2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex
);
54 static LIST_HEAD(regulator_list
);
55 static LIST_HEAD(regulator_map_list
);
56 static LIST_HEAD(regulator_ena_gpio_list
);
57 static LIST_HEAD(regulator_supply_alias_list
);
58 static bool has_full_constraints
;
60 static struct dentry
*debugfs_root
;
63 * struct regulator_map
65 * Used to provide symbolic supply names to devices.
67 struct regulator_map
{
68 struct list_head list
;
69 const char *dev_name
; /* The dev_name() for the consumer */
71 struct regulator_dev
*regulator
;
75 * struct regulator_enable_gpio
77 * Management for shared enable GPIO pin
79 struct regulator_enable_gpio
{
80 struct list_head list
;
81 struct gpio_desc
*gpiod
;
82 u32 enable_count
; /* a number of enabled shared GPIO */
83 u32 request_count
; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert
:1;
88 * struct regulator_supply_alias
90 * Used to map lookups for a supply onto an alternative device.
92 struct regulator_supply_alias
{
93 struct list_head list
;
94 struct device
*src_dev
;
95 const char *src_supply
;
96 struct device
*alias_dev
;
97 const char *alias_supply
;
100 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
101 static int _regulator_disable(struct regulator_dev
*rdev
);
102 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
103 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
104 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
105 static int _notifier_call_chain(struct regulator_dev
*rdev
,
106 unsigned long event
, void *data
);
107 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
108 int min_uV
, int max_uV
);
109 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
111 const char *supply_name
);
113 static const char *rdev_get_name(struct regulator_dev
*rdev
)
115 if (rdev
->constraints
&& rdev
->constraints
->name
)
116 return rdev
->constraints
->name
;
117 else if (rdev
->desc
->name
)
118 return rdev
->desc
->name
;
123 static bool have_full_constraints(void)
125 return has_full_constraints
|| of_have_populated_dt();
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
137 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
139 struct device_node
*regnode
= NULL
;
140 char prop_name
[32]; /* 32 is max size of property name */
142 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
144 snprintf(prop_name
, 32, "%s-supply", supply
);
145 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
148 dev_dbg(dev
, "Looking up %s property in node %s failed",
149 prop_name
, dev
->of_node
->full_name
);
155 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
157 if (!rdev
->constraints
)
160 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev
*rdev
,
168 int *min_uV
, int *max_uV
)
170 BUG_ON(*min_uV
> *max_uV
);
172 if (!rdev
->constraints
) {
173 rdev_err(rdev
, "no constraints\n");
176 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
177 rdev_err(rdev
, "operation not allowed\n");
181 if (*max_uV
> rdev
->constraints
->max_uV
)
182 *max_uV
= rdev
->constraints
->max_uV
;
183 if (*min_uV
< rdev
->constraints
->min_uV
)
184 *min_uV
= rdev
->constraints
->min_uV
;
186 if (*min_uV
> *max_uV
) {
187 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
195 /* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
198 static int regulator_check_consumers(struct regulator_dev
*rdev
,
199 int *min_uV
, int *max_uV
)
201 struct regulator
*regulator
;
203 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
205 * Assume consumers that didn't say anything are OK
206 * with anything in the constraint range.
208 if (!regulator
->min_uV
&& !regulator
->max_uV
)
211 if (*max_uV
> regulator
->max_uV
)
212 *max_uV
= regulator
->max_uV
;
213 if (*min_uV
< regulator
->min_uV
)
214 *min_uV
= regulator
->min_uV
;
217 if (*min_uV
> *max_uV
) {
218 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
228 int *min_uA
, int *max_uA
)
230 BUG_ON(*min_uA
> *max_uA
);
232 if (!rdev
->constraints
) {
233 rdev_err(rdev
, "no constraints\n");
236 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
237 rdev_err(rdev
, "operation not allowed\n");
241 if (*max_uA
> rdev
->constraints
->max_uA
)
242 *max_uA
= rdev
->constraints
->max_uA
;
243 if (*min_uA
< rdev
->constraints
->min_uA
)
244 *min_uA
= rdev
->constraints
->min_uA
;
246 if (*min_uA
> *max_uA
) {
247 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev
*rdev
, int *mode
)
259 case REGULATOR_MODE_FAST
:
260 case REGULATOR_MODE_NORMAL
:
261 case REGULATOR_MODE_IDLE
:
262 case REGULATOR_MODE_STANDBY
:
265 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
269 if (!rdev
->constraints
) {
270 rdev_err(rdev
, "no constraints\n");
273 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
274 rdev_err(rdev
, "operation not allowed\n");
278 /* The modes are bitmasks, the most power hungry modes having
279 * the lowest values. If the requested mode isn't supported
280 * try higher modes. */
282 if (rdev
->constraints
->valid_modes_mask
& *mode
)
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev
*rdev
)
293 if (!rdev
->constraints
) {
294 rdev_err(rdev
, "no constraints\n");
297 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
298 rdev_err(rdev
, "operation not allowed\n");
304 static ssize_t
regulator_uV_show(struct device
*dev
,
305 struct device_attribute
*attr
, char *buf
)
307 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
310 mutex_lock(&rdev
->mutex
);
311 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
312 mutex_unlock(&rdev
->mutex
);
316 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
318 static ssize_t
regulator_uA_show(struct device
*dev
,
319 struct device_attribute
*attr
, char *buf
)
321 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
323 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
325 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
327 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
330 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
332 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
334 static DEVICE_ATTR_RO(name
);
336 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
339 case REGULATOR_MODE_FAST
:
340 return sprintf(buf
, "fast\n");
341 case REGULATOR_MODE_NORMAL
:
342 return sprintf(buf
, "normal\n");
343 case REGULATOR_MODE_IDLE
:
344 return sprintf(buf
, "idle\n");
345 case REGULATOR_MODE_STANDBY
:
346 return sprintf(buf
, "standby\n");
348 return sprintf(buf
, "unknown\n");
351 static ssize_t
regulator_opmode_show(struct device
*dev
,
352 struct device_attribute
*attr
, char *buf
)
354 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
356 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
358 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
360 static ssize_t
regulator_print_state(char *buf
, int state
)
363 return sprintf(buf
, "enabled\n");
365 return sprintf(buf
, "disabled\n");
367 return sprintf(buf
, "unknown\n");
370 static ssize_t
regulator_state_show(struct device
*dev
,
371 struct device_attribute
*attr
, char *buf
)
373 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
376 mutex_lock(&rdev
->mutex
);
377 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
378 mutex_unlock(&rdev
->mutex
);
382 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
384 static ssize_t
regulator_status_show(struct device
*dev
,
385 struct device_attribute
*attr
, char *buf
)
387 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
391 status
= rdev
->desc
->ops
->get_status(rdev
);
396 case REGULATOR_STATUS_OFF
:
399 case REGULATOR_STATUS_ON
:
402 case REGULATOR_STATUS_ERROR
:
405 case REGULATOR_STATUS_FAST
:
408 case REGULATOR_STATUS_NORMAL
:
411 case REGULATOR_STATUS_IDLE
:
414 case REGULATOR_STATUS_STANDBY
:
417 case REGULATOR_STATUS_BYPASS
:
420 case REGULATOR_STATUS_UNDEFINED
:
427 return sprintf(buf
, "%s\n", label
);
429 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
431 static ssize_t
regulator_min_uA_show(struct device
*dev
,
432 struct device_attribute
*attr
, char *buf
)
434 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
436 if (!rdev
->constraints
)
437 return sprintf(buf
, "constraint not defined\n");
439 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
441 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
443 static ssize_t
regulator_max_uA_show(struct device
*dev
,
444 struct device_attribute
*attr
, char *buf
)
446 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
448 if (!rdev
->constraints
)
449 return sprintf(buf
, "constraint not defined\n");
451 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
453 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
455 static ssize_t
regulator_min_uV_show(struct device
*dev
,
456 struct device_attribute
*attr
, char *buf
)
458 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
460 if (!rdev
->constraints
)
461 return sprintf(buf
, "constraint not defined\n");
463 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
465 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
467 static ssize_t
regulator_max_uV_show(struct device
*dev
,
468 struct device_attribute
*attr
, char *buf
)
470 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
472 if (!rdev
->constraints
)
473 return sprintf(buf
, "constraint not defined\n");
475 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
477 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
479 static ssize_t
regulator_total_uA_show(struct device
*dev
,
480 struct device_attribute
*attr
, char *buf
)
482 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
483 struct regulator
*regulator
;
486 mutex_lock(&rdev
->mutex
);
487 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
488 uA
+= regulator
->uA_load
;
489 mutex_unlock(&rdev
->mutex
);
490 return sprintf(buf
, "%d\n", uA
);
492 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
494 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
497 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
498 return sprintf(buf
, "%d\n", rdev
->use_count
);
500 static DEVICE_ATTR_RO(num_users
);
502 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
505 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
507 switch (rdev
->desc
->type
) {
508 case REGULATOR_VOLTAGE
:
509 return sprintf(buf
, "voltage\n");
510 case REGULATOR_CURRENT
:
511 return sprintf(buf
, "current\n");
513 return sprintf(buf
, "unknown\n");
515 static DEVICE_ATTR_RO(type
);
517 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
518 struct device_attribute
*attr
, char *buf
)
520 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
522 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
524 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
525 regulator_suspend_mem_uV_show
, NULL
);
527 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
528 struct device_attribute
*attr
, char *buf
)
530 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
532 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
534 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
535 regulator_suspend_disk_uV_show
, NULL
);
537 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
538 struct device_attribute
*attr
, char *buf
)
540 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
542 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
544 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
545 regulator_suspend_standby_uV_show
, NULL
);
547 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
548 struct device_attribute
*attr
, char *buf
)
550 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
552 return regulator_print_opmode(buf
,
553 rdev
->constraints
->state_mem
.mode
);
555 static DEVICE_ATTR(suspend_mem_mode
, 0444,
556 regulator_suspend_mem_mode_show
, NULL
);
558 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
559 struct device_attribute
*attr
, char *buf
)
561 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
563 return regulator_print_opmode(buf
,
564 rdev
->constraints
->state_disk
.mode
);
566 static DEVICE_ATTR(suspend_disk_mode
, 0444,
567 regulator_suspend_disk_mode_show
, NULL
);
569 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
570 struct device_attribute
*attr
, char *buf
)
572 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
574 return regulator_print_opmode(buf
,
575 rdev
->constraints
->state_standby
.mode
);
577 static DEVICE_ATTR(suspend_standby_mode
, 0444,
578 regulator_suspend_standby_mode_show
, NULL
);
580 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
581 struct device_attribute
*attr
, char *buf
)
583 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
585 return regulator_print_state(buf
,
586 rdev
->constraints
->state_mem
.enabled
);
588 static DEVICE_ATTR(suspend_mem_state
, 0444,
589 regulator_suspend_mem_state_show
, NULL
);
591 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
592 struct device_attribute
*attr
, char *buf
)
594 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
596 return regulator_print_state(buf
,
597 rdev
->constraints
->state_disk
.enabled
);
599 static DEVICE_ATTR(suspend_disk_state
, 0444,
600 regulator_suspend_disk_state_show
, NULL
);
602 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
603 struct device_attribute
*attr
, char *buf
)
605 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
607 return regulator_print_state(buf
,
608 rdev
->constraints
->state_standby
.enabled
);
610 static DEVICE_ATTR(suspend_standby_state
, 0444,
611 regulator_suspend_standby_state_show
, NULL
);
613 static ssize_t
regulator_bypass_show(struct device
*dev
,
614 struct device_attribute
*attr
, char *buf
)
616 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
621 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
630 return sprintf(buf
, "%s\n", report
);
632 static DEVICE_ATTR(bypass
, 0444,
633 regulator_bypass_show
, NULL
);
635 /* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev
*rdev
)
639 struct regulator
*sibling
;
640 int current_uA
= 0, output_uV
, input_uV
, err
;
644 * first check to see if we can set modes at all, otherwise just
645 * tell the consumer everything is OK.
647 err
= regulator_check_drms(rdev
);
651 if (!rdev
->desc
->ops
->get_optimum_mode
&&
652 !rdev
->desc
->ops
->set_load
)
655 if (!rdev
->desc
->ops
->set_mode
&&
656 !rdev
->desc
->ops
->set_load
)
659 /* get output voltage */
660 output_uV
= _regulator_get_voltage(rdev
);
661 if (output_uV
<= 0) {
662 rdev_err(rdev
, "invalid output voltage found\n");
666 /* get input voltage */
669 input_uV
= regulator_get_voltage(rdev
->supply
);
671 input_uV
= rdev
->constraints
->input_uV
;
673 rdev_err(rdev
, "invalid input voltage found\n");
677 /* calc total requested load */
678 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
679 current_uA
+= sibling
->uA_load
;
681 if (rdev
->desc
->ops
->set_load
) {
682 /* set the optimum mode for our new total regulator load */
683 err
= rdev
->desc
->ops
->set_load(rdev
, current_uA
);
685 rdev_err(rdev
, "failed to set load %d\n", current_uA
);
687 /* now get the optimum mode for our new total regulator load */
688 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
689 output_uV
, current_uA
);
691 /* check the new mode is allowed */
692 err
= regulator_mode_constrain(rdev
, &mode
);
694 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
695 current_uA
, input_uV
, output_uV
);
699 err
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
701 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
707 static int suspend_set_state(struct regulator_dev
*rdev
,
708 struct regulator_state
*rstate
)
712 /* If we have no suspend mode configration don't set anything;
713 * only warn if the driver implements set_suspend_voltage or
714 * set_suspend_mode callback.
716 if (!rstate
->enabled
&& !rstate
->disabled
) {
717 if (rdev
->desc
->ops
->set_suspend_voltage
||
718 rdev
->desc
->ops
->set_suspend_mode
)
719 rdev_warn(rdev
, "No configuration\n");
723 if (rstate
->enabled
&& rstate
->disabled
) {
724 rdev_err(rdev
, "invalid configuration\n");
728 if (rstate
->enabled
&& rdev
->desc
->ops
->set_suspend_enable
)
729 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
730 else if (rstate
->disabled
&& rdev
->desc
->ops
->set_suspend_disable
)
731 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
732 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
736 rdev_err(rdev
, "failed to enabled/disable\n");
740 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
741 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
743 rdev_err(rdev
, "failed to set voltage\n");
748 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
749 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
751 rdev_err(rdev
, "failed to set mode\n");
758 /* locks held by caller */
759 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
761 if (!rdev
->constraints
)
765 case PM_SUSPEND_STANDBY
:
766 return suspend_set_state(rdev
,
767 &rdev
->constraints
->state_standby
);
769 return suspend_set_state(rdev
,
770 &rdev
->constraints
->state_mem
);
772 return suspend_set_state(rdev
,
773 &rdev
->constraints
->state_disk
);
779 static void print_constraints(struct regulator_dev
*rdev
)
781 struct regulation_constraints
*constraints
= rdev
->constraints
;
786 if (constraints
->min_uV
&& constraints
->max_uV
) {
787 if (constraints
->min_uV
== constraints
->max_uV
)
788 count
+= sprintf(buf
+ count
, "%d mV ",
789 constraints
->min_uV
/ 1000);
791 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
792 constraints
->min_uV
/ 1000,
793 constraints
->max_uV
/ 1000);
796 if (!constraints
->min_uV
||
797 constraints
->min_uV
!= constraints
->max_uV
) {
798 ret
= _regulator_get_voltage(rdev
);
800 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
803 if (constraints
->uV_offset
)
804 count
+= sprintf(buf
, "%dmV offset ",
805 constraints
->uV_offset
/ 1000);
807 if (constraints
->min_uA
&& constraints
->max_uA
) {
808 if (constraints
->min_uA
== constraints
->max_uA
)
809 count
+= sprintf(buf
+ count
, "%d mA ",
810 constraints
->min_uA
/ 1000);
812 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
813 constraints
->min_uA
/ 1000,
814 constraints
->max_uA
/ 1000);
817 if (!constraints
->min_uA
||
818 constraints
->min_uA
!= constraints
->max_uA
) {
819 ret
= _regulator_get_current_limit(rdev
);
821 count
+= sprintf(buf
+ count
, "at %d mA ", ret
/ 1000);
824 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
825 count
+= sprintf(buf
+ count
, "fast ");
826 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
827 count
+= sprintf(buf
+ count
, "normal ");
828 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
829 count
+= sprintf(buf
+ count
, "idle ");
830 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
831 count
+= sprintf(buf
+ count
, "standby");
834 sprintf(buf
, "no parameters");
836 rdev_dbg(rdev
, "%s\n", buf
);
838 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
839 !(constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
))
841 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
844 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
845 struct regulation_constraints
*constraints
)
847 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
850 /* do we need to apply the constraint voltage */
851 if (rdev
->constraints
->apply_uV
&&
852 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
) {
853 int current_uV
= _regulator_get_voltage(rdev
);
854 if (current_uV
< 0) {
856 "failed to get the current voltage(%d)\n",
860 if (current_uV
< rdev
->constraints
->min_uV
||
861 current_uV
> rdev
->constraints
->max_uV
) {
862 ret
= _regulator_do_set_voltage(
863 rdev
, rdev
->constraints
->min_uV
,
864 rdev
->constraints
->max_uV
);
867 "failed to apply %duV constraint(%d)\n",
868 rdev
->constraints
->min_uV
, ret
);
874 /* constrain machine-level voltage specs to fit
875 * the actual range supported by this regulator.
877 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
878 int count
= rdev
->desc
->n_voltages
;
880 int min_uV
= INT_MAX
;
881 int max_uV
= INT_MIN
;
882 int cmin
= constraints
->min_uV
;
883 int cmax
= constraints
->max_uV
;
885 /* it's safe to autoconfigure fixed-voltage supplies
886 and the constraints are used by list_voltage. */
887 if (count
== 1 && !cmin
) {
890 constraints
->min_uV
= cmin
;
891 constraints
->max_uV
= cmax
;
894 /* voltage constraints are optional */
895 if ((cmin
== 0) && (cmax
== 0))
898 /* else require explicit machine-level constraints */
899 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
900 rdev_err(rdev
, "invalid voltage constraints\n");
904 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
905 for (i
= 0; i
< count
; i
++) {
908 value
= ops
->list_voltage(rdev
, i
);
912 /* maybe adjust [min_uV..max_uV] */
913 if (value
>= cmin
&& value
< min_uV
)
915 if (value
<= cmax
&& value
> max_uV
)
919 /* final: [min_uV..max_uV] valid iff constraints valid */
920 if (max_uV
< min_uV
) {
922 "unsupportable voltage constraints %u-%uuV\n",
927 /* use regulator's subset of machine constraints */
928 if (constraints
->min_uV
< min_uV
) {
929 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
930 constraints
->min_uV
, min_uV
);
931 constraints
->min_uV
= min_uV
;
933 if (constraints
->max_uV
> max_uV
) {
934 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
935 constraints
->max_uV
, max_uV
);
936 constraints
->max_uV
= max_uV
;
943 static int machine_constraints_current(struct regulator_dev
*rdev
,
944 struct regulation_constraints
*constraints
)
946 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
949 if (!constraints
->min_uA
&& !constraints
->max_uA
)
952 if (constraints
->min_uA
> constraints
->max_uA
) {
953 rdev_err(rdev
, "Invalid current constraints\n");
957 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
958 rdev_warn(rdev
, "Operation of current configuration missing\n");
962 /* Set regulator current in constraints range */
963 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
964 constraints
->max_uA
);
966 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
973 static int _regulator_do_enable(struct regulator_dev
*rdev
);
976 * set_machine_constraints - sets regulator constraints
977 * @rdev: regulator source
978 * @constraints: constraints to apply
980 * Allows platform initialisation code to define and constrain
981 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
982 * Constraints *must* be set by platform code in order for some
983 * regulator operations to proceed i.e. set_voltage, set_current_limit,
986 static int set_machine_constraints(struct regulator_dev
*rdev
,
987 const struct regulation_constraints
*constraints
)
990 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
993 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
996 rdev
->constraints
= kzalloc(sizeof(*constraints
),
998 if (!rdev
->constraints
)
1001 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1005 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1009 /* do we need to setup our suspend state */
1010 if (rdev
->constraints
->initial_state
) {
1011 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
1013 rdev_err(rdev
, "failed to set suspend state\n");
1018 if (rdev
->constraints
->initial_mode
) {
1019 if (!ops
->set_mode
) {
1020 rdev_err(rdev
, "no set_mode operation\n");
1025 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1027 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1032 /* If the constraints say the regulator should be on at this point
1033 * and we have control then make sure it is enabled.
1035 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1036 ret
= _regulator_do_enable(rdev
);
1037 if (ret
< 0 && ret
!= -EINVAL
) {
1038 rdev_err(rdev
, "failed to enable\n");
1043 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1044 && ops
->set_ramp_delay
) {
1045 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1047 rdev_err(rdev
, "failed to set ramp_delay\n");
1052 print_constraints(rdev
);
1055 kfree(rdev
->constraints
);
1056 rdev
->constraints
= NULL
;
1061 * set_supply - set regulator supply regulator
1062 * @rdev: regulator name
1063 * @supply_rdev: supply regulator name
1065 * Called by platform initialisation code to set the supply regulator for this
1066 * regulator. This ensures that a regulators supply will also be enabled by the
1067 * core if it's child is enabled.
1069 static int set_supply(struct regulator_dev
*rdev
,
1070 struct regulator_dev
*supply_rdev
)
1074 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1076 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1077 if (rdev
->supply
== NULL
) {
1081 supply_rdev
->open_count
++;
1087 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1088 * @rdev: regulator source
1089 * @consumer_dev_name: dev_name() string for device supply applies to
1090 * @supply: symbolic name for supply
1092 * Allows platform initialisation code to map physical regulator
1093 * sources to symbolic names for supplies for use by devices. Devices
1094 * should use these symbolic names to request regulators, avoiding the
1095 * need to provide board-specific regulator names as platform data.
1097 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1098 const char *consumer_dev_name
,
1101 struct regulator_map
*node
;
1107 if (consumer_dev_name
!= NULL
)
1112 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1113 if (node
->dev_name
&& consumer_dev_name
) {
1114 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1116 } else if (node
->dev_name
|| consumer_dev_name
) {
1120 if (strcmp(node
->supply
, supply
) != 0)
1123 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1125 dev_name(&node
->regulator
->dev
),
1126 node
->regulator
->desc
->name
,
1128 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1132 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1136 node
->regulator
= rdev
;
1137 node
->supply
= supply
;
1140 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1141 if (node
->dev_name
== NULL
) {
1147 list_add(&node
->list
, ®ulator_map_list
);
1151 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1153 struct regulator_map
*node
, *n
;
1155 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1156 if (rdev
== node
->regulator
) {
1157 list_del(&node
->list
);
1158 kfree(node
->dev_name
);
1164 #define REG_STR_SIZE 64
1166 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1168 const char *supply_name
)
1170 struct regulator
*regulator
;
1171 char buf
[REG_STR_SIZE
];
1174 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1175 if (regulator
== NULL
)
1178 mutex_lock(&rdev
->mutex
);
1179 regulator
->rdev
= rdev
;
1180 list_add(®ulator
->list
, &rdev
->consumer_list
);
1183 regulator
->dev
= dev
;
1185 /* Add a link to the device sysfs entry */
1186 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1187 dev
->kobj
.name
, supply_name
);
1188 if (size
>= REG_STR_SIZE
)
1191 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1192 if (regulator
->supply_name
== NULL
)
1195 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1198 rdev_warn(rdev
, "could not add device link %s err %d\n",
1199 dev
->kobj
.name
, err
);
1203 regulator
->supply_name
= kstrdup(supply_name
, GFP_KERNEL
);
1204 if (regulator
->supply_name
== NULL
)
1208 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1210 if (!regulator
->debugfs
) {
1211 rdev_warn(rdev
, "Failed to create debugfs directory\n");
1213 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1214 ®ulator
->uA_load
);
1215 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1216 ®ulator
->min_uV
);
1217 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1218 ®ulator
->max_uV
);
1222 * Check now if the regulator is an always on regulator - if
1223 * it is then we don't need to do nearly so much work for
1224 * enable/disable calls.
1226 if (!_regulator_can_change_status(rdev
) &&
1227 _regulator_is_enabled(rdev
))
1228 regulator
->always_on
= true;
1230 mutex_unlock(&rdev
->mutex
);
1233 list_del(®ulator
->list
);
1235 mutex_unlock(&rdev
->mutex
);
1239 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1241 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1242 return rdev
->constraints
->enable_time
;
1243 if (!rdev
->desc
->ops
->enable_time
)
1244 return rdev
->desc
->enable_time
;
1245 return rdev
->desc
->ops
->enable_time(rdev
);
1248 static struct regulator_supply_alias
*regulator_find_supply_alias(
1249 struct device
*dev
, const char *supply
)
1251 struct regulator_supply_alias
*map
;
1253 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1254 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1260 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1262 struct regulator_supply_alias
*map
;
1264 map
= regulator_find_supply_alias(*dev
, *supply
);
1266 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1267 *supply
, map
->alias_supply
,
1268 dev_name(map
->alias_dev
));
1269 *dev
= map
->alias_dev
;
1270 *supply
= map
->alias_supply
;
1274 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1278 struct regulator_dev
*r
;
1279 struct device_node
*node
;
1280 struct regulator_map
*map
;
1281 const char *devname
= NULL
;
1283 regulator_supply_alias(&dev
, &supply
);
1285 /* first do a dt based lookup */
1286 if (dev
&& dev
->of_node
) {
1287 node
= of_get_regulator(dev
, supply
);
1289 list_for_each_entry(r
, ®ulator_list
, list
)
1290 if (r
->dev
.parent
&&
1291 node
== r
->dev
.of_node
)
1293 *ret
= -EPROBE_DEFER
;
1297 * If we couldn't even get the node then it's
1298 * not just that the device didn't register
1299 * yet, there's no node and we'll never
1306 /* if not found, try doing it non-dt way */
1308 devname
= dev_name(dev
);
1310 list_for_each_entry(r
, ®ulator_list
, list
)
1311 if (strcmp(rdev_get_name(r
), supply
) == 0)
1314 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1315 /* If the mapping has a device set up it must match */
1316 if (map
->dev_name
&&
1317 (!devname
|| strcmp(map
->dev_name
, devname
)))
1320 if (strcmp(map
->supply
, supply
) == 0)
1321 return map
->regulator
;
1328 static int regulator_resolve_supply(struct regulator_dev
*rdev
)
1330 struct regulator_dev
*r
;
1331 struct device
*dev
= rdev
->dev
.parent
;
1334 /* No supply to resovle? */
1335 if (!rdev
->supply_name
)
1338 /* Supply already resolved? */
1342 r
= regulator_dev_lookup(dev
, rdev
->supply_name
, &ret
);
1343 if (ret
== -ENODEV
) {
1345 * No supply was specified for this regulator and
1346 * there will never be one.
1352 dev_err(dev
, "Failed to resolve %s-supply for %s\n",
1353 rdev
->supply_name
, rdev
->desc
->name
);
1354 return -EPROBE_DEFER
;
1357 /* Recursively resolve the supply of the supply */
1358 ret
= regulator_resolve_supply(r
);
1362 ret
= set_supply(rdev
, r
);
1366 /* Cascade always-on state to supply */
1367 if (_regulator_is_enabled(rdev
)) {
1368 ret
= regulator_enable(rdev
->supply
);
1376 /* Internal regulator request function */
1377 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1378 bool exclusive
, bool allow_dummy
)
1380 struct regulator_dev
*rdev
;
1381 struct regulator
*regulator
= ERR_PTR(-EPROBE_DEFER
);
1382 const char *devname
= NULL
;
1386 pr_err("get() with no identifier\n");
1387 return ERR_PTR(-EINVAL
);
1391 devname
= dev_name(dev
);
1393 if (have_full_constraints())
1396 ret
= -EPROBE_DEFER
;
1398 mutex_lock(®ulator_list_mutex
);
1400 rdev
= regulator_dev_lookup(dev
, id
, &ret
);
1404 regulator
= ERR_PTR(ret
);
1407 * If we have return value from dev_lookup fail, we do not expect to
1408 * succeed, so, quit with appropriate error value
1410 if (ret
&& ret
!= -ENODEV
)
1414 devname
= "deviceless";
1417 * Assume that a regulator is physically present and enabled
1418 * even if it isn't hooked up and just provide a dummy.
1420 if (have_full_constraints() && allow_dummy
) {
1421 pr_warn("%s supply %s not found, using dummy regulator\n",
1424 rdev
= dummy_regulator_rdev
;
1426 /* Don't log an error when called from regulator_get_optional() */
1427 } else if (!have_full_constraints() || exclusive
) {
1428 dev_warn(dev
, "dummy supplies not allowed\n");
1431 mutex_unlock(®ulator_list_mutex
);
1435 if (rdev
->exclusive
) {
1436 regulator
= ERR_PTR(-EPERM
);
1440 if (exclusive
&& rdev
->open_count
) {
1441 regulator
= ERR_PTR(-EBUSY
);
1445 ret
= regulator_resolve_supply(rdev
);
1447 regulator
= ERR_PTR(ret
);
1451 if (!try_module_get(rdev
->owner
))
1454 regulator
= create_regulator(rdev
, dev
, id
);
1455 if (regulator
== NULL
) {
1456 regulator
= ERR_PTR(-ENOMEM
);
1457 module_put(rdev
->owner
);
1463 rdev
->exclusive
= 1;
1465 ret
= _regulator_is_enabled(rdev
);
1467 rdev
->use_count
= 1;
1469 rdev
->use_count
= 0;
1473 mutex_unlock(®ulator_list_mutex
);
1479 * regulator_get - lookup and obtain a reference to a regulator.
1480 * @dev: device for regulator "consumer"
1481 * @id: Supply name or regulator ID.
1483 * Returns a struct regulator corresponding to the regulator producer,
1484 * or IS_ERR() condition containing errno.
1486 * Use of supply names configured via regulator_set_device_supply() is
1487 * strongly encouraged. It is recommended that the supply name used
1488 * should match the name used for the supply and/or the relevant
1489 * device pins in the datasheet.
1491 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1493 return _regulator_get(dev
, id
, false, true);
1495 EXPORT_SYMBOL_GPL(regulator_get
);
1498 * regulator_get_exclusive - obtain exclusive access to a regulator.
1499 * @dev: device for regulator "consumer"
1500 * @id: Supply name or regulator ID.
1502 * Returns a struct regulator corresponding to the regulator producer,
1503 * or IS_ERR() condition containing errno. Other consumers will be
1504 * unable to obtain this regulator while this reference is held and the
1505 * use count for the regulator will be initialised to reflect the current
1506 * state of the regulator.
1508 * This is intended for use by consumers which cannot tolerate shared
1509 * use of the regulator such as those which need to force the
1510 * regulator off for correct operation of the hardware they are
1513 * Use of supply names configured via regulator_set_device_supply() is
1514 * strongly encouraged. It is recommended that the supply name used
1515 * should match the name used for the supply and/or the relevant
1516 * device pins in the datasheet.
1518 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1520 return _regulator_get(dev
, id
, true, false);
1522 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1525 * regulator_get_optional - obtain optional access to a regulator.
1526 * @dev: device for regulator "consumer"
1527 * @id: Supply name or regulator ID.
1529 * Returns a struct regulator corresponding to the regulator producer,
1530 * or IS_ERR() condition containing errno.
1532 * This is intended for use by consumers for devices which can have
1533 * some supplies unconnected in normal use, such as some MMC devices.
1534 * It can allow the regulator core to provide stub supplies for other
1535 * supplies requested using normal regulator_get() calls without
1536 * disrupting the operation of drivers that can handle absent
1539 * Use of supply names configured via regulator_set_device_supply() is
1540 * strongly encouraged. It is recommended that the supply name used
1541 * should match the name used for the supply and/or the relevant
1542 * device pins in the datasheet.
1544 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1546 return _regulator_get(dev
, id
, false, false);
1548 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1550 /* regulator_list_mutex lock held by regulator_put() */
1551 static void _regulator_put(struct regulator
*regulator
)
1553 struct regulator_dev
*rdev
;
1555 if (regulator
== NULL
|| IS_ERR(regulator
))
1558 rdev
= regulator
->rdev
;
1560 debugfs_remove_recursive(regulator
->debugfs
);
1562 /* remove any sysfs entries */
1564 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1565 mutex_lock(&rdev
->mutex
);
1566 kfree(regulator
->supply_name
);
1567 list_del(®ulator
->list
);
1571 rdev
->exclusive
= 0;
1572 mutex_unlock(&rdev
->mutex
);
1574 module_put(rdev
->owner
);
1578 * regulator_put - "free" the regulator source
1579 * @regulator: regulator source
1581 * Note: drivers must ensure that all regulator_enable calls made on this
1582 * regulator source are balanced by regulator_disable calls prior to calling
1585 void regulator_put(struct regulator
*regulator
)
1587 mutex_lock(®ulator_list_mutex
);
1588 _regulator_put(regulator
);
1589 mutex_unlock(®ulator_list_mutex
);
1591 EXPORT_SYMBOL_GPL(regulator_put
);
1594 * regulator_register_supply_alias - Provide device alias for supply lookup
1596 * @dev: device that will be given as the regulator "consumer"
1597 * @id: Supply name or regulator ID
1598 * @alias_dev: device that should be used to lookup the supply
1599 * @alias_id: Supply name or regulator ID that should be used to lookup the
1602 * All lookups for id on dev will instead be conducted for alias_id on
1605 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
1606 struct device
*alias_dev
,
1607 const char *alias_id
)
1609 struct regulator_supply_alias
*map
;
1611 map
= regulator_find_supply_alias(dev
, id
);
1615 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
1620 map
->src_supply
= id
;
1621 map
->alias_dev
= alias_dev
;
1622 map
->alias_supply
= alias_id
;
1624 list_add(&map
->list
, ®ulator_supply_alias_list
);
1626 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1627 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
1631 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
1634 * regulator_unregister_supply_alias - Remove device alias
1636 * @dev: device that will be given as the regulator "consumer"
1637 * @id: Supply name or regulator ID
1639 * Remove a lookup alias if one exists for id on dev.
1641 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
1643 struct regulator_supply_alias
*map
;
1645 map
= regulator_find_supply_alias(dev
, id
);
1647 list_del(&map
->list
);
1651 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
1654 * regulator_bulk_register_supply_alias - register multiple aliases
1656 * @dev: device that will be given as the regulator "consumer"
1657 * @id: List of supply names or regulator IDs
1658 * @alias_dev: device that should be used to lookup the supply
1659 * @alias_id: List of supply names or regulator IDs that should be used to
1661 * @num_id: Number of aliases to register
1663 * @return 0 on success, an errno on failure.
1665 * This helper function allows drivers to register several supply
1666 * aliases in one operation. If any of the aliases cannot be
1667 * registered any aliases that were registered will be removed
1668 * before returning to the caller.
1670 int regulator_bulk_register_supply_alias(struct device
*dev
,
1671 const char *const *id
,
1672 struct device
*alias_dev
,
1673 const char *const *alias_id
,
1679 for (i
= 0; i
< num_id
; ++i
) {
1680 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
1690 "Failed to create supply alias %s,%s -> %s,%s\n",
1691 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
1694 regulator_unregister_supply_alias(dev
, id
[i
]);
1698 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
1701 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1703 * @dev: device that will be given as the regulator "consumer"
1704 * @id: List of supply names or regulator IDs
1705 * @num_id: Number of aliases to unregister
1707 * This helper function allows drivers to unregister several supply
1708 * aliases in one operation.
1710 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
1711 const char *const *id
,
1716 for (i
= 0; i
< num_id
; ++i
)
1717 regulator_unregister_supply_alias(dev
, id
[i
]);
1719 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
1722 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1723 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
1724 const struct regulator_config
*config
)
1726 struct regulator_enable_gpio
*pin
;
1727 struct gpio_desc
*gpiod
;
1730 gpiod
= gpio_to_desc(config
->ena_gpio
);
1732 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
1733 if (pin
->gpiod
== gpiod
) {
1734 rdev_dbg(rdev
, "GPIO %d is already used\n",
1736 goto update_ena_gpio_to_rdev
;
1740 ret
= gpio_request_one(config
->ena_gpio
,
1741 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
1742 rdev_get_name(rdev
));
1746 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
1748 gpio_free(config
->ena_gpio
);
1753 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
1754 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
1756 update_ena_gpio_to_rdev
:
1757 pin
->request_count
++;
1758 rdev
->ena_pin
= pin
;
1762 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
1764 struct regulator_enable_gpio
*pin
, *n
;
1769 /* Free the GPIO only in case of no use */
1770 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
1771 if (pin
->gpiod
== rdev
->ena_pin
->gpiod
) {
1772 if (pin
->request_count
<= 1) {
1773 pin
->request_count
= 0;
1774 gpiod_put(pin
->gpiod
);
1775 list_del(&pin
->list
);
1777 rdev
->ena_pin
= NULL
;
1780 pin
->request_count
--;
1787 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1788 * @rdev: regulator_dev structure
1789 * @enable: enable GPIO at initial use?
1791 * GPIO is enabled in case of initial use. (enable_count is 0)
1792 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1794 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
1796 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
1802 /* Enable GPIO at initial use */
1803 if (pin
->enable_count
== 0)
1804 gpiod_set_value_cansleep(pin
->gpiod
,
1805 !pin
->ena_gpio_invert
);
1807 pin
->enable_count
++;
1809 if (pin
->enable_count
> 1) {
1810 pin
->enable_count
--;
1814 /* Disable GPIO if not used */
1815 if (pin
->enable_count
<= 1) {
1816 gpiod_set_value_cansleep(pin
->gpiod
,
1817 pin
->ena_gpio_invert
);
1818 pin
->enable_count
= 0;
1826 * _regulator_enable_delay - a delay helper function
1827 * @delay: time to delay in microseconds
1829 * Delay for the requested amount of time as per the guidelines in:
1831 * Documentation/timers/timers-howto.txt
1833 * The assumption here is that regulators will never be enabled in
1834 * atomic context and therefore sleeping functions can be used.
1836 static void _regulator_enable_delay(unsigned int delay
)
1838 unsigned int ms
= delay
/ 1000;
1839 unsigned int us
= delay
% 1000;
1843 * For small enough values, handle super-millisecond
1844 * delays in the usleep_range() call below.
1853 * Give the scheduler some room to coalesce with any other
1854 * wakeup sources. For delays shorter than 10 us, don't even
1855 * bother setting up high-resolution timers and just busy-
1859 usleep_range(us
, us
+ 100);
1864 static int _regulator_do_enable(struct regulator_dev
*rdev
)
1868 /* Query before enabling in case configuration dependent. */
1869 ret
= _regulator_get_enable_time(rdev
);
1873 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
1877 trace_regulator_enable(rdev_get_name(rdev
));
1879 if (rdev
->desc
->off_on_delay
) {
1880 /* if needed, keep a distance of off_on_delay from last time
1881 * this regulator was disabled.
1883 unsigned long start_jiffy
= jiffies
;
1884 unsigned long intended
, max_delay
, remaining
;
1886 max_delay
= usecs_to_jiffies(rdev
->desc
->off_on_delay
);
1887 intended
= rdev
->last_off_jiffy
+ max_delay
;
1889 if (time_before(start_jiffy
, intended
)) {
1890 /* calc remaining jiffies to deal with one-time
1892 * in case of multiple timer wrapping, either it can be
1893 * detected by out-of-range remaining, or it cannot be
1894 * detected and we gets a panelty of
1895 * _regulator_enable_delay().
1897 remaining
= intended
- start_jiffy
;
1898 if (remaining
<= max_delay
)
1899 _regulator_enable_delay(
1900 jiffies_to_usecs(remaining
));
1904 if (rdev
->ena_pin
) {
1905 if (!rdev
->ena_gpio_state
) {
1906 ret
= regulator_ena_gpio_ctrl(rdev
, true);
1909 rdev
->ena_gpio_state
= 1;
1911 } else if (rdev
->desc
->ops
->enable
) {
1912 ret
= rdev
->desc
->ops
->enable(rdev
);
1919 /* Allow the regulator to ramp; it would be useful to extend
1920 * this for bulk operations so that the regulators can ramp
1922 trace_regulator_enable_delay(rdev_get_name(rdev
));
1924 _regulator_enable_delay(delay
);
1926 trace_regulator_enable_complete(rdev_get_name(rdev
));
1931 /* locks held by regulator_enable() */
1932 static int _regulator_enable(struct regulator_dev
*rdev
)
1936 /* check voltage and requested load before enabling */
1937 if (rdev
->constraints
&&
1938 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1939 drms_uA_update(rdev
);
1941 if (rdev
->use_count
== 0) {
1942 /* The regulator may on if it's not switchable or left on */
1943 ret
= _regulator_is_enabled(rdev
);
1944 if (ret
== -EINVAL
|| ret
== 0) {
1945 if (!_regulator_can_change_status(rdev
))
1948 ret
= _regulator_do_enable(rdev
);
1952 } else if (ret
< 0) {
1953 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
1956 /* Fallthrough on positive return values - already enabled */
1965 * regulator_enable - enable regulator output
1966 * @regulator: regulator source
1968 * Request that the regulator be enabled with the regulator output at
1969 * the predefined voltage or current value. Calls to regulator_enable()
1970 * must be balanced with calls to regulator_disable().
1972 * NOTE: the output value can be set by other drivers, boot loader or may be
1973 * hardwired in the regulator.
1975 int regulator_enable(struct regulator
*regulator
)
1977 struct regulator_dev
*rdev
= regulator
->rdev
;
1980 if (regulator
->always_on
)
1984 ret
= regulator_enable(rdev
->supply
);
1989 mutex_lock(&rdev
->mutex
);
1990 ret
= _regulator_enable(rdev
);
1991 mutex_unlock(&rdev
->mutex
);
1993 if (ret
!= 0 && rdev
->supply
)
1994 regulator_disable(rdev
->supply
);
1998 EXPORT_SYMBOL_GPL(regulator_enable
);
2000 static int _regulator_do_disable(struct regulator_dev
*rdev
)
2004 trace_regulator_disable(rdev_get_name(rdev
));
2006 if (rdev
->ena_pin
) {
2007 if (rdev
->ena_gpio_state
) {
2008 ret
= regulator_ena_gpio_ctrl(rdev
, false);
2011 rdev
->ena_gpio_state
= 0;
2014 } else if (rdev
->desc
->ops
->disable
) {
2015 ret
= rdev
->desc
->ops
->disable(rdev
);
2020 /* cares about last_off_jiffy only if off_on_delay is required by
2023 if (rdev
->desc
->off_on_delay
)
2024 rdev
->last_off_jiffy
= jiffies
;
2026 trace_regulator_disable_complete(rdev_get_name(rdev
));
2031 /* locks held by regulator_disable() */
2032 static int _regulator_disable(struct regulator_dev
*rdev
)
2036 if (WARN(rdev
->use_count
<= 0,
2037 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
2040 /* are we the last user and permitted to disable ? */
2041 if (rdev
->use_count
== 1 &&
2042 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
2044 /* we are last user */
2045 if (_regulator_can_change_status(rdev
)) {
2046 ret
= _notifier_call_chain(rdev
,
2047 REGULATOR_EVENT_PRE_DISABLE
,
2049 if (ret
& NOTIFY_STOP_MASK
)
2052 ret
= _regulator_do_disable(rdev
);
2054 rdev_err(rdev
, "failed to disable\n");
2055 _notifier_call_chain(rdev
,
2056 REGULATOR_EVENT_ABORT_DISABLE
,
2060 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
2064 rdev
->use_count
= 0;
2065 } else if (rdev
->use_count
> 1) {
2067 if (rdev
->constraints
&&
2068 (rdev
->constraints
->valid_ops_mask
&
2069 REGULATOR_CHANGE_DRMS
))
2070 drms_uA_update(rdev
);
2079 * regulator_disable - disable regulator output
2080 * @regulator: regulator source
2082 * Disable the regulator output voltage or current. Calls to
2083 * regulator_enable() must be balanced with calls to
2084 * regulator_disable().
2086 * NOTE: this will only disable the regulator output if no other consumer
2087 * devices have it enabled, the regulator device supports disabling and
2088 * machine constraints permit this operation.
2090 int regulator_disable(struct regulator
*regulator
)
2092 struct regulator_dev
*rdev
= regulator
->rdev
;
2095 if (regulator
->always_on
)
2098 mutex_lock(&rdev
->mutex
);
2099 ret
= _regulator_disable(rdev
);
2100 mutex_unlock(&rdev
->mutex
);
2102 if (ret
== 0 && rdev
->supply
)
2103 regulator_disable(rdev
->supply
);
2107 EXPORT_SYMBOL_GPL(regulator_disable
);
2109 /* locks held by regulator_force_disable() */
2110 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2114 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2115 REGULATOR_EVENT_PRE_DISABLE
, NULL
);
2116 if (ret
& NOTIFY_STOP_MASK
)
2119 ret
= _regulator_do_disable(rdev
);
2121 rdev_err(rdev
, "failed to force disable\n");
2122 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2123 REGULATOR_EVENT_ABORT_DISABLE
, NULL
);
2127 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2128 REGULATOR_EVENT_DISABLE
, NULL
);
2134 * regulator_force_disable - force disable regulator output
2135 * @regulator: regulator source
2137 * Forcibly disable the regulator output voltage or current.
2138 * NOTE: this *will* disable the regulator output even if other consumer
2139 * devices have it enabled. This should be used for situations when device
2140 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2142 int regulator_force_disable(struct regulator
*regulator
)
2144 struct regulator_dev
*rdev
= regulator
->rdev
;
2147 mutex_lock(&rdev
->mutex
);
2148 regulator
->uA_load
= 0;
2149 ret
= _regulator_force_disable(regulator
->rdev
);
2150 mutex_unlock(&rdev
->mutex
);
2153 while (rdev
->open_count
--)
2154 regulator_disable(rdev
->supply
);
2158 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2160 static void regulator_disable_work(struct work_struct
*work
)
2162 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2166 mutex_lock(&rdev
->mutex
);
2168 BUG_ON(!rdev
->deferred_disables
);
2170 count
= rdev
->deferred_disables
;
2171 rdev
->deferred_disables
= 0;
2173 for (i
= 0; i
< count
; i
++) {
2174 ret
= _regulator_disable(rdev
);
2176 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2179 mutex_unlock(&rdev
->mutex
);
2182 for (i
= 0; i
< count
; i
++) {
2183 ret
= regulator_disable(rdev
->supply
);
2186 "Supply disable failed: %d\n", ret
);
2193 * regulator_disable_deferred - disable regulator output with delay
2194 * @regulator: regulator source
2195 * @ms: miliseconds until the regulator is disabled
2197 * Execute regulator_disable() on the regulator after a delay. This
2198 * is intended for use with devices that require some time to quiesce.
2200 * NOTE: this will only disable the regulator output if no other consumer
2201 * devices have it enabled, the regulator device supports disabling and
2202 * machine constraints permit this operation.
2204 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2206 struct regulator_dev
*rdev
= regulator
->rdev
;
2209 if (regulator
->always_on
)
2213 return regulator_disable(regulator
);
2215 mutex_lock(&rdev
->mutex
);
2216 rdev
->deferred_disables
++;
2217 mutex_unlock(&rdev
->mutex
);
2219 ret
= queue_delayed_work(system_power_efficient_wq
,
2220 &rdev
->disable_work
,
2221 msecs_to_jiffies(ms
));
2227 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2229 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2231 /* A GPIO control always takes precedence */
2233 return rdev
->ena_gpio_state
;
2235 /* If we don't know then assume that the regulator is always on */
2236 if (!rdev
->desc
->ops
->is_enabled
)
2239 return rdev
->desc
->ops
->is_enabled(rdev
);
2243 * regulator_is_enabled - is the regulator output enabled
2244 * @regulator: regulator source
2246 * Returns positive if the regulator driver backing the source/client
2247 * has requested that the device be enabled, zero if it hasn't, else a
2248 * negative errno code.
2250 * Note that the device backing this regulator handle can have multiple
2251 * users, so it might be enabled even if regulator_enable() was never
2252 * called for this particular source.
2254 int regulator_is_enabled(struct regulator
*regulator
)
2258 if (regulator
->always_on
)
2261 mutex_lock(®ulator
->rdev
->mutex
);
2262 ret
= _regulator_is_enabled(regulator
->rdev
);
2263 mutex_unlock(®ulator
->rdev
->mutex
);
2267 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2270 * regulator_can_change_voltage - check if regulator can change voltage
2271 * @regulator: regulator source
2273 * Returns positive if the regulator driver backing the source/client
2274 * can change its voltage, false otherwise. Useful for detecting fixed
2275 * or dummy regulators and disabling voltage change logic in the client
2278 int regulator_can_change_voltage(struct regulator
*regulator
)
2280 struct regulator_dev
*rdev
= regulator
->rdev
;
2282 if (rdev
->constraints
&&
2283 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2284 if (rdev
->desc
->n_voltages
- rdev
->desc
->linear_min_sel
> 1)
2287 if (rdev
->desc
->continuous_voltage_range
&&
2288 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
&&
2289 rdev
->constraints
->min_uV
!= rdev
->constraints
->max_uV
)
2295 EXPORT_SYMBOL_GPL(regulator_can_change_voltage
);
2298 * regulator_count_voltages - count regulator_list_voltage() selectors
2299 * @regulator: regulator source
2301 * Returns number of selectors, or negative errno. Selectors are
2302 * numbered starting at zero, and typically correspond to bitfields
2303 * in hardware registers.
2305 int regulator_count_voltages(struct regulator
*regulator
)
2307 struct regulator_dev
*rdev
= regulator
->rdev
;
2309 if (rdev
->desc
->n_voltages
)
2310 return rdev
->desc
->n_voltages
;
2315 return regulator_count_voltages(rdev
->supply
);
2317 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2320 * regulator_list_voltage - enumerate supported voltages
2321 * @regulator: regulator source
2322 * @selector: identify voltage to list
2323 * Context: can sleep
2325 * Returns a voltage that can be passed to @regulator_set_voltage(),
2326 * zero if this selector code can't be used on this system, or a
2329 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2331 struct regulator_dev
*rdev
= regulator
->rdev
;
2332 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2335 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2336 return rdev
->desc
->fixed_uV
;
2338 if (ops
->list_voltage
) {
2339 if (selector
>= rdev
->desc
->n_voltages
)
2341 mutex_lock(&rdev
->mutex
);
2342 ret
= ops
->list_voltage(rdev
, selector
);
2343 mutex_unlock(&rdev
->mutex
);
2344 } else if (rdev
->supply
) {
2345 ret
= regulator_list_voltage(rdev
->supply
, selector
);
2351 if (ret
< rdev
->constraints
->min_uV
)
2353 else if (ret
> rdev
->constraints
->max_uV
)
2359 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2362 * regulator_get_regmap - get the regulator's register map
2363 * @regulator: regulator source
2365 * Returns the register map for the given regulator, or an ERR_PTR value
2366 * if the regulator doesn't use regmap.
2368 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
2370 struct regmap
*map
= regulator
->rdev
->regmap
;
2372 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
2376 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2377 * @regulator: regulator source
2378 * @vsel_reg: voltage selector register, output parameter
2379 * @vsel_mask: mask for voltage selector bitfield, output parameter
2381 * Returns the hardware register offset and bitmask used for setting the
2382 * regulator voltage. This might be useful when configuring voltage-scaling
2383 * hardware or firmware that can make I2C requests behind the kernel's back,
2386 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2387 * and 0 is returned, otherwise a negative errno is returned.
2389 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
2391 unsigned *vsel_mask
)
2393 struct regulator_dev
*rdev
= regulator
->rdev
;
2394 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2396 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2399 *vsel_reg
= rdev
->desc
->vsel_reg
;
2400 *vsel_mask
= rdev
->desc
->vsel_mask
;
2404 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
2407 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2408 * @regulator: regulator source
2409 * @selector: identify voltage to list
2411 * Converts the selector to a hardware-specific voltage selector that can be
2412 * directly written to the regulator registers. The address of the voltage
2413 * register can be determined by calling @regulator_get_hardware_vsel_register.
2415 * On error a negative errno is returned.
2417 int regulator_list_hardware_vsel(struct regulator
*regulator
,
2420 struct regulator_dev
*rdev
= regulator
->rdev
;
2421 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2423 if (selector
>= rdev
->desc
->n_voltages
)
2425 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2430 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
2433 * regulator_get_linear_step - return the voltage step size between VSEL values
2434 * @regulator: regulator source
2436 * Returns the voltage step size between VSEL values for linear
2437 * regulators, or return 0 if the regulator isn't a linear regulator.
2439 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2441 struct regulator_dev
*rdev
= regulator
->rdev
;
2443 return rdev
->desc
->uV_step
;
2445 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2448 * regulator_is_supported_voltage - check if a voltage range can be supported
2450 * @regulator: Regulator to check.
2451 * @min_uV: Minimum required voltage in uV.
2452 * @max_uV: Maximum required voltage in uV.
2454 * Returns a boolean or a negative error code.
2456 int regulator_is_supported_voltage(struct regulator
*regulator
,
2457 int min_uV
, int max_uV
)
2459 struct regulator_dev
*rdev
= regulator
->rdev
;
2460 int i
, voltages
, ret
;
2462 /* If we can't change voltage check the current voltage */
2463 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2464 ret
= regulator_get_voltage(regulator
);
2466 return min_uV
<= ret
&& ret
<= max_uV
;
2471 /* Any voltage within constrains range is fine? */
2472 if (rdev
->desc
->continuous_voltage_range
)
2473 return min_uV
>= rdev
->constraints
->min_uV
&&
2474 max_uV
<= rdev
->constraints
->max_uV
;
2476 ret
= regulator_count_voltages(regulator
);
2481 for (i
= 0; i
< voltages
; i
++) {
2482 ret
= regulator_list_voltage(regulator
, i
);
2484 if (ret
>= min_uV
&& ret
<= max_uV
)
2490 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2492 static int _regulator_call_set_voltage(struct regulator_dev
*rdev
,
2493 int min_uV
, int max_uV
,
2496 struct pre_voltage_change_data data
;
2499 data
.old_uV
= _regulator_get_voltage(rdev
);
2500 data
.min_uV
= min_uV
;
2501 data
.max_uV
= max_uV
;
2502 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2504 if (ret
& NOTIFY_STOP_MASK
)
2507 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
, selector
);
2511 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2512 (void *)data
.old_uV
);
2517 static int _regulator_call_set_voltage_sel(struct regulator_dev
*rdev
,
2518 int uV
, unsigned selector
)
2520 struct pre_voltage_change_data data
;
2523 data
.old_uV
= _regulator_get_voltage(rdev
);
2526 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2528 if (ret
& NOTIFY_STOP_MASK
)
2531 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
2535 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2536 (void *)data
.old_uV
);
2541 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2542 int min_uV
, int max_uV
)
2547 unsigned int selector
;
2548 int old_selector
= -1;
2550 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2552 min_uV
+= rdev
->constraints
->uV_offset
;
2553 max_uV
+= rdev
->constraints
->uV_offset
;
2556 * If we can't obtain the old selector there is not enough
2557 * info to call set_voltage_time_sel().
2559 if (_regulator_is_enabled(rdev
) &&
2560 rdev
->desc
->ops
->set_voltage_time_sel
&&
2561 rdev
->desc
->ops
->get_voltage_sel
) {
2562 old_selector
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2563 if (old_selector
< 0)
2564 return old_selector
;
2567 if (rdev
->desc
->ops
->set_voltage
) {
2568 ret
= _regulator_call_set_voltage(rdev
, min_uV
, max_uV
,
2572 if (rdev
->desc
->ops
->list_voltage
)
2573 best_val
= rdev
->desc
->ops
->list_voltage(rdev
,
2576 best_val
= _regulator_get_voltage(rdev
);
2579 } else if (rdev
->desc
->ops
->set_voltage_sel
) {
2580 if (rdev
->desc
->ops
->map_voltage
) {
2581 ret
= rdev
->desc
->ops
->map_voltage(rdev
, min_uV
,
2584 if (rdev
->desc
->ops
->list_voltage
==
2585 regulator_list_voltage_linear
)
2586 ret
= regulator_map_voltage_linear(rdev
,
2588 else if (rdev
->desc
->ops
->list_voltage
==
2589 regulator_list_voltage_linear_range
)
2590 ret
= regulator_map_voltage_linear_range(rdev
,
2593 ret
= regulator_map_voltage_iterate(rdev
,
2598 best_val
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
2599 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2601 if (old_selector
== selector
)
2604 ret
= _regulator_call_set_voltage_sel(
2605 rdev
, best_val
, selector
);
2614 /* Call set_voltage_time_sel if successfully obtained old_selector */
2615 if (ret
== 0 && !rdev
->constraints
->ramp_disable
&& old_selector
>= 0
2616 && old_selector
!= selector
) {
2618 delay
= rdev
->desc
->ops
->set_voltage_time_sel(rdev
,
2619 old_selector
, selector
);
2621 rdev_warn(rdev
, "set_voltage_time_sel() failed: %d\n",
2626 /* Insert any necessary delays */
2627 if (delay
>= 1000) {
2628 mdelay(delay
/ 1000);
2629 udelay(delay
% 1000);
2635 if (ret
== 0 && best_val
>= 0) {
2636 unsigned long data
= best_val
;
2638 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2642 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2648 * regulator_set_voltage - set regulator output voltage
2649 * @regulator: regulator source
2650 * @min_uV: Minimum required voltage in uV
2651 * @max_uV: Maximum acceptable voltage in uV
2653 * Sets a voltage regulator to the desired output voltage. This can be set
2654 * during any regulator state. IOW, regulator can be disabled or enabled.
2656 * If the regulator is enabled then the voltage will change to the new value
2657 * immediately otherwise if the regulator is disabled the regulator will
2658 * output at the new voltage when enabled.
2660 * NOTE: If the regulator is shared between several devices then the lowest
2661 * request voltage that meets the system constraints will be used.
2662 * Regulator system constraints must be set for this regulator before
2663 * calling this function otherwise this call will fail.
2665 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
2667 struct regulator_dev
*rdev
= regulator
->rdev
;
2669 int old_min_uV
, old_max_uV
;
2672 mutex_lock(&rdev
->mutex
);
2674 /* If we're setting the same range as last time the change
2675 * should be a noop (some cpufreq implementations use the same
2676 * voltage for multiple frequencies, for example).
2678 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
2681 /* If we're trying to set a range that overlaps the current voltage,
2682 * return succesfully even though the regulator does not support
2683 * changing the voltage.
2685 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2686 current_uV
= _regulator_get_voltage(rdev
);
2687 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
2688 regulator
->min_uV
= min_uV
;
2689 regulator
->max_uV
= max_uV
;
2695 if (!rdev
->desc
->ops
->set_voltage
&&
2696 !rdev
->desc
->ops
->set_voltage_sel
) {
2701 /* constraints check */
2702 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2706 /* restore original values in case of error */
2707 old_min_uV
= regulator
->min_uV
;
2708 old_max_uV
= regulator
->max_uV
;
2709 regulator
->min_uV
= min_uV
;
2710 regulator
->max_uV
= max_uV
;
2712 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2716 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2721 mutex_unlock(&rdev
->mutex
);
2724 regulator
->min_uV
= old_min_uV
;
2725 regulator
->max_uV
= old_max_uV
;
2726 mutex_unlock(&rdev
->mutex
);
2729 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
2732 * regulator_set_voltage_time - get raise/fall time
2733 * @regulator: regulator source
2734 * @old_uV: starting voltage in microvolts
2735 * @new_uV: target voltage in microvolts
2737 * Provided with the starting and ending voltage, this function attempts to
2738 * calculate the time in microseconds required to rise or fall to this new
2741 int regulator_set_voltage_time(struct regulator
*regulator
,
2742 int old_uV
, int new_uV
)
2744 struct regulator_dev
*rdev
= regulator
->rdev
;
2745 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2751 /* Currently requires operations to do this */
2752 if (!ops
->list_voltage
|| !ops
->set_voltage_time_sel
2753 || !rdev
->desc
->n_voltages
)
2756 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
2757 /* We only look for exact voltage matches here */
2758 voltage
= regulator_list_voltage(regulator
, i
);
2763 if (voltage
== old_uV
)
2765 if (voltage
== new_uV
)
2769 if (old_sel
< 0 || new_sel
< 0)
2772 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
2774 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
2777 * regulator_set_voltage_time_sel - get raise/fall time
2778 * @rdev: regulator source device
2779 * @old_selector: selector for starting voltage
2780 * @new_selector: selector for target voltage
2782 * Provided with the starting and target voltage selectors, this function
2783 * returns time in microseconds required to rise or fall to this new voltage
2785 * Drivers providing ramp_delay in regulation_constraints can use this as their
2786 * set_voltage_time_sel() operation.
2788 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
2789 unsigned int old_selector
,
2790 unsigned int new_selector
)
2792 unsigned int ramp_delay
= 0;
2793 int old_volt
, new_volt
;
2795 if (rdev
->constraints
->ramp_delay
)
2796 ramp_delay
= rdev
->constraints
->ramp_delay
;
2797 else if (rdev
->desc
->ramp_delay
)
2798 ramp_delay
= rdev
->desc
->ramp_delay
;
2800 if (ramp_delay
== 0) {
2801 rdev_warn(rdev
, "ramp_delay not set\n");
2806 if (!rdev
->desc
->ops
->list_voltage
)
2809 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
2810 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
2812 return DIV_ROUND_UP(abs(new_volt
- old_volt
), ramp_delay
);
2814 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
2817 * regulator_sync_voltage - re-apply last regulator output voltage
2818 * @regulator: regulator source
2820 * Re-apply the last configured voltage. This is intended to be used
2821 * where some external control source the consumer is cooperating with
2822 * has caused the configured voltage to change.
2824 int regulator_sync_voltage(struct regulator
*regulator
)
2826 struct regulator_dev
*rdev
= regulator
->rdev
;
2827 int ret
, min_uV
, max_uV
;
2829 mutex_lock(&rdev
->mutex
);
2831 if (!rdev
->desc
->ops
->set_voltage
&&
2832 !rdev
->desc
->ops
->set_voltage_sel
) {
2837 /* This is only going to work if we've had a voltage configured. */
2838 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
2843 min_uV
= regulator
->min_uV
;
2844 max_uV
= regulator
->max_uV
;
2846 /* This should be a paranoia check... */
2847 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2851 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2855 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2858 mutex_unlock(&rdev
->mutex
);
2861 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
2863 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
2867 if (rdev
->desc
->ops
->get_voltage_sel
) {
2868 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2871 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
2872 } else if (rdev
->desc
->ops
->get_voltage
) {
2873 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
2874 } else if (rdev
->desc
->ops
->list_voltage
) {
2875 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
2876 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
2877 ret
= rdev
->desc
->fixed_uV
;
2878 } else if (rdev
->supply
) {
2879 ret
= regulator_get_voltage(rdev
->supply
);
2886 return ret
- rdev
->constraints
->uV_offset
;
2890 * regulator_get_voltage - get regulator output voltage
2891 * @regulator: regulator source
2893 * This returns the current regulator voltage in uV.
2895 * NOTE: If the regulator is disabled it will return the voltage value. This
2896 * function should not be used to determine regulator state.
2898 int regulator_get_voltage(struct regulator
*regulator
)
2902 mutex_lock(®ulator
->rdev
->mutex
);
2904 ret
= _regulator_get_voltage(regulator
->rdev
);
2906 mutex_unlock(®ulator
->rdev
->mutex
);
2910 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
2913 * regulator_set_current_limit - set regulator output current limit
2914 * @regulator: regulator source
2915 * @min_uA: Minimum supported current in uA
2916 * @max_uA: Maximum supported current in uA
2918 * Sets current sink to the desired output current. This can be set during
2919 * any regulator state. IOW, regulator can be disabled or enabled.
2921 * If the regulator is enabled then the current will change to the new value
2922 * immediately otherwise if the regulator is disabled the regulator will
2923 * output at the new current when enabled.
2925 * NOTE: Regulator system constraints must be set for this regulator before
2926 * calling this function otherwise this call will fail.
2928 int regulator_set_current_limit(struct regulator
*regulator
,
2929 int min_uA
, int max_uA
)
2931 struct regulator_dev
*rdev
= regulator
->rdev
;
2934 mutex_lock(&rdev
->mutex
);
2937 if (!rdev
->desc
->ops
->set_current_limit
) {
2942 /* constraints check */
2943 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
2947 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
2949 mutex_unlock(&rdev
->mutex
);
2952 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
2954 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
2958 mutex_lock(&rdev
->mutex
);
2961 if (!rdev
->desc
->ops
->get_current_limit
) {
2966 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
2968 mutex_unlock(&rdev
->mutex
);
2973 * regulator_get_current_limit - get regulator output current
2974 * @regulator: regulator source
2976 * This returns the current supplied by the specified current sink in uA.
2978 * NOTE: If the regulator is disabled it will return the current value. This
2979 * function should not be used to determine regulator state.
2981 int regulator_get_current_limit(struct regulator
*regulator
)
2983 return _regulator_get_current_limit(regulator
->rdev
);
2985 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
2988 * regulator_set_mode - set regulator operating mode
2989 * @regulator: regulator source
2990 * @mode: operating mode - one of the REGULATOR_MODE constants
2992 * Set regulator operating mode to increase regulator efficiency or improve
2993 * regulation performance.
2995 * NOTE: Regulator system constraints must be set for this regulator before
2996 * calling this function otherwise this call will fail.
2998 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
3000 struct regulator_dev
*rdev
= regulator
->rdev
;
3002 int regulator_curr_mode
;
3004 mutex_lock(&rdev
->mutex
);
3007 if (!rdev
->desc
->ops
->set_mode
) {
3012 /* return if the same mode is requested */
3013 if (rdev
->desc
->ops
->get_mode
) {
3014 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
3015 if (regulator_curr_mode
== mode
) {
3021 /* constraints check */
3022 ret
= regulator_mode_constrain(rdev
, &mode
);
3026 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
3028 mutex_unlock(&rdev
->mutex
);
3031 EXPORT_SYMBOL_GPL(regulator_set_mode
);
3033 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
3037 mutex_lock(&rdev
->mutex
);
3040 if (!rdev
->desc
->ops
->get_mode
) {
3045 ret
= rdev
->desc
->ops
->get_mode(rdev
);
3047 mutex_unlock(&rdev
->mutex
);
3052 * regulator_get_mode - get regulator operating mode
3053 * @regulator: regulator source
3055 * Get the current regulator operating mode.
3057 unsigned int regulator_get_mode(struct regulator
*regulator
)
3059 return _regulator_get_mode(regulator
->rdev
);
3061 EXPORT_SYMBOL_GPL(regulator_get_mode
);
3064 * regulator_set_load - set regulator load
3065 * @regulator: regulator source
3066 * @uA_load: load current
3068 * Notifies the regulator core of a new device load. This is then used by
3069 * DRMS (if enabled by constraints) to set the most efficient regulator
3070 * operating mode for the new regulator loading.
3072 * Consumer devices notify their supply regulator of the maximum power
3073 * they will require (can be taken from device datasheet in the power
3074 * consumption tables) when they change operational status and hence power
3075 * state. Examples of operational state changes that can affect power
3076 * consumption are :-
3078 * o Device is opened / closed.
3079 * o Device I/O is about to begin or has just finished.
3080 * o Device is idling in between work.
3082 * This information is also exported via sysfs to userspace.
3084 * DRMS will sum the total requested load on the regulator and change
3085 * to the most efficient operating mode if platform constraints allow.
3087 * On error a negative errno is returned.
3089 int regulator_set_load(struct regulator
*regulator
, int uA_load
)
3091 struct regulator_dev
*rdev
= regulator
->rdev
;
3094 mutex_lock(&rdev
->mutex
);
3095 regulator
->uA_load
= uA_load
;
3096 ret
= drms_uA_update(rdev
);
3097 mutex_unlock(&rdev
->mutex
);
3101 EXPORT_SYMBOL_GPL(regulator_set_load
);
3104 * regulator_allow_bypass - allow the regulator to go into bypass mode
3106 * @regulator: Regulator to configure
3107 * @enable: enable or disable bypass mode
3109 * Allow the regulator to go into bypass mode if all other consumers
3110 * for the regulator also enable bypass mode and the machine
3111 * constraints allow this. Bypass mode means that the regulator is
3112 * simply passing the input directly to the output with no regulation.
3114 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
3116 struct regulator_dev
*rdev
= regulator
->rdev
;
3119 if (!rdev
->desc
->ops
->set_bypass
)
3122 if (rdev
->constraints
&&
3123 !(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_BYPASS
))
3126 mutex_lock(&rdev
->mutex
);
3128 if (enable
&& !regulator
->bypass
) {
3129 rdev
->bypass_count
++;
3131 if (rdev
->bypass_count
== rdev
->open_count
) {
3132 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3134 rdev
->bypass_count
--;
3137 } else if (!enable
&& regulator
->bypass
) {
3138 rdev
->bypass_count
--;
3140 if (rdev
->bypass_count
!= rdev
->open_count
) {
3141 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3143 rdev
->bypass_count
++;
3148 regulator
->bypass
= enable
;
3150 mutex_unlock(&rdev
->mutex
);
3154 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
3157 * regulator_register_notifier - register regulator event notifier
3158 * @regulator: regulator source
3159 * @nb: notifier block
3161 * Register notifier block to receive regulator events.
3163 int regulator_register_notifier(struct regulator
*regulator
,
3164 struct notifier_block
*nb
)
3166 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
3169 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
3172 * regulator_unregister_notifier - unregister regulator event notifier
3173 * @regulator: regulator source
3174 * @nb: notifier block
3176 * Unregister regulator event notifier block.
3178 int regulator_unregister_notifier(struct regulator
*regulator
,
3179 struct notifier_block
*nb
)
3181 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
3184 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
3186 /* notify regulator consumers and downstream regulator consumers.
3187 * Note mutex must be held by caller.
3189 static int _notifier_call_chain(struct regulator_dev
*rdev
,
3190 unsigned long event
, void *data
)
3192 /* call rdev chain first */
3193 return blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
3197 * regulator_bulk_get - get multiple regulator consumers
3199 * @dev: Device to supply
3200 * @num_consumers: Number of consumers to register
3201 * @consumers: Configuration of consumers; clients are stored here.
3203 * @return 0 on success, an errno on failure.
3205 * This helper function allows drivers to get several regulator
3206 * consumers in one operation. If any of the regulators cannot be
3207 * acquired then any regulators that were allocated will be freed
3208 * before returning to the caller.
3210 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
3211 struct regulator_bulk_data
*consumers
)
3216 for (i
= 0; i
< num_consumers
; i
++)
3217 consumers
[i
].consumer
= NULL
;
3219 for (i
= 0; i
< num_consumers
; i
++) {
3220 consumers
[i
].consumer
= regulator_get(dev
,
3221 consumers
[i
].supply
);
3222 if (IS_ERR(consumers
[i
].consumer
)) {
3223 ret
= PTR_ERR(consumers
[i
].consumer
);
3224 dev_err(dev
, "Failed to get supply '%s': %d\n",
3225 consumers
[i
].supply
, ret
);
3226 consumers
[i
].consumer
= NULL
;
3235 regulator_put(consumers
[i
].consumer
);
3239 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
3241 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
3243 struct regulator_bulk_data
*bulk
= data
;
3245 bulk
->ret
= regulator_enable(bulk
->consumer
);
3249 * regulator_bulk_enable - enable multiple regulator consumers
3251 * @num_consumers: Number of consumers
3252 * @consumers: Consumer data; clients are stored here.
3253 * @return 0 on success, an errno on failure
3255 * This convenience API allows consumers to enable multiple regulator
3256 * clients in a single API call. If any consumers cannot be enabled
3257 * then any others that were enabled will be disabled again prior to
3260 int regulator_bulk_enable(int num_consumers
,
3261 struct regulator_bulk_data
*consumers
)
3263 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
3267 for (i
= 0; i
< num_consumers
; i
++) {
3268 if (consumers
[i
].consumer
->always_on
)
3269 consumers
[i
].ret
= 0;
3271 async_schedule_domain(regulator_bulk_enable_async
,
3272 &consumers
[i
], &async_domain
);
3275 async_synchronize_full_domain(&async_domain
);
3277 /* If any consumer failed we need to unwind any that succeeded */
3278 for (i
= 0; i
< num_consumers
; i
++) {
3279 if (consumers
[i
].ret
!= 0) {
3280 ret
= consumers
[i
].ret
;
3288 for (i
= 0; i
< num_consumers
; i
++) {
3289 if (consumers
[i
].ret
< 0)
3290 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3293 regulator_disable(consumers
[i
].consumer
);
3298 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3301 * regulator_bulk_disable - disable multiple regulator consumers
3303 * @num_consumers: Number of consumers
3304 * @consumers: Consumer data; clients are stored here.
3305 * @return 0 on success, an errno on failure
3307 * This convenience API allows consumers to disable multiple regulator
3308 * clients in a single API call. If any consumers cannot be disabled
3309 * then any others that were disabled will be enabled again prior to
3312 int regulator_bulk_disable(int num_consumers
,
3313 struct regulator_bulk_data
*consumers
)
3318 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3319 ret
= regulator_disable(consumers
[i
].consumer
);
3327 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3328 for (++i
; i
< num_consumers
; ++i
) {
3329 r
= regulator_enable(consumers
[i
].consumer
);
3331 pr_err("Failed to reename %s: %d\n",
3332 consumers
[i
].supply
, r
);
3337 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3340 * regulator_bulk_force_disable - force disable multiple regulator consumers
3342 * @num_consumers: Number of consumers
3343 * @consumers: Consumer data; clients are stored here.
3344 * @return 0 on success, an errno on failure
3346 * This convenience API allows consumers to forcibly disable multiple regulator
3347 * clients in a single API call.
3348 * NOTE: This should be used for situations when device damage will
3349 * likely occur if the regulators are not disabled (e.g. over temp).
3350 * Although regulator_force_disable function call for some consumers can
3351 * return error numbers, the function is called for all consumers.
3353 int regulator_bulk_force_disable(int num_consumers
,
3354 struct regulator_bulk_data
*consumers
)
3359 for (i
= 0; i
< num_consumers
; i
++)
3361 regulator_force_disable(consumers
[i
].consumer
);
3363 for (i
= 0; i
< num_consumers
; i
++) {
3364 if (consumers
[i
].ret
!= 0) {
3365 ret
= consumers
[i
].ret
;
3374 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3377 * regulator_bulk_free - free multiple regulator consumers
3379 * @num_consumers: Number of consumers
3380 * @consumers: Consumer data; clients are stored here.
3382 * This convenience API allows consumers to free multiple regulator
3383 * clients in a single API call.
3385 void regulator_bulk_free(int num_consumers
,
3386 struct regulator_bulk_data
*consumers
)
3390 for (i
= 0; i
< num_consumers
; i
++) {
3391 regulator_put(consumers
[i
].consumer
);
3392 consumers
[i
].consumer
= NULL
;
3395 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3398 * regulator_notifier_call_chain - call regulator event notifier
3399 * @rdev: regulator source
3400 * @event: notifier block
3401 * @data: callback-specific data.
3403 * Called by regulator drivers to notify clients a regulator event has
3404 * occurred. We also notify regulator clients downstream.
3405 * Note lock must be held by caller.
3407 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3408 unsigned long event
, void *data
)
3410 _notifier_call_chain(rdev
, event
, data
);
3414 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3417 * regulator_mode_to_status - convert a regulator mode into a status
3419 * @mode: Mode to convert
3421 * Convert a regulator mode into a status.
3423 int regulator_mode_to_status(unsigned int mode
)
3426 case REGULATOR_MODE_FAST
:
3427 return REGULATOR_STATUS_FAST
;
3428 case REGULATOR_MODE_NORMAL
:
3429 return REGULATOR_STATUS_NORMAL
;
3430 case REGULATOR_MODE_IDLE
:
3431 return REGULATOR_STATUS_IDLE
;
3432 case REGULATOR_MODE_STANDBY
:
3433 return REGULATOR_STATUS_STANDBY
;
3435 return REGULATOR_STATUS_UNDEFINED
;
3438 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
3440 static struct attribute
*regulator_dev_attrs
[] = {
3441 &dev_attr_name
.attr
,
3442 &dev_attr_num_users
.attr
,
3443 &dev_attr_type
.attr
,
3444 &dev_attr_microvolts
.attr
,
3445 &dev_attr_microamps
.attr
,
3446 &dev_attr_opmode
.attr
,
3447 &dev_attr_state
.attr
,
3448 &dev_attr_status
.attr
,
3449 &dev_attr_bypass
.attr
,
3450 &dev_attr_requested_microamps
.attr
,
3451 &dev_attr_min_microvolts
.attr
,
3452 &dev_attr_max_microvolts
.attr
,
3453 &dev_attr_min_microamps
.attr
,
3454 &dev_attr_max_microamps
.attr
,
3455 &dev_attr_suspend_standby_state
.attr
,
3456 &dev_attr_suspend_mem_state
.attr
,
3457 &dev_attr_suspend_disk_state
.attr
,
3458 &dev_attr_suspend_standby_microvolts
.attr
,
3459 &dev_attr_suspend_mem_microvolts
.attr
,
3460 &dev_attr_suspend_disk_microvolts
.attr
,
3461 &dev_attr_suspend_standby_mode
.attr
,
3462 &dev_attr_suspend_mem_mode
.attr
,
3463 &dev_attr_suspend_disk_mode
.attr
,
3468 * To avoid cluttering sysfs (and memory) with useless state, only
3469 * create attributes that can be meaningfully displayed.
3471 static umode_t
regulator_attr_is_visible(struct kobject
*kobj
,
3472 struct attribute
*attr
, int idx
)
3474 struct device
*dev
= kobj_to_dev(kobj
);
3475 struct regulator_dev
*rdev
= container_of(dev
, struct regulator_dev
, dev
);
3476 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3477 umode_t mode
= attr
->mode
;
3479 /* these three are always present */
3480 if (attr
== &dev_attr_name
.attr
||
3481 attr
== &dev_attr_num_users
.attr
||
3482 attr
== &dev_attr_type
.attr
)
3485 /* some attributes need specific methods to be displayed */
3486 if (attr
== &dev_attr_microvolts
.attr
) {
3487 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
3488 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
3489 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
3490 (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1))
3495 if (attr
== &dev_attr_microamps
.attr
)
3496 return ops
->get_current_limit
? mode
: 0;
3498 if (attr
== &dev_attr_opmode
.attr
)
3499 return ops
->get_mode
? mode
: 0;
3501 if (attr
== &dev_attr_state
.attr
)
3502 return (rdev
->ena_pin
|| ops
->is_enabled
) ? mode
: 0;
3504 if (attr
== &dev_attr_status
.attr
)
3505 return ops
->get_status
? mode
: 0;
3507 if (attr
== &dev_attr_bypass
.attr
)
3508 return ops
->get_bypass
? mode
: 0;
3510 /* some attributes are type-specific */
3511 if (attr
== &dev_attr_requested_microamps
.attr
)
3512 return rdev
->desc
->type
== REGULATOR_CURRENT
? mode
: 0;
3514 /* constraints need specific supporting methods */
3515 if (attr
== &dev_attr_min_microvolts
.attr
||
3516 attr
== &dev_attr_max_microvolts
.attr
)
3517 return (ops
->set_voltage
|| ops
->set_voltage_sel
) ? mode
: 0;
3519 if (attr
== &dev_attr_min_microamps
.attr
||
3520 attr
== &dev_attr_max_microamps
.attr
)
3521 return ops
->set_current_limit
? mode
: 0;
3523 if (attr
== &dev_attr_suspend_standby_state
.attr
||
3524 attr
== &dev_attr_suspend_mem_state
.attr
||
3525 attr
== &dev_attr_suspend_disk_state
.attr
)
3528 if (attr
== &dev_attr_suspend_standby_microvolts
.attr
||
3529 attr
== &dev_attr_suspend_mem_microvolts
.attr
||
3530 attr
== &dev_attr_suspend_disk_microvolts
.attr
)
3531 return ops
->set_suspend_voltage
? mode
: 0;
3533 if (attr
== &dev_attr_suspend_standby_mode
.attr
||
3534 attr
== &dev_attr_suspend_mem_mode
.attr
||
3535 attr
== &dev_attr_suspend_disk_mode
.attr
)
3536 return ops
->set_suspend_mode
? mode
: 0;
3541 static const struct attribute_group regulator_dev_group
= {
3542 .attrs
= regulator_dev_attrs
,
3543 .is_visible
= regulator_attr_is_visible
,
3546 static const struct attribute_group
*regulator_dev_groups
[] = {
3547 ®ulator_dev_group
,
3551 static void regulator_dev_release(struct device
*dev
)
3553 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
3557 static struct class regulator_class
= {
3558 .name
= "regulator",
3559 .dev_release
= regulator_dev_release
,
3560 .dev_groups
= regulator_dev_groups
,
3563 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
3565 struct device
*parent
= rdev
->dev
.parent
;
3566 const char *rname
= rdev_get_name(rdev
);
3567 char name
[NAME_MAX
];
3569 /* Avoid duplicate debugfs directory names */
3570 if (parent
&& rname
== rdev
->desc
->name
) {
3571 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
3576 rdev
->debugfs
= debugfs_create_dir(rname
, debugfs_root
);
3577 if (!rdev
->debugfs
) {
3578 rdev_warn(rdev
, "Failed to create debugfs directory\n");
3582 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
3584 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
3586 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
3587 &rdev
->bypass_count
);
3591 * regulator_register - register regulator
3592 * @regulator_desc: regulator to register
3593 * @cfg: runtime configuration for regulator
3595 * Called by regulator drivers to register a regulator.
3596 * Returns a valid pointer to struct regulator_dev on success
3597 * or an ERR_PTR() on error.
3599 struct regulator_dev
*
3600 regulator_register(const struct regulator_desc
*regulator_desc
,
3601 const struct regulator_config
*cfg
)
3603 const struct regulation_constraints
*constraints
= NULL
;
3604 const struct regulator_init_data
*init_data
;
3605 struct regulator_config
*config
= NULL
;
3606 static atomic_t regulator_no
= ATOMIC_INIT(-1);
3607 struct regulator_dev
*rdev
;
3611 if (regulator_desc
== NULL
|| cfg
== NULL
)
3612 return ERR_PTR(-EINVAL
);
3617 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
3618 return ERR_PTR(-EINVAL
);
3620 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
3621 regulator_desc
->type
!= REGULATOR_CURRENT
)
3622 return ERR_PTR(-EINVAL
);
3624 /* Only one of each should be implemented */
3625 WARN_ON(regulator_desc
->ops
->get_voltage
&&
3626 regulator_desc
->ops
->get_voltage_sel
);
3627 WARN_ON(regulator_desc
->ops
->set_voltage
&&
3628 regulator_desc
->ops
->set_voltage_sel
);
3630 /* If we're using selectors we must implement list_voltage. */
3631 if (regulator_desc
->ops
->get_voltage_sel
&&
3632 !regulator_desc
->ops
->list_voltage
) {
3633 return ERR_PTR(-EINVAL
);
3635 if (regulator_desc
->ops
->set_voltage_sel
&&
3636 !regulator_desc
->ops
->list_voltage
) {
3637 return ERR_PTR(-EINVAL
);
3640 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
3642 return ERR_PTR(-ENOMEM
);
3645 * Duplicate the config so the driver could override it after
3646 * parsing init data.
3648 config
= kmemdup(cfg
, sizeof(*cfg
), GFP_KERNEL
);
3649 if (config
== NULL
) {
3651 return ERR_PTR(-ENOMEM
);
3654 init_data
= regulator_of_get_init_data(dev
, regulator_desc
, config
,
3655 &rdev
->dev
.of_node
);
3657 init_data
= config
->init_data
;
3658 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
3661 mutex_lock(®ulator_list_mutex
);
3663 mutex_init(&rdev
->mutex
);
3664 rdev
->reg_data
= config
->driver_data
;
3665 rdev
->owner
= regulator_desc
->owner
;
3666 rdev
->desc
= regulator_desc
;
3668 rdev
->regmap
= config
->regmap
;
3669 else if (dev_get_regmap(dev
, NULL
))
3670 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
3671 else if (dev
->parent
)
3672 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
3673 INIT_LIST_HEAD(&rdev
->consumer_list
);
3674 INIT_LIST_HEAD(&rdev
->list
);
3675 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
3676 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
3678 /* preform any regulator specific init */
3679 if (init_data
&& init_data
->regulator_init
) {
3680 ret
= init_data
->regulator_init(rdev
->reg_data
);
3685 /* register with sysfs */
3686 rdev
->dev
.class = ®ulator_class
;
3687 rdev
->dev
.parent
= dev
;
3688 dev_set_name(&rdev
->dev
, "regulator.%lu",
3689 (unsigned long) atomic_inc_return(®ulator_no
));
3690 ret
= device_register(&rdev
->dev
);
3692 put_device(&rdev
->dev
);
3696 dev_set_drvdata(&rdev
->dev
, rdev
);
3698 if ((config
->ena_gpio
|| config
->ena_gpio_initialized
) &&
3699 gpio_is_valid(config
->ena_gpio
)) {
3700 ret
= regulator_ena_gpio_request(rdev
, config
);
3702 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
3703 config
->ena_gpio
, ret
);
3708 /* set regulator constraints */
3710 constraints
= &init_data
->constraints
;
3712 ret
= set_machine_constraints(rdev
, constraints
);
3716 if (init_data
&& init_data
->supply_regulator
)
3717 rdev
->supply_name
= init_data
->supply_regulator
;
3718 else if (regulator_desc
->supply_name
)
3719 rdev
->supply_name
= regulator_desc
->supply_name
;
3721 /* add consumers devices */
3723 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
3724 ret
= set_consumer_device_supply(rdev
,
3725 init_data
->consumer_supplies
[i
].dev_name
,
3726 init_data
->consumer_supplies
[i
].supply
);
3728 dev_err(dev
, "Failed to set supply %s\n",
3729 init_data
->consumer_supplies
[i
].supply
);
3730 goto unset_supplies
;
3735 list_add(&rdev
->list
, ®ulator_list
);
3737 rdev_init_debugfs(rdev
);
3739 mutex_unlock(®ulator_list_mutex
);
3744 unset_regulator_supplies(rdev
);
3747 regulator_ena_gpio_free(rdev
);
3748 kfree(rdev
->constraints
);
3750 device_unregister(&rdev
->dev
);
3751 /* device core frees rdev */
3752 rdev
= ERR_PTR(ret
);
3757 rdev
= ERR_PTR(ret
);
3760 EXPORT_SYMBOL_GPL(regulator_register
);
3763 * regulator_unregister - unregister regulator
3764 * @rdev: regulator to unregister
3766 * Called by regulator drivers to unregister a regulator.
3768 void regulator_unregister(struct regulator_dev
*rdev
)
3774 while (rdev
->use_count
--)
3775 regulator_disable(rdev
->supply
);
3776 regulator_put(rdev
->supply
);
3778 mutex_lock(®ulator_list_mutex
);
3779 debugfs_remove_recursive(rdev
->debugfs
);
3780 flush_work(&rdev
->disable_work
.work
);
3781 WARN_ON(rdev
->open_count
);
3782 unset_regulator_supplies(rdev
);
3783 list_del(&rdev
->list
);
3784 kfree(rdev
->constraints
);
3785 regulator_ena_gpio_free(rdev
);
3786 of_node_put(rdev
->dev
.of_node
);
3787 device_unregister(&rdev
->dev
);
3788 mutex_unlock(®ulator_list_mutex
);
3790 EXPORT_SYMBOL_GPL(regulator_unregister
);
3793 * regulator_suspend_prepare - prepare regulators for system wide suspend
3794 * @state: system suspend state
3796 * Configure each regulator with it's suspend operating parameters for state.
3797 * This will usually be called by machine suspend code prior to supending.
3799 int regulator_suspend_prepare(suspend_state_t state
)
3801 struct regulator_dev
*rdev
;
3804 /* ON is handled by regulator active state */
3805 if (state
== PM_SUSPEND_ON
)
3808 mutex_lock(®ulator_list_mutex
);
3809 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3811 mutex_lock(&rdev
->mutex
);
3812 ret
= suspend_prepare(rdev
, state
);
3813 mutex_unlock(&rdev
->mutex
);
3816 rdev_err(rdev
, "failed to prepare\n");
3821 mutex_unlock(®ulator_list_mutex
);
3824 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
3827 * regulator_suspend_finish - resume regulators from system wide suspend
3829 * Turn on regulators that might be turned off by regulator_suspend_prepare
3830 * and that should be turned on according to the regulators properties.
3832 int regulator_suspend_finish(void)
3834 struct regulator_dev
*rdev
;
3837 mutex_lock(®ulator_list_mutex
);
3838 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3839 mutex_lock(&rdev
->mutex
);
3840 if (rdev
->use_count
> 0 || rdev
->constraints
->always_on
) {
3841 if (!_regulator_is_enabled(rdev
)) {
3842 error
= _regulator_do_enable(rdev
);
3847 if (!have_full_constraints())
3849 if (!_regulator_is_enabled(rdev
))
3852 error
= _regulator_do_disable(rdev
);
3857 mutex_unlock(&rdev
->mutex
);
3859 mutex_unlock(®ulator_list_mutex
);
3862 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
3865 * regulator_has_full_constraints - the system has fully specified constraints
3867 * Calling this function will cause the regulator API to disable all
3868 * regulators which have a zero use count and don't have an always_on
3869 * constraint in a late_initcall.
3871 * The intention is that this will become the default behaviour in a
3872 * future kernel release so users are encouraged to use this facility
3875 void regulator_has_full_constraints(void)
3877 has_full_constraints
= 1;
3879 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
3882 * rdev_get_drvdata - get rdev regulator driver data
3885 * Get rdev regulator driver private data. This call can be used in the
3886 * regulator driver context.
3888 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
3890 return rdev
->reg_data
;
3892 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
3895 * regulator_get_drvdata - get regulator driver data
3896 * @regulator: regulator
3898 * Get regulator driver private data. This call can be used in the consumer
3899 * driver context when non API regulator specific functions need to be called.
3901 void *regulator_get_drvdata(struct regulator
*regulator
)
3903 return regulator
->rdev
->reg_data
;
3905 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
3908 * regulator_set_drvdata - set regulator driver data
3909 * @regulator: regulator
3912 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
3914 regulator
->rdev
->reg_data
= data
;
3916 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
3919 * regulator_get_id - get regulator ID
3922 int rdev_get_id(struct regulator_dev
*rdev
)
3924 return rdev
->desc
->id
;
3926 EXPORT_SYMBOL_GPL(rdev_get_id
);
3928 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
3932 EXPORT_SYMBOL_GPL(rdev_get_dev
);
3934 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
3936 return reg_init_data
->driver_data
;
3938 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
3940 #ifdef CONFIG_DEBUG_FS
3941 static ssize_t
supply_map_read_file(struct file
*file
, char __user
*user_buf
,
3942 size_t count
, loff_t
*ppos
)
3944 char *buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3945 ssize_t len
, ret
= 0;
3946 struct regulator_map
*map
;
3951 list_for_each_entry(map
, ®ulator_map_list
, list
) {
3952 len
= snprintf(buf
+ ret
, PAGE_SIZE
- ret
,
3954 rdev_get_name(map
->regulator
), map
->dev_name
,
3958 if (ret
> PAGE_SIZE
) {
3964 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
3972 static const struct file_operations supply_map_fops
= {
3973 #ifdef CONFIG_DEBUG_FS
3974 .read
= supply_map_read_file
,
3975 .llseek
= default_llseek
,
3979 #ifdef CONFIG_DEBUG_FS
3980 static void regulator_summary_show_subtree(struct seq_file
*s
,
3981 struct regulator_dev
*rdev
,
3984 struct list_head
*list
= s
->private;
3985 struct regulator_dev
*child
;
3986 struct regulation_constraints
*c
;
3987 struct regulator
*consumer
;
3992 seq_printf(s
, "%*s%-*s %3d %4d %6d ",
3994 30 - level
* 3, rdev_get_name(rdev
),
3995 rdev
->use_count
, rdev
->open_count
, rdev
->bypass_count
);
3997 seq_printf(s
, "%5dmV ", _regulator_get_voltage(rdev
) / 1000);
3998 seq_printf(s
, "%5dmA ", _regulator_get_current_limit(rdev
) / 1000);
4000 c
= rdev
->constraints
;
4002 switch (rdev
->desc
->type
) {
4003 case REGULATOR_VOLTAGE
:
4004 seq_printf(s
, "%5dmV %5dmV ",
4005 c
->min_uV
/ 1000, c
->max_uV
/ 1000);
4007 case REGULATOR_CURRENT
:
4008 seq_printf(s
, "%5dmA %5dmA ",
4009 c
->min_uA
/ 1000, c
->max_uA
/ 1000);
4016 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
) {
4017 if (consumer
->dev
->class == ®ulator_class
)
4020 seq_printf(s
, "%*s%-*s ",
4021 (level
+ 1) * 3 + 1, "",
4022 30 - (level
+ 1) * 3, dev_name(consumer
->dev
));
4024 switch (rdev
->desc
->type
) {
4025 case REGULATOR_VOLTAGE
:
4026 seq_printf(s
, "%37dmV %5dmV",
4027 consumer
->min_uV
/ 1000,
4028 consumer
->max_uV
/ 1000);
4030 case REGULATOR_CURRENT
:
4037 list_for_each_entry(child
, list
, list
) {
4038 /* handle only non-root regulators supplied by current rdev */
4039 if (!child
->supply
|| child
->supply
->rdev
!= rdev
)
4042 regulator_summary_show_subtree(s
, child
, level
+ 1);
4046 static int regulator_summary_show(struct seq_file
*s
, void *data
)
4048 struct list_head
*list
= s
->private;
4049 struct regulator_dev
*rdev
;
4051 seq_puts(s
, " regulator use open bypass voltage current min max\n");
4052 seq_puts(s
, "-------------------------------------------------------------------------------\n");
4054 mutex_lock(®ulator_list_mutex
);
4056 list_for_each_entry(rdev
, list
, list
) {
4060 regulator_summary_show_subtree(s
, rdev
, 0);
4063 mutex_unlock(®ulator_list_mutex
);
4068 static int regulator_summary_open(struct inode
*inode
, struct file
*file
)
4070 return single_open(file
, regulator_summary_show
, inode
->i_private
);
4074 static const struct file_operations regulator_summary_fops
= {
4075 #ifdef CONFIG_DEBUG_FS
4076 .open
= regulator_summary_open
,
4078 .llseek
= seq_lseek
,
4079 .release
= single_release
,
4083 static int __init
regulator_init(void)
4087 ret
= class_register(®ulator_class
);
4089 debugfs_root
= debugfs_create_dir("regulator", NULL
);
4091 pr_warn("regulator: Failed to create debugfs directory\n");
4093 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
4096 debugfs_create_file("regulator_summary", 0444, debugfs_root
,
4097 ®ulator_list
, ®ulator_summary_fops
);
4099 regulator_dummy_init();
4104 /* init early to allow our consumers to complete system booting */
4105 core_initcall(regulator_init
);
4107 static int __init
regulator_init_complete(void)
4109 struct regulator_dev
*rdev
;
4110 const struct regulator_ops
*ops
;
4111 struct regulation_constraints
*c
;
4115 * Since DT doesn't provide an idiomatic mechanism for
4116 * enabling full constraints and since it's much more natural
4117 * with DT to provide them just assume that a DT enabled
4118 * system has full constraints.
4120 if (of_have_populated_dt())
4121 has_full_constraints
= true;
4123 mutex_lock(®ulator_list_mutex
);
4125 /* If we have a full configuration then disable any regulators
4126 * we have permission to change the status for and which are
4127 * not in use or always_on. This is effectively the default
4128 * for DT and ACPI as they have full constraints.
4130 list_for_each_entry(rdev
, ®ulator_list
, list
) {
4131 ops
= rdev
->desc
->ops
;
4132 c
= rdev
->constraints
;
4134 if (c
&& c
->always_on
)
4137 if (c
&& !(c
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
))
4140 mutex_lock(&rdev
->mutex
);
4142 if (rdev
->use_count
)
4145 /* If we can't read the status assume it's on. */
4146 if (ops
->is_enabled
)
4147 enabled
= ops
->is_enabled(rdev
);
4154 if (have_full_constraints()) {
4155 /* We log since this may kill the system if it
4157 rdev_info(rdev
, "disabling\n");
4158 ret
= _regulator_do_disable(rdev
);
4160 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
4162 /* The intention is that in future we will
4163 * assume that full constraints are provided
4164 * so warn even if we aren't going to do
4167 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
4171 mutex_unlock(&rdev
->mutex
);
4174 mutex_unlock(®ulator_list_mutex
);
4178 late_initcall_sync(regulator_init_complete
);