(~0UL >> pages_needed
);
375 CCIO_FIND_FREE_MAPPING(ioc
, res_idx
, mask
, 8);
377 CCIO_FIND_FREE_MAPPING(ioc
, res_idx
, 0xff, 8);
379 } else if (pages_needed
<= 16) {
380 CCIO_FIND_FREE_MAPPING(ioc
, res_idx
, 0xffff, 16);
381 } else if (pages_needed
<= 32) {
382 CCIO_FIND_FREE_MAPPING(ioc
, res_idx
, ~(unsigned int)0, 32);
384 } else if (pages_needed
<= 64) {
385 CCIO_FIND_FREE_MAPPING(ioc
, res_idx
, ~0UL, 64);
388 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
389 __FILE__
, __func__
, pages_needed
);
392 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__
,
397 DBG_RES("%s() res_idx %d res_hint: %d\n",
398 __func__
, res_idx
, ioc
->res_hint
);
400 #ifdef CCIO_COLLECT_STATS
402 unsigned long cr_end
= mfctl(16);
403 unsigned long tmp
= cr_end
- cr_start
;
404 /* check for roll over */
405 cr_start
= (cr_end
< cr_start
) ? -(tmp
) : (tmp
);
407 ioc
->avg_search
[ioc
->avg_idx
++] = cr_start
;
408 ioc
->avg_idx
&= CCIO_SEARCH_SAMPLE
- 1;
409 ioc
->used_pages
+= pages_needed
;
412 ** return the bit address.
417 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
418 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
419 BUG_ON((*res_ptr & mask) != mask); \
423 * ccio_free_range - Free pages from the ioc's resource map.
424 * @ioc: The I/O Controller.
425 * @iova: The I/O Virtual Address.
426 * @pages_mapped: The requested number of pages to be freed from the
429 * This function frees the resouces allocated for the iova.
432 ccio_free_range(struct ioc
*ioc
, dma_addr_t iova
, unsigned long pages_mapped
)
434 unsigned long iovp
= CCIO_IOVP(iova
);
435 unsigned int res_idx
= PDIR_INDEX(iovp
) >> 3;
437 BUG_ON(pages_mapped
== 0);
438 BUG_ON((pages_mapped
* IOVP_SIZE
) > DMA_CHUNK_SIZE
);
439 BUG_ON(pages_mapped
> BITS_PER_LONG
);
441 DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
442 __func__
, res_idx
, pages_mapped
);
444 #ifdef CCIO_COLLECT_STATS
445 ioc
->used_pages
-= pages_mapped
;
448 if(pages_mapped
<= 8) {
450 /* see matching comments in alloc_range */
451 unsigned long mask
= ~(~0UL >> pages_mapped
);
452 CCIO_FREE_MAPPINGS(ioc
, res_idx
, mask
, 8);
454 CCIO_FREE_MAPPINGS(ioc
, res_idx
, 0xffUL
, 8);
456 } else if(pages_mapped
<= 16) {
457 CCIO_FREE_MAPPINGS(ioc
, res_idx
, 0xffffUL
, 16);
458 } else if(pages_mapped
<= 32) {
459 CCIO_FREE_MAPPINGS(ioc
, res_idx
, ~(unsigned int)0, 32);
461 } else if(pages_mapped
<= 64) {
462 CCIO_FREE_MAPPINGS(ioc
, res_idx
, ~0UL, 64);
465 panic("%s:%s() Too many pages to unmap.\n", __FILE__
,
470 /****************************************************************
472 ** CCIO dma_ops support routines
474 *****************************************************************/
476 typedef unsigned long space_t
;
477 #define KERNEL_SPACE 0
480 ** DMA "Page Type" and Hints
481 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
482 ** set for subcacheline DMA transfers since we don't want to damage the
483 ** other part of a cacheline.
484 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
485 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
486 ** data can avoid this if the mapping covers full cache lines.
487 ** o STOP_MOST is needed for atomicity across cachelines.
488 ** Apparently only "some EISA devices" need this.
489 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
490 ** to use this hint iff the EISA devices needs this feature.
491 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
492 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
493 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
494 ** device can be fetched and multiply DMA streams will thrash the
495 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
496 ** and Invalidation of Prefetch Entries".
498 ** FIXME: the default hints need to be per GSC device - not global.
500 ** HP-UX dorks: linux device driver programming model is totally different
501 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
502 ** do special things to work on non-coherent platforms...linux has to
503 ** be much more careful with this.
505 #define IOPDIR_VALID 0x01UL
506 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
508 #define HINT_STOP_MOST 0x04UL /* LSL support */
510 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
512 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
513 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
517 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
518 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
519 ** when it passes in BIDIRECTIONAL flag.
521 static u32 hint_lookup
[] = {
522 [PCI_DMA_BIDIRECTIONAL
] = HINT_STOP_MOST
| HINT_SAFE_DMA
| IOPDIR_VALID
,
523 [PCI_DMA_TODEVICE
] = HINT_STOP_MOST
| HINT_PREFETCH
| IOPDIR_VALID
,
524 [PCI_DMA_FROMDEVICE
] = HINT_STOP_MOST
| IOPDIR_VALID
,
528 * ccio_io_pdir_entry - Initialize an I/O Pdir.
529 * @pdir_ptr: A pointer into I/O Pdir.
530 * @sid: The Space Identifier.
531 * @vba: The virtual address.
532 * @hints: The DMA Hint.
534 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
535 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
536 * entry consists of 8 bytes as shown below (MSB == bit 0):
540 * +------+----------------+-----------------------------------------------+
541 * | Phys | Virtual Index | Phys |
542 * | 0:3 | 0:11 | 4:19 |
543 * |4 bits| 12 bits | 16 bits |
544 * +------+----------------+-----------------------------------------------+
546 * +-----------------------+-----------------------------------------------+
547 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
548 * | 20:39 | | Enable |Enable | |Enable|DMA | |
549 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
550 * +-----------------------+-----------------------------------------------+
552 * The virtual index field is filled with the results of the LCI
553 * (Load Coherence Index) instruction. The 8 bits used for the virtual
554 * index are bits 12:19 of the value returned by LCI.
556 static void CCIO_INLINE
557 ccio_io_pdir_entry(u64
*pdir_ptr
, space_t sid
, unsigned long vba
,
560 register unsigned long pa
;
561 register unsigned long ci
; /* coherent index */
563 /* We currently only support kernel addresses */
564 BUG_ON(sid
!= KERNEL_SPACE
);
569 ** WORD 1 - low order word
570 ** "hints" parm includes the VALID bit!
571 ** "dep" clobbers the physical address offset bits as well.
573 pa
= virt_to_phys(vba
);
574 asm volatile("depw %1,31,12,%0" : "+r" (pa
) : "r" (hints
));
575 ((u32
*)pdir_ptr
)[1] = (u32
) pa
;
578 ** WORD 0 - high order word
583 ** get bits 12:15 of physical address
584 ** shift bits 16:31 of physical address
587 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci
) : "r" (pa
));
588 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa
) : "r" (pa
));
589 asm volatile ("depd %1,35,4,%0" : "+r" (pa
) : "r" (ci
));
594 ** get CPU coherency index bits
595 ** Grab virtual index [0:11]
596 ** Deposit virt_idx bits into I/O PDIR word
598 asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci
) : "r" (vba
));
599 asm volatile ("extru %1,19,12,%0" : "+r" (ci
) : "r" (ci
));
600 asm volatile ("depw %1,15,12,%0" : "+r" (pa
) : "r" (ci
));
602 ((u32
*)pdir_ptr
)[0] = (u32
) pa
;
605 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
606 ** PCX-U/U+ do. (eg C200/C240)
607 ** PCX-T'? Don't know. (eg C110 or similar K-class)
609 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
610 ** Hopefully we can patch (NOP) these out at boot time somehow.
612 ** "Since PCX-U employs an offset hash that is incompatible with
613 ** the real mode coherence index generation of U2, the PDIR entry
614 ** must be flushed to memory to retain coherence."
616 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr
));
617 asm volatile("sync");
621 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
622 * @ioc: The I/O Controller.
623 * @iovp: The I/O Virtual Page.
624 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
626 * Purge invalid I/O PDIR entries from the I/O TLB.
628 * FIXME: Can we change the byte_cnt to pages_mapped?
630 static CCIO_INLINE
void
631 ccio_clear_io_tlb(struct ioc
*ioc
, dma_addr_t iovp
, size_t byte_cnt
)
633 u32 chain_size
= 1 << ioc
->chainid_shift
;
635 iovp
&= IOVP_MASK
; /* clear offset bits, just want pagenum */
636 byte_cnt
+= chain_size
;
638 while(byte_cnt
> chain_size
) {
639 WRITE_U32(CMD_TLB_PURGE
| iovp
, &ioc
->ioc_regs
->io_command
);
641 byte_cnt
-= chain_size
;
646 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
647 * @ioc: The I/O Controller.
648 * @iova: The I/O Virtual Address.
649 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
651 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
654 * FIXME: at some threshold it might be "cheaper" to just blow
655 * away the entire I/O TLB instead of individual entries.
657 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
658 * PDIR entry - just once for each possible TLB entry.
659 * (We do need to maker I/O PDIR entries invalid regardless).
661 * FIXME: Can we change byte_cnt to pages_mapped?
663 static CCIO_INLINE
void
664 ccio_mark_invalid(struct ioc
*ioc
, dma_addr_t iova
, size_t byte_cnt
)
666 u32 iovp
= (u32
)CCIO_IOVP(iova
);
667 size_t saved_byte_cnt
;
669 /* round up to nearest page size */
670 saved_byte_cnt
= byte_cnt
= ALIGN(byte_cnt
, IOVP_SIZE
);
672 while(byte_cnt
> 0) {
673 /* invalidate one page at a time */
674 unsigned int idx
= PDIR_INDEX(iovp
);
675 char *pdir_ptr
= (char *) &(ioc
->pdir_base
[idx
]);
677 BUG_ON(idx
>= (ioc
->pdir_size
/ sizeof(u64
)));
678 pdir_ptr
[7] = 0; /* clear only VALID bit */
680 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
681 ** PCX-U/U+ do. (eg C200/C240)
682 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
684 ** Hopefully someone figures out how to patch (NOP) the
685 ** FDC/SYNC out at boot time.
687 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr
[7]));
690 byte_cnt
-= IOVP_SIZE
;
693 asm volatile("sync");
694 ccio_clear_io_tlb(ioc
, CCIO_IOVP(iova
), saved_byte_cnt
);
697 /****************************************************************
701 *****************************************************************/
704 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
705 * @dev: The PCI device.
706 * @mask: A bit mask describing the DMA address range of the device.
708 * This function implements the pci_dma_supported function.
711 ccio_dma_supported(struct device
*dev
, u64 mask
)
714 printk(KERN_ERR MODULE_NAME
": EISA/ISA/et al not supported\n");
719 /* only support 32-bit devices (ie PCI/GSC) */
720 return (int)(mask
== 0xffffffffUL
);
724 * ccio_map_single - Map an address range into the IOMMU.
725 * @dev: The PCI device.
726 * @addr: The start address of the DMA region.
727 * @size: The length of the DMA region.
728 * @direction: The direction of the DMA transaction (to/from device).
730 * This function implements the pci_map_single function.
733 ccio_map_single(struct device
*dev
, void *addr
, size_t size
,
734 enum dma_data_direction direction
)
742 unsigned long hint
= hint_lookup
[(int)direction
];
749 /* save offset bits */
750 offset
= ((unsigned long) addr
) & ~IOVP_MASK
;
752 /* round up to nearest IOVP_SIZE */
753 size
= ALIGN(size
+ offset
, IOVP_SIZE
);
754 spin_lock_irqsave(&ioc
->res_lock
, flags
);
756 #ifdef CCIO_COLLECT_STATS
757 ioc
->msingle_calls
++;
758 ioc
->msingle_pages
+= size
>> IOVP_SHIFT
;
761 idx
= ccio_alloc_range(ioc
, dev
, size
);
762 iovp
= (dma_addr_t
)MKIOVP(idx
);
764 pdir_start
= &(ioc
->pdir_base
[idx
]);
766 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
767 __func__
, addr
, (long)iovp
| offset
, size
);
769 /* If not cacheline aligned, force SAFE_DMA on the whole mess */
770 if((size
% L1_CACHE_BYTES
) || ((unsigned long)addr
% L1_CACHE_BYTES
))
771 hint
|= HINT_SAFE_DMA
;
774 ccio_io_pdir_entry(pdir_start
, KERNEL_SPACE
, (unsigned long)addr
, hint
);
776 DBG_RUN(" pdir %p %08x%08x\n",
778 (u32
) (((u32
*) pdir_start
)[0]),
779 (u32
) (((u32
*) pdir_start
)[1]));
785 spin_unlock_irqrestore(&ioc
->res_lock
, flags
);
787 /* form complete address */
788 return CCIO_IOVA(iovp
, offset
);
792 * ccio_unmap_single - Unmap an address range from the IOMMU.
793 * @dev: The PCI device.
794 * @addr: The start address of the DMA region.
795 * @size: The length of the DMA region.
796 * @direction: The direction of the DMA transaction (to/from device).
798 * This function implements the pci_unmap_single function.
801 ccio_unmap_single(struct device
*dev
, dma_addr_t iova
, size_t size
,
802 enum dma_data_direction direction
)
806 dma_addr_t offset
= iova
& ~IOVP_MASK
;
811 DBG_RUN("%s() iovp 0x%lx/%x\n",
812 __func__
, (long)iova
, size
);
814 iova
^= offset
; /* clear offset bits */
816 size
= ALIGN(size
, IOVP_SIZE
);
818 spin_lock_irqsave(&ioc
->res_lock
, flags
);
820 #ifdef CCIO_COLLECT_STATS
821 ioc
->usingle_calls
++;
822 ioc
->usingle_pages
+= size
>> IOVP_SHIFT
;
825 ccio_mark_invalid(ioc
, iova
, size
);
826 ccio_free_range(ioc
, iova
, (size
>> IOVP_SHIFT
));
827 spin_unlock_irqrestore(&ioc
->res_lock
, flags
);
831 * ccio_alloc_consistent - Allocate a consistent DMA mapping.
832 * @dev: The PCI device.
833 * @size: The length of the DMA region.
834 * @dma_handle: The DMA address handed back to the device (not the cpu).
836 * This function implements the pci_alloc_consistent function.
839 ccio_alloc_consistent(struct device
*dev
, size_t size
, dma_addr_t
*dma_handle
, gfp_t flag
)
843 /* GRANT Need to establish hierarchy for non-PCI devs as well
844 ** and then provide matching gsc_map_xxx() functions for them as well.
847 /* only support PCI */
852 ret
= (void *) __get_free_pages(flag
, get_order(size
));
855 memset(ret
, 0, size
);
856 *dma_handle
= ccio_map_single(dev
, ret
, size
, PCI_DMA_BIDIRECTIONAL
);
863 * ccio_free_consistent - Free a consistent DMA mapping.
864 * @dev: The PCI device.
865 * @size: The length of the DMA region.
866 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
867 * @dma_handle: The device address returned from the ccio_alloc_consistent.
869 * This function implements the pci_free_consistent function.
872 ccio_free_consistent(struct device
*dev
, size_t size
, void *cpu_addr
,
873 dma_addr_t dma_handle
)
875 ccio_unmap_single(dev
, dma_handle
, size
, 0);
876 free_pages((unsigned long)cpu_addr
, get_order(size
));
880 ** Since 0 is a valid pdir_base index value, can't use that
881 ** to determine if a value is valid or not. Use a flag to indicate
882 ** the SG list entry contains a valid pdir index.
884 #define PIDE_FLAG 0x80000000UL
886 #ifdef CCIO_COLLECT_STATS
887 #define IOMMU_MAP_STATS
889 #include "iommu-helpers.h"
892 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
893 * @dev: The PCI device.
894 * @sglist: The scatter/gather list to be mapped in the IOMMU.
895 * @nents: The number of entries in the scatter/gather list.
896 * @direction: The direction of the DMA transaction (to/from device).
898 * This function implements the pci_map_sg function.
901 ccio_map_sg(struct device
*dev
, struct scatterlist
*sglist
, int nents
,
902 enum dma_data_direction direction
)
905 int coalesced
, filled
= 0;
907 unsigned long hint
= hint_lookup
[(int)direction
];
908 unsigned long prev_len
= 0, current_len
= 0;
914 DBG_RUN_SG("%s() START %d entries\n", __func__
, nents
);
916 /* Fast path single entry scatterlists. */
918 sg_dma_address(sglist
) = ccio_map_single(dev
,
919 sg_virt(sglist
), sglist
->length
,
921 sg_dma_len(sglist
) = sglist
->length
;
925 for(i
= 0; i
< nents
; i
++)
926 prev_len
+= sglist
[i
].length
;
928 spin_lock_irqsave(&ioc
->res_lock
, flags
);
930 #ifdef CCIO_COLLECT_STATS
935 ** First coalesce the chunks and allocate I/O pdir space
937 ** If this is one DMA stream, we can properly map using the
938 ** correct virtual address associated with each DMA page.
939 ** w/o this association, we wouldn't have coherent DMA!
940 ** Access to the virtual address is what forces a two pass algorithm.
942 coalesced
= iommu_coalesce_chunks(ioc
, dev
, sglist
, nents
, ccio_alloc_range
);
945 ** Program the I/O Pdir
947 ** map the virtual addresses to the I/O Pdir
948 ** o dma_address will contain the pdir index
949 ** o dma_len will contain the number of bytes to map
950 ** o page/offset contain the virtual address.
952 filled
= iommu_fill_pdir(ioc
, sglist
, nents
, hint
, ccio_io_pdir_entry
);
954 spin_unlock_irqrestore(&ioc
->res_lock
, flags
);
956 BUG_ON(coalesced
!= filled
);
958 DBG_RUN_SG("%s() DONE %d mappings\n", __func__
, filled
);
960 for (i
= 0; i
< filled
; i
++)
961 current_len
+= sg_dma_len(sglist
+ i
);
963 BUG_ON(current_len
!= prev_len
);
969 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
970 * @dev: The PCI device.
971 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
972 * @nents: The number of entries in the scatter/gather list.
973 * @direction: The direction of the DMA transaction (to/from device).
975 * This function implements the pci_unmap_sg function.
978 ccio_unmap_sg(struct device
*dev
, struct scatterlist
*sglist
, int nents
,
979 enum dma_data_direction direction
)
986 DBG_RUN_SG("%s() START %d entries, %p,%x\n",
987 __func__
, nents
, sg_virt(sglist
), sglist
->length
);
989 #ifdef CCIO_COLLECT_STATS
993 while(sg_dma_len(sglist
) && nents
--) {
995 #ifdef CCIO_COLLECT_STATS
996 ioc
->usg_pages
+= sg_dma_len(sglist
) >> PAGE_SHIFT
;
998 ccio_unmap_single(dev
, sg_dma_address(sglist
),
999 sg_dma_len(sglist
), direction
);
1003 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__
, nents
);
1006 static struct hppa_dma_ops ccio_ops
= {
1007 .dma_supported
= ccio_dma_supported
,
1008 .alloc_consistent
= ccio_alloc_consistent
,
1009 .alloc_noncoherent
= ccio_alloc_consistent
,
1010 .free_consistent
= ccio_free_consistent
,
1011 .map_single
= ccio_map_single
,
1012 .unmap_single
= ccio_unmap_single
,
1013 .map_sg
= ccio_map_sg
,
1014 .unmap_sg
= ccio_unmap_sg
,
1015 .dma_sync_single_for_cpu
= NULL
, /* NOP for U2/Uturn */
1016 .dma_sync_single_for_device
= NULL
, /* NOP for U2/Uturn */
1017 .dma_sync_sg_for_cpu
= NULL
, /* ditto */
1018 .dma_sync_sg_for_device
= NULL
, /* ditto */
1021 #ifdef CONFIG_PROC_FS
1022 static int ccio_proc_info(struct seq_file
*m
, void *p
)
1024 struct ioc
*ioc
= ioc_list
;
1026 while (ioc
!= NULL
) {
1027 unsigned int total_pages
= ioc
->res_size
<< 3;
1028 #ifdef CCIO_COLLECT_STATS
1029 unsigned long avg
= 0, min
, max
;
1033 seq_printf(m
, "%s\n", ioc
->name
);
1035 seq_printf(m
, "Cujo 2.0 bug : %s\n",
1036 (ioc
->cujo20_bug
? "yes" : "no"));
1038 seq_printf(m
, "IO PDIR size : %d bytes (%d entries)\n",
1039 total_pages
* 8, total_pages
);
1041 #ifdef CCIO_COLLECT_STATS
1042 seq_printf(m
, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1043 total_pages
- ioc
->used_pages
, ioc
->used_pages
,
1044 (int)(ioc
->used_pages
* 100 / total_pages
));
1047 seq_printf(m
, "Resource bitmap : %d bytes (%d pages)\n",
1048 ioc
->res_size
, total_pages
);
1050 #ifdef CCIO_COLLECT_STATS
1051 min
= max
= ioc
->avg_search
[0];
1052 for(j
= 0; j
< CCIO_SEARCH_SAMPLE
; ++j
) {
1053 avg
+= ioc
->avg_search
[j
];
1054 if(ioc
->avg_search
[j
] > max
)
1055 max
= ioc
->avg_search
[j
];
1056 if(ioc
->avg_search
[j
] < min
)
1057 min
= ioc
->avg_search
[j
];
1059 avg
/= CCIO_SEARCH_SAMPLE
;
1060 seq_printf(m
, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1063 seq_printf(m
, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1064 ioc
->msingle_calls
, ioc
->msingle_pages
,
1065 (int)((ioc
->msingle_pages
* 1000)/ioc
->msingle_calls
));
1067 /* KLUGE - unmap_sg calls unmap_single for each mapped page */
1068 min
= ioc
->usingle_calls
- ioc
->usg_calls
;
1069 max
= ioc
->usingle_pages
- ioc
->usg_pages
;
1070 seq_printf(m
, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1071 min
, max
, (int)((max
* 1000)/min
));
1073 seq_printf(m
, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1074 ioc
->msg_calls
, ioc
->msg_pages
,
1075 (int)((ioc
->msg_pages
* 1000)/ioc
->msg_calls
));
1077 seq_printf(m
, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1078 ioc
->usg_calls
, ioc
->usg_pages
,
1079 (int)((ioc
->usg_pages
* 1000)/ioc
->usg_calls
));
1080 #endif /* CCIO_COLLECT_STATS */
1088 static int ccio_proc_info_open(struct inode
*inode
, struct file
*file
)
1090 return single_open(file
, &ccio_proc_info
, NULL
);
1093 static const struct file_operations ccio_proc_info_fops
= {
1094 .owner
= THIS_MODULE
,
1095 .open
= ccio_proc_info_open
,
1097 .llseek
= seq_lseek
,
1098 .release
= single_release
,
1101 static int ccio_proc_bitmap_info(struct seq_file
*m
, void *p
)
1103 struct ioc
*ioc
= ioc_list
;
1105 while (ioc
!= NULL
) {
1106 u32
*res_ptr
= (u32
*)ioc
->res_map
;
1109 for (j
= 0; j
< (ioc
->res_size
/ sizeof(u32
)); j
++) {
1112 seq_printf(m
, "%08x", *res_ptr
);
1115 seq_puts(m
, "\n\n");
1117 break; /* XXX - remove me */
1123 static int ccio_proc_bitmap_open(struct inode
*inode
, struct file
*file
)
1125 return single_open(file
, &ccio_proc_bitmap_info
, NULL
);
1128 static const struct file_operations ccio_proc_bitmap_fops
= {
1129 .owner
= THIS_MODULE
,
1130 .open
= ccio_proc_bitmap_open
,
1132 .llseek
= seq_lseek
,
1133 .release
= single_release
,
1135 #endif /* CONFIG_PROC_FS */
1138 * ccio_find_ioc - Find the ioc in the ioc_list
1139 * @hw_path: The hardware path of the ioc.
1141 * This function searches the ioc_list for an ioc that matches
1142 * the provide hardware path.
1144 static struct ioc
* ccio_find_ioc(int hw_path
)
1150 for (i
= 0; i
< ioc_count
; i
++) {
1151 if (ioc
->hw_path
== hw_path
)
1161 * ccio_get_iommu - Find the iommu which controls this device
1162 * @dev: The parisc device.
1164 * This function searches through the registered IOMMU's and returns
1165 * the appropriate IOMMU for the device based on its hardware path.
1167 void * ccio_get_iommu(const struct parisc_device
*dev
)
1169 dev
= find_pa_parent_type(dev
, HPHW_IOA
);
1173 return ccio_find_ioc(dev
->hw_path
);
1176 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1178 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1179 * to/from certain pages. To avoid this happening, we mark these pages
1180 * as `used', and ensure that nothing will try to allocate from them.
1182 void ccio_cujo20_fixup(struct parisc_device
*cujo
, u32 iovp
)
1185 struct parisc_device
*dev
= parisc_parent(cujo
);
1186 struct ioc
*ioc
= ccio_get_iommu(dev
);
1189 ioc
->cujo20_bug
= 1;
1190 res_ptr
= ioc
->res_map
;
1191 idx
= PDIR_INDEX(iovp
) >> 3;
1193 while (idx
< ioc
->res_size
) {
1194 res_ptr
[idx
] |= 0xff;
1195 idx
+= PDIR_INDEX(CUJO_20_STEP
) >> 3;
1200 /* GRANT - is this needed for U2 or not? */
1203 ** Get the size of the I/O TLB for this I/O MMU.
1205 ** If spa_shift is non-zero (ie probably U2),
1206 ** then calculate the I/O TLB size using spa_shift.
1208 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1209 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1210 ** I think only Java (K/D/R-class too?) systems don't do this.
1213 ccio_get_iotlb_size(struct parisc_device
*dev
)
1215 if (dev
->spa_shift
== 0) {
1216 panic("%s() : Can't determine I/O TLB size.\n", __func__
);
1218 return (1 << dev
->spa_shift
);
1222 /* Uturn supports 256 TLB entries */
1223 #define CCIO_CHAINID_SHIFT 8
1224 #define CCIO_CHAINID_MASK 0xff
1227 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1228 static const struct parisc_device_id ccio_tbl
[] = {
1229 { HPHW_IOA
, HVERSION_REV_ANY_ID
, U2_IOA_RUNWAY
, 0xb }, /* U2 */
1230 { HPHW_IOA
, HVERSION_REV_ANY_ID
, UTURN_IOA_RUNWAY
, 0xb }, /* UTurn */
1234 static int ccio_probe(struct parisc_device
*dev
);
1236 static struct parisc_driver ccio_driver
= {
1238 .id_table
= ccio_tbl
,
1239 .probe
= ccio_probe
,
1243 * ccio_ioc_init - Initialize the I/O Controller
1244 * @ioc: The I/O Controller.
1246 * Initialize the I/O Controller which includes setting up the
1247 * I/O Page Directory, the resource map, and initalizing the
1248 * U2/Uturn chip into virtual mode.
1251 ccio_ioc_init(struct ioc
*ioc
)
1254 unsigned int iov_order
;
1255 u32 iova_space_size
;
1258 ** Determine IOVA Space size from memory size.
1260 ** Ideally, PCI drivers would register the maximum number
1261 ** of DMA they can have outstanding for each device they
1262 ** own. Next best thing would be to guess how much DMA
1263 ** can be outstanding based on PCI Class/sub-class. Both
1264 ** methods still require some "extra" to support PCI
1265 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1268 iova_space_size
= (u32
) (totalram_pages
/ count_parisc_driver(&ccio_driver
));
1270 /* limit IOVA space size to 1MB-1GB */
1272 if (iova_space_size
< (1 << (20 - PAGE_SHIFT
))) {
1273 iova_space_size
= 1 << (20 - PAGE_SHIFT
);
1275 } else if (iova_space_size
> (1 << (30 - PAGE_SHIFT
))) {
1276 iova_space_size
= 1 << (30 - PAGE_SHIFT
);
1281 ** iova space must be log2() in size.
1282 ** thus, pdir/res_map will also be log2().
1285 /* We could use larger page sizes in order to *decrease* the number
1286 ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1288 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1289 ** since the pages must also be physically contiguous - typically
1290 ** this is the case under linux."
1293 iov_order
= get_order(iova_space_size
<< PAGE_SHIFT
);
1295 /* iova_space_size is now bytes, not pages */
1296 iova_space_size
= 1 << (iov_order
+ PAGE_SHIFT
);
1298 ioc
->pdir_size
= (iova_space_size
/ IOVP_SIZE
) * sizeof(u64
);
1300 BUG_ON(ioc
->pdir_size
> 8 * 1024 * 1024); /* max pdir size <= 8MB */
1302 /* Verify it's a power of two */
1303 BUG_ON((1 << get_order(ioc
->pdir_size
)) != (ioc
->pdir_size
>> PAGE_SHIFT
));
1305 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1306 __func__
, ioc
->ioc_regs
,
1307 (unsigned long) totalram_pages
>> (20 - PAGE_SHIFT
),
1308 iova_space_size
>>20,
1309 iov_order
+ PAGE_SHIFT
);
1311 ioc
->pdir_base
= (u64
*)__get_free_pages(GFP_KERNEL
,
1312 get_order(ioc
->pdir_size
));
1313 if(NULL
== ioc
->pdir_base
) {
1314 panic("%s() could not allocate I/O Page Table\n", __func__
);
1316 memset(ioc
->pdir_base
, 0, ioc
->pdir_size
);
1318 BUG_ON((((unsigned long)ioc
->pdir_base
) & PAGE_MASK
) != (unsigned long)ioc
->pdir_base
);
1319 DBG_INIT(" base %p\n", ioc
->pdir_base
);
1321 /* resource map size dictated by pdir_size */
1322 ioc
->res_size
= (ioc
->pdir_size
/ sizeof(u64
)) >> 3;
1323 DBG_INIT("%s() res_size 0x%x\n", __func__
, ioc
->res_size
);
1325 ioc
->res_map
= (u8
*)__get_free_pages(GFP_KERNEL
,
1326 get_order(ioc
->res_size
));
1327 if(NULL
== ioc
->res_map
) {
1328 panic("%s() could not allocate resource map\n", __func__
);
1330 memset(ioc
->res_map
, 0, ioc
->res_size
);
1332 /* Initialize the res_hint to 16 */
1335 /* Initialize the spinlock */
1336 spin_lock_init(&ioc
->res_lock
);
1339 ** Chainid is the upper most bits of an IOVP used to determine
1340 ** which TLB entry an IOVP will use.
1342 ioc
->chainid_shift
= get_order(iova_space_size
) + PAGE_SHIFT
- CCIO_CHAINID_SHIFT
;
1343 DBG_INIT(" chainid_shift 0x%x\n", ioc
->chainid_shift
);
1346 ** Initialize IOA hardware
1348 WRITE_U32(CCIO_CHAINID_MASK
<< ioc
->chainid_shift
,
1349 &ioc
->ioc_regs
->io_chain_id_mask
);
1351 WRITE_U32(virt_to_phys(ioc
->pdir_base
),
1352 &ioc
->ioc_regs
->io_pdir_base
);
1355 ** Go to "Virtual Mode"
1357 WRITE_U32(IOA_NORMAL_MODE
, &ioc
->ioc_regs
->io_control
);
1360 ** Initialize all I/O TLB entries to 0 (Valid bit off).
1362 WRITE_U32(0, &ioc
->ioc_regs
->io_tlb_entry_m
);
1363 WRITE_U32(0, &ioc
->ioc_regs
->io_tlb_entry_l
);
1365 for(i
= 1 << CCIO_CHAINID_SHIFT
; i
; i
--) {
1366 WRITE_U32((CMD_TLB_DIRECT_WRITE
| (i
<< ioc
->chainid_shift
)),
1367 &ioc
->ioc_regs
->io_command
);
1372 ccio_init_resource(struct resource
*res
, char *name
, void __iomem
*ioaddr
)
1377 res
->flags
= IORESOURCE_MEM
;
1379 * bracing ((signed) ...) are required for 64bit kernel because
1380 * we only want to sign extend the lower 16 bits of the register.
1381 * The upper 16-bits of range registers are hardcoded to 0xffff.
1383 res
->start
= (unsigned long)((signed) READ_U32(ioaddr
) << 16);
1384 res
->end
= (unsigned long)((signed) (READ_U32(ioaddr
+ 4) << 16) - 1);
1387 * Check if this MMIO range is disable
1389 if (res
->end
+ 1 == res
->start
)
1392 /* On some platforms (e.g. K-Class), we have already registered
1393 * resources for devices reported by firmware. Some are children
1395 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1397 result
= insert_resource(&iomem_resource
, res
);
1399 printk(KERN_ERR
"%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1400 __func__
, (unsigned long)res
->start
, (unsigned long)res
->end
);
1404 static void __init
ccio_init_resources(struct ioc
*ioc
)
1406 struct resource
*res
= ioc
->mmio_region
;
1407 char *name
= kmalloc(14, GFP_KERNEL
);
1409 snprintf(name
, 14, "GSC Bus [%d/]", ioc
->hw_path
);
1411 ccio_init_resource(res
, name
, &ioc
->ioc_regs
->io_io_low
);
1412 ccio_init_resource(res
+ 1, name
, &ioc
->ioc_regs
->io_io_low_hv
);
1415 static int new_ioc_area(struct resource
*res
, unsigned long size
,
1416 unsigned long min
, unsigned long max
, unsigned long align
)
1421 res
->start
= (max
- size
+ 1) &~ (align
- 1);
1422 res
->end
= res
->start
+ size
;
1424 /* We might be trying to expand the MMIO range to include
1425 * a child device that has already registered it's MMIO space.
1426 * Use "insert" instead of request_resource().
1428 if (!insert_resource(&iomem_resource
, res
))
1431 return new_ioc_area(res
, size
, min
, max
- size
, align
);
1434 static int expand_ioc_area(struct resource
*res
, unsigned long size
,
1435 unsigned long min
, unsigned long max
, unsigned long align
)
1437 unsigned long start
, len
;
1440 return new_ioc_area(res
, size
, min
, max
, align
);
1442 start
= (res
->start
- size
) &~ (align
- 1);
1443 len
= res
->end
- start
+ 1;
1445 if (!adjust_resource(res
, start
, len
))
1450 len
= ((size
+ res
->end
+ align
) &~ (align
- 1)) - start
;
1451 if (start
+ len
<= max
) {
1452 if (!adjust_resource(res
, start
, len
))
1460 * Dino calls this function. Beware that we may get called on systems
1461 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1462 * So it's legal to find no parent IOC.
1464 * Some other issues: one of the resources in the ioc may be unassigned.
1466 int ccio_allocate_resource(const struct parisc_device
*dev
,
1467 struct resource
*res
, unsigned long size
,
1468 unsigned long min
, unsigned long max
, unsigned long align
)
1470 struct resource
*parent
= &iomem_resource
;
1471 struct ioc
*ioc
= ccio_get_iommu(dev
);
1475 parent
= ioc
->mmio_region
;
1476 if (parent
->parent
&&
1477 !allocate_resource(parent
, res
, size
, min
, max
, align
, NULL
, NULL
))
1480 if ((parent
+ 1)->parent
&&
1481 !allocate_resource(parent
+ 1, res
, size
, min
, max
, align
,
1485 if (!expand_ioc_area(parent
, size
, min
, max
, align
)) {
1486 __raw_writel(((parent
->start
)>>16) | 0xffff0000,
1487 &ioc
->ioc_regs
->io_io_low
);
1488 __raw_writel(((parent
->end
)>>16) | 0xffff0000,
1489 &ioc
->ioc_regs
->io_io_high
);
1490 } else if (!expand_ioc_area(parent
+ 1, size
, min
, max
, align
)) {
1492 __raw_writel(((parent
->start
)>>16) | 0xffff0000,
1493 &ioc
->ioc_regs
->io_io_low_hv
);
1494 __raw_writel(((parent
->end
)>>16) | 0xffff0000,
1495 &ioc
->ioc_regs
->io_io_high_hv
);
1501 return allocate_resource(parent
, res
, size
, min
, max
, align
, NULL
,NULL
);
1504 int ccio_request_resource(const struct parisc_device
*dev
,
1505 struct resource
*res
)
1507 struct resource
*parent
;
1508 struct ioc
*ioc
= ccio_get_iommu(dev
);
1511 parent
= &iomem_resource
;
1512 } else if ((ioc
->mmio_region
->start
<= res
->start
) &&
1513 (res
->end
<= ioc
->mmio_region
->end
)) {
1514 parent
= ioc
->mmio_region
;
1515 } else if (((ioc
->mmio_region
+ 1)->start
<= res
->start
) &&
1516 (res
->end
<= (ioc
->mmio_region
+ 1)->end
)) {
1517 parent
= ioc
->mmio_region
+ 1;
1522 /* "transparent" bus bridges need to register MMIO resources
1523 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1524 * registered their resources in the PDC "bus walk" (See
1525 * arch/parisc/kernel/inventory.c).
1527 return insert_resource(parent
, res
);
1531 * ccio_probe - Determine if ccio should claim this device.
1532 * @dev: The device which has been found
1534 * Determine if ccio should claim this chip (return 0) or not (return 1).
1535 * If so, initialize the chip and tell other partners in crime they
1538 static int __init
ccio_probe(struct parisc_device
*dev
)
1541 struct ioc
*ioc
, **ioc_p
= &ioc_list
;
1543 ioc
= kzalloc(sizeof(struct ioc
), GFP_KERNEL
);
1545 printk(KERN_ERR MODULE_NAME
": memory allocation failure\n");
1549 ioc
->name
= dev
->id
.hversion
== U2_IOA_RUNWAY
? "U2" : "UTurn";
1551 printk(KERN_INFO
"Found %s at 0x%lx\n", ioc
->name
,
1552 (unsigned long)dev
->hpa
.start
);
1554 for (i
= 0; i
< ioc_count
; i
++) {
1555 ioc_p
= &(*ioc_p
)->next
;
1559 ioc
->hw_path
= dev
->hw_path
;
1560 ioc
->ioc_regs
= ioremap_nocache(dev
->hpa
.start
, 4096);
1562 ccio_init_resources(ioc
);
1563 hppa_dma_ops
= &ccio_ops
;
1564 dev
->dev
.platform_data
= kzalloc(sizeof(struct pci_hba_data
), GFP_KERNEL
);
1566 /* if this fails, no I/O cards will work, so may as well bug */
1567 BUG_ON(dev
->dev
.platform_data
== NULL
);
1568 HBA_DATA(dev
->dev
.platform_data
)->iommu
= ioc
;
1570 #ifdef CONFIG_PROC_FS
1571 if (ioc_count
== 0) {
1572 proc_create(MODULE_NAME
, 0, proc_runway_root
,
1573 &ccio_proc_info_fops
);
1574 proc_create(MODULE_NAME
"-bitmap", 0, proc_runway_root
,
1575 &ccio_proc_bitmap_fops
);
1585 * ccio_init - ccio initialization procedure.
1587 * Register this driver.
1589 void __init
ccio_init(void)
1591 register_parisc_driver(&ccio_driver
);