Linux 4.1.16
[linux/fpc-iii.git] / net / core / utils.c
blob7b803884c162834ddc5327805e6b0e3a636a82f0
1 /*
2 * Generic address resultion entity
4 * Authors:
5 * net_random Alan Cox
6 * net_ratelimit Andi Kleen
7 * in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
9 * Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/module.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel.h>
20 #include <linux/ctype.h>
21 #include <linux/inet.h>
22 #include <linux/mm.h>
23 #include <linux/net.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/percpu.h>
27 #include <linux/init.h>
28 #include <linux/ratelimit.h>
30 #include <net/sock.h>
31 #include <net/net_ratelimit.h>
33 #include <asm/byteorder.h>
34 #include <asm/uaccess.h>
36 DEFINE_RATELIMIT_STATE(net_ratelimit_state, 5 * HZ, 10);
38 * All net warning printk()s should be guarded by this function.
40 int net_ratelimit(void)
42 return __ratelimit(&net_ratelimit_state);
44 EXPORT_SYMBOL(net_ratelimit);
47 * Convert an ASCII string to binary IP.
48 * This is outside of net/ipv4/ because various code that uses IP addresses
49 * is otherwise not dependent on the TCP/IP stack.
52 __be32 in_aton(const char *str)
54 unsigned long l;
55 unsigned int val;
56 int i;
58 l = 0;
59 for (i = 0; i < 4; i++) {
60 l <<= 8;
61 if (*str != '\0') {
62 val = 0;
63 while (*str != '\0' && *str != '.' && *str != '\n') {
64 val *= 10;
65 val += *str - '0';
66 str++;
68 l |= val;
69 if (*str != '\0')
70 str++;
73 return htonl(l);
75 EXPORT_SYMBOL(in_aton);
77 #define IN6PTON_XDIGIT 0x00010000
78 #define IN6PTON_DIGIT 0x00020000
79 #define IN6PTON_COLON_MASK 0x00700000
80 #define IN6PTON_COLON_1 0x00100000 /* single : requested */
81 #define IN6PTON_COLON_2 0x00200000 /* second : requested */
82 #define IN6PTON_COLON_1_2 0x00400000 /* :: requested */
83 #define IN6PTON_DOT 0x00800000 /* . */
84 #define IN6PTON_DELIM 0x10000000
85 #define IN6PTON_NULL 0x20000000 /* first/tail */
86 #define IN6PTON_UNKNOWN 0x40000000
88 static inline int xdigit2bin(char c, int delim)
90 int val;
92 if (c == delim || c == '\0')
93 return IN6PTON_DELIM;
94 if (c == ':')
95 return IN6PTON_COLON_MASK;
96 if (c == '.')
97 return IN6PTON_DOT;
99 val = hex_to_bin(c);
100 if (val >= 0)
101 return val | IN6PTON_XDIGIT | (val < 10 ? IN6PTON_DIGIT : 0);
103 if (delim == -1)
104 return IN6PTON_DELIM;
105 return IN6PTON_UNKNOWN;
109 * in4_pton - convert an IPv4 address from literal to binary representation
110 * @src: the start of the IPv4 address string
111 * @srclen: the length of the string, -1 means strlen(src)
112 * @dst: the binary (u8[4] array) representation of the IPv4 address
113 * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
114 * @end: A pointer to the end of the parsed string will be placed here
116 * Return one on success, return zero when any error occurs
117 * and @end will point to the end of the parsed string.
120 int in4_pton(const char *src, int srclen,
121 u8 *dst,
122 int delim, const char **end)
124 const char *s;
125 u8 *d;
126 u8 dbuf[4];
127 int ret = 0;
128 int i;
129 int w = 0;
131 if (srclen < 0)
132 srclen = strlen(src);
133 s = src;
134 d = dbuf;
135 i = 0;
136 while(1) {
137 int c;
138 c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
139 if (!(c & (IN6PTON_DIGIT | IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK))) {
140 goto out;
142 if (c & (IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
143 if (w == 0)
144 goto out;
145 *d++ = w & 0xff;
146 w = 0;
147 i++;
148 if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
149 if (i != 4)
150 goto out;
151 break;
153 goto cont;
155 w = (w * 10) + c;
156 if ((w & 0xffff) > 255) {
157 goto out;
159 cont:
160 if (i >= 4)
161 goto out;
162 s++;
163 srclen--;
165 ret = 1;
166 memcpy(dst, dbuf, sizeof(dbuf));
167 out:
168 if (end)
169 *end = s;
170 return ret;
172 EXPORT_SYMBOL(in4_pton);
175 * in6_pton - convert an IPv6 address from literal to binary representation
176 * @src: the start of the IPv6 address string
177 * @srclen: the length of the string, -1 means strlen(src)
178 * @dst: the binary (u8[16] array) representation of the IPv6 address
179 * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
180 * @end: A pointer to the end of the parsed string will be placed here
182 * Return one on success, return zero when any error occurs
183 * and @end will point to the end of the parsed string.
186 int in6_pton(const char *src, int srclen,
187 u8 *dst,
188 int delim, const char **end)
190 const char *s, *tok = NULL;
191 u8 *d, *dc = NULL;
192 u8 dbuf[16];
193 int ret = 0;
194 int i;
195 int state = IN6PTON_COLON_1_2 | IN6PTON_XDIGIT | IN6PTON_NULL;
196 int w = 0;
198 memset(dbuf, 0, sizeof(dbuf));
200 s = src;
201 d = dbuf;
202 if (srclen < 0)
203 srclen = strlen(src);
205 while (1) {
206 int c;
208 c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
209 if (!(c & state))
210 goto out;
211 if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
212 /* process one 16-bit word */
213 if (!(state & IN6PTON_NULL)) {
214 *d++ = (w >> 8) & 0xff;
215 *d++ = w & 0xff;
217 w = 0;
218 if (c & IN6PTON_DELIM) {
219 /* We've processed last word */
220 break;
223 * COLON_1 => XDIGIT
224 * COLON_2 => XDIGIT|DELIM
225 * COLON_1_2 => COLON_2
227 switch (state & IN6PTON_COLON_MASK) {
228 case IN6PTON_COLON_2:
229 dc = d;
230 state = IN6PTON_XDIGIT | IN6PTON_DELIM;
231 if (dc - dbuf >= sizeof(dbuf))
232 state |= IN6PTON_NULL;
233 break;
234 case IN6PTON_COLON_1|IN6PTON_COLON_1_2:
235 state = IN6PTON_XDIGIT | IN6PTON_COLON_2;
236 break;
237 case IN6PTON_COLON_1:
238 state = IN6PTON_XDIGIT;
239 break;
240 case IN6PTON_COLON_1_2:
241 state = IN6PTON_COLON_2;
242 break;
243 default:
244 state = 0;
246 tok = s + 1;
247 goto cont;
250 if (c & IN6PTON_DOT) {
251 ret = in4_pton(tok ? tok : s, srclen + (int)(s - tok), d, delim, &s);
252 if (ret > 0) {
253 d += 4;
254 break;
256 goto out;
259 w = (w << 4) | (0xff & c);
260 state = IN6PTON_COLON_1 | IN6PTON_DELIM;
261 if (!(w & 0xf000)) {
262 state |= IN6PTON_XDIGIT;
264 if (!dc && d + 2 < dbuf + sizeof(dbuf)) {
265 state |= IN6PTON_COLON_1_2;
266 state &= ~IN6PTON_DELIM;
268 if (d + 2 >= dbuf + sizeof(dbuf)) {
269 state &= ~(IN6PTON_COLON_1|IN6PTON_COLON_1_2);
271 cont:
272 if ((dc && d + 4 < dbuf + sizeof(dbuf)) ||
273 d + 4 == dbuf + sizeof(dbuf)) {
274 state |= IN6PTON_DOT;
276 if (d >= dbuf + sizeof(dbuf)) {
277 state &= ~(IN6PTON_XDIGIT|IN6PTON_COLON_MASK);
279 s++;
280 srclen--;
283 i = 15; d--;
285 if (dc) {
286 while(d >= dc)
287 dst[i--] = *d--;
288 while(i >= dc - dbuf)
289 dst[i--] = 0;
290 while(i >= 0)
291 dst[i--] = *d--;
292 } else
293 memcpy(dst, dbuf, sizeof(dbuf));
295 ret = 1;
296 out:
297 if (end)
298 *end = s;
299 return ret;
301 EXPORT_SYMBOL(in6_pton);
303 void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb,
304 __be32 from, __be32 to, int pseudohdr)
306 if (skb->ip_summed != CHECKSUM_PARTIAL) {
307 *sum = csum_fold(csum_add(csum_sub(~csum_unfold(*sum), from),
308 to));
309 if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
310 skb->csum = ~csum_add(csum_sub(~(skb->csum), from), to);
311 } else if (pseudohdr)
312 *sum = ~csum_fold(csum_add(csum_sub(csum_unfold(*sum), from),
313 to));
315 EXPORT_SYMBOL(inet_proto_csum_replace4);
317 void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb,
318 const __be32 *from, const __be32 *to,
319 int pseudohdr)
321 __be32 diff[] = {
322 ~from[0], ~from[1], ~from[2], ~from[3],
323 to[0], to[1], to[2], to[3],
325 if (skb->ip_summed != CHECKSUM_PARTIAL) {
326 *sum = csum_fold(csum_partial(diff, sizeof(diff),
327 ~csum_unfold(*sum)));
328 if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
329 skb->csum = ~csum_partial(diff, sizeof(diff),
330 ~skb->csum);
331 } else if (pseudohdr)
332 *sum = ~csum_fold(csum_partial(diff, sizeof(diff),
333 csum_unfold(*sum)));
335 EXPORT_SYMBOL(inet_proto_csum_replace16);
337 struct __net_random_once_work {
338 struct work_struct work;
339 struct static_key *key;
342 static void __net_random_once_deferred(struct work_struct *w)
344 struct __net_random_once_work *work =
345 container_of(w, struct __net_random_once_work, work);
346 BUG_ON(!static_key_enabled(work->key));
347 static_key_slow_dec(work->key);
348 kfree(work);
351 static void __net_random_once_disable_jump(struct static_key *key)
353 struct __net_random_once_work *w;
355 w = kmalloc(sizeof(*w), GFP_ATOMIC);
356 if (!w)
357 return;
359 INIT_WORK(&w->work, __net_random_once_deferred);
360 w->key = key;
361 schedule_work(&w->work);
364 bool __net_get_random_once(void *buf, int nbytes, bool *done,
365 struct static_key *once_key)
367 static DEFINE_SPINLOCK(lock);
368 unsigned long flags;
370 spin_lock_irqsave(&lock, flags);
371 if (*done) {
372 spin_unlock_irqrestore(&lock, flags);
373 return false;
376 get_random_bytes(buf, nbytes);
377 *done = true;
378 spin_unlock_irqrestore(&lock, flags);
380 __net_random_once_disable_jump(once_key);
382 return true;
384 EXPORT_SYMBOL(__net_get_random_once);