2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
67 #include <net/protocol.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
80 struct kmem_cache
*skbuff_head_cache __read_mostly
;
81 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
84 * skb_panic - private function for out-of-line support
88 * @msg: skb_over_panic or skb_under_panic
90 * Out-of-line support for skb_put() and skb_push().
91 * Called via the wrapper skb_over_panic() or skb_under_panic().
92 * Keep out of line to prevent kernel bloat.
93 * __builtin_return_address is not used because it is not always reliable.
95 static void skb_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
,
98 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
99 msg
, addr
, skb
->len
, sz
, skb
->head
, skb
->data
,
100 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
101 skb
->dev
? skb
->dev
->name
: "<NULL>");
105 static void skb_over_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
107 skb_panic(skb
, sz
, addr
, __func__
);
110 static void skb_under_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
112 skb_panic(skb
, sz
, addr
, __func__
);
116 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
117 * the caller if emergency pfmemalloc reserves are being used. If it is and
118 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
119 * may be used. Otherwise, the packet data may be discarded until enough
122 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
123 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
125 static void *__kmalloc_reserve(size_t size
, gfp_t flags
, int node
,
126 unsigned long ip
, bool *pfmemalloc
)
129 bool ret_pfmemalloc
= false;
132 * Try a regular allocation, when that fails and we're not entitled
133 * to the reserves, fail.
135 obj
= kmalloc_node_track_caller(size
,
136 flags
| __GFP_NOMEMALLOC
| __GFP_NOWARN
,
138 if (obj
|| !(gfp_pfmemalloc_allowed(flags
)))
141 /* Try again but now we are using pfmemalloc reserves */
142 ret_pfmemalloc
= true;
143 obj
= kmalloc_node_track_caller(size
, flags
, node
);
147 *pfmemalloc
= ret_pfmemalloc
;
152 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
153 * 'private' fields and also do memory statistics to find all the
158 struct sk_buff
*__alloc_skb_head(gfp_t gfp_mask
, int node
)
163 skb
= kmem_cache_alloc_node(skbuff_head_cache
,
164 gfp_mask
& ~__GFP_DMA
, node
);
169 * Only clear those fields we need to clear, not those that we will
170 * actually initialise below. Hence, don't put any more fields after
171 * the tail pointer in struct sk_buff!
173 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
175 skb
->truesize
= sizeof(struct sk_buff
);
176 atomic_set(&skb
->users
, 1);
178 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
184 * __alloc_skb - allocate a network buffer
185 * @size: size to allocate
186 * @gfp_mask: allocation mask
187 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
188 * instead of head cache and allocate a cloned (child) skb.
189 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
190 * allocations in case the data is required for writeback
191 * @node: numa node to allocate memory on
193 * Allocate a new &sk_buff. The returned buffer has no headroom and a
194 * tail room of at least size bytes. The object has a reference count
195 * of one. The return is the buffer. On a failure the return is %NULL.
197 * Buffers may only be allocated from interrupts using a @gfp_mask of
200 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
203 struct kmem_cache
*cache
;
204 struct skb_shared_info
*shinfo
;
209 cache
= (flags
& SKB_ALLOC_FCLONE
)
210 ? skbuff_fclone_cache
: skbuff_head_cache
;
212 if (sk_memalloc_socks() && (flags
& SKB_ALLOC_RX
))
213 gfp_mask
|= __GFP_MEMALLOC
;
216 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
221 /* We do our best to align skb_shared_info on a separate cache
222 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
223 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
224 * Both skb->head and skb_shared_info are cache line aligned.
226 size
= SKB_DATA_ALIGN(size
);
227 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
228 data
= kmalloc_reserve(size
, gfp_mask
, node
, &pfmemalloc
);
231 /* kmalloc(size) might give us more room than requested.
232 * Put skb_shared_info exactly at the end of allocated zone,
233 * to allow max possible filling before reallocation.
235 size
= SKB_WITH_OVERHEAD(ksize(data
));
236 prefetchw(data
+ size
);
239 * Only clear those fields we need to clear, not those that we will
240 * actually initialise below. Hence, don't put any more fields after
241 * the tail pointer in struct sk_buff!
243 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
244 /* Account for allocated memory : skb + skb->head */
245 skb
->truesize
= SKB_TRUESIZE(size
);
246 skb
->pfmemalloc
= pfmemalloc
;
247 atomic_set(&skb
->users
, 1);
250 skb_reset_tail_pointer(skb
);
251 skb
->end
= skb
->tail
+ size
;
252 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
253 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
255 /* make sure we initialize shinfo sequentially */
256 shinfo
= skb_shinfo(skb
);
257 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
258 atomic_set(&shinfo
->dataref
, 1);
259 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
261 if (flags
& SKB_ALLOC_FCLONE
) {
262 struct sk_buff_fclones
*fclones
;
264 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
266 kmemcheck_annotate_bitfield(&fclones
->skb2
, flags1
);
267 skb
->fclone
= SKB_FCLONE_ORIG
;
268 atomic_set(&fclones
->fclone_ref
, 1);
270 fclones
->skb2
.fclone
= SKB_FCLONE_CLONE
;
271 fclones
->skb2
.pfmemalloc
= pfmemalloc
;
276 kmem_cache_free(cache
, skb
);
280 EXPORT_SYMBOL(__alloc_skb
);
283 * __build_skb - build a network buffer
284 * @data: data buffer provided by caller
285 * @frag_size: size of data, or 0 if head was kmalloced
287 * Allocate a new &sk_buff. Caller provides space holding head and
288 * skb_shared_info. @data must have been allocated by kmalloc() only if
289 * @frag_size is 0, otherwise data should come from the page allocator
291 * The return is the new skb buffer.
292 * On a failure the return is %NULL, and @data is not freed.
294 * Before IO, driver allocates only data buffer where NIC put incoming frame
295 * Driver should add room at head (NET_SKB_PAD) and
296 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
297 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
298 * before giving packet to stack.
299 * RX rings only contains data buffers, not full skbs.
301 struct sk_buff
*__build_skb(void *data
, unsigned int frag_size
)
303 struct skb_shared_info
*shinfo
;
305 unsigned int size
= frag_size
? : ksize(data
);
307 skb
= kmem_cache_alloc(skbuff_head_cache
, GFP_ATOMIC
);
311 size
-= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
313 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
314 skb
->truesize
= SKB_TRUESIZE(size
);
315 atomic_set(&skb
->users
, 1);
318 skb_reset_tail_pointer(skb
);
319 skb
->end
= skb
->tail
+ size
;
320 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
321 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
323 /* make sure we initialize shinfo sequentially */
324 shinfo
= skb_shinfo(skb
);
325 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
326 atomic_set(&shinfo
->dataref
, 1);
327 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
332 /* build_skb() is wrapper over __build_skb(), that specifically
333 * takes care of skb->head and skb->pfmemalloc
334 * This means that if @frag_size is not zero, then @data must be backed
335 * by a page fragment, not kmalloc() or vmalloc()
337 struct sk_buff
*build_skb(void *data
, unsigned int frag_size
)
339 struct sk_buff
*skb
= __build_skb(data
, frag_size
);
341 if (skb
&& frag_size
) {
343 if (page_is_pfmemalloc(virt_to_head_page(data
)))
348 EXPORT_SYMBOL(build_skb
);
350 struct netdev_alloc_cache
{
351 struct page_frag frag
;
352 /* we maintain a pagecount bias, so that we dont dirty cache line
353 * containing page->_count every time we allocate a fragment.
355 unsigned int pagecnt_bias
;
357 static DEFINE_PER_CPU(struct netdev_alloc_cache
, netdev_alloc_cache
);
358 static DEFINE_PER_CPU(struct netdev_alloc_cache
, napi_alloc_cache
);
360 static struct page
*__page_frag_refill(struct netdev_alloc_cache
*nc
,
363 const unsigned int order
= NETDEV_FRAG_PAGE_MAX_ORDER
;
364 struct page
*page
= NULL
;
365 gfp_t gfp
= gfp_mask
;
368 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
370 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
, order
);
371 nc
->frag
.size
= PAGE_SIZE
<< (page
? order
: 0);
375 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
377 nc
->frag
.page
= page
;
382 static void *__alloc_page_frag(struct netdev_alloc_cache __percpu
*cache
,
383 unsigned int fragsz
, gfp_t gfp_mask
)
385 struct netdev_alloc_cache
*nc
= this_cpu_ptr(cache
);
386 struct page
*page
= nc
->frag
.page
;
390 if (unlikely(!page
)) {
392 page
= __page_frag_refill(nc
, gfp_mask
);
396 /* if size can vary use frag.size else just use PAGE_SIZE */
397 size
= NETDEV_FRAG_PAGE_MAX_ORDER
? nc
->frag
.size
: PAGE_SIZE
;
399 /* Even if we own the page, we do not use atomic_set().
400 * This would break get_page_unless_zero() users.
402 atomic_add(size
- 1, &page
->_count
);
404 /* reset page count bias and offset to start of new frag */
405 nc
->pagecnt_bias
= size
;
406 nc
->frag
.offset
= size
;
409 offset
= nc
->frag
.offset
- fragsz
;
410 if (unlikely(offset
< 0)) {
411 if (!atomic_sub_and_test(nc
->pagecnt_bias
, &page
->_count
))
414 /* if size can vary use frag.size else just use PAGE_SIZE */
415 size
= NETDEV_FRAG_PAGE_MAX_ORDER
? nc
->frag
.size
: PAGE_SIZE
;
417 /* OK, page count is 0, we can safely set it */
418 atomic_set(&page
->_count
, size
);
420 /* reset page count bias and offset to start of new frag */
421 nc
->pagecnt_bias
= size
;
422 offset
= size
- fragsz
;
426 nc
->frag
.offset
= offset
;
428 return page_address(page
) + offset
;
431 static void *__netdev_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
436 local_irq_save(flags
);
437 data
= __alloc_page_frag(&netdev_alloc_cache
, fragsz
, gfp_mask
);
438 local_irq_restore(flags
);
443 * netdev_alloc_frag - allocate a page fragment
444 * @fragsz: fragment size
446 * Allocates a frag from a page for receive buffer.
447 * Uses GFP_ATOMIC allocations.
449 void *netdev_alloc_frag(unsigned int fragsz
)
451 return __netdev_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
453 EXPORT_SYMBOL(netdev_alloc_frag
);
455 static void *__napi_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
457 return __alloc_page_frag(&napi_alloc_cache
, fragsz
, gfp_mask
);
460 void *napi_alloc_frag(unsigned int fragsz
)
462 return __napi_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
464 EXPORT_SYMBOL(napi_alloc_frag
);
467 * __alloc_rx_skb - allocate an skbuff for rx
468 * @length: length to allocate
469 * @gfp_mask: get_free_pages mask, passed to alloc_skb
470 * @flags: If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
471 * allocations in case we have to fallback to __alloc_skb()
472 * If SKB_ALLOC_NAPI is set, page fragment will be allocated
473 * from napi_cache instead of netdev_cache.
475 * Allocate a new &sk_buff and assign it a usage count of one. The
476 * buffer has unspecified headroom built in. Users should allocate
477 * the headroom they think they need without accounting for the
478 * built in space. The built in space is used for optimisations.
480 * %NULL is returned if there is no free memory.
482 static struct sk_buff
*__alloc_rx_skb(unsigned int length
, gfp_t gfp_mask
,
485 struct sk_buff
*skb
= NULL
;
486 unsigned int fragsz
= SKB_DATA_ALIGN(length
) +
487 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
489 if (fragsz
<= PAGE_SIZE
&& !(gfp_mask
& (__GFP_WAIT
| GFP_DMA
))) {
492 if (sk_memalloc_socks())
493 gfp_mask
|= __GFP_MEMALLOC
;
495 data
= (flags
& SKB_ALLOC_NAPI
) ?
496 __napi_alloc_frag(fragsz
, gfp_mask
) :
497 __netdev_alloc_frag(fragsz
, gfp_mask
);
500 skb
= build_skb(data
, fragsz
);
502 put_page(virt_to_head_page(data
));
505 skb
= __alloc_skb(length
, gfp_mask
,
506 SKB_ALLOC_RX
, NUMA_NO_NODE
);
512 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
513 * @dev: network device to receive on
514 * @length: length to allocate
515 * @gfp_mask: get_free_pages mask, passed to alloc_skb
517 * Allocate a new &sk_buff and assign it a usage count of one. The
518 * buffer has NET_SKB_PAD headroom built in. Users should allocate
519 * the headroom they think they need without accounting for the
520 * built in space. The built in space is used for optimisations.
522 * %NULL is returned if there is no free memory.
524 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
525 unsigned int length
, gfp_t gfp_mask
)
529 length
+= NET_SKB_PAD
;
530 skb
= __alloc_rx_skb(length
, gfp_mask
, 0);
533 skb_reserve(skb
, NET_SKB_PAD
);
539 EXPORT_SYMBOL(__netdev_alloc_skb
);
542 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
543 * @napi: napi instance this buffer was allocated for
544 * @length: length to allocate
545 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
547 * Allocate a new sk_buff for use in NAPI receive. This buffer will
548 * attempt to allocate the head from a special reserved region used
549 * only for NAPI Rx allocation. By doing this we can save several
550 * CPU cycles by avoiding having to disable and re-enable IRQs.
552 * %NULL is returned if there is no free memory.
554 struct sk_buff
*__napi_alloc_skb(struct napi_struct
*napi
,
555 unsigned int length
, gfp_t gfp_mask
)
559 length
+= NET_SKB_PAD
+ NET_IP_ALIGN
;
560 skb
= __alloc_rx_skb(length
, gfp_mask
, SKB_ALLOC_NAPI
);
563 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
);
564 skb
->dev
= napi
->dev
;
569 EXPORT_SYMBOL(__napi_alloc_skb
);
571 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
572 int size
, unsigned int truesize
)
574 skb_fill_page_desc(skb
, i
, page
, off
, size
);
576 skb
->data_len
+= size
;
577 skb
->truesize
+= truesize
;
579 EXPORT_SYMBOL(skb_add_rx_frag
);
581 void skb_coalesce_rx_frag(struct sk_buff
*skb
, int i
, int size
,
582 unsigned int truesize
)
584 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
586 skb_frag_size_add(frag
, size
);
588 skb
->data_len
+= size
;
589 skb
->truesize
+= truesize
;
591 EXPORT_SYMBOL(skb_coalesce_rx_frag
);
593 static void skb_drop_list(struct sk_buff
**listp
)
595 kfree_skb_list(*listp
);
599 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
601 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
604 static void skb_clone_fraglist(struct sk_buff
*skb
)
606 struct sk_buff
*list
;
608 skb_walk_frags(skb
, list
)
612 static void skb_free_head(struct sk_buff
*skb
)
615 put_page(virt_to_head_page(skb
->head
));
620 static void skb_release_data(struct sk_buff
*skb
)
622 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
626 atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
630 for (i
= 0; i
< shinfo
->nr_frags
; i
++)
631 __skb_frag_unref(&shinfo
->frags
[i
]);
634 * If skb buf is from userspace, we need to notify the caller
635 * the lower device DMA has done;
637 if (shinfo
->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
638 struct ubuf_info
*uarg
;
640 uarg
= shinfo
->destructor_arg
;
642 uarg
->callback(uarg
, true);
645 if (shinfo
->frag_list
)
646 kfree_skb_list(shinfo
->frag_list
);
652 * Free an skbuff by memory without cleaning the state.
654 static void kfree_skbmem(struct sk_buff
*skb
)
656 struct sk_buff_fclones
*fclones
;
658 switch (skb
->fclone
) {
659 case SKB_FCLONE_UNAVAILABLE
:
660 kmem_cache_free(skbuff_head_cache
, skb
);
663 case SKB_FCLONE_ORIG
:
664 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
666 /* We usually free the clone (TX completion) before original skb
667 * This test would have no chance to be true for the clone,
668 * while here, branch prediction will be good.
670 if (atomic_read(&fclones
->fclone_ref
) == 1)
674 default: /* SKB_FCLONE_CLONE */
675 fclones
= container_of(skb
, struct sk_buff_fclones
, skb2
);
678 if (!atomic_dec_and_test(&fclones
->fclone_ref
))
681 kmem_cache_free(skbuff_fclone_cache
, fclones
);
684 static void skb_release_head_state(struct sk_buff
*skb
)
688 secpath_put(skb
->sp
);
690 if (skb
->destructor
) {
692 skb
->destructor(skb
);
694 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
695 nf_conntrack_put(skb
->nfct
);
697 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
698 nf_bridge_put(skb
->nf_bridge
);
702 /* Free everything but the sk_buff shell. */
703 static void skb_release_all(struct sk_buff
*skb
)
705 skb_release_head_state(skb
);
706 if (likely(skb
->head
))
707 skb_release_data(skb
);
711 * __kfree_skb - private function
714 * Free an sk_buff. Release anything attached to the buffer.
715 * Clean the state. This is an internal helper function. Users should
716 * always call kfree_skb
719 void __kfree_skb(struct sk_buff
*skb
)
721 skb_release_all(skb
);
724 EXPORT_SYMBOL(__kfree_skb
);
727 * kfree_skb - free an sk_buff
728 * @skb: buffer to free
730 * Drop a reference to the buffer and free it if the usage count has
733 void kfree_skb(struct sk_buff
*skb
)
737 if (likely(atomic_read(&skb
->users
) == 1))
739 else if (likely(!atomic_dec_and_test(&skb
->users
)))
741 trace_kfree_skb(skb
, __builtin_return_address(0));
744 EXPORT_SYMBOL(kfree_skb
);
746 void kfree_skb_list(struct sk_buff
*segs
)
749 struct sk_buff
*next
= segs
->next
;
755 EXPORT_SYMBOL(kfree_skb_list
);
758 * skb_tx_error - report an sk_buff xmit error
759 * @skb: buffer that triggered an error
761 * Report xmit error if a device callback is tracking this skb.
762 * skb must be freed afterwards.
764 void skb_tx_error(struct sk_buff
*skb
)
766 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
767 struct ubuf_info
*uarg
;
769 uarg
= skb_shinfo(skb
)->destructor_arg
;
771 uarg
->callback(uarg
, false);
772 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
775 EXPORT_SYMBOL(skb_tx_error
);
778 * consume_skb - free an skbuff
779 * @skb: buffer to free
781 * Drop a ref to the buffer and free it if the usage count has hit zero
782 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
783 * is being dropped after a failure and notes that
785 void consume_skb(struct sk_buff
*skb
)
789 if (likely(atomic_read(&skb
->users
) == 1))
791 else if (likely(!atomic_dec_and_test(&skb
->users
)))
793 trace_consume_skb(skb
);
796 EXPORT_SYMBOL(consume_skb
);
798 /* Make sure a field is enclosed inside headers_start/headers_end section */
799 #define CHECK_SKB_FIELD(field) \
800 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
801 offsetof(struct sk_buff, headers_start)); \
802 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
803 offsetof(struct sk_buff, headers_end)); \
805 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
807 new->tstamp
= old
->tstamp
;
808 /* We do not copy old->sk */
810 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
811 skb_dst_copy(new, old
);
813 new->sp
= secpath_get(old
->sp
);
815 __nf_copy(new, old
, false);
817 /* Note : this field could be in headers_start/headers_end section
818 * It is not yet because we do not want to have a 16 bit hole
820 new->queue_mapping
= old
->queue_mapping
;
822 memcpy(&new->headers_start
, &old
->headers_start
,
823 offsetof(struct sk_buff
, headers_end
) -
824 offsetof(struct sk_buff
, headers_start
));
825 CHECK_SKB_FIELD(protocol
);
826 CHECK_SKB_FIELD(csum
);
827 CHECK_SKB_FIELD(hash
);
828 CHECK_SKB_FIELD(priority
);
829 CHECK_SKB_FIELD(skb_iif
);
830 CHECK_SKB_FIELD(vlan_proto
);
831 CHECK_SKB_FIELD(vlan_tci
);
832 CHECK_SKB_FIELD(transport_header
);
833 CHECK_SKB_FIELD(network_header
);
834 CHECK_SKB_FIELD(mac_header
);
835 CHECK_SKB_FIELD(inner_protocol
);
836 CHECK_SKB_FIELD(inner_transport_header
);
837 CHECK_SKB_FIELD(inner_network_header
);
838 CHECK_SKB_FIELD(inner_mac_header
);
839 CHECK_SKB_FIELD(mark
);
840 #ifdef CONFIG_NETWORK_SECMARK
841 CHECK_SKB_FIELD(secmark
);
843 #ifdef CONFIG_NET_RX_BUSY_POLL
844 CHECK_SKB_FIELD(napi_id
);
847 CHECK_SKB_FIELD(sender_cpu
);
849 #ifdef CONFIG_NET_SCHED
850 CHECK_SKB_FIELD(tc_index
);
851 #ifdef CONFIG_NET_CLS_ACT
852 CHECK_SKB_FIELD(tc_verd
);
859 * You should not add any new code to this function. Add it to
860 * __copy_skb_header above instead.
862 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
864 #define C(x) n->x = skb->x
866 n
->next
= n
->prev
= NULL
;
868 __copy_skb_header(n
, skb
);
873 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
876 n
->destructor
= NULL
;
883 atomic_set(&n
->users
, 1);
885 atomic_inc(&(skb_shinfo(skb
)->dataref
));
893 * skb_morph - morph one skb into another
894 * @dst: the skb to receive the contents
895 * @src: the skb to supply the contents
897 * This is identical to skb_clone except that the target skb is
898 * supplied by the user.
900 * The target skb is returned upon exit.
902 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
904 skb_release_all(dst
);
905 return __skb_clone(dst
, src
);
907 EXPORT_SYMBOL_GPL(skb_morph
);
910 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
911 * @skb: the skb to modify
912 * @gfp_mask: allocation priority
914 * This must be called on SKBTX_DEV_ZEROCOPY skb.
915 * It will copy all frags into kernel and drop the reference
916 * to userspace pages.
918 * If this function is called from an interrupt gfp_mask() must be
921 * Returns 0 on success or a negative error code on failure
922 * to allocate kernel memory to copy to.
924 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
927 int num_frags
= skb_shinfo(skb
)->nr_frags
;
928 struct page
*page
, *head
= NULL
;
929 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
931 for (i
= 0; i
< num_frags
; i
++) {
933 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
935 page
= alloc_page(gfp_mask
);
938 struct page
*next
= (struct page
*)page_private(head
);
944 vaddr
= kmap_atomic(skb_frag_page(f
));
945 memcpy(page_address(page
),
946 vaddr
+ f
->page_offset
, skb_frag_size(f
));
947 kunmap_atomic(vaddr
);
948 set_page_private(page
, (unsigned long)head
);
952 /* skb frags release userspace buffers */
953 for (i
= 0; i
< num_frags
; i
++)
954 skb_frag_unref(skb
, i
);
956 uarg
->callback(uarg
, false);
958 /* skb frags point to kernel buffers */
959 for (i
= num_frags
- 1; i
>= 0; i
--) {
960 __skb_fill_page_desc(skb
, i
, head
, 0,
961 skb_shinfo(skb
)->frags
[i
].size
);
962 head
= (struct page
*)page_private(head
);
965 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
968 EXPORT_SYMBOL_GPL(skb_copy_ubufs
);
971 * skb_clone - duplicate an sk_buff
972 * @skb: buffer to clone
973 * @gfp_mask: allocation priority
975 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
976 * copies share the same packet data but not structure. The new
977 * buffer has a reference count of 1. If the allocation fails the
978 * function returns %NULL otherwise the new buffer is returned.
980 * If this function is called from an interrupt gfp_mask() must be
984 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
986 struct sk_buff_fclones
*fclones
= container_of(skb
,
987 struct sk_buff_fclones
,
991 if (skb_orphan_frags(skb
, gfp_mask
))
994 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
995 atomic_read(&fclones
->fclone_ref
) == 1) {
997 atomic_set(&fclones
->fclone_ref
, 2);
999 if (skb_pfmemalloc(skb
))
1000 gfp_mask
|= __GFP_MEMALLOC
;
1002 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
1006 kmemcheck_annotate_bitfield(n
, flags1
);
1007 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
1010 return __skb_clone(n
, skb
);
1012 EXPORT_SYMBOL(skb_clone
);
1014 static void skb_headers_offset_update(struct sk_buff
*skb
, int off
)
1016 /* Only adjust this if it actually is csum_start rather than csum */
1017 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1018 skb
->csum_start
+= off
;
1019 /* {transport,network,mac}_header and tail are relative to skb->head */
1020 skb
->transport_header
+= off
;
1021 skb
->network_header
+= off
;
1022 if (skb_mac_header_was_set(skb
))
1023 skb
->mac_header
+= off
;
1024 skb
->inner_transport_header
+= off
;
1025 skb
->inner_network_header
+= off
;
1026 skb
->inner_mac_header
+= off
;
1029 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
1031 __copy_skb_header(new, old
);
1033 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
1034 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
1035 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
1038 static inline int skb_alloc_rx_flag(const struct sk_buff
*skb
)
1040 if (skb_pfmemalloc(skb
))
1041 return SKB_ALLOC_RX
;
1046 * skb_copy - create private copy of an sk_buff
1047 * @skb: buffer to copy
1048 * @gfp_mask: allocation priority
1050 * Make a copy of both an &sk_buff and its data. This is used when the
1051 * caller wishes to modify the data and needs a private copy of the
1052 * data to alter. Returns %NULL on failure or the pointer to the buffer
1053 * on success. The returned buffer has a reference count of 1.
1055 * As by-product this function converts non-linear &sk_buff to linear
1056 * one, so that &sk_buff becomes completely private and caller is allowed
1057 * to modify all the data of returned buffer. This means that this
1058 * function is not recommended for use in circumstances when only
1059 * header is going to be modified. Use pskb_copy() instead.
1062 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
1064 int headerlen
= skb_headroom(skb
);
1065 unsigned int size
= skb_end_offset(skb
) + skb
->data_len
;
1066 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
1067 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
1072 /* Set the data pointer */
1073 skb_reserve(n
, headerlen
);
1074 /* Set the tail pointer and length */
1075 skb_put(n
, skb
->len
);
1077 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
1080 copy_skb_header(n
, skb
);
1083 EXPORT_SYMBOL(skb_copy
);
1086 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1087 * @skb: buffer to copy
1088 * @headroom: headroom of new skb
1089 * @gfp_mask: allocation priority
1090 * @fclone: if true allocate the copy of the skb from the fclone
1091 * cache instead of the head cache; it is recommended to set this
1092 * to true for the cases where the copy will likely be cloned
1094 * Make a copy of both an &sk_buff and part of its data, located
1095 * in header. Fragmented data remain shared. This is used when
1096 * the caller wishes to modify only header of &sk_buff and needs
1097 * private copy of the header to alter. Returns %NULL on failure
1098 * or the pointer to the buffer on success.
1099 * The returned buffer has a reference count of 1.
1102 struct sk_buff
*__pskb_copy_fclone(struct sk_buff
*skb
, int headroom
,
1103 gfp_t gfp_mask
, bool fclone
)
1105 unsigned int size
= skb_headlen(skb
) + headroom
;
1106 int flags
= skb_alloc_rx_flag(skb
) | (fclone
? SKB_ALLOC_FCLONE
: 0);
1107 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
, flags
, NUMA_NO_NODE
);
1112 /* Set the data pointer */
1113 skb_reserve(n
, headroom
);
1114 /* Set the tail pointer and length */
1115 skb_put(n
, skb_headlen(skb
));
1116 /* Copy the bytes */
1117 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
1119 n
->truesize
+= skb
->data_len
;
1120 n
->data_len
= skb
->data_len
;
1123 if (skb_shinfo(skb
)->nr_frags
) {
1126 if (skb_orphan_frags(skb
, gfp_mask
)) {
1131 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1132 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1133 skb_frag_ref(skb
, i
);
1135 skb_shinfo(n
)->nr_frags
= i
;
1138 if (skb_has_frag_list(skb
)) {
1139 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
1140 skb_clone_fraglist(n
);
1143 copy_skb_header(n
, skb
);
1147 EXPORT_SYMBOL(__pskb_copy_fclone
);
1150 * pskb_expand_head - reallocate header of &sk_buff
1151 * @skb: buffer to reallocate
1152 * @nhead: room to add at head
1153 * @ntail: room to add at tail
1154 * @gfp_mask: allocation priority
1156 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1157 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1158 * reference count of 1. Returns zero in the case of success or error,
1159 * if expansion failed. In the last case, &sk_buff is not changed.
1161 * All the pointers pointing into skb header may change and must be
1162 * reloaded after call to this function.
1165 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
1170 int size
= nhead
+ skb_end_offset(skb
) + ntail
;
1175 if (skb_shared(skb
))
1178 size
= SKB_DATA_ALIGN(size
);
1180 if (skb_pfmemalloc(skb
))
1181 gfp_mask
|= __GFP_MEMALLOC
;
1182 data
= kmalloc_reserve(size
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
1183 gfp_mask
, NUMA_NO_NODE
, NULL
);
1186 size
= SKB_WITH_OVERHEAD(ksize(data
));
1188 /* Copy only real data... and, alas, header. This should be
1189 * optimized for the cases when header is void.
1191 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
1193 memcpy((struct skb_shared_info
*)(data
+ size
),
1195 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
1198 * if shinfo is shared we must drop the old head gracefully, but if it
1199 * is not we can just drop the old head and let the existing refcount
1200 * be since all we did is relocate the values
1202 if (skb_cloned(skb
)) {
1203 /* copy this zero copy skb frags */
1204 if (skb_orphan_frags(skb
, gfp_mask
))
1206 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1207 skb_frag_ref(skb
, i
);
1209 if (skb_has_frag_list(skb
))
1210 skb_clone_fraglist(skb
);
1212 skb_release_data(skb
);
1216 off
= (data
+ nhead
) - skb
->head
;
1221 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1225 skb
->end
= skb
->head
+ size
;
1228 skb_headers_offset_update(skb
, nhead
);
1232 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
1240 EXPORT_SYMBOL(pskb_expand_head
);
1242 /* Make private copy of skb with writable head and some headroom */
1244 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
1246 struct sk_buff
*skb2
;
1247 int delta
= headroom
- skb_headroom(skb
);
1250 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
1252 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1253 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
1261 EXPORT_SYMBOL(skb_realloc_headroom
);
1264 * skb_copy_expand - copy and expand sk_buff
1265 * @skb: buffer to copy
1266 * @newheadroom: new free bytes at head
1267 * @newtailroom: new free bytes at tail
1268 * @gfp_mask: allocation priority
1270 * Make a copy of both an &sk_buff and its data and while doing so
1271 * allocate additional space.
1273 * This is used when the caller wishes to modify the data and needs a
1274 * private copy of the data to alter as well as more space for new fields.
1275 * Returns %NULL on failure or the pointer to the buffer
1276 * on success. The returned buffer has a reference count of 1.
1278 * You must pass %GFP_ATOMIC as the allocation priority if this function
1279 * is called from an interrupt.
1281 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1282 int newheadroom
, int newtailroom
,
1286 * Allocate the copy buffer
1288 struct sk_buff
*n
= __alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1289 gfp_mask
, skb_alloc_rx_flag(skb
),
1291 int oldheadroom
= skb_headroom(skb
);
1292 int head_copy_len
, head_copy_off
;
1297 skb_reserve(n
, newheadroom
);
1299 /* Set the tail pointer and length */
1300 skb_put(n
, skb
->len
);
1302 head_copy_len
= oldheadroom
;
1304 if (newheadroom
<= head_copy_len
)
1305 head_copy_len
= newheadroom
;
1307 head_copy_off
= newheadroom
- head_copy_len
;
1309 /* Copy the linear header and data. */
1310 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1311 skb
->len
+ head_copy_len
))
1314 copy_skb_header(n
, skb
);
1316 skb_headers_offset_update(n
, newheadroom
- oldheadroom
);
1320 EXPORT_SYMBOL(skb_copy_expand
);
1323 * skb_pad - zero pad the tail of an skb
1324 * @skb: buffer to pad
1325 * @pad: space to pad
1327 * Ensure that a buffer is followed by a padding area that is zero
1328 * filled. Used by network drivers which may DMA or transfer data
1329 * beyond the buffer end onto the wire.
1331 * May return error in out of memory cases. The skb is freed on error.
1334 int skb_pad(struct sk_buff
*skb
, int pad
)
1339 /* If the skbuff is non linear tailroom is always zero.. */
1340 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1341 memset(skb
->data
+skb
->len
, 0, pad
);
1345 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1346 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1347 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1352 /* FIXME: The use of this function with non-linear skb's really needs
1355 err
= skb_linearize(skb
);
1359 memset(skb
->data
+ skb
->len
, 0, pad
);
1366 EXPORT_SYMBOL(skb_pad
);
1369 * pskb_put - add data to the tail of a potentially fragmented buffer
1370 * @skb: start of the buffer to use
1371 * @tail: tail fragment of the buffer to use
1372 * @len: amount of data to add
1374 * This function extends the used data area of the potentially
1375 * fragmented buffer. @tail must be the last fragment of @skb -- or
1376 * @skb itself. If this would exceed the total buffer size the kernel
1377 * will panic. A pointer to the first byte of the extra data is
1381 unsigned char *pskb_put(struct sk_buff
*skb
, struct sk_buff
*tail
, int len
)
1384 skb
->data_len
+= len
;
1387 return skb_put(tail
, len
);
1389 EXPORT_SYMBOL_GPL(pskb_put
);
1392 * skb_put - add data to a buffer
1393 * @skb: buffer to use
1394 * @len: amount of data to add
1396 * This function extends the used data area of the buffer. If this would
1397 * exceed the total buffer size the kernel will panic. A pointer to the
1398 * first byte of the extra data is returned.
1400 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1402 unsigned char *tmp
= skb_tail_pointer(skb
);
1403 SKB_LINEAR_ASSERT(skb
);
1406 if (unlikely(skb
->tail
> skb
->end
))
1407 skb_over_panic(skb
, len
, __builtin_return_address(0));
1410 EXPORT_SYMBOL(skb_put
);
1413 * skb_push - add data to the start of a buffer
1414 * @skb: buffer to use
1415 * @len: amount of data to add
1417 * This function extends the used data area of the buffer at the buffer
1418 * start. If this would exceed the total buffer headroom the kernel will
1419 * panic. A pointer to the first byte of the extra data is returned.
1421 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1425 if (unlikely(skb
->data
<skb
->head
))
1426 skb_under_panic(skb
, len
, __builtin_return_address(0));
1429 EXPORT_SYMBOL(skb_push
);
1432 * skb_pull - remove data from the start of a buffer
1433 * @skb: buffer to use
1434 * @len: amount of data to remove
1436 * This function removes data from the start of a buffer, returning
1437 * the memory to the headroom. A pointer to the next data in the buffer
1438 * is returned. Once the data has been pulled future pushes will overwrite
1441 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1443 return skb_pull_inline(skb
, len
);
1445 EXPORT_SYMBOL(skb_pull
);
1448 * skb_trim - remove end from a buffer
1449 * @skb: buffer to alter
1452 * Cut the length of a buffer down by removing data from the tail. If
1453 * the buffer is already under the length specified it is not modified.
1454 * The skb must be linear.
1456 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1459 __skb_trim(skb
, len
);
1461 EXPORT_SYMBOL(skb_trim
);
1463 /* Trims skb to length len. It can change skb pointers.
1466 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1468 struct sk_buff
**fragp
;
1469 struct sk_buff
*frag
;
1470 int offset
= skb_headlen(skb
);
1471 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1475 if (skb_cloned(skb
) &&
1476 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1483 for (; i
< nfrags
; i
++) {
1484 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1491 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1494 skb_shinfo(skb
)->nr_frags
= i
;
1496 for (; i
< nfrags
; i
++)
1497 skb_frag_unref(skb
, i
);
1499 if (skb_has_frag_list(skb
))
1500 skb_drop_fraglist(skb
);
1504 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1505 fragp
= &frag
->next
) {
1506 int end
= offset
+ frag
->len
;
1508 if (skb_shared(frag
)) {
1509 struct sk_buff
*nfrag
;
1511 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1512 if (unlikely(!nfrag
))
1515 nfrag
->next
= frag
->next
;
1527 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1531 skb_drop_list(&frag
->next
);
1536 if (len
> skb_headlen(skb
)) {
1537 skb
->data_len
-= skb
->len
- len
;
1542 skb_set_tail_pointer(skb
, len
);
1547 EXPORT_SYMBOL(___pskb_trim
);
1550 * __pskb_pull_tail - advance tail of skb header
1551 * @skb: buffer to reallocate
1552 * @delta: number of bytes to advance tail
1554 * The function makes a sense only on a fragmented &sk_buff,
1555 * it expands header moving its tail forward and copying necessary
1556 * data from fragmented part.
1558 * &sk_buff MUST have reference count of 1.
1560 * Returns %NULL (and &sk_buff does not change) if pull failed
1561 * or value of new tail of skb in the case of success.
1563 * All the pointers pointing into skb header may change and must be
1564 * reloaded after call to this function.
1567 /* Moves tail of skb head forward, copying data from fragmented part,
1568 * when it is necessary.
1569 * 1. It may fail due to malloc failure.
1570 * 2. It may change skb pointers.
1572 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1574 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1576 /* If skb has not enough free space at tail, get new one
1577 * plus 128 bytes for future expansions. If we have enough
1578 * room at tail, reallocate without expansion only if skb is cloned.
1580 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1582 if (eat
> 0 || skb_cloned(skb
)) {
1583 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1588 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1591 /* Optimization: no fragments, no reasons to preestimate
1592 * size of pulled pages. Superb.
1594 if (!skb_has_frag_list(skb
))
1597 /* Estimate size of pulled pages. */
1599 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1600 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1607 /* If we need update frag list, we are in troubles.
1608 * Certainly, it possible to add an offset to skb data,
1609 * but taking into account that pulling is expected to
1610 * be very rare operation, it is worth to fight against
1611 * further bloating skb head and crucify ourselves here instead.
1612 * Pure masohism, indeed. 8)8)
1615 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1616 struct sk_buff
*clone
= NULL
;
1617 struct sk_buff
*insp
= NULL
;
1622 if (list
->len
<= eat
) {
1623 /* Eaten as whole. */
1628 /* Eaten partially. */
1630 if (skb_shared(list
)) {
1631 /* Sucks! We need to fork list. :-( */
1632 clone
= skb_clone(list
, GFP_ATOMIC
);
1638 /* This may be pulled without
1642 if (!pskb_pull(list
, eat
)) {
1650 /* Free pulled out fragments. */
1651 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1652 skb_shinfo(skb
)->frag_list
= list
->next
;
1655 /* And insert new clone at head. */
1658 skb_shinfo(skb
)->frag_list
= clone
;
1661 /* Success! Now we may commit changes to skb data. */
1666 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1667 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1670 skb_frag_unref(skb
, i
);
1673 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1675 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1676 skb_frag_size_sub(&skb_shinfo(skb
)->frags
[k
], eat
);
1682 skb_shinfo(skb
)->nr_frags
= k
;
1685 skb
->data_len
-= delta
;
1687 return skb_tail_pointer(skb
);
1689 EXPORT_SYMBOL(__pskb_pull_tail
);
1692 * skb_copy_bits - copy bits from skb to kernel buffer
1694 * @offset: offset in source
1695 * @to: destination buffer
1696 * @len: number of bytes to copy
1698 * Copy the specified number of bytes from the source skb to the
1699 * destination buffer.
1702 * If its prototype is ever changed,
1703 * check arch/{*}/net/{*}.S files,
1704 * since it is called from BPF assembly code.
1706 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1708 int start
= skb_headlen(skb
);
1709 struct sk_buff
*frag_iter
;
1712 if (offset
> (int)skb
->len
- len
)
1716 if ((copy
= start
- offset
) > 0) {
1719 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1720 if ((len
-= copy
) == 0)
1726 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1728 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
1730 WARN_ON(start
> offset
+ len
);
1732 end
= start
+ skb_frag_size(f
);
1733 if ((copy
= end
- offset
) > 0) {
1739 vaddr
= kmap_atomic(skb_frag_page(f
));
1741 vaddr
+ f
->page_offset
+ offset
- start
,
1743 kunmap_atomic(vaddr
);
1745 if ((len
-= copy
) == 0)
1753 skb_walk_frags(skb
, frag_iter
) {
1756 WARN_ON(start
> offset
+ len
);
1758 end
= start
+ frag_iter
->len
;
1759 if ((copy
= end
- offset
) > 0) {
1762 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1764 if ((len
-= copy
) == 0)
1778 EXPORT_SYMBOL(skb_copy_bits
);
1781 * Callback from splice_to_pipe(), if we need to release some pages
1782 * at the end of the spd in case we error'ed out in filling the pipe.
1784 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1786 put_page(spd
->pages
[i
]);
1789 static struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1790 unsigned int *offset
,
1793 struct page_frag
*pfrag
= sk_page_frag(sk
);
1795 if (!sk_page_frag_refill(sk
, pfrag
))
1798 *len
= min_t(unsigned int, *len
, pfrag
->size
- pfrag
->offset
);
1800 memcpy(page_address(pfrag
->page
) + pfrag
->offset
,
1801 page_address(page
) + *offset
, *len
);
1802 *offset
= pfrag
->offset
;
1803 pfrag
->offset
+= *len
;
1808 static bool spd_can_coalesce(const struct splice_pipe_desc
*spd
,
1810 unsigned int offset
)
1812 return spd
->nr_pages
&&
1813 spd
->pages
[spd
->nr_pages
- 1] == page
&&
1814 (spd
->partial
[spd
->nr_pages
- 1].offset
+
1815 spd
->partial
[spd
->nr_pages
- 1].len
== offset
);
1819 * Fill page/offset/length into spd, if it can hold more pages.
1821 static bool spd_fill_page(struct splice_pipe_desc
*spd
,
1822 struct pipe_inode_info
*pipe
, struct page
*page
,
1823 unsigned int *len
, unsigned int offset
,
1827 if (unlikely(spd
->nr_pages
== MAX_SKB_FRAGS
))
1831 page
= linear_to_page(page
, len
, &offset
, sk
);
1835 if (spd_can_coalesce(spd
, page
, offset
)) {
1836 spd
->partial
[spd
->nr_pages
- 1].len
+= *len
;
1840 spd
->pages
[spd
->nr_pages
] = page
;
1841 spd
->partial
[spd
->nr_pages
].len
= *len
;
1842 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1848 static bool __splice_segment(struct page
*page
, unsigned int poff
,
1849 unsigned int plen
, unsigned int *off
,
1851 struct splice_pipe_desc
*spd
, bool linear
,
1853 struct pipe_inode_info
*pipe
)
1858 /* skip this segment if already processed */
1864 /* ignore any bits we already processed */
1870 unsigned int flen
= min(*len
, plen
);
1872 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
,
1878 } while (*len
&& plen
);
1884 * Map linear and fragment data from the skb to spd. It reports true if the
1885 * pipe is full or if we already spliced the requested length.
1887 static bool __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1888 unsigned int *offset
, unsigned int *len
,
1889 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1893 /* map the linear part :
1894 * If skb->head_frag is set, this 'linear' part is backed by a
1895 * fragment, and if the head is not shared with any clones then
1896 * we can avoid a copy since we own the head portion of this page.
1898 if (__splice_segment(virt_to_page(skb
->data
),
1899 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1902 skb_head_is_locked(skb
),
1907 * then map the fragments
1909 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1910 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1912 if (__splice_segment(skb_frag_page(f
),
1913 f
->page_offset
, skb_frag_size(f
),
1914 offset
, len
, spd
, false, sk
, pipe
))
1922 * Map data from the skb to a pipe. Should handle both the linear part,
1923 * the fragments, and the frag list. It does NOT handle frag lists within
1924 * the frag list, if such a thing exists. We'd probably need to recurse to
1925 * handle that cleanly.
1927 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1928 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1931 struct partial_page partial
[MAX_SKB_FRAGS
];
1932 struct page
*pages
[MAX_SKB_FRAGS
];
1933 struct splice_pipe_desc spd
= {
1936 .nr_pages_max
= MAX_SKB_FRAGS
,
1938 .ops
= &nosteal_pipe_buf_ops
,
1939 .spd_release
= sock_spd_release
,
1941 struct sk_buff
*frag_iter
;
1942 struct sock
*sk
= skb
->sk
;
1946 * __skb_splice_bits() only fails if the output has no room left,
1947 * so no point in going over the frag_list for the error case.
1949 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1955 * now see if we have a frag_list to map
1957 skb_walk_frags(skb
, frag_iter
) {
1960 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1967 * Drop the socket lock, otherwise we have reverse
1968 * locking dependencies between sk_lock and i_mutex
1969 * here as compared to sendfile(). We enter here
1970 * with the socket lock held, and splice_to_pipe() will
1971 * grab the pipe inode lock. For sendfile() emulation,
1972 * we call into ->sendpage() with the i_mutex lock held
1973 * and networking will grab the socket lock.
1976 ret
= splice_to_pipe(pipe
, &spd
);
1984 * skb_store_bits - store bits from kernel buffer to skb
1985 * @skb: destination buffer
1986 * @offset: offset in destination
1987 * @from: source buffer
1988 * @len: number of bytes to copy
1990 * Copy the specified number of bytes from the source buffer to the
1991 * destination skb. This function handles all the messy bits of
1992 * traversing fragment lists and such.
1995 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1997 int start
= skb_headlen(skb
);
1998 struct sk_buff
*frag_iter
;
2001 if (offset
> (int)skb
->len
- len
)
2004 if ((copy
= start
- offset
) > 0) {
2007 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
2008 if ((len
-= copy
) == 0)
2014 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2015 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2018 WARN_ON(start
> offset
+ len
);
2020 end
= start
+ skb_frag_size(frag
);
2021 if ((copy
= end
- offset
) > 0) {
2027 vaddr
= kmap_atomic(skb_frag_page(frag
));
2028 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
2030 kunmap_atomic(vaddr
);
2032 if ((len
-= copy
) == 0)
2040 skb_walk_frags(skb
, frag_iter
) {
2043 WARN_ON(start
> offset
+ len
);
2045 end
= start
+ frag_iter
->len
;
2046 if ((copy
= end
- offset
) > 0) {
2049 if (skb_store_bits(frag_iter
, offset
- start
,
2052 if ((len
-= copy
) == 0)
2065 EXPORT_SYMBOL(skb_store_bits
);
2067 /* Checksum skb data. */
2068 __wsum
__skb_checksum(const struct sk_buff
*skb
, int offset
, int len
,
2069 __wsum csum
, const struct skb_checksum_ops
*ops
)
2071 int start
= skb_headlen(skb
);
2072 int i
, copy
= start
- offset
;
2073 struct sk_buff
*frag_iter
;
2076 /* Checksum header. */
2080 csum
= ops
->update(skb
->data
+ offset
, copy
, csum
);
2081 if ((len
-= copy
) == 0)
2087 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2089 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2091 WARN_ON(start
> offset
+ len
);
2093 end
= start
+ skb_frag_size(frag
);
2094 if ((copy
= end
- offset
) > 0) {
2100 vaddr
= kmap_atomic(skb_frag_page(frag
));
2101 csum2
= ops
->update(vaddr
+ frag
->page_offset
+
2102 offset
- start
, copy
, 0);
2103 kunmap_atomic(vaddr
);
2104 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
2113 skb_walk_frags(skb
, frag_iter
) {
2116 WARN_ON(start
> offset
+ len
);
2118 end
= start
+ frag_iter
->len
;
2119 if ((copy
= end
- offset
) > 0) {
2123 csum2
= __skb_checksum(frag_iter
, offset
- start
,
2125 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
2126 if ((len
-= copy
) == 0)
2137 EXPORT_SYMBOL(__skb_checksum
);
2139 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
2140 int len
, __wsum csum
)
2142 const struct skb_checksum_ops ops
= {
2143 .update
= csum_partial_ext
,
2144 .combine
= csum_block_add_ext
,
2147 return __skb_checksum(skb
, offset
, len
, csum
, &ops
);
2149 EXPORT_SYMBOL(skb_checksum
);
2151 /* Both of above in one bottle. */
2153 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
2154 u8
*to
, int len
, __wsum csum
)
2156 int start
= skb_headlen(skb
);
2157 int i
, copy
= start
- offset
;
2158 struct sk_buff
*frag_iter
;
2165 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
2167 if ((len
-= copy
) == 0)
2174 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2177 WARN_ON(start
> offset
+ len
);
2179 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2180 if ((copy
= end
- offset
) > 0) {
2183 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2187 vaddr
= kmap_atomic(skb_frag_page(frag
));
2188 csum2
= csum_partial_copy_nocheck(vaddr
+
2192 kunmap_atomic(vaddr
);
2193 csum
= csum_block_add(csum
, csum2
, pos
);
2203 skb_walk_frags(skb
, frag_iter
) {
2207 WARN_ON(start
> offset
+ len
);
2209 end
= start
+ frag_iter
->len
;
2210 if ((copy
= end
- offset
) > 0) {
2213 csum2
= skb_copy_and_csum_bits(frag_iter
,
2216 csum
= csum_block_add(csum
, csum2
, pos
);
2217 if ((len
-= copy
) == 0)
2228 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2231 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2232 * @from: source buffer
2234 * Calculates the amount of linear headroom needed in the 'to' skb passed
2235 * into skb_zerocopy().
2238 skb_zerocopy_headlen(const struct sk_buff
*from
)
2240 unsigned int hlen
= 0;
2242 if (!from
->head_frag
||
2243 skb_headlen(from
) < L1_CACHE_BYTES
||
2244 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
2245 hlen
= skb_headlen(from
);
2247 if (skb_has_frag_list(from
))
2252 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen
);
2255 * skb_zerocopy - Zero copy skb to skb
2256 * @to: destination buffer
2257 * @from: source buffer
2258 * @len: number of bytes to copy from source buffer
2259 * @hlen: size of linear headroom in destination buffer
2261 * Copies up to `len` bytes from `from` to `to` by creating references
2262 * to the frags in the source buffer.
2264 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2265 * headroom in the `to` buffer.
2268 * 0: everything is OK
2269 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2270 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2273 skb_zerocopy(struct sk_buff
*to
, struct sk_buff
*from
, int len
, int hlen
)
2276 int plen
= 0; /* length of skb->head fragment */
2279 unsigned int offset
;
2281 BUG_ON(!from
->head_frag
&& !hlen
);
2283 /* dont bother with small payloads */
2284 if (len
<= skb_tailroom(to
))
2285 return skb_copy_bits(from
, 0, skb_put(to
, len
), len
);
2288 ret
= skb_copy_bits(from
, 0, skb_put(to
, hlen
), hlen
);
2293 plen
= min_t(int, skb_headlen(from
), len
);
2295 page
= virt_to_head_page(from
->head
);
2296 offset
= from
->data
- (unsigned char *)page_address(page
);
2297 __skb_fill_page_desc(to
, 0, page
, offset
, plen
);
2304 to
->truesize
+= len
+ plen
;
2305 to
->len
+= len
+ plen
;
2306 to
->data_len
+= len
+ plen
;
2308 if (unlikely(skb_orphan_frags(from
, GFP_ATOMIC
))) {
2313 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++) {
2316 skb_shinfo(to
)->frags
[j
] = skb_shinfo(from
)->frags
[i
];
2317 skb_shinfo(to
)->frags
[j
].size
= min_t(int, skb_shinfo(to
)->frags
[j
].size
, len
);
2318 len
-= skb_shinfo(to
)->frags
[j
].size
;
2319 skb_frag_ref(to
, j
);
2322 skb_shinfo(to
)->nr_frags
= j
;
2326 EXPORT_SYMBOL_GPL(skb_zerocopy
);
2328 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
2333 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2334 csstart
= skb_checksum_start_offset(skb
);
2336 csstart
= skb_headlen(skb
);
2338 BUG_ON(csstart
> skb_headlen(skb
));
2340 skb_copy_from_linear_data(skb
, to
, csstart
);
2343 if (csstart
!= skb
->len
)
2344 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
2345 skb
->len
- csstart
, 0);
2347 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2348 long csstuff
= csstart
+ skb
->csum_offset
;
2350 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
2353 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2356 * skb_dequeue - remove from the head of the queue
2357 * @list: list to dequeue from
2359 * Remove the head of the list. The list lock is taken so the function
2360 * may be used safely with other locking list functions. The head item is
2361 * returned or %NULL if the list is empty.
2364 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
2366 unsigned long flags
;
2367 struct sk_buff
*result
;
2369 spin_lock_irqsave(&list
->lock
, flags
);
2370 result
= __skb_dequeue(list
);
2371 spin_unlock_irqrestore(&list
->lock
, flags
);
2374 EXPORT_SYMBOL(skb_dequeue
);
2377 * skb_dequeue_tail - remove from the tail of the queue
2378 * @list: list to dequeue from
2380 * Remove the tail of the list. The list lock is taken so the function
2381 * may be used safely with other locking list functions. The tail item is
2382 * returned or %NULL if the list is empty.
2384 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
2386 unsigned long flags
;
2387 struct sk_buff
*result
;
2389 spin_lock_irqsave(&list
->lock
, flags
);
2390 result
= __skb_dequeue_tail(list
);
2391 spin_unlock_irqrestore(&list
->lock
, flags
);
2394 EXPORT_SYMBOL(skb_dequeue_tail
);
2397 * skb_queue_purge - empty a list
2398 * @list: list to empty
2400 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2401 * the list and one reference dropped. This function takes the list
2402 * lock and is atomic with respect to other list locking functions.
2404 void skb_queue_purge(struct sk_buff_head
*list
)
2406 struct sk_buff
*skb
;
2407 while ((skb
= skb_dequeue(list
)) != NULL
)
2410 EXPORT_SYMBOL(skb_queue_purge
);
2413 * skb_queue_head - queue a buffer at the list head
2414 * @list: list to use
2415 * @newsk: buffer to queue
2417 * Queue a buffer at the start of the list. This function takes the
2418 * list lock and can be used safely with other locking &sk_buff functions
2421 * A buffer cannot be placed on two lists at the same time.
2423 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2425 unsigned long flags
;
2427 spin_lock_irqsave(&list
->lock
, flags
);
2428 __skb_queue_head(list
, newsk
);
2429 spin_unlock_irqrestore(&list
->lock
, flags
);
2431 EXPORT_SYMBOL(skb_queue_head
);
2434 * skb_queue_tail - queue a buffer at the list tail
2435 * @list: list to use
2436 * @newsk: buffer to queue
2438 * Queue a buffer at the tail of the list. This function takes the
2439 * list lock and can be used safely with other locking &sk_buff functions
2442 * A buffer cannot be placed on two lists at the same time.
2444 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2446 unsigned long flags
;
2448 spin_lock_irqsave(&list
->lock
, flags
);
2449 __skb_queue_tail(list
, newsk
);
2450 spin_unlock_irqrestore(&list
->lock
, flags
);
2452 EXPORT_SYMBOL(skb_queue_tail
);
2455 * skb_unlink - remove a buffer from a list
2456 * @skb: buffer to remove
2457 * @list: list to use
2459 * Remove a packet from a list. The list locks are taken and this
2460 * function is atomic with respect to other list locked calls
2462 * You must know what list the SKB is on.
2464 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2466 unsigned long flags
;
2468 spin_lock_irqsave(&list
->lock
, flags
);
2469 __skb_unlink(skb
, list
);
2470 spin_unlock_irqrestore(&list
->lock
, flags
);
2472 EXPORT_SYMBOL(skb_unlink
);
2475 * skb_append - append a buffer
2476 * @old: buffer to insert after
2477 * @newsk: buffer to insert
2478 * @list: list to use
2480 * Place a packet after a given packet in a list. The list locks are taken
2481 * and this function is atomic with respect to other list locked calls.
2482 * A buffer cannot be placed on two lists at the same time.
2484 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2486 unsigned long flags
;
2488 spin_lock_irqsave(&list
->lock
, flags
);
2489 __skb_queue_after(list
, old
, newsk
);
2490 spin_unlock_irqrestore(&list
->lock
, flags
);
2492 EXPORT_SYMBOL(skb_append
);
2495 * skb_insert - insert a buffer
2496 * @old: buffer to insert before
2497 * @newsk: buffer to insert
2498 * @list: list to use
2500 * Place a packet before a given packet in a list. The list locks are
2501 * taken and this function is atomic with respect to other list locked
2504 * A buffer cannot be placed on two lists at the same time.
2506 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2508 unsigned long flags
;
2510 spin_lock_irqsave(&list
->lock
, flags
);
2511 __skb_insert(newsk
, old
->prev
, old
, list
);
2512 spin_unlock_irqrestore(&list
->lock
, flags
);
2514 EXPORT_SYMBOL(skb_insert
);
2516 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2517 struct sk_buff
* skb1
,
2518 const u32 len
, const int pos
)
2522 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2524 /* And move data appendix as is. */
2525 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2526 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2528 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2529 skb_shinfo(skb
)->nr_frags
= 0;
2530 skb1
->data_len
= skb
->data_len
;
2531 skb1
->len
+= skb1
->data_len
;
2534 skb_set_tail_pointer(skb
, len
);
2537 static inline void skb_split_no_header(struct sk_buff
*skb
,
2538 struct sk_buff
* skb1
,
2539 const u32 len
, int pos
)
2542 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2544 skb_shinfo(skb
)->nr_frags
= 0;
2545 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2547 skb
->data_len
= len
- pos
;
2549 for (i
= 0; i
< nfrags
; i
++) {
2550 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2552 if (pos
+ size
> len
) {
2553 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2557 * We have two variants in this case:
2558 * 1. Move all the frag to the second
2559 * part, if it is possible. F.e.
2560 * this approach is mandatory for TUX,
2561 * where splitting is expensive.
2562 * 2. Split is accurately. We make this.
2564 skb_frag_ref(skb
, i
);
2565 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2566 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
2567 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
2568 skb_shinfo(skb
)->nr_frags
++;
2572 skb_shinfo(skb
)->nr_frags
++;
2575 skb_shinfo(skb1
)->nr_frags
= k
;
2579 * skb_split - Split fragmented skb to two parts at length len.
2580 * @skb: the buffer to split
2581 * @skb1: the buffer to receive the second part
2582 * @len: new length for skb
2584 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2586 int pos
= skb_headlen(skb
);
2588 skb_shinfo(skb1
)->tx_flags
= skb_shinfo(skb
)->tx_flags
& SKBTX_SHARED_FRAG
;
2589 if (len
< pos
) /* Split line is inside header. */
2590 skb_split_inside_header(skb
, skb1
, len
, pos
);
2591 else /* Second chunk has no header, nothing to copy. */
2592 skb_split_no_header(skb
, skb1
, len
, pos
);
2594 EXPORT_SYMBOL(skb_split
);
2596 /* Shifting from/to a cloned skb is a no-go.
2598 * Caller cannot keep skb_shinfo related pointers past calling here!
2600 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2602 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2606 * skb_shift - Shifts paged data partially from skb to another
2607 * @tgt: buffer into which tail data gets added
2608 * @skb: buffer from which the paged data comes from
2609 * @shiftlen: shift up to this many bytes
2611 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2612 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2613 * It's up to caller to free skb if everything was shifted.
2615 * If @tgt runs out of frags, the whole operation is aborted.
2617 * Skb cannot include anything else but paged data while tgt is allowed
2618 * to have non-paged data as well.
2620 * TODO: full sized shift could be optimized but that would need
2621 * specialized skb free'er to handle frags without up-to-date nr_frags.
2623 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2625 int from
, to
, merge
, todo
;
2626 struct skb_frag_struct
*fragfrom
, *fragto
;
2628 BUG_ON(shiftlen
> skb
->len
);
2629 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2633 to
= skb_shinfo(tgt
)->nr_frags
;
2634 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2636 /* Actual merge is delayed until the point when we know we can
2637 * commit all, so that we don't have to undo partial changes
2640 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2641 fragfrom
->page_offset
)) {
2646 todo
-= skb_frag_size(fragfrom
);
2648 if (skb_prepare_for_shift(skb
) ||
2649 skb_prepare_for_shift(tgt
))
2652 /* All previous frag pointers might be stale! */
2653 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2654 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2656 skb_frag_size_add(fragto
, shiftlen
);
2657 skb_frag_size_sub(fragfrom
, shiftlen
);
2658 fragfrom
->page_offset
+= shiftlen
;
2666 /* Skip full, not-fitting skb to avoid expensive operations */
2667 if ((shiftlen
== skb
->len
) &&
2668 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2671 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2674 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2675 if (to
== MAX_SKB_FRAGS
)
2678 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2679 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2681 if (todo
>= skb_frag_size(fragfrom
)) {
2682 *fragto
= *fragfrom
;
2683 todo
-= skb_frag_size(fragfrom
);
2688 __skb_frag_ref(fragfrom
);
2689 fragto
->page
= fragfrom
->page
;
2690 fragto
->page_offset
= fragfrom
->page_offset
;
2691 skb_frag_size_set(fragto
, todo
);
2693 fragfrom
->page_offset
+= todo
;
2694 skb_frag_size_sub(fragfrom
, todo
);
2702 /* Ready to "commit" this state change to tgt */
2703 skb_shinfo(tgt
)->nr_frags
= to
;
2706 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2707 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2709 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
2710 __skb_frag_unref(fragfrom
);
2713 /* Reposition in the original skb */
2715 while (from
< skb_shinfo(skb
)->nr_frags
)
2716 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2717 skb_shinfo(skb
)->nr_frags
= to
;
2719 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2722 /* Most likely the tgt won't ever need its checksum anymore, skb on
2723 * the other hand might need it if it needs to be resent
2725 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2726 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2728 /* Yak, is it really working this way? Some helper please? */
2729 skb
->len
-= shiftlen
;
2730 skb
->data_len
-= shiftlen
;
2731 skb
->truesize
-= shiftlen
;
2732 tgt
->len
+= shiftlen
;
2733 tgt
->data_len
+= shiftlen
;
2734 tgt
->truesize
+= shiftlen
;
2740 * skb_prepare_seq_read - Prepare a sequential read of skb data
2741 * @skb: the buffer to read
2742 * @from: lower offset of data to be read
2743 * @to: upper offset of data to be read
2744 * @st: state variable
2746 * Initializes the specified state variable. Must be called before
2747 * invoking skb_seq_read() for the first time.
2749 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2750 unsigned int to
, struct skb_seq_state
*st
)
2752 st
->lower_offset
= from
;
2753 st
->upper_offset
= to
;
2754 st
->root_skb
= st
->cur_skb
= skb
;
2755 st
->frag_idx
= st
->stepped_offset
= 0;
2756 st
->frag_data
= NULL
;
2758 EXPORT_SYMBOL(skb_prepare_seq_read
);
2761 * skb_seq_read - Sequentially read skb data
2762 * @consumed: number of bytes consumed by the caller so far
2763 * @data: destination pointer for data to be returned
2764 * @st: state variable
2766 * Reads a block of skb data at @consumed relative to the
2767 * lower offset specified to skb_prepare_seq_read(). Assigns
2768 * the head of the data block to @data and returns the length
2769 * of the block or 0 if the end of the skb data or the upper
2770 * offset has been reached.
2772 * The caller is not required to consume all of the data
2773 * returned, i.e. @consumed is typically set to the number
2774 * of bytes already consumed and the next call to
2775 * skb_seq_read() will return the remaining part of the block.
2777 * Note 1: The size of each block of data returned can be arbitrary,
2778 * this limitation is the cost for zerocopy sequential
2779 * reads of potentially non linear data.
2781 * Note 2: Fragment lists within fragments are not implemented
2782 * at the moment, state->root_skb could be replaced with
2783 * a stack for this purpose.
2785 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2786 struct skb_seq_state
*st
)
2788 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2791 if (unlikely(abs_offset
>= st
->upper_offset
)) {
2792 if (st
->frag_data
) {
2793 kunmap_atomic(st
->frag_data
);
2794 st
->frag_data
= NULL
;
2800 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2802 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2803 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2804 return block_limit
- abs_offset
;
2807 if (st
->frag_idx
== 0 && !st
->frag_data
)
2808 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2810 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2811 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2812 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
2814 if (abs_offset
< block_limit
) {
2816 st
->frag_data
= kmap_atomic(skb_frag_page(frag
));
2818 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2819 (abs_offset
- st
->stepped_offset
);
2821 return block_limit
- abs_offset
;
2824 if (st
->frag_data
) {
2825 kunmap_atomic(st
->frag_data
);
2826 st
->frag_data
= NULL
;
2830 st
->stepped_offset
+= skb_frag_size(frag
);
2833 if (st
->frag_data
) {
2834 kunmap_atomic(st
->frag_data
);
2835 st
->frag_data
= NULL
;
2838 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2839 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2842 } else if (st
->cur_skb
->next
) {
2843 st
->cur_skb
= st
->cur_skb
->next
;
2850 EXPORT_SYMBOL(skb_seq_read
);
2853 * skb_abort_seq_read - Abort a sequential read of skb data
2854 * @st: state variable
2856 * Must be called if skb_seq_read() was not called until it
2859 void skb_abort_seq_read(struct skb_seq_state
*st
)
2862 kunmap_atomic(st
->frag_data
);
2864 EXPORT_SYMBOL(skb_abort_seq_read
);
2866 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2868 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2869 struct ts_config
*conf
,
2870 struct ts_state
*state
)
2872 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2875 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2877 skb_abort_seq_read(TS_SKB_CB(state
));
2881 * skb_find_text - Find a text pattern in skb data
2882 * @skb: the buffer to look in
2883 * @from: search offset
2885 * @config: textsearch configuration
2887 * Finds a pattern in the skb data according to the specified
2888 * textsearch configuration. Use textsearch_next() to retrieve
2889 * subsequent occurrences of the pattern. Returns the offset
2890 * to the first occurrence or UINT_MAX if no match was found.
2892 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2893 unsigned int to
, struct ts_config
*config
)
2895 struct ts_state state
;
2898 config
->get_next_block
= skb_ts_get_next_block
;
2899 config
->finish
= skb_ts_finish
;
2901 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(&state
));
2903 ret
= textsearch_find(config
, &state
);
2904 return (ret
<= to
- from
? ret
: UINT_MAX
);
2906 EXPORT_SYMBOL(skb_find_text
);
2909 * skb_append_datato_frags - append the user data to a skb
2910 * @sk: sock structure
2911 * @skb: skb structure to be appended with user data.
2912 * @getfrag: call back function to be used for getting the user data
2913 * @from: pointer to user message iov
2914 * @length: length of the iov message
2916 * Description: This procedure append the user data in the fragment part
2917 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2919 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2920 int (*getfrag
)(void *from
, char *to
, int offset
,
2921 int len
, int odd
, struct sk_buff
*skb
),
2922 void *from
, int length
)
2924 int frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2928 struct page_frag
*pfrag
= ¤t
->task_frag
;
2931 /* Return error if we don't have space for new frag */
2932 if (frg_cnt
>= MAX_SKB_FRAGS
)
2935 if (!sk_page_frag_refill(sk
, pfrag
))
2938 /* copy the user data to page */
2939 copy
= min_t(int, length
, pfrag
->size
- pfrag
->offset
);
2941 ret
= getfrag(from
, page_address(pfrag
->page
) + pfrag
->offset
,
2942 offset
, copy
, 0, skb
);
2946 /* copy was successful so update the size parameters */
2947 skb_fill_page_desc(skb
, frg_cnt
, pfrag
->page
, pfrag
->offset
,
2950 pfrag
->offset
+= copy
;
2951 get_page(pfrag
->page
);
2953 skb
->truesize
+= copy
;
2954 atomic_add(copy
, &sk
->sk_wmem_alloc
);
2956 skb
->data_len
+= copy
;
2960 } while (length
> 0);
2964 EXPORT_SYMBOL(skb_append_datato_frags
);
2967 * skb_pull_rcsum - pull skb and update receive checksum
2968 * @skb: buffer to update
2969 * @len: length of data pulled
2971 * This function performs an skb_pull on the packet and updates
2972 * the CHECKSUM_COMPLETE checksum. It should be used on
2973 * receive path processing instead of skb_pull unless you know
2974 * that the checksum difference is zero (e.g., a valid IP header)
2975 * or you are setting ip_summed to CHECKSUM_NONE.
2977 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2979 unsigned char *data
= skb
->data
;
2981 BUG_ON(len
> skb
->len
);
2982 __skb_pull(skb
, len
);
2983 skb_postpull_rcsum(skb
, data
, len
);
2986 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2989 * skb_segment - Perform protocol segmentation on skb.
2990 * @head_skb: buffer to segment
2991 * @features: features for the output path (see dev->features)
2993 * This function performs segmentation on the given skb. It returns
2994 * a pointer to the first in a list of new skbs for the segments.
2995 * In case of error it returns ERR_PTR(err).
2997 struct sk_buff
*skb_segment(struct sk_buff
*head_skb
,
2998 netdev_features_t features
)
3000 struct sk_buff
*segs
= NULL
;
3001 struct sk_buff
*tail
= NULL
;
3002 struct sk_buff
*list_skb
= skb_shinfo(head_skb
)->frag_list
;
3003 skb_frag_t
*frag
= skb_shinfo(head_skb
)->frags
;
3004 unsigned int mss
= skb_shinfo(head_skb
)->gso_size
;
3005 unsigned int doffset
= head_skb
->data
- skb_mac_header(head_skb
);
3006 struct sk_buff
*frag_skb
= head_skb
;
3007 unsigned int offset
= doffset
;
3008 unsigned int tnl_hlen
= skb_tnl_header_len(head_skb
);
3009 unsigned int headroom
;
3013 int sg
= !!(features
& NETIF_F_SG
);
3014 int nfrags
= skb_shinfo(head_skb
)->nr_frags
;
3020 __skb_push(head_skb
, doffset
);
3021 proto
= skb_network_protocol(head_skb
, &dummy
);
3022 if (unlikely(!proto
))
3023 return ERR_PTR(-EINVAL
);
3025 csum
= !head_skb
->encap_hdr_csum
&&
3026 !!can_checksum_protocol(features
, proto
);
3028 headroom
= skb_headroom(head_skb
);
3029 pos
= skb_headlen(head_skb
);
3032 struct sk_buff
*nskb
;
3033 skb_frag_t
*nskb_frag
;
3037 len
= head_skb
->len
- offset
;
3041 hsize
= skb_headlen(head_skb
) - offset
;
3044 if (hsize
> len
|| !sg
)
3047 if (!hsize
&& i
>= nfrags
&& skb_headlen(list_skb
) &&
3048 (skb_headlen(list_skb
) == len
|| sg
)) {
3049 BUG_ON(skb_headlen(list_skb
) > len
);
3052 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3053 frag
= skb_shinfo(list_skb
)->frags
;
3054 frag_skb
= list_skb
;
3055 pos
+= skb_headlen(list_skb
);
3057 while (pos
< offset
+ len
) {
3058 BUG_ON(i
>= nfrags
);
3060 size
= skb_frag_size(frag
);
3061 if (pos
+ size
> offset
+ len
)
3069 nskb
= skb_clone(list_skb
, GFP_ATOMIC
);
3070 list_skb
= list_skb
->next
;
3072 if (unlikely(!nskb
))
3075 if (unlikely(pskb_trim(nskb
, len
))) {
3080 hsize
= skb_end_offset(nskb
);
3081 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
3086 nskb
->truesize
+= skb_end_offset(nskb
) - hsize
;
3087 skb_release_head_state(nskb
);
3088 __skb_push(nskb
, doffset
);
3090 nskb
= __alloc_skb(hsize
+ doffset
+ headroom
,
3091 GFP_ATOMIC
, skb_alloc_rx_flag(head_skb
),
3094 if (unlikely(!nskb
))
3097 skb_reserve(nskb
, headroom
);
3098 __skb_put(nskb
, doffset
);
3107 __copy_skb_header(nskb
, head_skb
);
3109 skb_headers_offset_update(nskb
, skb_headroom(nskb
) - headroom
);
3110 skb_reset_mac_len(nskb
);
3112 skb_copy_from_linear_data_offset(head_skb
, -tnl_hlen
,
3113 nskb
->data
- tnl_hlen
,
3114 doffset
+ tnl_hlen
);
3116 if (nskb
->len
== len
+ doffset
)
3117 goto perform_csum_check
;
3119 if (!sg
&& !nskb
->remcsum_offload
) {
3120 nskb
->ip_summed
= CHECKSUM_NONE
;
3121 nskb
->csum
= skb_copy_and_csum_bits(head_skb
, offset
,
3124 SKB_GSO_CB(nskb
)->csum_start
=
3125 skb_headroom(nskb
) + doffset
;
3129 nskb_frag
= skb_shinfo(nskb
)->frags
;
3131 skb_copy_from_linear_data_offset(head_skb
, offset
,
3132 skb_put(nskb
, hsize
), hsize
);
3134 skb_shinfo(nskb
)->tx_flags
= skb_shinfo(head_skb
)->tx_flags
&
3137 while (pos
< offset
+ len
) {
3139 BUG_ON(skb_headlen(list_skb
));
3142 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3143 frag
= skb_shinfo(list_skb
)->frags
;
3144 frag_skb
= list_skb
;
3148 list_skb
= list_skb
->next
;
3151 if (unlikely(skb_shinfo(nskb
)->nr_frags
>=
3153 net_warn_ratelimited(
3154 "skb_segment: too many frags: %u %u\n",
3159 if (unlikely(skb_orphan_frags(frag_skb
, GFP_ATOMIC
)))
3163 __skb_frag_ref(nskb_frag
);
3164 size
= skb_frag_size(nskb_frag
);
3167 nskb_frag
->page_offset
+= offset
- pos
;
3168 skb_frag_size_sub(nskb_frag
, offset
- pos
);
3171 skb_shinfo(nskb
)->nr_frags
++;
3173 if (pos
+ size
<= offset
+ len
) {
3178 skb_frag_size_sub(nskb_frag
, pos
+ size
- (offset
+ len
));
3186 nskb
->data_len
= len
- hsize
;
3187 nskb
->len
+= nskb
->data_len
;
3188 nskb
->truesize
+= nskb
->data_len
;
3191 if (!csum
&& !nskb
->remcsum_offload
) {
3192 nskb
->csum
= skb_checksum(nskb
, doffset
,
3193 nskb
->len
- doffset
, 0);
3194 nskb
->ip_summed
= CHECKSUM_NONE
;
3195 SKB_GSO_CB(nskb
)->csum_start
=
3196 skb_headroom(nskb
) + doffset
;
3198 } while ((offset
+= len
) < head_skb
->len
);
3200 /* Some callers want to get the end of the list.
3201 * Put it in segs->prev to avoid walking the list.
3202 * (see validate_xmit_skb_list() for example)
3206 /* Following permits correct backpressure, for protocols
3207 * using skb_set_owner_w().
3208 * Idea is to tranfert ownership from head_skb to last segment.
3210 if (head_skb
->destructor
== sock_wfree
) {
3211 swap(tail
->truesize
, head_skb
->truesize
);
3212 swap(tail
->destructor
, head_skb
->destructor
);
3213 swap(tail
->sk
, head_skb
->sk
);
3218 kfree_skb_list(segs
);
3219 return ERR_PTR(err
);
3221 EXPORT_SYMBOL_GPL(skb_segment
);
3223 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
3225 struct skb_shared_info
*pinfo
, *skbinfo
= skb_shinfo(skb
);
3226 unsigned int offset
= skb_gro_offset(skb
);
3227 unsigned int headlen
= skb_headlen(skb
);
3228 unsigned int len
= skb_gro_len(skb
);
3229 struct sk_buff
*lp
, *p
= *head
;
3230 unsigned int delta_truesize
;
3232 if (unlikely(p
->len
+ len
>= 65536))
3235 lp
= NAPI_GRO_CB(p
)->last
;
3236 pinfo
= skb_shinfo(lp
);
3238 if (headlen
<= offset
) {
3241 int i
= skbinfo
->nr_frags
;
3242 int nr_frags
= pinfo
->nr_frags
+ i
;
3244 if (nr_frags
> MAX_SKB_FRAGS
)
3248 pinfo
->nr_frags
= nr_frags
;
3249 skbinfo
->nr_frags
= 0;
3251 frag
= pinfo
->frags
+ nr_frags
;
3252 frag2
= skbinfo
->frags
+ i
;
3257 frag
->page_offset
+= offset
;
3258 skb_frag_size_sub(frag
, offset
);
3260 /* all fragments truesize : remove (head size + sk_buff) */
3261 delta_truesize
= skb
->truesize
-
3262 SKB_TRUESIZE(skb_end_offset(skb
));
3264 skb
->truesize
-= skb
->data_len
;
3265 skb
->len
-= skb
->data_len
;
3268 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE
;
3270 } else if (skb
->head_frag
) {
3271 int nr_frags
= pinfo
->nr_frags
;
3272 skb_frag_t
*frag
= pinfo
->frags
+ nr_frags
;
3273 struct page
*page
= virt_to_head_page(skb
->head
);
3274 unsigned int first_size
= headlen
- offset
;
3275 unsigned int first_offset
;
3277 if (nr_frags
+ 1 + skbinfo
->nr_frags
> MAX_SKB_FRAGS
)
3280 first_offset
= skb
->data
-
3281 (unsigned char *)page_address(page
) +
3284 pinfo
->nr_frags
= nr_frags
+ 1 + skbinfo
->nr_frags
;
3286 frag
->page
.p
= page
;
3287 frag
->page_offset
= first_offset
;
3288 skb_frag_size_set(frag
, first_size
);
3290 memcpy(frag
+ 1, skbinfo
->frags
, sizeof(*frag
) * skbinfo
->nr_frags
);
3291 /* We dont need to clear skbinfo->nr_frags here */
3293 delta_truesize
= skb
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
3294 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE_STOLEN_HEAD
;
3299 delta_truesize
= skb
->truesize
;
3300 if (offset
> headlen
) {
3301 unsigned int eat
= offset
- headlen
;
3303 skbinfo
->frags
[0].page_offset
+= eat
;
3304 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
3305 skb
->data_len
-= eat
;
3310 __skb_pull(skb
, offset
);
3312 if (NAPI_GRO_CB(p
)->last
== p
)
3313 skb_shinfo(p
)->frag_list
= skb
;
3315 NAPI_GRO_CB(p
)->last
->next
= skb
;
3316 NAPI_GRO_CB(p
)->last
= skb
;
3317 __skb_header_release(skb
);
3321 NAPI_GRO_CB(p
)->count
++;
3323 p
->truesize
+= delta_truesize
;
3326 lp
->data_len
+= len
;
3327 lp
->truesize
+= delta_truesize
;
3330 NAPI_GRO_CB(skb
)->same_flow
= 1;
3334 void __init
skb_init(void)
3336 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
3337 sizeof(struct sk_buff
),
3339 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3341 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
3342 sizeof(struct sk_buff_fclones
),
3344 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3349 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3350 * @skb: Socket buffer containing the buffers to be mapped
3351 * @sg: The scatter-gather list to map into
3352 * @offset: The offset into the buffer's contents to start mapping
3353 * @len: Length of buffer space to be mapped
3355 * Fill the specified scatter-gather list with mappings/pointers into a
3356 * region of the buffer space attached to a socket buffer.
3359 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3361 int start
= skb_headlen(skb
);
3362 int i
, copy
= start
- offset
;
3363 struct sk_buff
*frag_iter
;
3369 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
3371 if ((len
-= copy
) == 0)
3376 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3379 WARN_ON(start
> offset
+ len
);
3381 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
3382 if ((copy
= end
- offset
) > 0) {
3383 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3387 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
3388 frag
->page_offset
+offset
-start
);
3397 skb_walk_frags(skb
, frag_iter
) {
3400 WARN_ON(start
> offset
+ len
);
3402 end
= start
+ frag_iter
->len
;
3403 if ((copy
= end
- offset
) > 0) {
3406 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
3408 if ((len
-= copy
) == 0)
3418 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3419 * sglist without mark the sg which contain last skb data as the end.
3420 * So the caller can mannipulate sg list as will when padding new data after
3421 * the first call without calling sg_unmark_end to expend sg list.
3423 * Scenario to use skb_to_sgvec_nomark:
3425 * 2. skb_to_sgvec_nomark(payload1)
3426 * 3. skb_to_sgvec_nomark(payload2)
3428 * This is equivalent to:
3430 * 2. skb_to_sgvec(payload1)
3432 * 4. skb_to_sgvec(payload2)
3434 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3435 * is more preferable.
3437 int skb_to_sgvec_nomark(struct sk_buff
*skb
, struct scatterlist
*sg
,
3438 int offset
, int len
)
3440 return __skb_to_sgvec(skb
, sg
, offset
, len
);
3442 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark
);
3444 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3446 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
3448 sg_mark_end(&sg
[nsg
- 1]);
3452 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
3455 * skb_cow_data - Check that a socket buffer's data buffers are writable
3456 * @skb: The socket buffer to check.
3457 * @tailbits: Amount of trailing space to be added
3458 * @trailer: Returned pointer to the skb where the @tailbits space begins
3460 * Make sure that the data buffers attached to a socket buffer are
3461 * writable. If they are not, private copies are made of the data buffers
3462 * and the socket buffer is set to use these instead.
3464 * If @tailbits is given, make sure that there is space to write @tailbits
3465 * bytes of data beyond current end of socket buffer. @trailer will be
3466 * set to point to the skb in which this space begins.
3468 * The number of scatterlist elements required to completely map the
3469 * COW'd and extended socket buffer will be returned.
3471 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
3475 struct sk_buff
*skb1
, **skb_p
;
3477 /* If skb is cloned or its head is paged, reallocate
3478 * head pulling out all the pages (pages are considered not writable
3479 * at the moment even if they are anonymous).
3481 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3482 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3485 /* Easy case. Most of packets will go this way. */
3486 if (!skb_has_frag_list(skb
)) {
3487 /* A little of trouble, not enough of space for trailer.
3488 * This should not happen, when stack is tuned to generate
3489 * good frames. OK, on miss we reallocate and reserve even more
3490 * space, 128 bytes is fair. */
3492 if (skb_tailroom(skb
) < tailbits
&&
3493 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3501 /* Misery. We are in troubles, going to mincer fragments... */
3504 skb_p
= &skb_shinfo(skb
)->frag_list
;
3507 while ((skb1
= *skb_p
) != NULL
) {
3510 /* The fragment is partially pulled by someone,
3511 * this can happen on input. Copy it and everything
3514 if (skb_shared(skb1
))
3517 /* If the skb is the last, worry about trailer. */
3519 if (skb1
->next
== NULL
&& tailbits
) {
3520 if (skb_shinfo(skb1
)->nr_frags
||
3521 skb_has_frag_list(skb1
) ||
3522 skb_tailroom(skb1
) < tailbits
)
3523 ntail
= tailbits
+ 128;
3529 skb_shinfo(skb1
)->nr_frags
||
3530 skb_has_frag_list(skb1
)) {
3531 struct sk_buff
*skb2
;
3533 /* Fuck, we are miserable poor guys... */
3535 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3537 skb2
= skb_copy_expand(skb1
,
3541 if (unlikely(skb2
== NULL
))
3545 skb_set_owner_w(skb2
, skb1
->sk
);
3547 /* Looking around. Are we still alive?
3548 * OK, link new skb, drop old one */
3550 skb2
->next
= skb1
->next
;
3557 skb_p
= &skb1
->next
;
3562 EXPORT_SYMBOL_GPL(skb_cow_data
);
3564 static void sock_rmem_free(struct sk_buff
*skb
)
3566 struct sock
*sk
= skb
->sk
;
3568 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3572 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3574 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3576 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3577 (unsigned int)sk
->sk_rcvbuf
)
3582 skb
->destructor
= sock_rmem_free
;
3583 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3585 /* before exiting rcu section, make sure dst is refcounted */
3588 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3589 if (!sock_flag(sk
, SOCK_DEAD
))
3590 sk
->sk_data_ready(sk
);
3593 EXPORT_SYMBOL(sock_queue_err_skb
);
3595 struct sk_buff
*sock_dequeue_err_skb(struct sock
*sk
)
3597 struct sk_buff_head
*q
= &sk
->sk_error_queue
;
3598 struct sk_buff
*skb
, *skb_next
;
3599 unsigned long flags
;
3602 spin_lock_irqsave(&q
->lock
, flags
);
3603 skb
= __skb_dequeue(q
);
3604 if (skb
&& (skb_next
= skb_peek(q
)))
3605 err
= SKB_EXT_ERR(skb_next
)->ee
.ee_errno
;
3606 spin_unlock_irqrestore(&q
->lock
, flags
);
3610 sk
->sk_error_report(sk
);
3614 EXPORT_SYMBOL(sock_dequeue_err_skb
);
3617 * skb_clone_sk - create clone of skb, and take reference to socket
3618 * @skb: the skb to clone
3620 * This function creates a clone of a buffer that holds a reference on
3621 * sk_refcnt. Buffers created via this function are meant to be
3622 * returned using sock_queue_err_skb, or free via kfree_skb.
3624 * When passing buffers allocated with this function to sock_queue_err_skb
3625 * it is necessary to wrap the call with sock_hold/sock_put in order to
3626 * prevent the socket from being released prior to being enqueued on
3627 * the sk_error_queue.
3629 struct sk_buff
*skb_clone_sk(struct sk_buff
*skb
)
3631 struct sock
*sk
= skb
->sk
;
3632 struct sk_buff
*clone
;
3634 if (!sk
|| !atomic_inc_not_zero(&sk
->sk_refcnt
))
3637 clone
= skb_clone(skb
, GFP_ATOMIC
);
3644 clone
->destructor
= sock_efree
;
3648 EXPORT_SYMBOL(skb_clone_sk
);
3650 static void __skb_complete_tx_timestamp(struct sk_buff
*skb
,
3654 struct sock_exterr_skb
*serr
;
3657 serr
= SKB_EXT_ERR(skb
);
3658 memset(serr
, 0, sizeof(*serr
));
3659 serr
->ee
.ee_errno
= ENOMSG
;
3660 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3661 serr
->ee
.ee_info
= tstype
;
3662 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
) {
3663 serr
->ee
.ee_data
= skb_shinfo(skb
)->tskey
;
3664 if (sk
->sk_protocol
== IPPROTO_TCP
&&
3665 sk
->sk_type
== SOCK_STREAM
)
3666 serr
->ee
.ee_data
-= sk
->sk_tskey
;
3669 err
= sock_queue_err_skb(sk
, skb
);
3675 static bool skb_may_tx_timestamp(struct sock
*sk
, bool tsonly
)
3679 if (likely(sysctl_tstamp_allow_data
|| tsonly
))
3682 read_lock_bh(&sk
->sk_callback_lock
);
3683 ret
= sk
->sk_socket
&& sk
->sk_socket
->file
&&
3684 file_ns_capable(sk
->sk_socket
->file
, &init_user_ns
, CAP_NET_RAW
);
3685 read_unlock_bh(&sk
->sk_callback_lock
);
3689 void skb_complete_tx_timestamp(struct sk_buff
*skb
,
3690 struct skb_shared_hwtstamps
*hwtstamps
)
3692 struct sock
*sk
= skb
->sk
;
3694 if (!skb_may_tx_timestamp(sk
, false))
3697 /* take a reference to prevent skb_orphan() from freeing the socket */
3700 *skb_hwtstamps(skb
) = *hwtstamps
;
3701 __skb_complete_tx_timestamp(skb
, sk
, SCM_TSTAMP_SND
);
3705 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp
);
3707 void __skb_tstamp_tx(struct sk_buff
*orig_skb
,
3708 struct skb_shared_hwtstamps
*hwtstamps
,
3709 struct sock
*sk
, int tstype
)
3711 struct sk_buff
*skb
;
3717 tsonly
= sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_TSONLY
;
3718 if (!skb_may_tx_timestamp(sk
, tsonly
))
3722 skb
= alloc_skb(0, GFP_ATOMIC
);
3724 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3729 skb_shinfo(skb
)->tx_flags
= skb_shinfo(orig_skb
)->tx_flags
;
3730 skb_shinfo(skb
)->tskey
= skb_shinfo(orig_skb
)->tskey
;
3734 *skb_hwtstamps(skb
) = *hwtstamps
;
3736 skb
->tstamp
= ktime_get_real();
3738 __skb_complete_tx_timestamp(skb
, sk
, tstype
);
3740 EXPORT_SYMBOL_GPL(__skb_tstamp_tx
);
3742 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3743 struct skb_shared_hwtstamps
*hwtstamps
)
3745 return __skb_tstamp_tx(orig_skb
, hwtstamps
, orig_skb
->sk
,
3748 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3750 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
)
3752 struct sock
*sk
= skb
->sk
;
3753 struct sock_exterr_skb
*serr
;
3756 skb
->wifi_acked_valid
= 1;
3757 skb
->wifi_acked
= acked
;
3759 serr
= SKB_EXT_ERR(skb
);
3760 memset(serr
, 0, sizeof(*serr
));
3761 serr
->ee
.ee_errno
= ENOMSG
;
3762 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TXSTATUS
;
3764 /* take a reference to prevent skb_orphan() from freeing the socket */
3767 err
= sock_queue_err_skb(sk
, skb
);
3773 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack
);
3776 * skb_partial_csum_set - set up and verify partial csum values for packet
3777 * @skb: the skb to set
3778 * @start: the number of bytes after skb->data to start checksumming.
3779 * @off: the offset from start to place the checksum.
3781 * For untrusted partially-checksummed packets, we need to make sure the values
3782 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3784 * This function checks and sets those values and skb->ip_summed: if this
3785 * returns false you should drop the packet.
3787 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3789 if (unlikely(start
> skb_headlen(skb
)) ||
3790 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3791 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3792 start
, off
, skb_headlen(skb
));
3795 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3796 skb
->csum_start
= skb_headroom(skb
) + start
;
3797 skb
->csum_offset
= off
;
3798 skb_set_transport_header(skb
, start
);
3801 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3803 static int skb_maybe_pull_tail(struct sk_buff
*skb
, unsigned int len
,
3806 if (skb_headlen(skb
) >= len
)
3809 /* If we need to pullup then pullup to the max, so we
3810 * won't need to do it again.
3815 if (__pskb_pull_tail(skb
, max
- skb_headlen(skb
)) == NULL
)
3818 if (skb_headlen(skb
) < len
)
3824 #define MAX_TCP_HDR_LEN (15 * 4)
3826 static __sum16
*skb_checksum_setup_ip(struct sk_buff
*skb
,
3827 typeof(IPPROTO_IP
) proto
,
3834 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct tcphdr
),
3835 off
+ MAX_TCP_HDR_LEN
);
3836 if (!err
&& !skb_partial_csum_set(skb
, off
,
3837 offsetof(struct tcphdr
,
3840 return err
? ERR_PTR(err
) : &tcp_hdr(skb
)->check
;
3843 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct udphdr
),
3844 off
+ sizeof(struct udphdr
));
3845 if (!err
&& !skb_partial_csum_set(skb
, off
,
3846 offsetof(struct udphdr
,
3849 return err
? ERR_PTR(err
) : &udp_hdr(skb
)->check
;
3852 return ERR_PTR(-EPROTO
);
3855 /* This value should be large enough to cover a tagged ethernet header plus
3856 * maximally sized IP and TCP or UDP headers.
3858 #define MAX_IP_HDR_LEN 128
3860 static int skb_checksum_setup_ipv4(struct sk_buff
*skb
, bool recalculate
)
3869 err
= skb_maybe_pull_tail(skb
,
3870 sizeof(struct iphdr
),
3875 if (ip_hdr(skb
)->frag_off
& htons(IP_OFFSET
| IP_MF
))
3878 off
= ip_hdrlen(skb
);
3885 csum
= skb_checksum_setup_ip(skb
, ip_hdr(skb
)->protocol
, off
);
3887 return PTR_ERR(csum
);
3890 *csum
= ~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
3893 ip_hdr(skb
)->protocol
, 0);
3900 /* This value should be large enough to cover a tagged ethernet header plus
3901 * an IPv6 header, all options, and a maximal TCP or UDP header.
3903 #define MAX_IPV6_HDR_LEN 256
3905 #define OPT_HDR(type, skb, off) \
3906 (type *)(skb_network_header(skb) + (off))
3908 static int skb_checksum_setup_ipv6(struct sk_buff
*skb
, bool recalculate
)
3921 off
= sizeof(struct ipv6hdr
);
3923 err
= skb_maybe_pull_tail(skb
, off
, MAX_IPV6_HDR_LEN
);
3927 nexthdr
= ipv6_hdr(skb
)->nexthdr
;
3929 len
= sizeof(struct ipv6hdr
) + ntohs(ipv6_hdr(skb
)->payload_len
);
3930 while (off
<= len
&& !done
) {
3932 case IPPROTO_DSTOPTS
:
3933 case IPPROTO_HOPOPTS
:
3934 case IPPROTO_ROUTING
: {
3935 struct ipv6_opt_hdr
*hp
;
3937 err
= skb_maybe_pull_tail(skb
,
3939 sizeof(struct ipv6_opt_hdr
),
3944 hp
= OPT_HDR(struct ipv6_opt_hdr
, skb
, off
);
3945 nexthdr
= hp
->nexthdr
;
3946 off
+= ipv6_optlen(hp
);
3950 struct ip_auth_hdr
*hp
;
3952 err
= skb_maybe_pull_tail(skb
,
3954 sizeof(struct ip_auth_hdr
),
3959 hp
= OPT_HDR(struct ip_auth_hdr
, skb
, off
);
3960 nexthdr
= hp
->nexthdr
;
3961 off
+= ipv6_authlen(hp
);
3964 case IPPROTO_FRAGMENT
: {
3965 struct frag_hdr
*hp
;
3967 err
= skb_maybe_pull_tail(skb
,
3969 sizeof(struct frag_hdr
),
3974 hp
= OPT_HDR(struct frag_hdr
, skb
, off
);
3976 if (hp
->frag_off
& htons(IP6_OFFSET
| IP6_MF
))
3979 nexthdr
= hp
->nexthdr
;
3980 off
+= sizeof(struct frag_hdr
);
3991 if (!done
|| fragment
)
3994 csum
= skb_checksum_setup_ip(skb
, nexthdr
, off
);
3996 return PTR_ERR(csum
);
3999 *csum
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4000 &ipv6_hdr(skb
)->daddr
,
4001 skb
->len
- off
, nexthdr
, 0);
4009 * skb_checksum_setup - set up partial checksum offset
4010 * @skb: the skb to set up
4011 * @recalculate: if true the pseudo-header checksum will be recalculated
4013 int skb_checksum_setup(struct sk_buff
*skb
, bool recalculate
)
4017 switch (skb
->protocol
) {
4018 case htons(ETH_P_IP
):
4019 err
= skb_checksum_setup_ipv4(skb
, recalculate
);
4022 case htons(ETH_P_IPV6
):
4023 err
= skb_checksum_setup_ipv6(skb
, recalculate
);
4033 EXPORT_SYMBOL(skb_checksum_setup
);
4035 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
4037 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4040 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);
4042 void kfree_skb_partial(struct sk_buff
*skb
, bool head_stolen
)
4045 skb_release_head_state(skb
);
4046 kmem_cache_free(skbuff_head_cache
, skb
);
4051 EXPORT_SYMBOL(kfree_skb_partial
);
4054 * skb_try_coalesce - try to merge skb to prior one
4056 * @from: buffer to add
4057 * @fragstolen: pointer to boolean
4058 * @delta_truesize: how much more was allocated than was requested
4060 bool skb_try_coalesce(struct sk_buff
*to
, struct sk_buff
*from
,
4061 bool *fragstolen
, int *delta_truesize
)
4063 int i
, delta
, len
= from
->len
;
4065 *fragstolen
= false;
4070 if (len
<= skb_tailroom(to
)) {
4072 BUG_ON(skb_copy_bits(from
, 0, skb_put(to
, len
), len
));
4073 *delta_truesize
= 0;
4077 if (skb_has_frag_list(to
) || skb_has_frag_list(from
))
4080 if (skb_headlen(from
) != 0) {
4082 unsigned int offset
;
4084 if (skb_shinfo(to
)->nr_frags
+
4085 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
4088 if (skb_head_is_locked(from
))
4091 delta
= from
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
4093 page
= virt_to_head_page(from
->head
);
4094 offset
= from
->data
- (unsigned char *)page_address(page
);
4096 skb_fill_page_desc(to
, skb_shinfo(to
)->nr_frags
,
4097 page
, offset
, skb_headlen(from
));
4100 if (skb_shinfo(to
)->nr_frags
+
4101 skb_shinfo(from
)->nr_frags
> MAX_SKB_FRAGS
)
4104 delta
= from
->truesize
- SKB_TRUESIZE(skb_end_offset(from
));
4107 WARN_ON_ONCE(delta
< len
);
4109 memcpy(skb_shinfo(to
)->frags
+ skb_shinfo(to
)->nr_frags
,
4110 skb_shinfo(from
)->frags
,
4111 skb_shinfo(from
)->nr_frags
* sizeof(skb_frag_t
));
4112 skb_shinfo(to
)->nr_frags
+= skb_shinfo(from
)->nr_frags
;
4114 if (!skb_cloned(from
))
4115 skb_shinfo(from
)->nr_frags
= 0;
4117 /* if the skb is not cloned this does nothing
4118 * since we set nr_frags to 0.
4120 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++)
4121 skb_frag_ref(from
, i
);
4123 to
->truesize
+= delta
;
4125 to
->data_len
+= len
;
4127 *delta_truesize
= delta
;
4130 EXPORT_SYMBOL(skb_try_coalesce
);
4133 * skb_scrub_packet - scrub an skb
4135 * @skb: buffer to clean
4136 * @xnet: packet is crossing netns
4138 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4139 * into/from a tunnel. Some information have to be cleared during these
4141 * skb_scrub_packet can also be used to clean a skb before injecting it in
4142 * another namespace (@xnet == true). We have to clear all information in the
4143 * skb that could impact namespace isolation.
4145 void skb_scrub_packet(struct sk_buff
*skb
, bool xnet
)
4147 skb
->tstamp
.tv64
= 0;
4148 skb
->pkt_type
= PACKET_HOST
;
4152 skb_sender_cpu_clear(skb
);
4155 nf_reset_trace(skb
);
4163 EXPORT_SYMBOL_GPL(skb_scrub_packet
);
4166 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4170 * skb_gso_transport_seglen is used to determine the real size of the
4171 * individual segments, including Layer4 headers (TCP/UDP).
4173 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4175 unsigned int skb_gso_transport_seglen(const struct sk_buff
*skb
)
4177 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
4178 unsigned int thlen
= 0;
4180 if (skb
->encapsulation
) {
4181 thlen
= skb_inner_transport_header(skb
) -
4182 skb_transport_header(skb
);
4184 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)))
4185 thlen
+= inner_tcp_hdrlen(skb
);
4186 } else if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
4187 thlen
= tcp_hdrlen(skb
);
4189 /* UFO sets gso_size to the size of the fragmentation
4190 * payload, i.e. the size of the L4 (UDP) header is already
4193 return thlen
+ shinfo
->gso_size
;
4195 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen
);
4197 static struct sk_buff
*skb_reorder_vlan_header(struct sk_buff
*skb
)
4199 if (skb_cow(skb
, skb_headroom(skb
)) < 0) {
4204 memmove(skb
->data
- ETH_HLEN
, skb
->data
- skb
->mac_len
- VLAN_HLEN
,
4206 skb
->mac_header
+= VLAN_HLEN
;
4210 struct sk_buff
*skb_vlan_untag(struct sk_buff
*skb
)
4212 struct vlan_hdr
*vhdr
;
4215 if (unlikely(skb_vlan_tag_present(skb
))) {
4216 /* vlan_tci is already set-up so leave this for another time */
4220 skb
= skb_share_check(skb
, GFP_ATOMIC
);
4224 if (unlikely(!pskb_may_pull(skb
, VLAN_HLEN
)))
4227 vhdr
= (struct vlan_hdr
*)skb
->data
;
4228 vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
4229 __vlan_hwaccel_put_tag(skb
, skb
->protocol
, vlan_tci
);
4231 skb_pull_rcsum(skb
, VLAN_HLEN
);
4232 vlan_set_encap_proto(skb
, vhdr
);
4234 skb
= skb_reorder_vlan_header(skb
);
4238 skb_reset_network_header(skb
);
4239 skb_reset_transport_header(skb
);
4240 skb_reset_mac_len(skb
);
4248 EXPORT_SYMBOL(skb_vlan_untag
);
4250 int skb_ensure_writable(struct sk_buff
*skb
, int write_len
)
4252 if (!pskb_may_pull(skb
, write_len
))
4255 if (!skb_cloned(skb
) || skb_clone_writable(skb
, write_len
))
4258 return pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
4260 EXPORT_SYMBOL(skb_ensure_writable
);
4262 /* remove VLAN header from packet and update csum accordingly. */
4263 static int __skb_vlan_pop(struct sk_buff
*skb
, u16
*vlan_tci
)
4265 struct vlan_hdr
*vhdr
;
4266 unsigned int offset
= skb
->data
- skb_mac_header(skb
);
4269 __skb_push(skb
, offset
);
4270 err
= skb_ensure_writable(skb
, VLAN_ETH_HLEN
);
4274 skb_postpull_rcsum(skb
, skb
->data
+ (2 * ETH_ALEN
), VLAN_HLEN
);
4276 vhdr
= (struct vlan_hdr
*)(skb
->data
+ ETH_HLEN
);
4277 *vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
4279 memmove(skb
->data
+ VLAN_HLEN
, skb
->data
, 2 * ETH_ALEN
);
4280 __skb_pull(skb
, VLAN_HLEN
);
4282 vlan_set_encap_proto(skb
, vhdr
);
4283 skb
->mac_header
+= VLAN_HLEN
;
4285 if (skb_network_offset(skb
) < ETH_HLEN
)
4286 skb_set_network_header(skb
, ETH_HLEN
);
4288 skb_reset_mac_len(skb
);
4290 __skb_pull(skb
, offset
);
4295 int skb_vlan_pop(struct sk_buff
*skb
)
4301 if (likely(skb_vlan_tag_present(skb
))) {
4304 if (unlikely((skb
->protocol
!= htons(ETH_P_8021Q
) &&
4305 skb
->protocol
!= htons(ETH_P_8021AD
)) ||
4306 skb
->len
< VLAN_ETH_HLEN
))
4309 err
= __skb_vlan_pop(skb
, &vlan_tci
);
4313 /* move next vlan tag to hw accel tag */
4314 if (likely((skb
->protocol
!= htons(ETH_P_8021Q
) &&
4315 skb
->protocol
!= htons(ETH_P_8021AD
)) ||
4316 skb
->len
< VLAN_ETH_HLEN
))
4319 vlan_proto
= skb
->protocol
;
4320 err
= __skb_vlan_pop(skb
, &vlan_tci
);
4324 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
4327 EXPORT_SYMBOL(skb_vlan_pop
);
4329 int skb_vlan_push(struct sk_buff
*skb
, __be16 vlan_proto
, u16 vlan_tci
)
4331 if (skb_vlan_tag_present(skb
)) {
4332 unsigned int offset
= skb
->data
- skb_mac_header(skb
);
4335 /* __vlan_insert_tag expect skb->data pointing to mac header.
4336 * So change skb->data before calling it and change back to
4337 * original position later
4339 __skb_push(skb
, offset
);
4340 err
= __vlan_insert_tag(skb
, skb
->vlan_proto
,
4341 skb_vlan_tag_get(skb
));
4344 skb
->protocol
= skb
->vlan_proto
;
4345 skb
->mac_len
+= VLAN_HLEN
;
4346 __skb_pull(skb
, offset
);
4348 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
4349 skb
->csum
= csum_add(skb
->csum
, csum_partial(skb
->data
4350 + (2 * ETH_ALEN
), VLAN_HLEN
, 0));
4352 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
4355 EXPORT_SYMBOL(skb_vlan_push
);
4358 * alloc_skb_with_frags - allocate skb with page frags
4360 * @header_len: size of linear part
4361 * @data_len: needed length in frags
4362 * @max_page_order: max page order desired.
4363 * @errcode: pointer to error code if any
4364 * @gfp_mask: allocation mask
4366 * This can be used to allocate a paged skb, given a maximal order for frags.
4368 struct sk_buff
*alloc_skb_with_frags(unsigned long header_len
,
4369 unsigned long data_len
,
4374 int npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
4375 unsigned long chunk
;
4376 struct sk_buff
*skb
;
4381 *errcode
= -EMSGSIZE
;
4382 /* Note this test could be relaxed, if we succeed to allocate
4383 * high order pages...
4385 if (npages
> MAX_SKB_FRAGS
)
4388 gfp_head
= gfp_mask
;
4389 if (gfp_head
& __GFP_WAIT
)
4390 gfp_head
|= __GFP_REPEAT
;
4392 *errcode
= -ENOBUFS
;
4393 skb
= alloc_skb(header_len
, gfp_head
);
4397 skb
->truesize
+= npages
<< PAGE_SHIFT
;
4399 for (i
= 0; npages
> 0; i
++) {
4400 int order
= max_page_order
;
4403 if (npages
>= 1 << order
) {
4404 page
= alloc_pages((gfp_mask
& ~__GFP_WAIT
) |
4411 /* Do not retry other high order allocations */
4417 page
= alloc_page(gfp_mask
);
4421 chunk
= min_t(unsigned long, data_len
,
4422 PAGE_SIZE
<< order
);
4423 skb_fill_page_desc(skb
, i
, page
, 0, chunk
);
4425 npages
-= 1 << order
;
4433 EXPORT_SYMBOL(alloc_skb_with_frags
);