Linux 4.1.16
[linux/fpc-iii.git] / net / mac80211 / key.c
blob81e9785f38bc2df75a2dcbe21b0d1941868f0096
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/if_ether.h>
14 #include <linux/etherdevice.h>
15 #include <linux/list.h>
16 #include <linux/rcupdate.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
25 #include "aes_ccm.h"
26 #include "aes_cmac.h"
27 #include "aes_gmac.h"
28 #include "aes_gcm.h"
31 /**
32 * DOC: Key handling basics
34 * Key handling in mac80211 is done based on per-interface (sub_if_data)
35 * keys and per-station keys. Since each station belongs to an interface,
36 * each station key also belongs to that interface.
38 * Hardware acceleration is done on a best-effort basis for algorithms
39 * that are implemented in software, for each key the hardware is asked
40 * to enable that key for offloading but if it cannot do that the key is
41 * simply kept for software encryption (unless it is for an algorithm
42 * that isn't implemented in software).
43 * There is currently no way of knowing whether a key is handled in SW
44 * or HW except by looking into debugfs.
46 * All key management is internally protected by a mutex. Within all
47 * other parts of mac80211, key references are, just as STA structure
48 * references, protected by RCU. Note, however, that some things are
49 * unprotected, namely the key->sta dereferences within the hardware
50 * acceleration functions. This means that sta_info_destroy() must
51 * remove the key which waits for an RCU grace period.
54 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
56 static void assert_key_lock(struct ieee80211_local *local)
58 lockdep_assert_held(&local->key_mtx);
61 static void
62 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
64 struct ieee80211_sub_if_data *vlan;
66 if (sdata->vif.type != NL80211_IFTYPE_AP)
67 return;
69 /* crypto_tx_tailroom_needed_cnt is protected by this */
70 assert_key_lock(sdata->local);
72 rcu_read_lock();
74 list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
75 vlan->crypto_tx_tailroom_needed_cnt += delta;
77 rcu_read_unlock();
80 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
83 * When this count is zero, SKB resizing for allocating tailroom
84 * for IV or MMIC is skipped. But, this check has created two race
85 * cases in xmit path while transiting from zero count to one:
87 * 1. SKB resize was skipped because no key was added but just before
88 * the xmit key is added and SW encryption kicks off.
90 * 2. SKB resize was skipped because all the keys were hw planted but
91 * just before xmit one of the key is deleted and SW encryption kicks
92 * off.
94 * In both the above case SW encryption will find not enough space for
95 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
97 * Solution has been explained at
98 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
101 assert_key_lock(sdata->local);
103 update_vlan_tailroom_need_count(sdata, 1);
105 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
107 * Flush all XMIT packets currently using HW encryption or no
108 * encryption at all if the count transition is from 0 -> 1.
110 synchronize_net();
114 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
115 int delta)
117 assert_key_lock(sdata->local);
119 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
121 update_vlan_tailroom_need_count(sdata, -delta);
122 sdata->crypto_tx_tailroom_needed_cnt -= delta;
125 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
127 struct ieee80211_sub_if_data *sdata;
128 struct sta_info *sta;
129 int ret = -EOPNOTSUPP;
131 might_sleep();
133 if (key->flags & KEY_FLAG_TAINTED) {
134 /* If we get here, it's during resume and the key is
135 * tainted so shouldn't be used/programmed any more.
136 * However, its flags may still indicate that it was
137 * programmed into the device (since we're in resume)
138 * so clear that flag now to avoid trying to remove
139 * it again later.
141 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
142 return -EINVAL;
145 if (!key->local->ops->set_key)
146 goto out_unsupported;
148 assert_key_lock(key->local);
150 sta = key->sta;
153 * If this is a per-STA GTK, check if it
154 * is supported; if not, return.
156 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
157 !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
158 goto out_unsupported;
160 if (sta && !sta->uploaded)
161 goto out_unsupported;
163 sdata = key->sdata;
164 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
166 * The driver doesn't know anything about VLAN interfaces.
167 * Hence, don't send GTKs for VLAN interfaces to the driver.
169 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
170 goto out_unsupported;
173 ret = drv_set_key(key->local, SET_KEY, sdata,
174 sta ? &sta->sta : NULL, &key->conf);
176 if (!ret) {
177 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
179 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
180 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
181 decrease_tailroom_need_count(sdata, 1);
183 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
184 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
186 return 0;
189 if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
190 sdata_err(sdata,
191 "failed to set key (%d, %pM) to hardware (%d)\n",
192 key->conf.keyidx,
193 sta ? sta->sta.addr : bcast_addr, ret);
195 out_unsupported:
196 switch (key->conf.cipher) {
197 case WLAN_CIPHER_SUITE_WEP40:
198 case WLAN_CIPHER_SUITE_WEP104:
199 case WLAN_CIPHER_SUITE_TKIP:
200 case WLAN_CIPHER_SUITE_CCMP:
201 case WLAN_CIPHER_SUITE_CCMP_256:
202 case WLAN_CIPHER_SUITE_AES_CMAC:
203 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
204 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
205 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
206 case WLAN_CIPHER_SUITE_GCMP:
207 case WLAN_CIPHER_SUITE_GCMP_256:
208 /* all of these we can do in software - if driver can */
209 if (ret == 1)
210 return 0;
211 if (key->local->hw.flags & IEEE80211_HW_SW_CRYPTO_CONTROL)
212 return -EINVAL;
213 return 0;
214 default:
215 return -EINVAL;
219 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
221 struct ieee80211_sub_if_data *sdata;
222 struct sta_info *sta;
223 int ret;
225 might_sleep();
227 if (!key || !key->local->ops->set_key)
228 return;
230 assert_key_lock(key->local);
232 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
233 return;
235 sta = key->sta;
236 sdata = key->sdata;
238 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
239 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
240 increment_tailroom_need_count(sdata);
242 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
243 sta ? &sta->sta : NULL, &key->conf);
245 if (ret)
246 sdata_err(sdata,
247 "failed to remove key (%d, %pM) from hardware (%d)\n",
248 key->conf.keyidx,
249 sta ? sta->sta.addr : bcast_addr, ret);
251 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
254 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
255 int idx, bool uni, bool multi)
257 struct ieee80211_key *key = NULL;
259 assert_key_lock(sdata->local);
261 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
262 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
264 if (uni) {
265 rcu_assign_pointer(sdata->default_unicast_key, key);
266 drv_set_default_unicast_key(sdata->local, sdata, idx);
269 if (multi)
270 rcu_assign_pointer(sdata->default_multicast_key, key);
272 ieee80211_debugfs_key_update_default(sdata);
275 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
276 bool uni, bool multi)
278 mutex_lock(&sdata->local->key_mtx);
279 __ieee80211_set_default_key(sdata, idx, uni, multi);
280 mutex_unlock(&sdata->local->key_mtx);
283 static void
284 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
286 struct ieee80211_key *key = NULL;
288 assert_key_lock(sdata->local);
290 if (idx >= NUM_DEFAULT_KEYS &&
291 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
292 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
294 rcu_assign_pointer(sdata->default_mgmt_key, key);
296 ieee80211_debugfs_key_update_default(sdata);
299 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
300 int idx)
302 mutex_lock(&sdata->local->key_mtx);
303 __ieee80211_set_default_mgmt_key(sdata, idx);
304 mutex_unlock(&sdata->local->key_mtx);
308 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
309 struct sta_info *sta,
310 bool pairwise,
311 struct ieee80211_key *old,
312 struct ieee80211_key *new)
314 int idx;
315 bool defunikey, defmultikey, defmgmtkey;
317 /* caller must provide at least one old/new */
318 if (WARN_ON(!new && !old))
319 return;
321 if (new)
322 list_add_tail(&new->list, &sdata->key_list);
324 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
326 if (old)
327 idx = old->conf.keyidx;
328 else
329 idx = new->conf.keyidx;
331 if (sta) {
332 if (pairwise) {
333 rcu_assign_pointer(sta->ptk[idx], new);
334 sta->ptk_idx = idx;
335 } else {
336 rcu_assign_pointer(sta->gtk[idx], new);
337 sta->gtk_idx = idx;
339 } else {
340 defunikey = old &&
341 old == key_mtx_dereference(sdata->local,
342 sdata->default_unicast_key);
343 defmultikey = old &&
344 old == key_mtx_dereference(sdata->local,
345 sdata->default_multicast_key);
346 defmgmtkey = old &&
347 old == key_mtx_dereference(sdata->local,
348 sdata->default_mgmt_key);
350 if (defunikey && !new)
351 __ieee80211_set_default_key(sdata, -1, true, false);
352 if (defmultikey && !new)
353 __ieee80211_set_default_key(sdata, -1, false, true);
354 if (defmgmtkey && !new)
355 __ieee80211_set_default_mgmt_key(sdata, -1);
357 rcu_assign_pointer(sdata->keys[idx], new);
358 if (defunikey && new)
359 __ieee80211_set_default_key(sdata, new->conf.keyidx,
360 true, false);
361 if (defmultikey && new)
362 __ieee80211_set_default_key(sdata, new->conf.keyidx,
363 false, true);
364 if (defmgmtkey && new)
365 __ieee80211_set_default_mgmt_key(sdata,
366 new->conf.keyidx);
369 if (old)
370 list_del(&old->list);
373 struct ieee80211_key *
374 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
375 const u8 *key_data,
376 size_t seq_len, const u8 *seq,
377 const struct ieee80211_cipher_scheme *cs)
379 struct ieee80211_key *key;
380 int i, j, err;
382 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
383 return ERR_PTR(-EINVAL);
385 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
386 if (!key)
387 return ERR_PTR(-ENOMEM);
390 * Default to software encryption; we'll later upload the
391 * key to the hardware if possible.
393 key->conf.flags = 0;
394 key->flags = 0;
396 key->conf.cipher = cipher;
397 key->conf.keyidx = idx;
398 key->conf.keylen = key_len;
399 switch (cipher) {
400 case WLAN_CIPHER_SUITE_WEP40:
401 case WLAN_CIPHER_SUITE_WEP104:
402 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
403 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
404 break;
405 case WLAN_CIPHER_SUITE_TKIP:
406 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
407 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
408 if (seq) {
409 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
410 key->u.tkip.rx[i].iv32 =
411 get_unaligned_le32(&seq[2]);
412 key->u.tkip.rx[i].iv16 =
413 get_unaligned_le16(seq);
416 spin_lock_init(&key->u.tkip.txlock);
417 break;
418 case WLAN_CIPHER_SUITE_CCMP:
419 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
420 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
421 if (seq) {
422 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
423 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
424 key->u.ccmp.rx_pn[i][j] =
425 seq[IEEE80211_CCMP_PN_LEN - j - 1];
428 * Initialize AES key state here as an optimization so that
429 * it does not need to be initialized for every packet.
431 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
432 key_data, key_len, IEEE80211_CCMP_MIC_LEN);
433 if (IS_ERR(key->u.ccmp.tfm)) {
434 err = PTR_ERR(key->u.ccmp.tfm);
435 kfree(key);
436 return ERR_PTR(err);
438 break;
439 case WLAN_CIPHER_SUITE_CCMP_256:
440 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
441 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
442 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
443 for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
444 key->u.ccmp.rx_pn[i][j] =
445 seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
446 /* Initialize AES key state here as an optimization so that
447 * it does not need to be initialized for every packet.
449 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
450 key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
451 if (IS_ERR(key->u.ccmp.tfm)) {
452 err = PTR_ERR(key->u.ccmp.tfm);
453 kfree(key);
454 return ERR_PTR(err);
456 break;
457 case WLAN_CIPHER_SUITE_AES_CMAC:
458 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
459 key->conf.iv_len = 0;
460 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
461 key->conf.icv_len = sizeof(struct ieee80211_mmie);
462 else
463 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
464 if (seq)
465 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
466 key->u.aes_cmac.rx_pn[j] =
467 seq[IEEE80211_CMAC_PN_LEN - j - 1];
469 * Initialize AES key state here as an optimization so that
470 * it does not need to be initialized for every packet.
472 key->u.aes_cmac.tfm =
473 ieee80211_aes_cmac_key_setup(key_data, key_len);
474 if (IS_ERR(key->u.aes_cmac.tfm)) {
475 err = PTR_ERR(key->u.aes_cmac.tfm);
476 kfree(key);
477 return ERR_PTR(err);
479 break;
480 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
481 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
482 key->conf.iv_len = 0;
483 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
484 if (seq)
485 for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
486 key->u.aes_gmac.rx_pn[j] =
487 seq[IEEE80211_GMAC_PN_LEN - j - 1];
488 /* Initialize AES key state here as an optimization so that
489 * it does not need to be initialized for every packet.
491 key->u.aes_gmac.tfm =
492 ieee80211_aes_gmac_key_setup(key_data, key_len);
493 if (IS_ERR(key->u.aes_gmac.tfm)) {
494 err = PTR_ERR(key->u.aes_gmac.tfm);
495 kfree(key);
496 return ERR_PTR(err);
498 break;
499 case WLAN_CIPHER_SUITE_GCMP:
500 case WLAN_CIPHER_SUITE_GCMP_256:
501 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
502 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
503 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
504 for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
505 key->u.gcmp.rx_pn[i][j] =
506 seq[IEEE80211_GCMP_PN_LEN - j - 1];
507 /* Initialize AES key state here as an optimization so that
508 * it does not need to be initialized for every packet.
510 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
511 key_len);
512 if (IS_ERR(key->u.gcmp.tfm)) {
513 err = PTR_ERR(key->u.gcmp.tfm);
514 kfree(key);
515 return ERR_PTR(err);
517 break;
518 default:
519 if (cs) {
520 size_t len = (seq_len > MAX_PN_LEN) ?
521 MAX_PN_LEN : seq_len;
523 key->conf.iv_len = cs->hdr_len;
524 key->conf.icv_len = cs->mic_len;
525 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
526 for (j = 0; j < len; j++)
527 key->u.gen.rx_pn[i][j] =
528 seq[len - j - 1];
529 key->flags |= KEY_FLAG_CIPHER_SCHEME;
532 memcpy(key->conf.key, key_data, key_len);
533 INIT_LIST_HEAD(&key->list);
535 return key;
538 static void ieee80211_key_free_common(struct ieee80211_key *key)
540 switch (key->conf.cipher) {
541 case WLAN_CIPHER_SUITE_CCMP:
542 case WLAN_CIPHER_SUITE_CCMP_256:
543 ieee80211_aes_key_free(key->u.ccmp.tfm);
544 break;
545 case WLAN_CIPHER_SUITE_AES_CMAC:
546 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
547 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
548 break;
549 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
550 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
551 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
552 break;
553 case WLAN_CIPHER_SUITE_GCMP:
554 case WLAN_CIPHER_SUITE_GCMP_256:
555 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
556 break;
558 kzfree(key);
561 static void __ieee80211_key_destroy(struct ieee80211_key *key,
562 bool delay_tailroom)
564 if (key->local)
565 ieee80211_key_disable_hw_accel(key);
567 if (key->local) {
568 struct ieee80211_sub_if_data *sdata = key->sdata;
570 ieee80211_debugfs_key_remove(key);
572 if (delay_tailroom) {
573 /* see ieee80211_delayed_tailroom_dec */
574 sdata->crypto_tx_tailroom_pending_dec++;
575 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
576 HZ/2);
577 } else {
578 decrease_tailroom_need_count(sdata, 1);
582 ieee80211_key_free_common(key);
585 static void ieee80211_key_destroy(struct ieee80211_key *key,
586 bool delay_tailroom)
588 if (!key)
589 return;
592 * Synchronize so the TX path can no longer be using
593 * this key before we free/remove it.
595 synchronize_net();
597 __ieee80211_key_destroy(key, delay_tailroom);
600 void ieee80211_key_free_unused(struct ieee80211_key *key)
602 WARN_ON(key->sdata || key->local);
603 ieee80211_key_free_common(key);
606 int ieee80211_key_link(struct ieee80211_key *key,
607 struct ieee80211_sub_if_data *sdata,
608 struct sta_info *sta)
610 struct ieee80211_local *local = sdata->local;
611 struct ieee80211_key *old_key;
612 int idx, ret;
613 bool pairwise;
615 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
616 idx = key->conf.keyidx;
617 key->local = sdata->local;
618 key->sdata = sdata;
619 key->sta = sta;
621 mutex_lock(&sdata->local->key_mtx);
623 if (sta && pairwise)
624 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
625 else if (sta)
626 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
627 else
628 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
630 increment_tailroom_need_count(sdata);
632 ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
633 ieee80211_key_destroy(old_key, true);
635 ieee80211_debugfs_key_add(key);
637 if (!local->wowlan) {
638 ret = ieee80211_key_enable_hw_accel(key);
639 if (ret)
640 ieee80211_key_free(key, true);
641 } else {
642 ret = 0;
645 mutex_unlock(&sdata->local->key_mtx);
647 return ret;
650 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
652 if (!key)
653 return;
656 * Replace key with nothingness if it was ever used.
658 if (key->sdata)
659 ieee80211_key_replace(key->sdata, key->sta,
660 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
661 key, NULL);
662 ieee80211_key_destroy(key, delay_tailroom);
665 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
667 struct ieee80211_key *key;
668 struct ieee80211_sub_if_data *vlan;
670 ASSERT_RTNL();
672 if (WARN_ON(!ieee80211_sdata_running(sdata)))
673 return;
675 mutex_lock(&sdata->local->key_mtx);
677 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
678 sdata->crypto_tx_tailroom_pending_dec);
680 if (sdata->vif.type == NL80211_IFTYPE_AP) {
681 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
682 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
683 vlan->crypto_tx_tailroom_pending_dec);
686 list_for_each_entry(key, &sdata->key_list, list) {
687 increment_tailroom_need_count(sdata);
688 ieee80211_key_enable_hw_accel(key);
691 mutex_unlock(&sdata->local->key_mtx);
694 void ieee80211_reset_crypto_tx_tailroom(struct ieee80211_sub_if_data *sdata)
696 struct ieee80211_sub_if_data *vlan;
698 mutex_lock(&sdata->local->key_mtx);
700 sdata->crypto_tx_tailroom_needed_cnt = 0;
702 if (sdata->vif.type == NL80211_IFTYPE_AP) {
703 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
704 vlan->crypto_tx_tailroom_needed_cnt = 0;
707 mutex_unlock(&sdata->local->key_mtx);
710 void ieee80211_iter_keys(struct ieee80211_hw *hw,
711 struct ieee80211_vif *vif,
712 void (*iter)(struct ieee80211_hw *hw,
713 struct ieee80211_vif *vif,
714 struct ieee80211_sta *sta,
715 struct ieee80211_key_conf *key,
716 void *data),
717 void *iter_data)
719 struct ieee80211_local *local = hw_to_local(hw);
720 struct ieee80211_key *key, *tmp;
721 struct ieee80211_sub_if_data *sdata;
723 ASSERT_RTNL();
725 mutex_lock(&local->key_mtx);
726 if (vif) {
727 sdata = vif_to_sdata(vif);
728 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
729 iter(hw, &sdata->vif,
730 key->sta ? &key->sta->sta : NULL,
731 &key->conf, iter_data);
732 } else {
733 list_for_each_entry(sdata, &local->interfaces, list)
734 list_for_each_entry_safe(key, tmp,
735 &sdata->key_list, list)
736 iter(hw, &sdata->vif,
737 key->sta ? &key->sta->sta : NULL,
738 &key->conf, iter_data);
740 mutex_unlock(&local->key_mtx);
742 EXPORT_SYMBOL(ieee80211_iter_keys);
744 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
745 struct list_head *keys)
747 struct ieee80211_key *key, *tmp;
749 decrease_tailroom_need_count(sdata,
750 sdata->crypto_tx_tailroom_pending_dec);
751 sdata->crypto_tx_tailroom_pending_dec = 0;
753 ieee80211_debugfs_key_remove_mgmt_default(sdata);
755 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
756 ieee80211_key_replace(key->sdata, key->sta,
757 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
758 key, NULL);
759 list_add_tail(&key->list, keys);
762 ieee80211_debugfs_key_update_default(sdata);
765 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
766 bool force_synchronize)
768 struct ieee80211_local *local = sdata->local;
769 struct ieee80211_sub_if_data *vlan;
770 struct ieee80211_sub_if_data *master;
771 struct ieee80211_key *key, *tmp;
772 LIST_HEAD(keys);
774 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
776 mutex_lock(&local->key_mtx);
778 ieee80211_free_keys_iface(sdata, &keys);
780 if (sdata->vif.type == NL80211_IFTYPE_AP) {
781 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
782 ieee80211_free_keys_iface(vlan, &keys);
785 if (!list_empty(&keys) || force_synchronize)
786 synchronize_net();
787 list_for_each_entry_safe(key, tmp, &keys, list)
788 __ieee80211_key_destroy(key, false);
790 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
791 if (sdata->bss) {
792 master = container_of(sdata->bss,
793 struct ieee80211_sub_if_data,
794 u.ap);
796 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
797 master->crypto_tx_tailroom_needed_cnt);
799 } else {
800 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
801 sdata->crypto_tx_tailroom_pending_dec);
804 if (sdata->vif.type == NL80211_IFTYPE_AP) {
805 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
806 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
807 vlan->crypto_tx_tailroom_pending_dec);
810 mutex_unlock(&local->key_mtx);
813 void ieee80211_free_sta_keys(struct ieee80211_local *local,
814 struct sta_info *sta)
816 struct ieee80211_key *key;
817 int i;
819 mutex_lock(&local->key_mtx);
820 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
821 key = key_mtx_dereference(local, sta->gtk[i]);
822 if (!key)
823 continue;
824 ieee80211_key_replace(key->sdata, key->sta,
825 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
826 key, NULL);
827 __ieee80211_key_destroy(key, true);
830 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
831 key = key_mtx_dereference(local, sta->ptk[i]);
832 if (!key)
833 continue;
834 ieee80211_key_replace(key->sdata, key->sta,
835 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
836 key, NULL);
837 __ieee80211_key_destroy(key, true);
840 mutex_unlock(&local->key_mtx);
843 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
845 struct ieee80211_sub_if_data *sdata;
847 sdata = container_of(wk, struct ieee80211_sub_if_data,
848 dec_tailroom_needed_wk.work);
851 * The reason for the delayed tailroom needed decrementing is to
852 * make roaming faster: during roaming, all keys are first deleted
853 * and then new keys are installed. The first new key causes the
854 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
855 * the cost of synchronize_net() (which can be slow). Avoid this
856 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
857 * key removal for a while, so if we roam the value is larger than
858 * zero and no 0->1 transition happens.
860 * The cost is that if the AP switching was from an AP with keys
861 * to one without, we still allocate tailroom while it would no
862 * longer be needed. However, in the typical (fast) roaming case
863 * within an ESS this usually won't happen.
866 mutex_lock(&sdata->local->key_mtx);
867 decrease_tailroom_need_count(sdata,
868 sdata->crypto_tx_tailroom_pending_dec);
869 sdata->crypto_tx_tailroom_pending_dec = 0;
870 mutex_unlock(&sdata->local->key_mtx);
873 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
874 const u8 *replay_ctr, gfp_t gfp)
876 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
878 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
880 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
882 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
884 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
885 struct ieee80211_key_seq *seq)
887 struct ieee80211_key *key;
888 u64 pn64;
890 if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
891 return;
893 key = container_of(keyconf, struct ieee80211_key, conf);
895 switch (key->conf.cipher) {
896 case WLAN_CIPHER_SUITE_TKIP:
897 seq->tkip.iv32 = key->u.tkip.tx.iv32;
898 seq->tkip.iv16 = key->u.tkip.tx.iv16;
899 break;
900 case WLAN_CIPHER_SUITE_CCMP:
901 case WLAN_CIPHER_SUITE_CCMP_256:
902 pn64 = atomic64_read(&key->u.ccmp.tx_pn);
903 seq->ccmp.pn[5] = pn64;
904 seq->ccmp.pn[4] = pn64 >> 8;
905 seq->ccmp.pn[3] = pn64 >> 16;
906 seq->ccmp.pn[2] = pn64 >> 24;
907 seq->ccmp.pn[1] = pn64 >> 32;
908 seq->ccmp.pn[0] = pn64 >> 40;
909 break;
910 case WLAN_CIPHER_SUITE_AES_CMAC:
911 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
912 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
913 seq->ccmp.pn[5] = pn64;
914 seq->ccmp.pn[4] = pn64 >> 8;
915 seq->ccmp.pn[3] = pn64 >> 16;
916 seq->ccmp.pn[2] = pn64 >> 24;
917 seq->ccmp.pn[1] = pn64 >> 32;
918 seq->ccmp.pn[0] = pn64 >> 40;
919 break;
920 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
921 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
922 pn64 = atomic64_read(&key->u.aes_gmac.tx_pn);
923 seq->ccmp.pn[5] = pn64;
924 seq->ccmp.pn[4] = pn64 >> 8;
925 seq->ccmp.pn[3] = pn64 >> 16;
926 seq->ccmp.pn[2] = pn64 >> 24;
927 seq->ccmp.pn[1] = pn64 >> 32;
928 seq->ccmp.pn[0] = pn64 >> 40;
929 break;
930 case WLAN_CIPHER_SUITE_GCMP:
931 case WLAN_CIPHER_SUITE_GCMP_256:
932 pn64 = atomic64_read(&key->u.gcmp.tx_pn);
933 seq->gcmp.pn[5] = pn64;
934 seq->gcmp.pn[4] = pn64 >> 8;
935 seq->gcmp.pn[3] = pn64 >> 16;
936 seq->gcmp.pn[2] = pn64 >> 24;
937 seq->gcmp.pn[1] = pn64 >> 32;
938 seq->gcmp.pn[0] = pn64 >> 40;
939 break;
940 default:
941 WARN_ON(1);
944 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
946 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
947 int tid, struct ieee80211_key_seq *seq)
949 struct ieee80211_key *key;
950 const u8 *pn;
952 key = container_of(keyconf, struct ieee80211_key, conf);
954 switch (key->conf.cipher) {
955 case WLAN_CIPHER_SUITE_TKIP:
956 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
957 return;
958 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
959 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
960 break;
961 case WLAN_CIPHER_SUITE_CCMP:
962 case WLAN_CIPHER_SUITE_CCMP_256:
963 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
964 return;
965 if (tid < 0)
966 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
967 else
968 pn = key->u.ccmp.rx_pn[tid];
969 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
970 break;
971 case WLAN_CIPHER_SUITE_AES_CMAC:
972 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
973 if (WARN_ON(tid != 0))
974 return;
975 pn = key->u.aes_cmac.rx_pn;
976 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
977 break;
978 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
979 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
980 if (WARN_ON(tid != 0))
981 return;
982 pn = key->u.aes_gmac.rx_pn;
983 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
984 break;
985 case WLAN_CIPHER_SUITE_GCMP:
986 case WLAN_CIPHER_SUITE_GCMP_256:
987 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
988 return;
989 if (tid < 0)
990 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
991 else
992 pn = key->u.gcmp.rx_pn[tid];
993 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
994 break;
997 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
999 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
1000 struct ieee80211_key_seq *seq)
1002 struct ieee80211_key *key;
1003 u64 pn64;
1005 key = container_of(keyconf, struct ieee80211_key, conf);
1007 switch (key->conf.cipher) {
1008 case WLAN_CIPHER_SUITE_TKIP:
1009 key->u.tkip.tx.iv32 = seq->tkip.iv32;
1010 key->u.tkip.tx.iv16 = seq->tkip.iv16;
1011 break;
1012 case WLAN_CIPHER_SUITE_CCMP:
1013 case WLAN_CIPHER_SUITE_CCMP_256:
1014 pn64 = (u64)seq->ccmp.pn[5] |
1015 ((u64)seq->ccmp.pn[4] << 8) |
1016 ((u64)seq->ccmp.pn[3] << 16) |
1017 ((u64)seq->ccmp.pn[2] << 24) |
1018 ((u64)seq->ccmp.pn[1] << 32) |
1019 ((u64)seq->ccmp.pn[0] << 40);
1020 atomic64_set(&key->u.ccmp.tx_pn, pn64);
1021 break;
1022 case WLAN_CIPHER_SUITE_AES_CMAC:
1023 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1024 pn64 = (u64)seq->aes_cmac.pn[5] |
1025 ((u64)seq->aes_cmac.pn[4] << 8) |
1026 ((u64)seq->aes_cmac.pn[3] << 16) |
1027 ((u64)seq->aes_cmac.pn[2] << 24) |
1028 ((u64)seq->aes_cmac.pn[1] << 32) |
1029 ((u64)seq->aes_cmac.pn[0] << 40);
1030 atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
1031 break;
1032 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1033 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1034 pn64 = (u64)seq->aes_gmac.pn[5] |
1035 ((u64)seq->aes_gmac.pn[4] << 8) |
1036 ((u64)seq->aes_gmac.pn[3] << 16) |
1037 ((u64)seq->aes_gmac.pn[2] << 24) |
1038 ((u64)seq->aes_gmac.pn[1] << 32) |
1039 ((u64)seq->aes_gmac.pn[0] << 40);
1040 atomic64_set(&key->u.aes_gmac.tx_pn, pn64);
1041 break;
1042 case WLAN_CIPHER_SUITE_GCMP:
1043 case WLAN_CIPHER_SUITE_GCMP_256:
1044 pn64 = (u64)seq->gcmp.pn[5] |
1045 ((u64)seq->gcmp.pn[4] << 8) |
1046 ((u64)seq->gcmp.pn[3] << 16) |
1047 ((u64)seq->gcmp.pn[2] << 24) |
1048 ((u64)seq->gcmp.pn[1] << 32) |
1049 ((u64)seq->gcmp.pn[0] << 40);
1050 atomic64_set(&key->u.gcmp.tx_pn, pn64);
1051 break;
1052 default:
1053 WARN_ON(1);
1054 break;
1057 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
1059 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
1060 int tid, struct ieee80211_key_seq *seq)
1062 struct ieee80211_key *key;
1063 u8 *pn;
1065 key = container_of(keyconf, struct ieee80211_key, conf);
1067 switch (key->conf.cipher) {
1068 case WLAN_CIPHER_SUITE_TKIP:
1069 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1070 return;
1071 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1072 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1073 break;
1074 case WLAN_CIPHER_SUITE_CCMP:
1075 case WLAN_CIPHER_SUITE_CCMP_256:
1076 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1077 return;
1078 if (tid < 0)
1079 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1080 else
1081 pn = key->u.ccmp.rx_pn[tid];
1082 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1083 break;
1084 case WLAN_CIPHER_SUITE_AES_CMAC:
1085 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1086 if (WARN_ON(tid != 0))
1087 return;
1088 pn = key->u.aes_cmac.rx_pn;
1089 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1090 break;
1091 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1092 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1093 if (WARN_ON(tid != 0))
1094 return;
1095 pn = key->u.aes_gmac.rx_pn;
1096 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1097 break;
1098 case WLAN_CIPHER_SUITE_GCMP:
1099 case WLAN_CIPHER_SUITE_GCMP_256:
1100 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1101 return;
1102 if (tid < 0)
1103 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1104 else
1105 pn = key->u.gcmp.rx_pn[tid];
1106 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1107 break;
1108 default:
1109 WARN_ON(1);
1110 break;
1113 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1115 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1117 struct ieee80211_key *key;
1119 key = container_of(keyconf, struct ieee80211_key, conf);
1121 assert_key_lock(key->local);
1124 * if key was uploaded, we assume the driver will/has remove(d)
1125 * it, so adjust bookkeeping accordingly
1127 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1128 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1130 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
1131 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1132 increment_tailroom_need_count(key->sdata);
1135 ieee80211_key_free(key, false);
1137 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1139 struct ieee80211_key_conf *
1140 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1141 struct ieee80211_key_conf *keyconf)
1143 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1144 struct ieee80211_local *local = sdata->local;
1145 struct ieee80211_key *key;
1146 int err;
1148 if (WARN_ON(!local->wowlan))
1149 return ERR_PTR(-EINVAL);
1151 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1152 return ERR_PTR(-EINVAL);
1154 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1155 keyconf->keylen, keyconf->key,
1156 0, NULL, NULL);
1157 if (IS_ERR(key))
1158 return ERR_CAST(key);
1160 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1161 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1163 err = ieee80211_key_link(key, sdata, NULL);
1164 if (err)
1165 return ERR_PTR(err);
1167 return &key->conf;
1169 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);