Linux 4.1.16
[linux/fpc-iii.git] / drivers / thermal / intel_powerclamp.c
blob725718e97a0bc86f8d69d3fc112fba7670543402
1 /*
2 * intel_powerclamp.c - package c-state idle injection
4 * Copyright (c) 2012, Intel Corporation.
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 * Jacob Pan <jacob.jun.pan@linux.intel.com>
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms and conditions of the GNU General Public License,
12 * version 2, as published by the Free Software Foundation.
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
24 * TODO:
25 * 1. better handle wakeup from external interrupts, currently a fixed
26 * compensation is added to clamping duration when excessive amount
27 * of wakeups are observed during idle time. the reason is that in
28 * case of external interrupts without need for ack, clamping down
29 * cpu in non-irq context does not reduce irq. for majority of the
30 * cases, clamping down cpu does help reduce irq as well, we should
31 * be able to differenciate the two cases and give a quantitative
32 * solution for the irqs that we can control. perhaps based on
33 * get_cpu_iowait_time_us()
35 * 2. synchronization with other hw blocks
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/freezer.h>
47 #include <linux/cpu.h>
48 #include <linux/thermal.h>
49 #include <linux/slab.h>
50 #include <linux/tick.h>
51 #include <linux/debugfs.h>
52 #include <linux/seq_file.h>
53 #include <linux/sched/rt.h>
55 #include <asm/nmi.h>
56 #include <asm/msr.h>
57 #include <asm/mwait.h>
58 #include <asm/cpu_device_id.h>
59 #include <asm/idle.h>
60 #include <asm/hardirq.h>
62 #define MAX_TARGET_RATIO (50U)
63 /* For each undisturbed clamping period (no extra wake ups during idle time),
64 * we increment the confidence counter for the given target ratio.
65 * CONFIDENCE_OK defines the level where runtime calibration results are
66 * valid.
68 #define CONFIDENCE_OK (3)
69 /* Default idle injection duration, driver adjust sleep time to meet target
70 * idle ratio. Similar to frequency modulation.
72 #define DEFAULT_DURATION_JIFFIES (6)
74 static unsigned int target_mwait;
75 static struct dentry *debug_dir;
77 /* user selected target */
78 static unsigned int set_target_ratio;
79 static unsigned int current_ratio;
80 static bool should_skip;
81 static bool reduce_irq;
82 static atomic_t idle_wakeup_counter;
83 static unsigned int control_cpu; /* The cpu assigned to collect stat and update
84 * control parameters. default to BSP but BSP
85 * can be offlined.
87 static bool clamping;
90 static struct task_struct * __percpu *powerclamp_thread;
91 static struct thermal_cooling_device *cooling_dev;
92 static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
93 * clamping thread
96 static unsigned int duration;
97 static unsigned int pkg_cstate_ratio_cur;
98 static unsigned int window_size;
100 static int duration_set(const char *arg, const struct kernel_param *kp)
102 int ret = 0;
103 unsigned long new_duration;
105 ret = kstrtoul(arg, 10, &new_duration);
106 if (ret)
107 goto exit;
108 if (new_duration > 25 || new_duration < 6) {
109 pr_err("Out of recommended range %lu, between 6-25ms\n",
110 new_duration);
111 ret = -EINVAL;
114 duration = clamp(new_duration, 6ul, 25ul);
115 smp_mb();
117 exit:
119 return ret;
122 static struct kernel_param_ops duration_ops = {
123 .set = duration_set,
124 .get = param_get_int,
128 module_param_cb(duration, &duration_ops, &duration, 0644);
129 MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
131 struct powerclamp_calibration_data {
132 unsigned long confidence; /* used for calibration, basically a counter
133 * gets incremented each time a clamping
134 * period is completed without extra wakeups
135 * once that counter is reached given level,
136 * compensation is deemed usable.
138 unsigned long steady_comp; /* steady state compensation used when
139 * no extra wakeups occurred.
141 unsigned long dynamic_comp; /* compensate excessive wakeup from idle
142 * mostly from external interrupts.
146 static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
148 static int window_size_set(const char *arg, const struct kernel_param *kp)
150 int ret = 0;
151 unsigned long new_window_size;
153 ret = kstrtoul(arg, 10, &new_window_size);
154 if (ret)
155 goto exit_win;
156 if (new_window_size > 10 || new_window_size < 2) {
157 pr_err("Out of recommended window size %lu, between 2-10\n",
158 new_window_size);
159 ret = -EINVAL;
162 window_size = clamp(new_window_size, 2ul, 10ul);
163 smp_mb();
165 exit_win:
167 return ret;
170 static struct kernel_param_ops window_size_ops = {
171 .set = window_size_set,
172 .get = param_get_int,
175 module_param_cb(window_size, &window_size_ops, &window_size, 0644);
176 MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
177 "\tpowerclamp controls idle ratio within this window. larger\n"
178 "\twindow size results in slower response time but more smooth\n"
179 "\tclamping results. default to 2.");
181 static void find_target_mwait(void)
183 unsigned int eax, ebx, ecx, edx;
184 unsigned int highest_cstate = 0;
185 unsigned int highest_subcstate = 0;
186 int i;
188 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
189 return;
191 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
193 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
194 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
195 return;
197 edx >>= MWAIT_SUBSTATE_SIZE;
198 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
199 if (edx & MWAIT_SUBSTATE_MASK) {
200 highest_cstate = i;
201 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
204 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
205 (highest_subcstate - 1);
209 struct pkg_cstate_info {
210 bool skip;
211 int msr_index;
212 int cstate_id;
215 #define PKG_CSTATE_INIT(id) { \
216 .msr_index = MSR_PKG_C##id##_RESIDENCY, \
217 .cstate_id = id \
220 static struct pkg_cstate_info pkg_cstates[] = {
221 PKG_CSTATE_INIT(2),
222 PKG_CSTATE_INIT(3),
223 PKG_CSTATE_INIT(6),
224 PKG_CSTATE_INIT(7),
225 PKG_CSTATE_INIT(8),
226 PKG_CSTATE_INIT(9),
227 PKG_CSTATE_INIT(10),
228 {NULL},
231 static bool has_pkg_state_counter(void)
233 u64 val;
234 struct pkg_cstate_info *info = pkg_cstates;
236 /* check if any one of the counter msrs exists */
237 while (info->msr_index) {
238 if (!rdmsrl_safe(info->msr_index, &val))
239 return true;
240 info++;
243 return false;
246 static u64 pkg_state_counter(void)
248 u64 val;
249 u64 count = 0;
250 struct pkg_cstate_info *info = pkg_cstates;
252 while (info->msr_index) {
253 if (!info->skip) {
254 if (!rdmsrl_safe(info->msr_index, &val))
255 count += val;
256 else
257 info->skip = true;
259 info++;
262 return count;
265 static void noop_timer(unsigned long foo)
267 /* empty... just the fact that we get the interrupt wakes us up */
270 static unsigned int get_compensation(int ratio)
272 unsigned int comp = 0;
274 /* we only use compensation if all adjacent ones are good */
275 if (ratio == 1 &&
276 cal_data[ratio].confidence >= CONFIDENCE_OK &&
277 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
278 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
279 comp = (cal_data[ratio].steady_comp +
280 cal_data[ratio + 1].steady_comp +
281 cal_data[ratio + 2].steady_comp) / 3;
282 } else if (ratio == MAX_TARGET_RATIO - 1 &&
283 cal_data[ratio].confidence >= CONFIDENCE_OK &&
284 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
285 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
286 comp = (cal_data[ratio].steady_comp +
287 cal_data[ratio - 1].steady_comp +
288 cal_data[ratio - 2].steady_comp) / 3;
289 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
290 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
291 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
292 comp = (cal_data[ratio].steady_comp +
293 cal_data[ratio - 1].steady_comp +
294 cal_data[ratio + 1].steady_comp) / 3;
297 /* REVISIT: simple penalty of double idle injection */
298 if (reduce_irq)
299 comp = ratio;
300 /* do not exceed limit */
301 if (comp + ratio >= MAX_TARGET_RATIO)
302 comp = MAX_TARGET_RATIO - ratio - 1;
304 return comp;
307 static void adjust_compensation(int target_ratio, unsigned int win)
309 int delta;
310 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
313 * adjust compensations if confidence level has not been reached or
314 * there are too many wakeups during the last idle injection period, we
315 * cannot trust the data for compensation.
317 if (d->confidence >= CONFIDENCE_OK ||
318 atomic_read(&idle_wakeup_counter) >
319 win * num_online_cpus())
320 return;
322 delta = set_target_ratio - current_ratio;
323 /* filter out bad data */
324 if (delta >= 0 && delta <= (1+target_ratio/10)) {
325 if (d->steady_comp)
326 d->steady_comp =
327 roundup(delta+d->steady_comp, 2)/2;
328 else
329 d->steady_comp = delta;
330 d->confidence++;
334 static bool powerclamp_adjust_controls(unsigned int target_ratio,
335 unsigned int guard, unsigned int win)
337 static u64 msr_last, tsc_last;
338 u64 msr_now, tsc_now;
339 u64 val64;
341 /* check result for the last window */
342 msr_now = pkg_state_counter();
343 rdtscll(tsc_now);
345 /* calculate pkg cstate vs tsc ratio */
346 if (!msr_last || !tsc_last)
347 current_ratio = 1;
348 else if (tsc_now-tsc_last) {
349 val64 = 100*(msr_now-msr_last);
350 do_div(val64, (tsc_now-tsc_last));
351 current_ratio = val64;
354 /* update record */
355 msr_last = msr_now;
356 tsc_last = tsc_now;
358 adjust_compensation(target_ratio, win);
360 * too many external interrupts, set flag such
361 * that we can take measure later.
363 reduce_irq = atomic_read(&idle_wakeup_counter) >=
364 2 * win * num_online_cpus();
366 atomic_set(&idle_wakeup_counter, 0);
367 /* if we are above target+guard, skip */
368 return set_target_ratio + guard <= current_ratio;
371 static int clamp_thread(void *arg)
373 int cpunr = (unsigned long)arg;
374 DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0);
375 static const struct sched_param param = {
376 .sched_priority = MAX_USER_RT_PRIO/2,
378 unsigned int count = 0;
379 unsigned int target_ratio;
381 set_bit(cpunr, cpu_clamping_mask);
382 set_freezable();
383 init_timer_on_stack(&wakeup_timer);
384 sched_setscheduler(current, SCHED_FIFO, &param);
386 while (true == clamping && !kthread_should_stop() &&
387 cpu_online(cpunr)) {
388 int sleeptime;
389 unsigned long target_jiffies;
390 unsigned int guard;
391 unsigned int compensation = 0;
392 int interval; /* jiffies to sleep for each attempt */
393 unsigned int duration_jiffies = msecs_to_jiffies(duration);
394 unsigned int window_size_now;
396 try_to_freeze();
398 * make sure user selected ratio does not take effect until
399 * the next round. adjust target_ratio if user has changed
400 * target such that we can converge quickly.
402 target_ratio = set_target_ratio;
403 guard = 1 + target_ratio/20;
404 window_size_now = window_size;
405 count++;
408 * systems may have different ability to enter package level
409 * c-states, thus we need to compensate the injected idle ratio
410 * to achieve the actual target reported by the HW.
412 compensation = get_compensation(target_ratio);
413 interval = duration_jiffies*100/(target_ratio+compensation);
415 /* align idle time */
416 target_jiffies = roundup(jiffies, interval);
417 sleeptime = target_jiffies - jiffies;
418 if (sleeptime <= 0)
419 sleeptime = 1;
420 schedule_timeout_interruptible(sleeptime);
422 * only elected controlling cpu can collect stats and update
423 * control parameters.
425 if (cpunr == control_cpu && !(count%window_size_now)) {
426 should_skip =
427 powerclamp_adjust_controls(target_ratio,
428 guard, window_size_now);
429 smp_mb();
432 if (should_skip)
433 continue;
435 target_jiffies = jiffies + duration_jiffies;
436 mod_timer(&wakeup_timer, target_jiffies);
437 if (unlikely(local_softirq_pending()))
438 continue;
440 * stop tick sched during idle time, interrupts are still
441 * allowed. thus jiffies are updated properly.
443 preempt_disable();
444 /* mwait until target jiffies is reached */
445 while (time_before(jiffies, target_jiffies)) {
446 unsigned long ecx = 1;
447 unsigned long eax = target_mwait;
450 * REVISIT: may call enter_idle() to notify drivers who
451 * can save power during cpu idle. same for exit_idle()
453 local_touch_nmi();
454 stop_critical_timings();
455 mwait_idle_with_hints(eax, ecx);
456 start_critical_timings();
457 atomic_inc(&idle_wakeup_counter);
459 preempt_enable();
461 del_timer_sync(&wakeup_timer);
462 clear_bit(cpunr, cpu_clamping_mask);
464 return 0;
468 * 1 HZ polling while clamping is active, useful for userspace
469 * to monitor actual idle ratio.
471 static void poll_pkg_cstate(struct work_struct *dummy);
472 static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
473 static void poll_pkg_cstate(struct work_struct *dummy)
475 static u64 msr_last;
476 static u64 tsc_last;
477 static unsigned long jiffies_last;
479 u64 msr_now;
480 unsigned long jiffies_now;
481 u64 tsc_now;
482 u64 val64;
484 msr_now = pkg_state_counter();
485 rdtscll(tsc_now);
486 jiffies_now = jiffies;
488 /* calculate pkg cstate vs tsc ratio */
489 if (!msr_last || !tsc_last)
490 pkg_cstate_ratio_cur = 1;
491 else {
492 if (tsc_now - tsc_last) {
493 val64 = 100 * (msr_now - msr_last);
494 do_div(val64, (tsc_now - tsc_last));
495 pkg_cstate_ratio_cur = val64;
499 /* update record */
500 msr_last = msr_now;
501 jiffies_last = jiffies_now;
502 tsc_last = tsc_now;
504 if (true == clamping)
505 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
508 static int start_power_clamp(void)
510 unsigned long cpu;
511 struct task_struct *thread;
513 /* check if pkg cstate counter is completely 0, abort in this case */
514 if (!has_pkg_state_counter()) {
515 pr_err("pkg cstate counter not functional, abort\n");
516 return -EINVAL;
519 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
520 /* prevent cpu hotplug */
521 get_online_cpus();
523 /* prefer BSP */
524 control_cpu = 0;
525 if (!cpu_online(control_cpu))
526 control_cpu = smp_processor_id();
528 clamping = true;
529 schedule_delayed_work(&poll_pkg_cstate_work, 0);
531 /* start one thread per online cpu */
532 for_each_online_cpu(cpu) {
533 struct task_struct **p =
534 per_cpu_ptr(powerclamp_thread, cpu);
536 thread = kthread_create_on_node(clamp_thread,
537 (void *) cpu,
538 cpu_to_node(cpu),
539 "kidle_inject/%ld", cpu);
540 /* bind to cpu here */
541 if (likely(!IS_ERR(thread))) {
542 kthread_bind(thread, cpu);
543 wake_up_process(thread);
544 *p = thread;
548 put_online_cpus();
550 return 0;
553 static void end_power_clamp(void)
555 int i;
556 struct task_struct *thread;
558 clamping = false;
560 * make clamping visible to other cpus and give per cpu clamping threads
561 * sometime to exit, or gets killed later.
563 smp_mb();
564 msleep(20);
565 if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
566 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
567 pr_debug("clamping thread for cpu %d alive, kill\n", i);
568 thread = *per_cpu_ptr(powerclamp_thread, i);
569 kthread_stop(thread);
574 static int powerclamp_cpu_callback(struct notifier_block *nfb,
575 unsigned long action, void *hcpu)
577 unsigned long cpu = (unsigned long)hcpu;
578 struct task_struct *thread;
579 struct task_struct **percpu_thread =
580 per_cpu_ptr(powerclamp_thread, cpu);
582 if (false == clamping)
583 goto exit_ok;
585 switch (action) {
586 case CPU_ONLINE:
587 thread = kthread_create_on_node(clamp_thread,
588 (void *) cpu,
589 cpu_to_node(cpu),
590 "kidle_inject/%lu", cpu);
591 if (likely(!IS_ERR(thread))) {
592 kthread_bind(thread, cpu);
593 wake_up_process(thread);
594 *percpu_thread = thread;
596 /* prefer BSP as controlling CPU */
597 if (cpu == 0) {
598 control_cpu = 0;
599 smp_mb();
601 break;
602 case CPU_DEAD:
603 if (test_bit(cpu, cpu_clamping_mask)) {
604 pr_err("cpu %lu dead but powerclamping thread is not\n",
605 cpu);
606 kthread_stop(*percpu_thread);
608 if (cpu == control_cpu) {
609 control_cpu = smp_processor_id();
610 smp_mb();
614 exit_ok:
615 return NOTIFY_OK;
618 static struct notifier_block powerclamp_cpu_notifier = {
619 .notifier_call = powerclamp_cpu_callback,
622 static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
623 unsigned long *state)
625 *state = MAX_TARGET_RATIO;
627 return 0;
630 static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
631 unsigned long *state)
633 if (true == clamping)
634 *state = pkg_cstate_ratio_cur;
635 else
636 /* to save power, do not poll idle ratio while not clamping */
637 *state = -1; /* indicates invalid state */
639 return 0;
642 static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
643 unsigned long new_target_ratio)
645 int ret = 0;
647 new_target_ratio = clamp(new_target_ratio, 0UL,
648 (unsigned long) (MAX_TARGET_RATIO-1));
649 if (set_target_ratio == 0 && new_target_ratio > 0) {
650 pr_info("Start idle injection to reduce power\n");
651 set_target_ratio = new_target_ratio;
652 ret = start_power_clamp();
653 goto exit_set;
654 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
655 pr_info("Stop forced idle injection\n");
656 set_target_ratio = 0;
657 end_power_clamp();
658 } else /* adjust currently running */ {
659 set_target_ratio = new_target_ratio;
660 /* make new set_target_ratio visible to other cpus */
661 smp_mb();
664 exit_set:
665 return ret;
668 /* bind to generic thermal layer as cooling device*/
669 static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
670 .get_max_state = powerclamp_get_max_state,
671 .get_cur_state = powerclamp_get_cur_state,
672 .set_cur_state = powerclamp_set_cur_state,
675 /* runs on Nehalem and later */
676 static const struct x86_cpu_id intel_powerclamp_ids[] __initconst = {
677 { X86_VENDOR_INTEL, 6, 0x1a},
678 { X86_VENDOR_INTEL, 6, 0x1c},
679 { X86_VENDOR_INTEL, 6, 0x1e},
680 { X86_VENDOR_INTEL, 6, 0x1f},
681 { X86_VENDOR_INTEL, 6, 0x25},
682 { X86_VENDOR_INTEL, 6, 0x26},
683 { X86_VENDOR_INTEL, 6, 0x2a},
684 { X86_VENDOR_INTEL, 6, 0x2c},
685 { X86_VENDOR_INTEL, 6, 0x2d},
686 { X86_VENDOR_INTEL, 6, 0x2e},
687 { X86_VENDOR_INTEL, 6, 0x2f},
688 { X86_VENDOR_INTEL, 6, 0x37},
689 { X86_VENDOR_INTEL, 6, 0x3a},
690 { X86_VENDOR_INTEL, 6, 0x3c},
691 { X86_VENDOR_INTEL, 6, 0x3d},
692 { X86_VENDOR_INTEL, 6, 0x3e},
693 { X86_VENDOR_INTEL, 6, 0x3f},
694 { X86_VENDOR_INTEL, 6, 0x45},
695 { X86_VENDOR_INTEL, 6, 0x46},
696 { X86_VENDOR_INTEL, 6, 0x4c},
697 { X86_VENDOR_INTEL, 6, 0x4d},
698 { X86_VENDOR_INTEL, 6, 0x4f},
699 { X86_VENDOR_INTEL, 6, 0x56},
702 MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
704 static int __init powerclamp_probe(void)
706 if (!x86_match_cpu(intel_powerclamp_ids)) {
707 pr_err("Intel powerclamp does not run on family %d model %d\n",
708 boot_cpu_data.x86, boot_cpu_data.x86_model);
709 return -ENODEV;
711 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
712 !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) ||
713 !boot_cpu_has(X86_FEATURE_MWAIT) ||
714 !boot_cpu_has(X86_FEATURE_ARAT))
715 return -ENODEV;
717 /* find the deepest mwait value */
718 find_target_mwait();
720 return 0;
723 static int powerclamp_debug_show(struct seq_file *m, void *unused)
725 int i = 0;
727 seq_printf(m, "controlling cpu: %d\n", control_cpu);
728 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
729 for (i = 0; i < MAX_TARGET_RATIO; i++) {
730 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
732 cal_data[i].confidence,
733 cal_data[i].steady_comp,
734 cal_data[i].dynamic_comp);
737 return 0;
740 static int powerclamp_debug_open(struct inode *inode,
741 struct file *file)
743 return single_open(file, powerclamp_debug_show, inode->i_private);
746 static const struct file_operations powerclamp_debug_fops = {
747 .open = powerclamp_debug_open,
748 .read = seq_read,
749 .llseek = seq_lseek,
750 .release = single_release,
751 .owner = THIS_MODULE,
754 static inline void powerclamp_create_debug_files(void)
756 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
757 if (!debug_dir)
758 return;
760 if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
761 cal_data, &powerclamp_debug_fops))
762 goto file_error;
764 return;
766 file_error:
767 debugfs_remove_recursive(debug_dir);
770 static int __init powerclamp_init(void)
772 int retval;
773 int bitmap_size;
775 bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
776 cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
777 if (!cpu_clamping_mask)
778 return -ENOMEM;
780 /* probe cpu features and ids here */
781 retval = powerclamp_probe();
782 if (retval)
783 goto exit_free;
785 /* set default limit, maybe adjusted during runtime based on feedback */
786 window_size = 2;
787 register_hotcpu_notifier(&powerclamp_cpu_notifier);
789 powerclamp_thread = alloc_percpu(struct task_struct *);
790 if (!powerclamp_thread) {
791 retval = -ENOMEM;
792 goto exit_unregister;
795 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
796 &powerclamp_cooling_ops);
797 if (IS_ERR(cooling_dev)) {
798 retval = -ENODEV;
799 goto exit_free_thread;
802 if (!duration)
803 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
805 powerclamp_create_debug_files();
807 return 0;
809 exit_free_thread:
810 free_percpu(powerclamp_thread);
811 exit_unregister:
812 unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
813 exit_free:
814 kfree(cpu_clamping_mask);
815 return retval;
817 module_init(powerclamp_init);
819 static void __exit powerclamp_exit(void)
821 unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
822 end_power_clamp();
823 free_percpu(powerclamp_thread);
824 thermal_cooling_device_unregister(cooling_dev);
825 kfree(cpu_clamping_mask);
827 cancel_delayed_work_sync(&poll_pkg_cstate_work);
828 debugfs_remove_recursive(debug_dir);
830 module_exit(powerclamp_exit);
832 MODULE_LICENSE("GPL");
833 MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
834 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
835 MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");