Linux 4.1.16
[linux/fpc-iii.git] / drivers / rtc / rtc-isl12057.c
blobda818d3337cec5d2bd552ac046286763fbf4a1fa
1 /*
2 * rtc-isl12057 - Driver for Intersil ISL12057 I2C Real Time Clock
4 * Copyright (C) 2013, Arnaud EBALARD <arno@natisbad.org>
6 * This work is largely based on Intersil ISL1208 driver developed by
7 * Hebert Valerio Riedel <hvr@gnu.org>.
9 * Detailed datasheet on which this development is based is available here:
11 * http://natisbad.org/NAS2/refs/ISL12057.pdf
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/rtc.h>
27 #include <linux/i2c.h>
28 #include <linux/bcd.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/regmap.h>
33 #define DRV_NAME "rtc-isl12057"
35 /* RTC section */
36 #define ISL12057_REG_RTC_SC 0x00 /* Seconds */
37 #define ISL12057_REG_RTC_MN 0x01 /* Minutes */
38 #define ISL12057_REG_RTC_HR 0x02 /* Hours */
39 #define ISL12057_REG_RTC_HR_PM BIT(5) /* AM/PM bit in 12h format */
40 #define ISL12057_REG_RTC_HR_MIL BIT(6) /* 24h/12h format */
41 #define ISL12057_REG_RTC_DW 0x03 /* Day of the Week */
42 #define ISL12057_REG_RTC_DT 0x04 /* Date */
43 #define ISL12057_REG_RTC_MO 0x05 /* Month */
44 #define ISL12057_REG_RTC_MO_CEN BIT(7) /* Century bit */
45 #define ISL12057_REG_RTC_YR 0x06 /* Year */
46 #define ISL12057_RTC_SEC_LEN 7
48 /* Alarm 1 section */
49 #define ISL12057_REG_A1_SC 0x07 /* Alarm 1 Seconds */
50 #define ISL12057_REG_A1_MN 0x08 /* Alarm 1 Minutes */
51 #define ISL12057_REG_A1_HR 0x09 /* Alarm 1 Hours */
52 #define ISL12057_REG_A1_HR_PM BIT(5) /* AM/PM bit in 12h format */
53 #define ISL12057_REG_A1_HR_MIL BIT(6) /* 24h/12h format */
54 #define ISL12057_REG_A1_DWDT 0x0A /* Alarm 1 Date / Day of the week */
55 #define ISL12057_REG_A1_DWDT_B BIT(6) /* DW / DT selection bit */
56 #define ISL12057_A1_SEC_LEN 4
58 /* Alarm 2 section */
59 #define ISL12057_REG_A2_MN 0x0B /* Alarm 2 Minutes */
60 #define ISL12057_REG_A2_HR 0x0C /* Alarm 2 Hours */
61 #define ISL12057_REG_A2_DWDT 0x0D /* Alarm 2 Date / Day of the week */
62 #define ISL12057_A2_SEC_LEN 3
64 /* Control/Status registers */
65 #define ISL12057_REG_INT 0x0E
66 #define ISL12057_REG_INT_A1IE BIT(0) /* Alarm 1 interrupt enable bit */
67 #define ISL12057_REG_INT_A2IE BIT(1) /* Alarm 2 interrupt enable bit */
68 #define ISL12057_REG_INT_INTCN BIT(2) /* Interrupt control enable bit */
69 #define ISL12057_REG_INT_RS1 BIT(3) /* Freq out control bit 1 */
70 #define ISL12057_REG_INT_RS2 BIT(4) /* Freq out control bit 2 */
71 #define ISL12057_REG_INT_EOSC BIT(7) /* Oscillator enable bit */
73 #define ISL12057_REG_SR 0x0F
74 #define ISL12057_REG_SR_A1F BIT(0) /* Alarm 1 interrupt bit */
75 #define ISL12057_REG_SR_A2F BIT(1) /* Alarm 2 interrupt bit */
76 #define ISL12057_REG_SR_OSF BIT(7) /* Oscillator failure bit */
78 /* Register memory map length */
79 #define ISL12057_MEM_MAP_LEN 0x10
81 struct isl12057_rtc_data {
82 struct rtc_device *rtc;
83 struct regmap *regmap;
84 struct mutex lock;
85 int irq;
88 static void isl12057_rtc_regs_to_tm(struct rtc_time *tm, u8 *regs)
90 tm->tm_sec = bcd2bin(regs[ISL12057_REG_RTC_SC]);
91 tm->tm_min = bcd2bin(regs[ISL12057_REG_RTC_MN]);
93 if (regs[ISL12057_REG_RTC_HR] & ISL12057_REG_RTC_HR_MIL) { /* AM/PM */
94 tm->tm_hour = bcd2bin(regs[ISL12057_REG_RTC_HR] & 0x1f);
95 if (regs[ISL12057_REG_RTC_HR] & ISL12057_REG_RTC_HR_PM)
96 tm->tm_hour += 12;
97 } else { /* 24 hour mode */
98 tm->tm_hour = bcd2bin(regs[ISL12057_REG_RTC_HR] & 0x3f);
101 tm->tm_mday = bcd2bin(regs[ISL12057_REG_RTC_DT]);
102 tm->tm_wday = bcd2bin(regs[ISL12057_REG_RTC_DW]) - 1; /* starts at 1 */
103 tm->tm_mon = bcd2bin(regs[ISL12057_REG_RTC_MO] & 0x1f) - 1; /* ditto */
104 tm->tm_year = bcd2bin(regs[ISL12057_REG_RTC_YR]) + 100;
106 /* Check if years register has overflown from 99 to 00 */
107 if (regs[ISL12057_REG_RTC_MO] & ISL12057_REG_RTC_MO_CEN)
108 tm->tm_year += 100;
111 static int isl12057_rtc_tm_to_regs(u8 *regs, struct rtc_time *tm)
113 u8 century_bit;
116 * The clock has an 8 bit wide bcd-coded register for the year.
117 * It also has a century bit encoded in MO flag which provides
118 * information about overflow of year register from 99 to 00.
119 * tm_year is an offset from 1900 and we are interested in the
120 * 2000-2199 range, so any value less than 100 or larger than
121 * 299 is invalid.
123 if (tm->tm_year < 100 || tm->tm_year > 299)
124 return -EINVAL;
126 century_bit = (tm->tm_year > 199) ? ISL12057_REG_RTC_MO_CEN : 0;
128 regs[ISL12057_REG_RTC_SC] = bin2bcd(tm->tm_sec);
129 regs[ISL12057_REG_RTC_MN] = bin2bcd(tm->tm_min);
130 regs[ISL12057_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
131 regs[ISL12057_REG_RTC_DT] = bin2bcd(tm->tm_mday);
132 regs[ISL12057_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1) | century_bit;
133 regs[ISL12057_REG_RTC_YR] = bin2bcd(tm->tm_year % 100);
134 regs[ISL12057_REG_RTC_DW] = bin2bcd(tm->tm_wday + 1);
136 return 0;
140 * Try and match register bits w/ fixed null values to see whether we
141 * are dealing with an ISL12057. Note: this function is called early
142 * during init and hence does need mutex protection.
144 static int isl12057_i2c_validate_chip(struct regmap *regmap)
146 u8 regs[ISL12057_MEM_MAP_LEN];
147 static const u8 mask[ISL12057_MEM_MAP_LEN] = { 0x80, 0x80, 0x80, 0xf8,
148 0xc0, 0x60, 0x00, 0x00,
149 0x00, 0x00, 0x00, 0x00,
150 0x00, 0x00, 0x60, 0x7c };
151 int ret, i;
153 ret = regmap_bulk_read(regmap, 0, regs, ISL12057_MEM_MAP_LEN);
154 if (ret)
155 return ret;
157 for (i = 0; i < ISL12057_MEM_MAP_LEN; ++i) {
158 if (regs[i] & mask[i]) /* check if bits are cleared */
159 return -ENODEV;
162 return 0;
165 static int _isl12057_rtc_clear_alarm(struct device *dev)
167 struct isl12057_rtc_data *data = dev_get_drvdata(dev);
168 int ret;
170 ret = regmap_update_bits(data->regmap, ISL12057_REG_SR,
171 ISL12057_REG_SR_A1F, 0);
172 if (ret)
173 dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
175 return ret;
178 static int _isl12057_rtc_update_alarm(struct device *dev, int enable)
180 struct isl12057_rtc_data *data = dev_get_drvdata(dev);
181 int ret;
183 ret = regmap_update_bits(data->regmap, ISL12057_REG_INT,
184 ISL12057_REG_INT_A1IE,
185 enable ? ISL12057_REG_INT_A1IE : 0);
186 if (ret)
187 dev_err(dev, "%s: changing alarm interrupt flag failed (%d)\n",
188 __func__, ret);
190 return ret;
194 * Note: as we only read from device and do not perform any update, there is
195 * no need for an equivalent function which would try and get driver's main
196 * lock. Here, it is safe for everyone if we just use regmap internal lock
197 * on the device when reading.
199 static int _isl12057_rtc_read_time(struct device *dev, struct rtc_time *tm)
201 struct isl12057_rtc_data *data = dev_get_drvdata(dev);
202 u8 regs[ISL12057_RTC_SEC_LEN];
203 unsigned int sr;
204 int ret;
206 ret = regmap_read(data->regmap, ISL12057_REG_SR, &sr);
207 if (ret) {
208 dev_err(dev, "%s: unable to read oscillator status flag (%d)\n",
209 __func__, ret);
210 goto out;
211 } else {
212 if (sr & ISL12057_REG_SR_OSF) {
213 ret = -ENODATA;
214 goto out;
218 ret = regmap_bulk_read(data->regmap, ISL12057_REG_RTC_SC, regs,
219 ISL12057_RTC_SEC_LEN);
220 if (ret)
221 dev_err(dev, "%s: unable to read RTC time section (%d)\n",
222 __func__, ret);
224 out:
225 if (ret)
226 return ret;
228 isl12057_rtc_regs_to_tm(tm, regs);
230 return rtc_valid_tm(tm);
233 static int isl12057_rtc_update_alarm(struct device *dev, int enable)
235 struct isl12057_rtc_data *data = dev_get_drvdata(dev);
236 int ret;
238 mutex_lock(&data->lock);
239 ret = _isl12057_rtc_update_alarm(dev, enable);
240 mutex_unlock(&data->lock);
242 return ret;
245 static int isl12057_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
247 struct isl12057_rtc_data *data = dev_get_drvdata(dev);
248 struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
249 unsigned long rtc_secs, alarm_secs;
250 u8 regs[ISL12057_A1_SEC_LEN];
251 unsigned int ir;
252 int ret;
254 mutex_lock(&data->lock);
255 ret = regmap_bulk_read(data->regmap, ISL12057_REG_A1_SC, regs,
256 ISL12057_A1_SEC_LEN);
257 if (ret) {
258 dev_err(dev, "%s: reading alarm section failed (%d)\n",
259 __func__, ret);
260 goto err_unlock;
263 alarm_tm->tm_sec = bcd2bin(regs[0] & 0x7f);
264 alarm_tm->tm_min = bcd2bin(regs[1] & 0x7f);
265 alarm_tm->tm_hour = bcd2bin(regs[2] & 0x3f);
266 alarm_tm->tm_mday = bcd2bin(regs[3] & 0x3f);
267 alarm_tm->tm_wday = -1;
270 * The alarm section does not store year/month. We use the ones in rtc
271 * section as a basis and increment month and then year if needed to get
272 * alarm after current time.
274 ret = _isl12057_rtc_read_time(dev, &rtc_tm);
275 if (ret)
276 goto err_unlock;
278 alarm_tm->tm_year = rtc_tm.tm_year;
279 alarm_tm->tm_mon = rtc_tm.tm_mon;
281 ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
282 if (ret)
283 goto err_unlock;
285 ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
286 if (ret)
287 goto err_unlock;
289 if (alarm_secs < rtc_secs) {
290 if (alarm_tm->tm_mon == 11) {
291 alarm_tm->tm_mon = 0;
292 alarm_tm->tm_year += 1;
293 } else {
294 alarm_tm->tm_mon += 1;
298 ret = regmap_read(data->regmap, ISL12057_REG_INT, &ir);
299 if (ret) {
300 dev_err(dev, "%s: reading alarm interrupt flag failed (%d)\n",
301 __func__, ret);
302 goto err_unlock;
305 alarm->enabled = !!(ir & ISL12057_REG_INT_A1IE);
307 err_unlock:
308 mutex_unlock(&data->lock);
310 return ret;
313 static int isl12057_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
315 struct isl12057_rtc_data *data = dev_get_drvdata(dev);
316 struct rtc_time *alarm_tm = &alarm->time;
317 unsigned long rtc_secs, alarm_secs;
318 u8 regs[ISL12057_A1_SEC_LEN];
319 struct rtc_time rtc_tm;
320 int ret, enable = 1;
322 mutex_lock(&data->lock);
323 ret = _isl12057_rtc_read_time(dev, &rtc_tm);
324 if (ret)
325 goto err_unlock;
327 ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
328 if (ret)
329 goto err_unlock;
331 ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
332 if (ret)
333 goto err_unlock;
335 /* If alarm time is before current time, disable the alarm */
336 if (!alarm->enabled || alarm_secs <= rtc_secs) {
337 enable = 0;
338 } else {
340 * Chip only support alarms up to one month in the future. Let's
341 * return an error if we get something after that limit.
342 * Comparison is done by incrementing rtc_tm month field by one
343 * and checking alarm value is still below.
345 if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
346 rtc_tm.tm_mon = 0;
347 rtc_tm.tm_year += 1;
348 } else {
349 rtc_tm.tm_mon += 1;
352 ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
353 if (ret)
354 goto err_unlock;
356 if (alarm_secs > rtc_secs) {
357 dev_err(dev, "%s: max for alarm is one month (%d)\n",
358 __func__, ret);
359 ret = -EINVAL;
360 goto err_unlock;
364 /* Disable the alarm before modifying it */
365 ret = _isl12057_rtc_update_alarm(dev, 0);
366 if (ret < 0) {
367 dev_err(dev, "%s: unable to disable the alarm (%d)\n",
368 __func__, ret);
369 goto err_unlock;
372 /* Program alarm registers */
373 regs[0] = bin2bcd(alarm_tm->tm_sec) & 0x7f;
374 regs[1] = bin2bcd(alarm_tm->tm_min) & 0x7f;
375 regs[2] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
376 regs[3] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
378 ret = regmap_bulk_write(data->regmap, ISL12057_REG_A1_SC, regs,
379 ISL12057_A1_SEC_LEN);
380 if (ret < 0) {
381 dev_err(dev, "%s: writing alarm section failed (%d)\n",
382 __func__, ret);
383 goto err_unlock;
386 /* Enable or disable alarm */
387 ret = _isl12057_rtc_update_alarm(dev, enable);
389 err_unlock:
390 mutex_unlock(&data->lock);
392 return ret;
395 static int isl12057_rtc_set_time(struct device *dev, struct rtc_time *tm)
397 struct isl12057_rtc_data *data = dev_get_drvdata(dev);
398 u8 regs[ISL12057_RTC_SEC_LEN];
399 int ret;
401 ret = isl12057_rtc_tm_to_regs(regs, tm);
402 if (ret)
403 return ret;
405 mutex_lock(&data->lock);
406 ret = regmap_bulk_write(data->regmap, ISL12057_REG_RTC_SC, regs,
407 ISL12057_RTC_SEC_LEN);
408 if (ret) {
409 dev_err(dev, "%s: unable to write RTC time section (%d)\n",
410 __func__, ret);
411 goto out;
415 * Now that RTC time has been updated, let's clear oscillator
416 * failure flag, if needed.
418 ret = regmap_update_bits(data->regmap, ISL12057_REG_SR,
419 ISL12057_REG_SR_OSF, 0);
420 if (ret < 0)
421 dev_err(dev, "%s: unable to clear osc. failure bit (%d)\n",
422 __func__, ret);
424 out:
425 mutex_unlock(&data->lock);
427 return ret;
431 * Check current RTC status and enable/disable what needs to be. Return 0 if
432 * everything went ok and a negative value upon error. Note: this function
433 * is called early during init and hence does need mutex protection.
435 static int isl12057_check_rtc_status(struct device *dev, struct regmap *regmap)
437 int ret;
439 /* Enable oscillator if not already running */
440 ret = regmap_update_bits(regmap, ISL12057_REG_INT,
441 ISL12057_REG_INT_EOSC, 0);
442 if (ret < 0) {
443 dev_err(dev, "%s: unable to enable oscillator (%d)\n",
444 __func__, ret);
445 return ret;
448 /* Clear alarm bit if needed */
449 ret = regmap_update_bits(regmap, ISL12057_REG_SR,
450 ISL12057_REG_SR_A1F, 0);
451 if (ret < 0) {
452 dev_err(dev, "%s: unable to clear alarm bit (%d)\n",
453 __func__, ret);
454 return ret;
457 return 0;
460 #ifdef CONFIG_OF
462 * One would expect the device to be marked as a wakeup source only
463 * when an IRQ pin of the RTC is routed to an interrupt line of the
464 * CPU. In practice, such an IRQ pin can be connected to a PMIC and
465 * this allows the device to be powered up when RTC alarm rings. This
466 * is for instance the case on ReadyNAS 102, 104 and 2120. On those
467 * devices with no IRQ driectly connected to the SoC, the RTC chip
468 * can be forced as a wakeup source by stating that explicitly in
469 * the device's .dts file using the "isil,irq2-can-wakeup-machine"
470 * boolean property. This will guarantee 'wakealarm' sysfs entry is
471 * available on the device.
473 * The function below returns 1, i.e. the capability of the chip to
474 * wakeup the device, based on IRQ availability or if the boolean
475 * property has been set in the .dts file. Otherwise, it returns 0.
478 static bool isl12057_can_wakeup_machine(struct device *dev)
480 struct isl12057_rtc_data *data = dev_get_drvdata(dev);
482 return (data->irq || of_property_read_bool(dev->of_node,
483 "isil,irq2-can-wakeup-machine"));
485 #else
486 static bool isl12057_can_wakeup_machine(struct device *dev)
488 struct isl12057_rtc_data *data = dev_get_drvdata(dev);
490 return !!data->irq;
492 #endif
494 static int isl12057_rtc_alarm_irq_enable(struct device *dev,
495 unsigned int enable)
497 struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev);
498 int ret = -ENOTTY;
500 if (rtc_data->irq)
501 ret = isl12057_rtc_update_alarm(dev, enable);
503 return ret;
506 static irqreturn_t isl12057_rtc_interrupt(int irq, void *data)
508 struct i2c_client *client = data;
509 struct isl12057_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
510 struct rtc_device *rtc = rtc_data->rtc;
511 int ret, handled = IRQ_NONE;
512 unsigned int sr;
514 ret = regmap_read(rtc_data->regmap, ISL12057_REG_SR, &sr);
515 if (!ret && (sr & ISL12057_REG_SR_A1F)) {
516 dev_dbg(&client->dev, "RTC alarm!\n");
518 rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
520 /* Acknowledge and disable the alarm */
521 _isl12057_rtc_clear_alarm(&client->dev);
522 _isl12057_rtc_update_alarm(&client->dev, 0);
524 handled = IRQ_HANDLED;
527 return handled;
530 static const struct rtc_class_ops rtc_ops = {
531 .read_time = _isl12057_rtc_read_time,
532 .set_time = isl12057_rtc_set_time,
533 .read_alarm = isl12057_rtc_read_alarm,
534 .set_alarm = isl12057_rtc_set_alarm,
535 .alarm_irq_enable = isl12057_rtc_alarm_irq_enable,
538 static const struct regmap_config isl12057_rtc_regmap_config = {
539 .reg_bits = 8,
540 .val_bits = 8,
543 static int isl12057_probe(struct i2c_client *client,
544 const struct i2c_device_id *id)
546 struct device *dev = &client->dev;
547 struct isl12057_rtc_data *data;
548 struct regmap *regmap;
549 int ret;
551 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
552 I2C_FUNC_SMBUS_BYTE_DATA |
553 I2C_FUNC_SMBUS_I2C_BLOCK))
554 return -ENODEV;
556 regmap = devm_regmap_init_i2c(client, &isl12057_rtc_regmap_config);
557 if (IS_ERR(regmap)) {
558 ret = PTR_ERR(regmap);
559 dev_err(dev, "%s: regmap allocation failed (%d)\n",
560 __func__, ret);
561 return ret;
564 ret = isl12057_i2c_validate_chip(regmap);
565 if (ret)
566 return ret;
568 ret = isl12057_check_rtc_status(dev, regmap);
569 if (ret)
570 return ret;
572 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
573 if (!data)
574 return -ENOMEM;
576 mutex_init(&data->lock);
577 data->regmap = regmap;
578 dev_set_drvdata(dev, data);
580 if (client->irq > 0) {
581 ret = devm_request_threaded_irq(dev, client->irq, NULL,
582 isl12057_rtc_interrupt,
583 IRQF_SHARED|IRQF_ONESHOT,
584 DRV_NAME, client);
585 if (!ret)
586 data->irq = client->irq;
587 else
588 dev_err(dev, "%s: irq %d unavailable (%d)\n", __func__,
589 client->irq, ret);
592 if (isl12057_can_wakeup_machine(dev))
593 device_init_wakeup(dev, true);
595 data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops,
596 THIS_MODULE);
597 ret = PTR_ERR_OR_ZERO(data->rtc);
598 if (ret) {
599 dev_err(dev, "%s: unable to register RTC device (%d)\n",
600 __func__, ret);
601 goto err;
604 /* We cannot support UIE mode if we do not have an IRQ line */
605 if (!data->irq)
606 data->rtc->uie_unsupported = 1;
608 err:
609 return ret;
612 static int isl12057_remove(struct i2c_client *client)
614 if (isl12057_can_wakeup_machine(&client->dev))
615 device_init_wakeup(&client->dev, false);
617 return 0;
620 #ifdef CONFIG_PM_SLEEP
621 static int isl12057_rtc_suspend(struct device *dev)
623 struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev);
625 if (rtc_data->irq && device_may_wakeup(dev))
626 return enable_irq_wake(rtc_data->irq);
628 return 0;
631 static int isl12057_rtc_resume(struct device *dev)
633 struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev);
635 if (rtc_data->irq && device_may_wakeup(dev))
636 return disable_irq_wake(rtc_data->irq);
638 return 0;
640 #endif
642 static SIMPLE_DEV_PM_OPS(isl12057_rtc_pm_ops, isl12057_rtc_suspend,
643 isl12057_rtc_resume);
645 #ifdef CONFIG_OF
646 static const struct of_device_id isl12057_dt_match[] = {
647 { .compatible = "isl,isl12057" }, /* for backward compat., don't use */
648 { .compatible = "isil,isl12057" },
649 { },
651 #endif
653 static const struct i2c_device_id isl12057_id[] = {
654 { "isl12057", 0 },
657 MODULE_DEVICE_TABLE(i2c, isl12057_id);
659 static struct i2c_driver isl12057_driver = {
660 .driver = {
661 .name = DRV_NAME,
662 .owner = THIS_MODULE,
663 .pm = &isl12057_rtc_pm_ops,
664 .of_match_table = of_match_ptr(isl12057_dt_match),
666 .probe = isl12057_probe,
667 .remove = isl12057_remove,
668 .id_table = isl12057_id,
670 module_i2c_driver(isl12057_driver);
672 MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
673 MODULE_DESCRIPTION("Intersil ISL12057 RTC driver");
674 MODULE_LICENSE("GPL");