2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/if_ether.h>
14 #include <linux/etherdevice.h>
15 #include <linux/list.h>
16 #include <linux/rcupdate.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
32 * DOC: Key handling basics
34 * Key handling in mac80211 is done based on per-interface (sub_if_data)
35 * keys and per-station keys. Since each station belongs to an interface,
36 * each station key also belongs to that interface.
38 * Hardware acceleration is done on a best-effort basis for algorithms
39 * that are implemented in software, for each key the hardware is asked
40 * to enable that key for offloading but if it cannot do that the key is
41 * simply kept for software encryption (unless it is for an algorithm
42 * that isn't implemented in software).
43 * There is currently no way of knowing whether a key is handled in SW
44 * or HW except by looking into debugfs.
46 * All key management is internally protected by a mutex. Within all
47 * other parts of mac80211, key references are, just as STA structure
48 * references, protected by RCU. Note, however, that some things are
49 * unprotected, namely the key->sta dereferences within the hardware
50 * acceleration functions. This means that sta_info_destroy() must
51 * remove the key which waits for an RCU grace period.
54 static const u8 bcast_addr
[ETH_ALEN
] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
56 static void assert_key_lock(struct ieee80211_local
*local
)
58 lockdep_assert_held(&local
->key_mtx
);
62 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data
*sdata
, int delta
)
64 struct ieee80211_sub_if_data
*vlan
;
66 if (sdata
->vif
.type
!= NL80211_IFTYPE_AP
)
69 /* crypto_tx_tailroom_needed_cnt is protected by this */
70 assert_key_lock(sdata
->local
);
74 list_for_each_entry_rcu(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
75 vlan
->crypto_tx_tailroom_needed_cnt
+= delta
;
80 static void increment_tailroom_need_count(struct ieee80211_sub_if_data
*sdata
)
83 * When this count is zero, SKB resizing for allocating tailroom
84 * for IV or MMIC is skipped. But, this check has created two race
85 * cases in xmit path while transiting from zero count to one:
87 * 1. SKB resize was skipped because no key was added but just before
88 * the xmit key is added and SW encryption kicks off.
90 * 2. SKB resize was skipped because all the keys were hw planted but
91 * just before xmit one of the key is deleted and SW encryption kicks
94 * In both the above case SW encryption will find not enough space for
95 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
97 * Solution has been explained at
98 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
101 assert_key_lock(sdata
->local
);
103 update_vlan_tailroom_need_count(sdata
, 1);
105 if (!sdata
->crypto_tx_tailroom_needed_cnt
++) {
107 * Flush all XMIT packets currently using HW encryption or no
108 * encryption at all if the count transition is from 0 -> 1.
114 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data
*sdata
,
117 assert_key_lock(sdata
->local
);
119 WARN_ON_ONCE(sdata
->crypto_tx_tailroom_needed_cnt
< delta
);
121 update_vlan_tailroom_need_count(sdata
, -delta
);
122 sdata
->crypto_tx_tailroom_needed_cnt
-= delta
;
125 static int ieee80211_key_enable_hw_accel(struct ieee80211_key
*key
)
127 struct ieee80211_sub_if_data
*sdata
;
128 struct sta_info
*sta
;
129 int ret
= -EOPNOTSUPP
;
133 if (key
->flags
& KEY_FLAG_TAINTED
) {
134 /* If we get here, it's during resume and the key is
135 * tainted so shouldn't be used/programmed any more.
136 * However, its flags may still indicate that it was
137 * programmed into the device (since we're in resume)
138 * so clear that flag now to avoid trying to remove
141 key
->flags
&= ~KEY_FLAG_UPLOADED_TO_HARDWARE
;
145 if (!key
->local
->ops
->set_key
)
146 goto out_unsupported
;
148 assert_key_lock(key
->local
);
153 * If this is a per-STA GTK, check if it
154 * is supported; if not, return.
156 if (sta
&& !(key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
) &&
157 !(key
->local
->hw
.flags
& IEEE80211_HW_SUPPORTS_PER_STA_GTK
))
158 goto out_unsupported
;
160 if (sta
&& !sta
->uploaded
)
161 goto out_unsupported
;
164 if (sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) {
166 * The driver doesn't know anything about VLAN interfaces.
167 * Hence, don't send GTKs for VLAN interfaces to the driver.
169 if (!(key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
))
170 goto out_unsupported
;
173 ret
= drv_set_key(key
->local
, SET_KEY
, sdata
,
174 sta
? &sta
->sta
: NULL
, &key
->conf
);
177 key
->flags
|= KEY_FLAG_UPLOADED_TO_HARDWARE
;
179 if (!((key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_MMIC
) ||
180 (key
->conf
.flags
& IEEE80211_KEY_FLAG_RESERVE_TAILROOM
)))
181 decrease_tailroom_need_count(sdata
, 1);
183 WARN_ON((key
->conf
.flags
& IEEE80211_KEY_FLAG_PUT_IV_SPACE
) &&
184 (key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_IV
));
189 if (ret
!= -ENOSPC
&& ret
!= -EOPNOTSUPP
&& ret
!= 1)
191 "failed to set key (%d, %pM) to hardware (%d)\n",
193 sta
? sta
->sta
.addr
: bcast_addr
, ret
);
196 switch (key
->conf
.cipher
) {
197 case WLAN_CIPHER_SUITE_WEP40
:
198 case WLAN_CIPHER_SUITE_WEP104
:
199 case WLAN_CIPHER_SUITE_TKIP
:
200 case WLAN_CIPHER_SUITE_CCMP
:
201 case WLAN_CIPHER_SUITE_CCMP_256
:
202 case WLAN_CIPHER_SUITE_AES_CMAC
:
203 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
204 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
205 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
206 case WLAN_CIPHER_SUITE_GCMP
:
207 case WLAN_CIPHER_SUITE_GCMP_256
:
208 /* all of these we can do in software - if driver can */
211 if (key
->local
->hw
.flags
& IEEE80211_HW_SW_CRYPTO_CONTROL
)
219 static void ieee80211_key_disable_hw_accel(struct ieee80211_key
*key
)
221 struct ieee80211_sub_if_data
*sdata
;
222 struct sta_info
*sta
;
227 if (!key
|| !key
->local
->ops
->set_key
)
230 assert_key_lock(key
->local
);
232 if (!(key
->flags
& KEY_FLAG_UPLOADED_TO_HARDWARE
))
238 if (!((key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_MMIC
) ||
239 (key
->conf
.flags
& IEEE80211_KEY_FLAG_RESERVE_TAILROOM
)))
240 increment_tailroom_need_count(sdata
);
242 ret
= drv_set_key(key
->local
, DISABLE_KEY
, sdata
,
243 sta
? &sta
->sta
: NULL
, &key
->conf
);
247 "failed to remove key (%d, %pM) from hardware (%d)\n",
249 sta
? sta
->sta
.addr
: bcast_addr
, ret
);
251 key
->flags
&= ~KEY_FLAG_UPLOADED_TO_HARDWARE
;
254 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data
*sdata
,
255 int idx
, bool uni
, bool multi
)
257 struct ieee80211_key
*key
= NULL
;
259 assert_key_lock(sdata
->local
);
261 if (idx
>= 0 && idx
< NUM_DEFAULT_KEYS
)
262 key
= key_mtx_dereference(sdata
->local
, sdata
->keys
[idx
]);
265 rcu_assign_pointer(sdata
->default_unicast_key
, key
);
266 drv_set_default_unicast_key(sdata
->local
, sdata
, idx
);
270 rcu_assign_pointer(sdata
->default_multicast_key
, key
);
272 ieee80211_debugfs_key_update_default(sdata
);
275 void ieee80211_set_default_key(struct ieee80211_sub_if_data
*sdata
, int idx
,
276 bool uni
, bool multi
)
278 mutex_lock(&sdata
->local
->key_mtx
);
279 __ieee80211_set_default_key(sdata
, idx
, uni
, multi
);
280 mutex_unlock(&sdata
->local
->key_mtx
);
284 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data
*sdata
, int idx
)
286 struct ieee80211_key
*key
= NULL
;
288 assert_key_lock(sdata
->local
);
290 if (idx
>= NUM_DEFAULT_KEYS
&&
291 idx
< NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
292 key
= key_mtx_dereference(sdata
->local
, sdata
->keys
[idx
]);
294 rcu_assign_pointer(sdata
->default_mgmt_key
, key
);
296 ieee80211_debugfs_key_update_default(sdata
);
299 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data
*sdata
,
302 mutex_lock(&sdata
->local
->key_mtx
);
303 __ieee80211_set_default_mgmt_key(sdata
, idx
);
304 mutex_unlock(&sdata
->local
->key_mtx
);
308 static void ieee80211_key_replace(struct ieee80211_sub_if_data
*sdata
,
309 struct sta_info
*sta
,
311 struct ieee80211_key
*old
,
312 struct ieee80211_key
*new)
315 bool defunikey
, defmultikey
, defmgmtkey
;
317 /* caller must provide at least one old/new */
318 if (WARN_ON(!new && !old
))
322 list_add_tail(&new->list
, &sdata
->key_list
);
324 WARN_ON(new && old
&& new->conf
.keyidx
!= old
->conf
.keyidx
);
327 idx
= old
->conf
.keyidx
;
329 idx
= new->conf
.keyidx
;
333 rcu_assign_pointer(sta
->ptk
[idx
], new);
336 rcu_assign_pointer(sta
->gtk
[idx
], new);
341 old
== key_mtx_dereference(sdata
->local
,
342 sdata
->default_unicast_key
);
344 old
== key_mtx_dereference(sdata
->local
,
345 sdata
->default_multicast_key
);
347 old
== key_mtx_dereference(sdata
->local
,
348 sdata
->default_mgmt_key
);
350 if (defunikey
&& !new)
351 __ieee80211_set_default_key(sdata
, -1, true, false);
352 if (defmultikey
&& !new)
353 __ieee80211_set_default_key(sdata
, -1, false, true);
354 if (defmgmtkey
&& !new)
355 __ieee80211_set_default_mgmt_key(sdata
, -1);
357 rcu_assign_pointer(sdata
->keys
[idx
], new);
358 if (defunikey
&& new)
359 __ieee80211_set_default_key(sdata
, new->conf
.keyidx
,
361 if (defmultikey
&& new)
362 __ieee80211_set_default_key(sdata
, new->conf
.keyidx
,
364 if (defmgmtkey
&& new)
365 __ieee80211_set_default_mgmt_key(sdata
,
370 list_del(&old
->list
);
373 struct ieee80211_key
*
374 ieee80211_key_alloc(u32 cipher
, int idx
, size_t key_len
,
376 size_t seq_len
, const u8
*seq
,
377 const struct ieee80211_cipher_scheme
*cs
)
379 struct ieee80211_key
*key
;
382 if (WARN_ON(idx
< 0 || idx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
))
383 return ERR_PTR(-EINVAL
);
385 key
= kzalloc(sizeof(struct ieee80211_key
) + key_len
, GFP_KERNEL
);
387 return ERR_PTR(-ENOMEM
);
390 * Default to software encryption; we'll later upload the
391 * key to the hardware if possible.
396 key
->conf
.cipher
= cipher
;
397 key
->conf
.keyidx
= idx
;
398 key
->conf
.keylen
= key_len
;
400 case WLAN_CIPHER_SUITE_WEP40
:
401 case WLAN_CIPHER_SUITE_WEP104
:
402 key
->conf
.iv_len
= IEEE80211_WEP_IV_LEN
;
403 key
->conf
.icv_len
= IEEE80211_WEP_ICV_LEN
;
405 case WLAN_CIPHER_SUITE_TKIP
:
406 key
->conf
.iv_len
= IEEE80211_TKIP_IV_LEN
;
407 key
->conf
.icv_len
= IEEE80211_TKIP_ICV_LEN
;
409 for (i
= 0; i
< IEEE80211_NUM_TIDS
; i
++) {
410 key
->u
.tkip
.rx
[i
].iv32
=
411 get_unaligned_le32(&seq
[2]);
412 key
->u
.tkip
.rx
[i
].iv16
=
413 get_unaligned_le16(seq
);
416 spin_lock_init(&key
->u
.tkip
.txlock
);
418 case WLAN_CIPHER_SUITE_CCMP
:
419 key
->conf
.iv_len
= IEEE80211_CCMP_HDR_LEN
;
420 key
->conf
.icv_len
= IEEE80211_CCMP_MIC_LEN
;
422 for (i
= 0; i
< IEEE80211_NUM_TIDS
+ 1; i
++)
423 for (j
= 0; j
< IEEE80211_CCMP_PN_LEN
; j
++)
424 key
->u
.ccmp
.rx_pn
[i
][j
] =
425 seq
[IEEE80211_CCMP_PN_LEN
- j
- 1];
428 * Initialize AES key state here as an optimization so that
429 * it does not need to be initialized for every packet.
431 key
->u
.ccmp
.tfm
= ieee80211_aes_key_setup_encrypt(
432 key_data
, key_len
, IEEE80211_CCMP_MIC_LEN
);
433 if (IS_ERR(key
->u
.ccmp
.tfm
)) {
434 err
= PTR_ERR(key
->u
.ccmp
.tfm
);
439 case WLAN_CIPHER_SUITE_CCMP_256
:
440 key
->conf
.iv_len
= IEEE80211_CCMP_256_HDR_LEN
;
441 key
->conf
.icv_len
= IEEE80211_CCMP_256_MIC_LEN
;
442 for (i
= 0; seq
&& i
< IEEE80211_NUM_TIDS
+ 1; i
++)
443 for (j
= 0; j
< IEEE80211_CCMP_256_PN_LEN
; j
++)
444 key
->u
.ccmp
.rx_pn
[i
][j
] =
445 seq
[IEEE80211_CCMP_256_PN_LEN
- j
- 1];
446 /* Initialize AES key state here as an optimization so that
447 * it does not need to be initialized for every packet.
449 key
->u
.ccmp
.tfm
= ieee80211_aes_key_setup_encrypt(
450 key_data
, key_len
, IEEE80211_CCMP_256_MIC_LEN
);
451 if (IS_ERR(key
->u
.ccmp
.tfm
)) {
452 err
= PTR_ERR(key
->u
.ccmp
.tfm
);
457 case WLAN_CIPHER_SUITE_AES_CMAC
:
458 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
459 key
->conf
.iv_len
= 0;
460 if (cipher
== WLAN_CIPHER_SUITE_AES_CMAC
)
461 key
->conf
.icv_len
= sizeof(struct ieee80211_mmie
);
463 key
->conf
.icv_len
= sizeof(struct ieee80211_mmie_16
);
465 for (j
= 0; j
< IEEE80211_CMAC_PN_LEN
; j
++)
466 key
->u
.aes_cmac
.rx_pn
[j
] =
467 seq
[IEEE80211_CMAC_PN_LEN
- j
- 1];
469 * Initialize AES key state here as an optimization so that
470 * it does not need to be initialized for every packet.
472 key
->u
.aes_cmac
.tfm
=
473 ieee80211_aes_cmac_key_setup(key_data
, key_len
);
474 if (IS_ERR(key
->u
.aes_cmac
.tfm
)) {
475 err
= PTR_ERR(key
->u
.aes_cmac
.tfm
);
480 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
481 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
482 key
->conf
.iv_len
= 0;
483 key
->conf
.icv_len
= sizeof(struct ieee80211_mmie_16
);
485 for (j
= 0; j
< IEEE80211_GMAC_PN_LEN
; j
++)
486 key
->u
.aes_gmac
.rx_pn
[j
] =
487 seq
[IEEE80211_GMAC_PN_LEN
- j
- 1];
488 /* Initialize AES key state here as an optimization so that
489 * it does not need to be initialized for every packet.
491 key
->u
.aes_gmac
.tfm
=
492 ieee80211_aes_gmac_key_setup(key_data
, key_len
);
493 if (IS_ERR(key
->u
.aes_gmac
.tfm
)) {
494 err
= PTR_ERR(key
->u
.aes_gmac
.tfm
);
499 case WLAN_CIPHER_SUITE_GCMP
:
500 case WLAN_CIPHER_SUITE_GCMP_256
:
501 key
->conf
.iv_len
= IEEE80211_GCMP_HDR_LEN
;
502 key
->conf
.icv_len
= IEEE80211_GCMP_MIC_LEN
;
503 for (i
= 0; seq
&& i
< IEEE80211_NUM_TIDS
+ 1; i
++)
504 for (j
= 0; j
< IEEE80211_GCMP_PN_LEN
; j
++)
505 key
->u
.gcmp
.rx_pn
[i
][j
] =
506 seq
[IEEE80211_GCMP_PN_LEN
- j
- 1];
507 /* Initialize AES key state here as an optimization so that
508 * it does not need to be initialized for every packet.
510 key
->u
.gcmp
.tfm
= ieee80211_aes_gcm_key_setup_encrypt(key_data
,
512 if (IS_ERR(key
->u
.gcmp
.tfm
)) {
513 err
= PTR_ERR(key
->u
.gcmp
.tfm
);
520 size_t len
= (seq_len
> MAX_PN_LEN
) ?
521 MAX_PN_LEN
: seq_len
;
523 key
->conf
.iv_len
= cs
->hdr_len
;
524 key
->conf
.icv_len
= cs
->mic_len
;
525 for (i
= 0; i
< IEEE80211_NUM_TIDS
+ 1; i
++)
526 for (j
= 0; j
< len
; j
++)
527 key
->u
.gen
.rx_pn
[i
][j
] =
529 key
->flags
|= KEY_FLAG_CIPHER_SCHEME
;
532 memcpy(key
->conf
.key
, key_data
, key_len
);
533 INIT_LIST_HEAD(&key
->list
);
538 static void ieee80211_key_free_common(struct ieee80211_key
*key
)
540 switch (key
->conf
.cipher
) {
541 case WLAN_CIPHER_SUITE_CCMP
:
542 case WLAN_CIPHER_SUITE_CCMP_256
:
543 ieee80211_aes_key_free(key
->u
.ccmp
.tfm
);
545 case WLAN_CIPHER_SUITE_AES_CMAC
:
546 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
547 ieee80211_aes_cmac_key_free(key
->u
.aes_cmac
.tfm
);
549 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
550 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
551 ieee80211_aes_gmac_key_free(key
->u
.aes_gmac
.tfm
);
553 case WLAN_CIPHER_SUITE_GCMP
:
554 case WLAN_CIPHER_SUITE_GCMP_256
:
555 ieee80211_aes_gcm_key_free(key
->u
.gcmp
.tfm
);
561 static void __ieee80211_key_destroy(struct ieee80211_key
*key
,
565 ieee80211_key_disable_hw_accel(key
);
568 struct ieee80211_sub_if_data
*sdata
= key
->sdata
;
570 ieee80211_debugfs_key_remove(key
);
572 if (delay_tailroom
) {
573 /* see ieee80211_delayed_tailroom_dec */
574 sdata
->crypto_tx_tailroom_pending_dec
++;
575 schedule_delayed_work(&sdata
->dec_tailroom_needed_wk
,
578 decrease_tailroom_need_count(sdata
, 1);
582 ieee80211_key_free_common(key
);
585 static void ieee80211_key_destroy(struct ieee80211_key
*key
,
592 * Synchronize so the TX path can no longer be using
593 * this key before we free/remove it.
597 __ieee80211_key_destroy(key
, delay_tailroom
);
600 void ieee80211_key_free_unused(struct ieee80211_key
*key
)
602 WARN_ON(key
->sdata
|| key
->local
);
603 ieee80211_key_free_common(key
);
606 int ieee80211_key_link(struct ieee80211_key
*key
,
607 struct ieee80211_sub_if_data
*sdata
,
608 struct sta_info
*sta
)
610 struct ieee80211_local
*local
= sdata
->local
;
611 struct ieee80211_key
*old_key
;
615 pairwise
= key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
;
616 idx
= key
->conf
.keyidx
;
617 key
->local
= sdata
->local
;
621 mutex_lock(&sdata
->local
->key_mtx
);
624 old_key
= key_mtx_dereference(sdata
->local
, sta
->ptk
[idx
]);
626 old_key
= key_mtx_dereference(sdata
->local
, sta
->gtk
[idx
]);
628 old_key
= key_mtx_dereference(sdata
->local
, sdata
->keys
[idx
]);
630 increment_tailroom_need_count(sdata
);
632 ieee80211_key_replace(sdata
, sta
, pairwise
, old_key
, key
);
633 ieee80211_key_destroy(old_key
, true);
635 ieee80211_debugfs_key_add(key
);
637 if (!local
->wowlan
) {
638 ret
= ieee80211_key_enable_hw_accel(key
);
640 ieee80211_key_free(key
, true);
645 mutex_unlock(&sdata
->local
->key_mtx
);
650 void ieee80211_key_free(struct ieee80211_key
*key
, bool delay_tailroom
)
656 * Replace key with nothingness if it was ever used.
659 ieee80211_key_replace(key
->sdata
, key
->sta
,
660 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
662 ieee80211_key_destroy(key
, delay_tailroom
);
665 void ieee80211_enable_keys(struct ieee80211_sub_if_data
*sdata
)
667 struct ieee80211_key
*key
;
668 struct ieee80211_sub_if_data
*vlan
;
672 if (WARN_ON(!ieee80211_sdata_running(sdata
)))
675 mutex_lock(&sdata
->local
->key_mtx
);
677 WARN_ON_ONCE(sdata
->crypto_tx_tailroom_needed_cnt
||
678 sdata
->crypto_tx_tailroom_pending_dec
);
680 if (sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
681 list_for_each_entry(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
682 WARN_ON_ONCE(vlan
->crypto_tx_tailroom_needed_cnt
||
683 vlan
->crypto_tx_tailroom_pending_dec
);
686 list_for_each_entry(key
, &sdata
->key_list
, list
) {
687 increment_tailroom_need_count(sdata
);
688 ieee80211_key_enable_hw_accel(key
);
691 mutex_unlock(&sdata
->local
->key_mtx
);
694 void ieee80211_reset_crypto_tx_tailroom(struct ieee80211_sub_if_data
*sdata
)
696 struct ieee80211_sub_if_data
*vlan
;
698 mutex_lock(&sdata
->local
->key_mtx
);
700 sdata
->crypto_tx_tailroom_needed_cnt
= 0;
702 if (sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
703 list_for_each_entry(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
704 vlan
->crypto_tx_tailroom_needed_cnt
= 0;
707 mutex_unlock(&sdata
->local
->key_mtx
);
710 void ieee80211_iter_keys(struct ieee80211_hw
*hw
,
711 struct ieee80211_vif
*vif
,
712 void (*iter
)(struct ieee80211_hw
*hw
,
713 struct ieee80211_vif
*vif
,
714 struct ieee80211_sta
*sta
,
715 struct ieee80211_key_conf
*key
,
719 struct ieee80211_local
*local
= hw_to_local(hw
);
720 struct ieee80211_key
*key
, *tmp
;
721 struct ieee80211_sub_if_data
*sdata
;
725 mutex_lock(&local
->key_mtx
);
727 sdata
= vif_to_sdata(vif
);
728 list_for_each_entry_safe(key
, tmp
, &sdata
->key_list
, list
)
729 iter(hw
, &sdata
->vif
,
730 key
->sta
? &key
->sta
->sta
: NULL
,
731 &key
->conf
, iter_data
);
733 list_for_each_entry(sdata
, &local
->interfaces
, list
)
734 list_for_each_entry_safe(key
, tmp
,
735 &sdata
->key_list
, list
)
736 iter(hw
, &sdata
->vif
,
737 key
->sta
? &key
->sta
->sta
: NULL
,
738 &key
->conf
, iter_data
);
740 mutex_unlock(&local
->key_mtx
);
742 EXPORT_SYMBOL(ieee80211_iter_keys
);
744 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data
*sdata
,
745 struct list_head
*keys
)
747 struct ieee80211_key
*key
, *tmp
;
749 decrease_tailroom_need_count(sdata
,
750 sdata
->crypto_tx_tailroom_pending_dec
);
751 sdata
->crypto_tx_tailroom_pending_dec
= 0;
753 ieee80211_debugfs_key_remove_mgmt_default(sdata
);
755 list_for_each_entry_safe(key
, tmp
, &sdata
->key_list
, list
) {
756 ieee80211_key_replace(key
->sdata
, key
->sta
,
757 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
759 list_add_tail(&key
->list
, keys
);
762 ieee80211_debugfs_key_update_default(sdata
);
765 void ieee80211_free_keys(struct ieee80211_sub_if_data
*sdata
,
766 bool force_synchronize
)
768 struct ieee80211_local
*local
= sdata
->local
;
769 struct ieee80211_sub_if_data
*vlan
;
770 struct ieee80211_sub_if_data
*master
;
771 struct ieee80211_key
*key
, *tmp
;
774 cancel_delayed_work_sync(&sdata
->dec_tailroom_needed_wk
);
776 mutex_lock(&local
->key_mtx
);
778 ieee80211_free_keys_iface(sdata
, &keys
);
780 if (sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
781 list_for_each_entry(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
782 ieee80211_free_keys_iface(vlan
, &keys
);
785 if (!list_empty(&keys
) || force_synchronize
)
787 list_for_each_entry_safe(key
, tmp
, &keys
, list
)
788 __ieee80211_key_destroy(key
, false);
790 if (sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) {
792 master
= container_of(sdata
->bss
,
793 struct ieee80211_sub_if_data
,
796 WARN_ON_ONCE(sdata
->crypto_tx_tailroom_needed_cnt
!=
797 master
->crypto_tx_tailroom_needed_cnt
);
800 WARN_ON_ONCE(sdata
->crypto_tx_tailroom_needed_cnt
||
801 sdata
->crypto_tx_tailroom_pending_dec
);
804 if (sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
805 list_for_each_entry(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
806 WARN_ON_ONCE(vlan
->crypto_tx_tailroom_needed_cnt
||
807 vlan
->crypto_tx_tailroom_pending_dec
);
810 mutex_unlock(&local
->key_mtx
);
813 void ieee80211_free_sta_keys(struct ieee80211_local
*local
,
814 struct sta_info
*sta
)
816 struct ieee80211_key
*key
;
819 mutex_lock(&local
->key_mtx
);
820 for (i
= 0; i
< ARRAY_SIZE(sta
->gtk
); i
++) {
821 key
= key_mtx_dereference(local
, sta
->gtk
[i
]);
824 ieee80211_key_replace(key
->sdata
, key
->sta
,
825 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
827 __ieee80211_key_destroy(key
, true);
830 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
831 key
= key_mtx_dereference(local
, sta
->ptk
[i
]);
834 ieee80211_key_replace(key
->sdata
, key
->sta
,
835 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
837 __ieee80211_key_destroy(key
, true);
840 mutex_unlock(&local
->key_mtx
);
843 void ieee80211_delayed_tailroom_dec(struct work_struct
*wk
)
845 struct ieee80211_sub_if_data
*sdata
;
847 sdata
= container_of(wk
, struct ieee80211_sub_if_data
,
848 dec_tailroom_needed_wk
.work
);
851 * The reason for the delayed tailroom needed decrementing is to
852 * make roaming faster: during roaming, all keys are first deleted
853 * and then new keys are installed. The first new key causes the
854 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
855 * the cost of synchronize_net() (which can be slow). Avoid this
856 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
857 * key removal for a while, so if we roam the value is larger than
858 * zero and no 0->1 transition happens.
860 * The cost is that if the AP switching was from an AP with keys
861 * to one without, we still allocate tailroom while it would no
862 * longer be needed. However, in the typical (fast) roaming case
863 * within an ESS this usually won't happen.
866 mutex_lock(&sdata
->local
->key_mtx
);
867 decrease_tailroom_need_count(sdata
,
868 sdata
->crypto_tx_tailroom_pending_dec
);
869 sdata
->crypto_tx_tailroom_pending_dec
= 0;
870 mutex_unlock(&sdata
->local
->key_mtx
);
873 void ieee80211_gtk_rekey_notify(struct ieee80211_vif
*vif
, const u8
*bssid
,
874 const u8
*replay_ctr
, gfp_t gfp
)
876 struct ieee80211_sub_if_data
*sdata
= vif_to_sdata(vif
);
878 trace_api_gtk_rekey_notify(sdata
, bssid
, replay_ctr
);
880 cfg80211_gtk_rekey_notify(sdata
->dev
, bssid
, replay_ctr
, gfp
);
882 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify
);
884 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf
*keyconf
,
885 struct ieee80211_key_seq
*seq
)
887 struct ieee80211_key
*key
;
890 if (WARN_ON(!(keyconf
->flags
& IEEE80211_KEY_FLAG_GENERATE_IV
)))
893 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
895 switch (key
->conf
.cipher
) {
896 case WLAN_CIPHER_SUITE_TKIP
:
897 seq
->tkip
.iv32
= key
->u
.tkip
.tx
.iv32
;
898 seq
->tkip
.iv16
= key
->u
.tkip
.tx
.iv16
;
900 case WLAN_CIPHER_SUITE_CCMP
:
901 case WLAN_CIPHER_SUITE_CCMP_256
:
902 pn64
= atomic64_read(&key
->u
.ccmp
.tx_pn
);
903 seq
->ccmp
.pn
[5] = pn64
;
904 seq
->ccmp
.pn
[4] = pn64
>> 8;
905 seq
->ccmp
.pn
[3] = pn64
>> 16;
906 seq
->ccmp
.pn
[2] = pn64
>> 24;
907 seq
->ccmp
.pn
[1] = pn64
>> 32;
908 seq
->ccmp
.pn
[0] = pn64
>> 40;
910 case WLAN_CIPHER_SUITE_AES_CMAC
:
911 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
912 pn64
= atomic64_read(&key
->u
.aes_cmac
.tx_pn
);
913 seq
->ccmp
.pn
[5] = pn64
;
914 seq
->ccmp
.pn
[4] = pn64
>> 8;
915 seq
->ccmp
.pn
[3] = pn64
>> 16;
916 seq
->ccmp
.pn
[2] = pn64
>> 24;
917 seq
->ccmp
.pn
[1] = pn64
>> 32;
918 seq
->ccmp
.pn
[0] = pn64
>> 40;
920 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
921 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
922 pn64
= atomic64_read(&key
->u
.aes_gmac
.tx_pn
);
923 seq
->ccmp
.pn
[5] = pn64
;
924 seq
->ccmp
.pn
[4] = pn64
>> 8;
925 seq
->ccmp
.pn
[3] = pn64
>> 16;
926 seq
->ccmp
.pn
[2] = pn64
>> 24;
927 seq
->ccmp
.pn
[1] = pn64
>> 32;
928 seq
->ccmp
.pn
[0] = pn64
>> 40;
930 case WLAN_CIPHER_SUITE_GCMP
:
931 case WLAN_CIPHER_SUITE_GCMP_256
:
932 pn64
= atomic64_read(&key
->u
.gcmp
.tx_pn
);
933 seq
->gcmp
.pn
[5] = pn64
;
934 seq
->gcmp
.pn
[4] = pn64
>> 8;
935 seq
->gcmp
.pn
[3] = pn64
>> 16;
936 seq
->gcmp
.pn
[2] = pn64
>> 24;
937 seq
->gcmp
.pn
[1] = pn64
>> 32;
938 seq
->gcmp
.pn
[0] = pn64
>> 40;
944 EXPORT_SYMBOL(ieee80211_get_key_tx_seq
);
946 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf
*keyconf
,
947 int tid
, struct ieee80211_key_seq
*seq
)
949 struct ieee80211_key
*key
;
952 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
954 switch (key
->conf
.cipher
) {
955 case WLAN_CIPHER_SUITE_TKIP
:
956 if (WARN_ON(tid
< 0 || tid
>= IEEE80211_NUM_TIDS
))
958 seq
->tkip
.iv32
= key
->u
.tkip
.rx
[tid
].iv32
;
959 seq
->tkip
.iv16
= key
->u
.tkip
.rx
[tid
].iv16
;
961 case WLAN_CIPHER_SUITE_CCMP
:
962 case WLAN_CIPHER_SUITE_CCMP_256
:
963 if (WARN_ON(tid
< -1 || tid
>= IEEE80211_NUM_TIDS
))
966 pn
= key
->u
.ccmp
.rx_pn
[IEEE80211_NUM_TIDS
];
968 pn
= key
->u
.ccmp
.rx_pn
[tid
];
969 memcpy(seq
->ccmp
.pn
, pn
, IEEE80211_CCMP_PN_LEN
);
971 case WLAN_CIPHER_SUITE_AES_CMAC
:
972 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
973 if (WARN_ON(tid
!= 0))
975 pn
= key
->u
.aes_cmac
.rx_pn
;
976 memcpy(seq
->aes_cmac
.pn
, pn
, IEEE80211_CMAC_PN_LEN
);
978 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
979 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
980 if (WARN_ON(tid
!= 0))
982 pn
= key
->u
.aes_gmac
.rx_pn
;
983 memcpy(seq
->aes_gmac
.pn
, pn
, IEEE80211_GMAC_PN_LEN
);
985 case WLAN_CIPHER_SUITE_GCMP
:
986 case WLAN_CIPHER_SUITE_GCMP_256
:
987 if (WARN_ON(tid
< -1 || tid
>= IEEE80211_NUM_TIDS
))
990 pn
= key
->u
.gcmp
.rx_pn
[IEEE80211_NUM_TIDS
];
992 pn
= key
->u
.gcmp
.rx_pn
[tid
];
993 memcpy(seq
->gcmp
.pn
, pn
, IEEE80211_GCMP_PN_LEN
);
997 EXPORT_SYMBOL(ieee80211_get_key_rx_seq
);
999 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf
*keyconf
,
1000 struct ieee80211_key_seq
*seq
)
1002 struct ieee80211_key
*key
;
1005 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
1007 switch (key
->conf
.cipher
) {
1008 case WLAN_CIPHER_SUITE_TKIP
:
1009 key
->u
.tkip
.tx
.iv32
= seq
->tkip
.iv32
;
1010 key
->u
.tkip
.tx
.iv16
= seq
->tkip
.iv16
;
1012 case WLAN_CIPHER_SUITE_CCMP
:
1013 case WLAN_CIPHER_SUITE_CCMP_256
:
1014 pn64
= (u64
)seq
->ccmp
.pn
[5] |
1015 ((u64
)seq
->ccmp
.pn
[4] << 8) |
1016 ((u64
)seq
->ccmp
.pn
[3] << 16) |
1017 ((u64
)seq
->ccmp
.pn
[2] << 24) |
1018 ((u64
)seq
->ccmp
.pn
[1] << 32) |
1019 ((u64
)seq
->ccmp
.pn
[0] << 40);
1020 atomic64_set(&key
->u
.ccmp
.tx_pn
, pn64
);
1022 case WLAN_CIPHER_SUITE_AES_CMAC
:
1023 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
1024 pn64
= (u64
)seq
->aes_cmac
.pn
[5] |
1025 ((u64
)seq
->aes_cmac
.pn
[4] << 8) |
1026 ((u64
)seq
->aes_cmac
.pn
[3] << 16) |
1027 ((u64
)seq
->aes_cmac
.pn
[2] << 24) |
1028 ((u64
)seq
->aes_cmac
.pn
[1] << 32) |
1029 ((u64
)seq
->aes_cmac
.pn
[0] << 40);
1030 atomic64_set(&key
->u
.aes_cmac
.tx_pn
, pn64
);
1032 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
1033 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
1034 pn64
= (u64
)seq
->aes_gmac
.pn
[5] |
1035 ((u64
)seq
->aes_gmac
.pn
[4] << 8) |
1036 ((u64
)seq
->aes_gmac
.pn
[3] << 16) |
1037 ((u64
)seq
->aes_gmac
.pn
[2] << 24) |
1038 ((u64
)seq
->aes_gmac
.pn
[1] << 32) |
1039 ((u64
)seq
->aes_gmac
.pn
[0] << 40);
1040 atomic64_set(&key
->u
.aes_gmac
.tx_pn
, pn64
);
1042 case WLAN_CIPHER_SUITE_GCMP
:
1043 case WLAN_CIPHER_SUITE_GCMP_256
:
1044 pn64
= (u64
)seq
->gcmp
.pn
[5] |
1045 ((u64
)seq
->gcmp
.pn
[4] << 8) |
1046 ((u64
)seq
->gcmp
.pn
[3] << 16) |
1047 ((u64
)seq
->gcmp
.pn
[2] << 24) |
1048 ((u64
)seq
->gcmp
.pn
[1] << 32) |
1049 ((u64
)seq
->gcmp
.pn
[0] << 40);
1050 atomic64_set(&key
->u
.gcmp
.tx_pn
, pn64
);
1057 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq
);
1059 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf
*keyconf
,
1060 int tid
, struct ieee80211_key_seq
*seq
)
1062 struct ieee80211_key
*key
;
1065 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
1067 switch (key
->conf
.cipher
) {
1068 case WLAN_CIPHER_SUITE_TKIP
:
1069 if (WARN_ON(tid
< 0 || tid
>= IEEE80211_NUM_TIDS
))
1071 key
->u
.tkip
.rx
[tid
].iv32
= seq
->tkip
.iv32
;
1072 key
->u
.tkip
.rx
[tid
].iv16
= seq
->tkip
.iv16
;
1074 case WLAN_CIPHER_SUITE_CCMP
:
1075 case WLAN_CIPHER_SUITE_CCMP_256
:
1076 if (WARN_ON(tid
< -1 || tid
>= IEEE80211_NUM_TIDS
))
1079 pn
= key
->u
.ccmp
.rx_pn
[IEEE80211_NUM_TIDS
];
1081 pn
= key
->u
.ccmp
.rx_pn
[tid
];
1082 memcpy(pn
, seq
->ccmp
.pn
, IEEE80211_CCMP_PN_LEN
);
1084 case WLAN_CIPHER_SUITE_AES_CMAC
:
1085 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
1086 if (WARN_ON(tid
!= 0))
1088 pn
= key
->u
.aes_cmac
.rx_pn
;
1089 memcpy(pn
, seq
->aes_cmac
.pn
, IEEE80211_CMAC_PN_LEN
);
1091 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
1092 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
1093 if (WARN_ON(tid
!= 0))
1095 pn
= key
->u
.aes_gmac
.rx_pn
;
1096 memcpy(pn
, seq
->aes_gmac
.pn
, IEEE80211_GMAC_PN_LEN
);
1098 case WLAN_CIPHER_SUITE_GCMP
:
1099 case WLAN_CIPHER_SUITE_GCMP_256
:
1100 if (WARN_ON(tid
< -1 || tid
>= IEEE80211_NUM_TIDS
))
1103 pn
= key
->u
.gcmp
.rx_pn
[IEEE80211_NUM_TIDS
];
1105 pn
= key
->u
.gcmp
.rx_pn
[tid
];
1106 memcpy(pn
, seq
->gcmp
.pn
, IEEE80211_GCMP_PN_LEN
);
1113 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq
);
1115 void ieee80211_remove_key(struct ieee80211_key_conf
*keyconf
)
1117 struct ieee80211_key
*key
;
1119 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
1121 assert_key_lock(key
->local
);
1124 * if key was uploaded, we assume the driver will/has remove(d)
1125 * it, so adjust bookkeeping accordingly
1127 if (key
->flags
& KEY_FLAG_UPLOADED_TO_HARDWARE
) {
1128 key
->flags
&= ~KEY_FLAG_UPLOADED_TO_HARDWARE
;
1130 if (!((key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_MMIC
) ||
1131 (key
->conf
.flags
& IEEE80211_KEY_FLAG_RESERVE_TAILROOM
)))
1132 increment_tailroom_need_count(key
->sdata
);
1135 ieee80211_key_free(key
, false);
1137 EXPORT_SYMBOL_GPL(ieee80211_remove_key
);
1139 struct ieee80211_key_conf
*
1140 ieee80211_gtk_rekey_add(struct ieee80211_vif
*vif
,
1141 struct ieee80211_key_conf
*keyconf
)
1143 struct ieee80211_sub_if_data
*sdata
= vif_to_sdata(vif
);
1144 struct ieee80211_local
*local
= sdata
->local
;
1145 struct ieee80211_key
*key
;
1148 if (WARN_ON(!local
->wowlan
))
1149 return ERR_PTR(-EINVAL
);
1151 if (WARN_ON(vif
->type
!= NL80211_IFTYPE_STATION
))
1152 return ERR_PTR(-EINVAL
);
1154 key
= ieee80211_key_alloc(keyconf
->cipher
, keyconf
->keyidx
,
1155 keyconf
->keylen
, keyconf
->key
,
1158 return ERR_CAST(key
);
1160 if (sdata
->u
.mgd
.mfp
!= IEEE80211_MFP_DISABLED
)
1161 key
->conf
.flags
|= IEEE80211_KEY_FLAG_RX_MGMT
;
1163 err
= ieee80211_key_link(key
, sdata
, NULL
);
1165 return ERR_PTR(err
);
1169 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add
);