2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
20 #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
21 #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
22 #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
24 #define RTC_SW_BIT (1 << 0)
25 #define RTC_ALM_BIT (1 << 2)
26 #define RTC_1HZ_BIT (1 << 4)
27 #define RTC_2HZ_BIT (1 << 7)
28 #define RTC_SAM0_BIT (1 << 8)
29 #define RTC_SAM1_BIT (1 << 9)
30 #define RTC_SAM2_BIT (1 << 10)
31 #define RTC_SAM3_BIT (1 << 11)
32 #define RTC_SAM4_BIT (1 << 12)
33 #define RTC_SAM5_BIT (1 << 13)
34 #define RTC_SAM6_BIT (1 << 14)
35 #define RTC_SAM7_BIT (1 << 15)
36 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
37 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
38 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
40 #define RTC_ENABLE_BIT (1 << 7)
43 #define MAX_PIE_FREQ 512
44 static const u32 PIE_BIT_DEF
[MAX_PIE_NUM
][2] = {
51 { 128, RTC_SAM5_BIT
},
52 { 256, RTC_SAM6_BIT
},
53 { MAX_PIE_FREQ
, RTC_SAM7_BIT
},
56 #define MXC_RTC_TIME 0
57 #define MXC_RTC_ALARM 1
59 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
60 #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
61 #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
62 #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
63 #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
64 #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
65 #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
66 #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
67 #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
68 #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
69 #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
70 #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
71 #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
78 struct rtc_plat_data
{
79 struct rtc_device
*rtc
;
83 struct rtc_time g_rtc_alarm
;
84 enum imx_rtc_type devtype
;
87 static struct platform_device_id imx_rtc_devtype
[] = {
90 .driver_data
= IMX1_RTC
,
93 .driver_data
= IMX21_RTC
,
98 MODULE_DEVICE_TABLE(platform
, imx_rtc_devtype
);
100 static inline int is_imx1_rtc(struct rtc_plat_data
*data
)
102 return data
->devtype
== IMX1_RTC
;
106 * This function is used to obtain the RTC time or the alarm value in
109 static time64_t
get_alarm_or_time(struct device
*dev
, int time_alarm
)
111 struct platform_device
*pdev
= to_platform_device(dev
);
112 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
113 void __iomem
*ioaddr
= pdata
->ioaddr
;
114 u32 day
= 0, hr
= 0, min
= 0, sec
= 0, hr_min
= 0;
116 switch (time_alarm
) {
118 day
= readw(ioaddr
+ RTC_DAYR
);
119 hr_min
= readw(ioaddr
+ RTC_HOURMIN
);
120 sec
= readw(ioaddr
+ RTC_SECOND
);
123 day
= readw(ioaddr
+ RTC_DAYALARM
);
124 hr_min
= readw(ioaddr
+ RTC_ALRM_HM
) & 0xffff;
125 sec
= readw(ioaddr
+ RTC_ALRM_SEC
);
132 return ((((time64_t
)day
* 24 + hr
) * 60) + min
) * 60 + sec
;
136 * This function sets the RTC alarm value or the time value.
138 static void set_alarm_or_time(struct device
*dev
, int time_alarm
, time64_t time
)
140 u32 tod
, day
, hr
, min
, sec
, temp
;
141 struct platform_device
*pdev
= to_platform_device(dev
);
142 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
143 void __iomem
*ioaddr
= pdata
->ioaddr
;
145 day
= div_s64_rem(time
, 86400, &tod
);
147 /* time is within a day now */
151 /* time is within an hour now */
153 sec
= tod
- min
* 60;
155 temp
= (hr
<< 8) + min
;
157 switch (time_alarm
) {
159 writew(day
, ioaddr
+ RTC_DAYR
);
160 writew(sec
, ioaddr
+ RTC_SECOND
);
161 writew(temp
, ioaddr
+ RTC_HOURMIN
);
164 writew(day
, ioaddr
+ RTC_DAYALARM
);
165 writew(sec
, ioaddr
+ RTC_ALRM_SEC
);
166 writew(temp
, ioaddr
+ RTC_ALRM_HM
);
172 * This function updates the RTC alarm registers and then clears all the
173 * interrupt status bits.
175 static void rtc_update_alarm(struct device
*dev
, struct rtc_time
*alrm
)
178 struct platform_device
*pdev
= to_platform_device(dev
);
179 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
180 void __iomem
*ioaddr
= pdata
->ioaddr
;
182 time
= rtc_tm_to_time64(alrm
);
184 /* clear all the interrupt status bits */
185 writew(readw(ioaddr
+ RTC_RTCISR
), ioaddr
+ RTC_RTCISR
);
186 set_alarm_or_time(dev
, MXC_RTC_ALARM
, time
);
189 static void mxc_rtc_irq_enable(struct device
*dev
, unsigned int bit
,
190 unsigned int enabled
)
192 struct platform_device
*pdev
= to_platform_device(dev
);
193 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
194 void __iomem
*ioaddr
= pdata
->ioaddr
;
197 spin_lock_irq(&pdata
->rtc
->irq_lock
);
198 reg
= readw(ioaddr
+ RTC_RTCIENR
);
205 writew(reg
, ioaddr
+ RTC_RTCIENR
);
206 spin_unlock_irq(&pdata
->rtc
->irq_lock
);
209 /* This function is the RTC interrupt service routine. */
210 static irqreturn_t
mxc_rtc_interrupt(int irq
, void *dev_id
)
212 struct platform_device
*pdev
= dev_id
;
213 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
214 void __iomem
*ioaddr
= pdata
->ioaddr
;
219 spin_lock_irqsave(&pdata
->rtc
->irq_lock
, flags
);
220 status
= readw(ioaddr
+ RTC_RTCISR
) & readw(ioaddr
+ RTC_RTCIENR
);
221 /* clear interrupt sources */
222 writew(status
, ioaddr
+ RTC_RTCISR
);
224 /* update irq data & counter */
225 if (status
& RTC_ALM_BIT
) {
226 events
|= (RTC_AF
| RTC_IRQF
);
227 /* RTC alarm should be one-shot */
228 mxc_rtc_irq_enable(&pdev
->dev
, RTC_ALM_BIT
, 0);
231 if (status
& RTC_1HZ_BIT
)
232 events
|= (RTC_UF
| RTC_IRQF
);
234 if (status
& PIT_ALL_ON
)
235 events
|= (RTC_PF
| RTC_IRQF
);
237 rtc_update_irq(pdata
->rtc
, 1, events
);
238 spin_unlock_irqrestore(&pdata
->rtc
->irq_lock
, flags
);
244 * Clear all interrupts and release the IRQ
246 static void mxc_rtc_release(struct device
*dev
)
248 struct platform_device
*pdev
= to_platform_device(dev
);
249 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
250 void __iomem
*ioaddr
= pdata
->ioaddr
;
252 spin_lock_irq(&pdata
->rtc
->irq_lock
);
254 /* Disable all rtc interrupts */
255 writew(0, ioaddr
+ RTC_RTCIENR
);
257 /* Clear all interrupt status */
258 writew(0xffffffff, ioaddr
+ RTC_RTCISR
);
260 spin_unlock_irq(&pdata
->rtc
->irq_lock
);
263 static int mxc_rtc_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
265 mxc_rtc_irq_enable(dev
, RTC_ALM_BIT
, enabled
);
270 * This function reads the current RTC time into tm in Gregorian date.
272 static int mxc_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
276 /* Avoid roll-over from reading the different registers */
278 val
= get_alarm_or_time(dev
, MXC_RTC_TIME
);
279 } while (val
!= get_alarm_or_time(dev
, MXC_RTC_TIME
));
281 rtc_time64_to_tm(val
, tm
);
287 * This function sets the internal RTC time based on tm in Gregorian date.
289 static int mxc_rtc_set_mmss(struct device
*dev
, time64_t time
)
291 struct platform_device
*pdev
= to_platform_device(dev
);
292 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
295 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
297 if (is_imx1_rtc(pdata
)) {
300 rtc_time64_to_tm(time
, &tm
);
302 time
= rtc_tm_to_time64(&tm
);
305 /* Avoid roll-over from reading the different registers */
307 set_alarm_or_time(dev
, MXC_RTC_TIME
, time
);
308 } while (time
!= get_alarm_or_time(dev
, MXC_RTC_TIME
));
314 * This function reads the current alarm value into the passed in 'alrm'
315 * argument. It updates the alrm's pending field value based on the whether
316 * an alarm interrupt occurs or not.
318 static int mxc_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
320 struct platform_device
*pdev
= to_platform_device(dev
);
321 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
322 void __iomem
*ioaddr
= pdata
->ioaddr
;
324 rtc_time64_to_tm(get_alarm_or_time(dev
, MXC_RTC_ALARM
), &alrm
->time
);
325 alrm
->pending
= ((readw(ioaddr
+ RTC_RTCISR
) & RTC_ALM_BIT
)) ? 1 : 0;
331 * This function sets the RTC alarm based on passed in alrm.
333 static int mxc_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
335 struct platform_device
*pdev
= to_platform_device(dev
);
336 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
338 rtc_update_alarm(dev
, &alrm
->time
);
340 memcpy(&pdata
->g_rtc_alarm
, &alrm
->time
, sizeof(struct rtc_time
));
341 mxc_rtc_irq_enable(dev
, RTC_ALM_BIT
, alrm
->enabled
);
347 static struct rtc_class_ops mxc_rtc_ops
= {
348 .release
= mxc_rtc_release
,
349 .read_time
= mxc_rtc_read_time
,
350 .set_mmss64
= mxc_rtc_set_mmss
,
351 .read_alarm
= mxc_rtc_read_alarm
,
352 .set_alarm
= mxc_rtc_set_alarm
,
353 .alarm_irq_enable
= mxc_rtc_alarm_irq_enable
,
356 static int mxc_rtc_probe(struct platform_device
*pdev
)
358 struct resource
*res
;
359 struct rtc_device
*rtc
;
360 struct rtc_plat_data
*pdata
= NULL
;
365 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
369 pdata
->devtype
= pdev
->id_entry
->driver_data
;
371 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
372 pdata
->ioaddr
= devm_ioremap_resource(&pdev
->dev
, res
);
373 if (IS_ERR(pdata
->ioaddr
))
374 return PTR_ERR(pdata
->ioaddr
);
376 pdata
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
377 if (IS_ERR(pdata
->clk
)) {
378 dev_err(&pdev
->dev
, "unable to get clock!\n");
379 return PTR_ERR(pdata
->clk
);
382 ret
= clk_prepare_enable(pdata
->clk
);
386 rate
= clk_get_rate(pdata
->clk
);
389 reg
= RTC_INPUT_CLK_32768HZ
;
390 else if (rate
== 32000)
391 reg
= RTC_INPUT_CLK_32000HZ
;
392 else if (rate
== 38400)
393 reg
= RTC_INPUT_CLK_38400HZ
;
395 dev_err(&pdev
->dev
, "rtc clock is not valid (%lu)\n", rate
);
400 reg
|= RTC_ENABLE_BIT
;
401 writew(reg
, (pdata
->ioaddr
+ RTC_RTCCTL
));
402 if (((readw(pdata
->ioaddr
+ RTC_RTCCTL
)) & RTC_ENABLE_BIT
) == 0) {
403 dev_err(&pdev
->dev
, "hardware module can't be enabled!\n");
408 platform_set_drvdata(pdev
, pdata
);
410 /* Configure and enable the RTC */
411 pdata
->irq
= platform_get_irq(pdev
, 0);
413 if (pdata
->irq
>= 0 &&
414 devm_request_irq(&pdev
->dev
, pdata
->irq
, mxc_rtc_interrupt
,
415 IRQF_SHARED
, pdev
->name
, pdev
) < 0) {
416 dev_warn(&pdev
->dev
, "interrupt not available.\n");
421 device_init_wakeup(&pdev
->dev
, 1);
423 rtc
= devm_rtc_device_register(&pdev
->dev
, pdev
->name
, &mxc_rtc_ops
,
435 clk_disable_unprepare(pdata
->clk
);
440 static int mxc_rtc_remove(struct platform_device
*pdev
)
442 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
444 clk_disable_unprepare(pdata
->clk
);
449 #ifdef CONFIG_PM_SLEEP
450 static int mxc_rtc_suspend(struct device
*dev
)
452 struct rtc_plat_data
*pdata
= dev_get_drvdata(dev
);
454 if (device_may_wakeup(dev
))
455 enable_irq_wake(pdata
->irq
);
460 static int mxc_rtc_resume(struct device
*dev
)
462 struct rtc_plat_data
*pdata
= dev_get_drvdata(dev
);
464 if (device_may_wakeup(dev
))
465 disable_irq_wake(pdata
->irq
);
471 static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops
, mxc_rtc_suspend
, mxc_rtc_resume
);
473 static struct platform_driver mxc_rtc_driver
= {
476 .pm
= &mxc_rtc_pm_ops
,
478 .id_table
= imx_rtc_devtype
,
479 .probe
= mxc_rtc_probe
,
480 .remove
= mxc_rtc_remove
,
483 module_platform_driver(mxc_rtc_driver
)
485 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
486 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
487 MODULE_LICENSE("GPL");