2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
36 * monitor mode reception
38 * This function cleans up the SKB, i.e. it removes all the stuff
39 * only useful for monitoring.
41 static struct sk_buff
*remove_monitor_info(struct ieee80211_local
*local
,
43 unsigned int rtap_vendor_space
)
45 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
) {
46 if (likely(skb
->len
> FCS_LEN
))
47 __pskb_trim(skb
, skb
->len
- FCS_LEN
);
56 __pskb_pull(skb
, rtap_vendor_space
);
61 static inline bool should_drop_frame(struct sk_buff
*skb
, int present_fcs_len
,
62 unsigned int rtap_vendor_space
)
64 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
65 struct ieee80211_hdr
*hdr
;
67 hdr
= (void *)(skb
->data
+ rtap_vendor_space
);
69 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
|
70 RX_FLAG_FAILED_PLCP_CRC
|
71 RX_FLAG_AMPDU_IS_ZEROLEN
))
74 if (unlikely(skb
->len
< 16 + present_fcs_len
+ rtap_vendor_space
))
77 if (ieee80211_is_ctl(hdr
->frame_control
) &&
78 !ieee80211_is_pspoll(hdr
->frame_control
) &&
79 !ieee80211_is_back_req(hdr
->frame_control
))
86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local
*local
,
87 struct ieee80211_rx_status
*status
,
92 /* always present fields */
93 len
= sizeof(struct ieee80211_radiotap_header
) + 8;
95 /* allocate extra bitmaps */
97 len
+= 4 * hweight8(status
->chains
);
99 if (ieee80211_have_rx_timestamp(status
)) {
103 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
)
106 /* antenna field, if we don't have per-chain info */
110 /* padding for RX_FLAGS if necessary */
113 if (status
->flag
& RX_FLAG_HT
) /* HT info */
116 if (status
->flag
& RX_FLAG_AMPDU_DETAILS
) {
121 if (status
->flag
& RX_FLAG_VHT
) {
126 if (status
->chains
) {
127 /* antenna and antenna signal fields */
128 len
+= 2 * hweight8(status
->chains
);
131 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
132 struct ieee80211_vendor_radiotap
*rtap
= (void *)skb
->data
;
134 /* vendor presence bitmap */
136 /* alignment for fixed 6-byte vendor data header */
138 /* vendor data header */
140 if (WARN_ON(rtap
->align
== 0))
142 len
= ALIGN(len
, rtap
->align
);
143 len
+= rtap
->len
+ rtap
->pad
;
150 * ieee80211_add_rx_radiotap_header - add radiotap header
152 * add a radiotap header containing all the fields which the hardware provided.
155 ieee80211_add_rx_radiotap_header(struct ieee80211_local
*local
,
157 struct ieee80211_rate
*rate
,
158 int rtap_len
, bool has_fcs
)
160 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
161 struct ieee80211_radiotap_header
*rthdr
;
166 u16 channel_flags
= 0;
168 unsigned long chains
= status
->chains
;
169 struct ieee80211_vendor_radiotap rtap
= {};
171 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
172 rtap
= *(struct ieee80211_vendor_radiotap
*)skb
->data
;
173 /* rtap.len and rtap.pad are undone immediately */
174 skb_pull(skb
, sizeof(rtap
) + rtap
.len
+ rtap
.pad
);
178 if (!(has_fcs
&& (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)))
181 rthdr
= (struct ieee80211_radiotap_header
*)skb_push(skb
, rtap_len
);
182 memset(rthdr
, 0, rtap_len
- rtap
.len
- rtap
.pad
);
183 it_present
= &rthdr
->it_present
;
185 /* radiotap header, set always present flags */
186 rthdr
->it_len
= cpu_to_le16(rtap_len
);
187 it_present_val
= BIT(IEEE80211_RADIOTAP_FLAGS
) |
188 BIT(IEEE80211_RADIOTAP_CHANNEL
) |
189 BIT(IEEE80211_RADIOTAP_RX_FLAGS
);
192 it_present_val
|= BIT(IEEE80211_RADIOTAP_ANTENNA
);
194 for_each_set_bit(chain
, &chains
, IEEE80211_MAX_CHAINS
) {
196 BIT(IEEE80211_RADIOTAP_EXT
) |
197 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE
);
198 put_unaligned_le32(it_present_val
, it_present
);
200 it_present_val
= BIT(IEEE80211_RADIOTAP_ANTENNA
) |
201 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
204 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
205 it_present_val
|= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE
) |
206 BIT(IEEE80211_RADIOTAP_EXT
);
207 put_unaligned_le32(it_present_val
, it_present
);
209 it_present_val
= rtap
.present
;
212 put_unaligned_le32(it_present_val
, it_present
);
214 pos
= (void *)(it_present
+ 1);
216 /* the order of the following fields is important */
218 /* IEEE80211_RADIOTAP_TSFT */
219 if (ieee80211_have_rx_timestamp(status
)) {
221 while ((pos
- (u8
*)rthdr
) & 7)
224 ieee80211_calculate_rx_timestamp(local
, status
,
227 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT
);
231 /* IEEE80211_RADIOTAP_FLAGS */
232 if (has_fcs
&& (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
))
233 *pos
|= IEEE80211_RADIOTAP_F_FCS
;
234 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
235 *pos
|= IEEE80211_RADIOTAP_F_BADFCS
;
236 if (status
->flag
& RX_FLAG_SHORTPRE
)
237 *pos
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
240 /* IEEE80211_RADIOTAP_RATE */
241 if (!rate
|| status
->flag
& (RX_FLAG_HT
| RX_FLAG_VHT
)) {
243 * Without rate information don't add it. If we have,
244 * MCS information is a separate field in radiotap,
245 * added below. The byte here is needed as padding
246 * for the channel though, so initialise it to 0.
251 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
252 if (status
->flag
& RX_FLAG_10MHZ
)
254 else if (status
->flag
& RX_FLAG_5MHZ
)
256 *pos
= DIV_ROUND_UP(rate
->bitrate
, 5 * (1 << shift
));
260 /* IEEE80211_RADIOTAP_CHANNEL */
261 put_unaligned_le16(status
->freq
, pos
);
263 if (status
->flag
& RX_FLAG_10MHZ
)
264 channel_flags
|= IEEE80211_CHAN_HALF
;
265 else if (status
->flag
& RX_FLAG_5MHZ
)
266 channel_flags
|= IEEE80211_CHAN_QUARTER
;
268 if (status
->band
== IEEE80211_BAND_5GHZ
)
269 channel_flags
|= IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
;
270 else if (status
->flag
& (RX_FLAG_HT
| RX_FLAG_VHT
))
271 channel_flags
|= IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ
;
272 else if (rate
&& rate
->flags
& IEEE80211_RATE_ERP_G
)
273 channel_flags
|= IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
;
275 channel_flags
|= IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
;
277 channel_flags
|= IEEE80211_CHAN_2GHZ
;
278 put_unaligned_le16(channel_flags
, pos
);
281 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
282 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
&&
283 !(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
284 *pos
= status
->signal
;
286 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
290 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
292 if (!status
->chains
) {
293 /* IEEE80211_RADIOTAP_ANTENNA */
294 *pos
= status
->antenna
;
298 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
300 /* IEEE80211_RADIOTAP_RX_FLAGS */
301 /* ensure 2 byte alignment for the 2 byte field as required */
302 if ((pos
- (u8
*)rthdr
) & 1)
304 if (status
->flag
& RX_FLAG_FAILED_PLCP_CRC
)
305 rx_flags
|= IEEE80211_RADIOTAP_F_RX_BADPLCP
;
306 put_unaligned_le16(rx_flags
, pos
);
309 if (status
->flag
& RX_FLAG_HT
) {
312 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS
);
313 *pos
++ = local
->hw
.radiotap_mcs_details
;
315 if (status
->flag
& RX_FLAG_SHORT_GI
)
316 *pos
|= IEEE80211_RADIOTAP_MCS_SGI
;
317 if (status
->flag
& RX_FLAG_40MHZ
)
318 *pos
|= IEEE80211_RADIOTAP_MCS_BW_40
;
319 if (status
->flag
& RX_FLAG_HT_GF
)
320 *pos
|= IEEE80211_RADIOTAP_MCS_FMT_GF
;
321 if (status
->flag
& RX_FLAG_LDPC
)
322 *pos
|= IEEE80211_RADIOTAP_MCS_FEC_LDPC
;
323 stbc
= (status
->flag
& RX_FLAG_STBC_MASK
) >> RX_FLAG_STBC_SHIFT
;
324 *pos
|= stbc
<< IEEE80211_RADIOTAP_MCS_STBC_SHIFT
;
326 *pos
++ = status
->rate_idx
;
329 if (status
->flag
& RX_FLAG_AMPDU_DETAILS
) {
332 /* ensure 4 byte alignment */
333 while ((pos
- (u8
*)rthdr
) & 3)
336 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS
);
337 put_unaligned_le32(status
->ampdu_reference
, pos
);
339 if (status
->flag
& RX_FLAG_AMPDU_REPORT_ZEROLEN
)
340 flags
|= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN
;
341 if (status
->flag
& RX_FLAG_AMPDU_IS_ZEROLEN
)
342 flags
|= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN
;
343 if (status
->flag
& RX_FLAG_AMPDU_LAST_KNOWN
)
344 flags
|= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN
;
345 if (status
->flag
& RX_FLAG_AMPDU_IS_LAST
)
346 flags
|= IEEE80211_RADIOTAP_AMPDU_IS_LAST
;
347 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_ERROR
)
348 flags
|= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR
;
349 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_KNOWN
)
350 flags
|= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN
;
351 put_unaligned_le16(flags
, pos
);
353 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_KNOWN
)
354 *pos
++ = status
->ampdu_delimiter_crc
;
360 if (status
->flag
& RX_FLAG_VHT
) {
361 u16 known
= local
->hw
.radiotap_vht_details
;
363 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT
);
364 put_unaligned_le16(known
, pos
);
367 if (status
->flag
& RX_FLAG_SHORT_GI
)
368 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_SGI
;
369 /* in VHT, STBC is binary */
370 if (status
->flag
& RX_FLAG_STBC_MASK
)
371 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_STBC
;
372 if (status
->vht_flag
& RX_VHT_FLAG_BF
)
373 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED
;
376 if (status
->vht_flag
& RX_VHT_FLAG_80MHZ
)
378 else if (status
->vht_flag
& RX_VHT_FLAG_160MHZ
)
380 else if (status
->flag
& RX_FLAG_40MHZ
)
385 *pos
= (status
->rate_idx
<< 4) | status
->vht_nss
;
388 if (status
->flag
& RX_FLAG_LDPC
)
389 *pos
|= IEEE80211_RADIOTAP_CODING_LDPC_USER0
;
397 for_each_set_bit(chain
, &chains
, IEEE80211_MAX_CHAINS
) {
398 *pos
++ = status
->chain_signal
[chain
];
402 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
403 /* ensure 2 byte alignment for the vendor field as required */
404 if ((pos
- (u8
*)rthdr
) & 1)
406 *pos
++ = rtap
.oui
[0];
407 *pos
++ = rtap
.oui
[1];
408 *pos
++ = rtap
.oui
[2];
410 put_unaligned_le16(rtap
.len
, pos
);
412 /* align the actual payload as requested */
413 while ((pos
- (u8
*)rthdr
) & (rtap
.align
- 1))
415 /* data (and possible padding) already follows */
420 * This function copies a received frame to all monitor interfaces and
421 * returns a cleaned-up SKB that no longer includes the FCS nor the
422 * radiotap header the driver might have added.
424 static struct sk_buff
*
425 ieee80211_rx_monitor(struct ieee80211_local
*local
, struct sk_buff
*origskb
,
426 struct ieee80211_rate
*rate
)
428 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(origskb
);
429 struct ieee80211_sub_if_data
*sdata
;
430 int rt_hdrlen
, needed_headroom
;
431 struct sk_buff
*skb
, *skb2
;
432 struct net_device
*prev_dev
= NULL
;
433 int present_fcs_len
= 0;
434 unsigned int rtap_vendor_space
= 0;
436 if (unlikely(status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
)) {
437 struct ieee80211_vendor_radiotap
*rtap
= (void *)origskb
->data
;
439 rtap_vendor_space
= sizeof(*rtap
) + rtap
->len
+ rtap
->pad
;
443 * First, we may need to make a copy of the skb because
444 * (1) we need to modify it for radiotap (if not present), and
445 * (2) the other RX handlers will modify the skb we got.
447 * We don't need to, of course, if we aren't going to return
448 * the SKB because it has a bad FCS/PLCP checksum.
451 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
452 present_fcs_len
= FCS_LEN
;
454 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
455 if (!pskb_may_pull(origskb
, 2 + rtap_vendor_space
)) {
456 dev_kfree_skb(origskb
);
460 if (!local
->monitors
) {
461 if (should_drop_frame(origskb
, present_fcs_len
,
462 rtap_vendor_space
)) {
463 dev_kfree_skb(origskb
);
467 return remove_monitor_info(local
, origskb
, rtap_vendor_space
);
470 /* room for the radiotap header based on driver features */
471 rt_hdrlen
= ieee80211_rx_radiotap_hdrlen(local
, status
, origskb
);
472 needed_headroom
= rt_hdrlen
- rtap_vendor_space
;
474 if (should_drop_frame(origskb
, present_fcs_len
, rtap_vendor_space
)) {
475 /* only need to expand headroom if necessary */
480 * This shouldn't trigger often because most devices have an
481 * RX header they pull before we get here, and that should
482 * be big enough for our radiotap information. We should
483 * probably export the length to drivers so that we can have
484 * them allocate enough headroom to start with.
486 if (skb_headroom(skb
) < needed_headroom
&&
487 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
)) {
493 * Need to make a copy and possibly remove radiotap header
494 * and FCS from the original.
496 skb
= skb_copy_expand(origskb
, needed_headroom
, 0, GFP_ATOMIC
);
498 origskb
= remove_monitor_info(local
, origskb
,
505 /* prepend radiotap information */
506 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, rt_hdrlen
, true);
508 skb_reset_mac_header(skb
);
509 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
510 skb
->pkt_type
= PACKET_OTHERHOST
;
511 skb
->protocol
= htons(ETH_P_802_2
);
513 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
514 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
)
517 if (sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
)
520 if (!ieee80211_sdata_running(sdata
))
524 skb2
= skb_clone(skb
, GFP_ATOMIC
);
526 skb2
->dev
= prev_dev
;
527 netif_receive_skb(skb2
);
531 prev_dev
= sdata
->dev
;
532 sdata
->dev
->stats
.rx_packets
++;
533 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
538 netif_receive_skb(skb
);
545 static void ieee80211_parse_qos(struct ieee80211_rx_data
*rx
)
547 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
548 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
549 int tid
, seqno_idx
, security_idx
;
551 /* does the frame have a qos control field? */
552 if (ieee80211_is_data_qos(hdr
->frame_control
)) {
553 u8
*qc
= ieee80211_get_qos_ctl(hdr
);
554 /* frame has qos control */
555 tid
= *qc
& IEEE80211_QOS_CTL_TID_MASK
;
556 if (*qc
& IEEE80211_QOS_CTL_A_MSDU_PRESENT
)
557 status
->rx_flags
|= IEEE80211_RX_AMSDU
;
563 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
565 * Sequence numbers for management frames, QoS data
566 * frames with a broadcast/multicast address in the
567 * Address 1 field, and all non-QoS data frames sent
568 * by QoS STAs are assigned using an additional single
569 * modulo-4096 counter, [...]
571 * We also use that counter for non-QoS STAs.
573 seqno_idx
= IEEE80211_NUM_TIDS
;
575 if (ieee80211_is_mgmt(hdr
->frame_control
))
576 security_idx
= IEEE80211_NUM_TIDS
;
580 rx
->seqno_idx
= seqno_idx
;
581 rx
->security_idx
= security_idx
;
582 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
583 * For now, set skb->priority to 0 for other cases. */
584 rx
->skb
->priority
= (tid
> 7) ? 0 : tid
;
588 * DOC: Packet alignment
590 * Drivers always need to pass packets that are aligned to two-byte boundaries
593 * Additionally, should, if possible, align the payload data in a way that
594 * guarantees that the contained IP header is aligned to a four-byte
595 * boundary. In the case of regular frames, this simply means aligning the
596 * payload to a four-byte boundary (because either the IP header is directly
597 * contained, or IV/RFC1042 headers that have a length divisible by four are
598 * in front of it). If the payload data is not properly aligned and the
599 * architecture doesn't support efficient unaligned operations, mac80211
600 * will align the data.
602 * With A-MSDU frames, however, the payload data address must yield two modulo
603 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
604 * push the IP header further back to a multiple of four again. Thankfully, the
605 * specs were sane enough this time around to require padding each A-MSDU
606 * subframe to a length that is a multiple of four.
608 * Padding like Atheros hardware adds which is between the 802.11 header and
609 * the payload is not supported, the driver is required to move the 802.11
610 * header to be directly in front of the payload in that case.
612 static void ieee80211_verify_alignment(struct ieee80211_rx_data
*rx
)
614 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
615 WARN_ONCE((unsigned long)rx
->skb
->data
& 1,
616 "unaligned packet at 0x%p\n", rx
->skb
->data
);
623 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff
*skb
)
625 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
627 if (is_multicast_ether_addr(hdr
->addr1
))
630 return ieee80211_is_robust_mgmt_frame(skb
);
634 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff
*skb
)
636 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
638 if (!is_multicast_ether_addr(hdr
->addr1
))
641 return ieee80211_is_robust_mgmt_frame(skb
);
645 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
646 static int ieee80211_get_mmie_keyidx(struct sk_buff
*skb
)
648 struct ieee80211_mgmt
*hdr
= (struct ieee80211_mgmt
*) skb
->data
;
649 struct ieee80211_mmie
*mmie
;
650 struct ieee80211_mmie_16
*mmie16
;
652 if (skb
->len
< 24 + sizeof(*mmie
) || !is_multicast_ether_addr(hdr
->da
))
655 if (!ieee80211_is_robust_mgmt_frame(skb
))
656 return -1; /* not a robust management frame */
658 mmie
= (struct ieee80211_mmie
*)
659 (skb
->data
+ skb
->len
- sizeof(*mmie
));
660 if (mmie
->element_id
== WLAN_EID_MMIE
&&
661 mmie
->length
== sizeof(*mmie
) - 2)
662 return le16_to_cpu(mmie
->key_id
);
664 mmie16
= (struct ieee80211_mmie_16
*)
665 (skb
->data
+ skb
->len
- sizeof(*mmie16
));
666 if (skb
->len
>= 24 + sizeof(*mmie16
) &&
667 mmie16
->element_id
== WLAN_EID_MMIE
&&
668 mmie16
->length
== sizeof(*mmie16
) - 2)
669 return le16_to_cpu(mmie16
->key_id
);
674 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme
*cs
,
677 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
682 fc
= hdr
->frame_control
;
683 hdrlen
= ieee80211_hdrlen(fc
);
685 if (skb
->len
< hdrlen
+ cs
->hdr_len
)
688 skb_copy_bits(skb
, hdrlen
+ cs
->key_idx_off
, &keyid
, 1);
689 keyid
&= cs
->key_idx_mask
;
690 keyid
>>= cs
->key_idx_shift
;
695 static ieee80211_rx_result
ieee80211_rx_mesh_check(struct ieee80211_rx_data
*rx
)
697 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
698 char *dev_addr
= rx
->sdata
->vif
.addr
;
700 if (ieee80211_is_data(hdr
->frame_control
)) {
701 if (is_multicast_ether_addr(hdr
->addr1
)) {
702 if (ieee80211_has_tods(hdr
->frame_control
) ||
703 !ieee80211_has_fromds(hdr
->frame_control
))
704 return RX_DROP_MONITOR
;
705 if (ether_addr_equal(hdr
->addr3
, dev_addr
))
706 return RX_DROP_MONITOR
;
708 if (!ieee80211_has_a4(hdr
->frame_control
))
709 return RX_DROP_MONITOR
;
710 if (ether_addr_equal(hdr
->addr4
, dev_addr
))
711 return RX_DROP_MONITOR
;
715 /* If there is not an established peer link and this is not a peer link
716 * establisment frame, beacon or probe, drop the frame.
719 if (!rx
->sta
|| sta_plink_state(rx
->sta
) != NL80211_PLINK_ESTAB
) {
720 struct ieee80211_mgmt
*mgmt
;
722 if (!ieee80211_is_mgmt(hdr
->frame_control
))
723 return RX_DROP_MONITOR
;
725 if (ieee80211_is_action(hdr
->frame_control
)) {
728 /* make sure category field is present */
729 if (rx
->skb
->len
< IEEE80211_MIN_ACTION_SIZE
)
730 return RX_DROP_MONITOR
;
732 mgmt
= (struct ieee80211_mgmt
*)hdr
;
733 category
= mgmt
->u
.action
.category
;
734 if (category
!= WLAN_CATEGORY_MESH_ACTION
&&
735 category
!= WLAN_CATEGORY_SELF_PROTECTED
)
736 return RX_DROP_MONITOR
;
740 if (ieee80211_is_probe_req(hdr
->frame_control
) ||
741 ieee80211_is_probe_resp(hdr
->frame_control
) ||
742 ieee80211_is_beacon(hdr
->frame_control
) ||
743 ieee80211_is_auth(hdr
->frame_control
))
746 return RX_DROP_MONITOR
;
752 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data
*sdata
,
753 struct tid_ampdu_rx
*tid_agg_rx
,
755 struct sk_buff_head
*frames
)
757 struct sk_buff_head
*skb_list
= &tid_agg_rx
->reorder_buf
[index
];
759 struct ieee80211_rx_status
*status
;
761 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
763 if (skb_queue_empty(skb_list
))
766 if (!ieee80211_rx_reorder_ready(skb_list
)) {
767 __skb_queue_purge(skb_list
);
771 /* release frames from the reorder ring buffer */
772 tid_agg_rx
->stored_mpdu_num
--;
773 while ((skb
= __skb_dequeue(skb_list
))) {
774 status
= IEEE80211_SKB_RXCB(skb
);
775 status
->rx_flags
|= IEEE80211_RX_DEFERRED_RELEASE
;
776 __skb_queue_tail(frames
, skb
);
780 tid_agg_rx
->head_seq_num
= ieee80211_sn_inc(tid_agg_rx
->head_seq_num
);
783 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data
*sdata
,
784 struct tid_ampdu_rx
*tid_agg_rx
,
786 struct sk_buff_head
*frames
)
790 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
792 while (ieee80211_sn_less(tid_agg_rx
->head_seq_num
, head_seq_num
)) {
793 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
794 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, index
,
800 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
801 * the skb was added to the buffer longer than this time ago, the earlier
802 * frames that have not yet been received are assumed to be lost and the skb
803 * can be released for processing. This may also release other skb's from the
804 * reorder buffer if there are no additional gaps between the frames.
806 * Callers must hold tid_agg_rx->reorder_lock.
808 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
810 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data
*sdata
,
811 struct tid_ampdu_rx
*tid_agg_rx
,
812 struct sk_buff_head
*frames
)
816 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
818 /* release the buffer until next missing frame */
819 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
820 if (!ieee80211_rx_reorder_ready(&tid_agg_rx
->reorder_buf
[index
]) &&
821 tid_agg_rx
->stored_mpdu_num
) {
823 * No buffers ready to be released, but check whether any
824 * frames in the reorder buffer have timed out.
827 for (j
= (index
+ 1) % tid_agg_rx
->buf_size
; j
!= index
;
828 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
829 if (!ieee80211_rx_reorder_ready(
830 &tid_agg_rx
->reorder_buf
[j
])) {
835 !time_after(jiffies
, tid_agg_rx
->reorder_time
[j
] +
836 HT_RX_REORDER_BUF_TIMEOUT
))
837 goto set_release_timer
;
839 /* don't leave incomplete A-MSDUs around */
840 for (i
= (index
+ 1) % tid_agg_rx
->buf_size
; i
!= j
;
841 i
= (i
+ 1) % tid_agg_rx
->buf_size
)
842 __skb_queue_purge(&tid_agg_rx
->reorder_buf
[i
]);
844 ht_dbg_ratelimited(sdata
,
845 "release an RX reorder frame due to timeout on earlier frames\n");
846 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, j
,
850 * Increment the head seq# also for the skipped slots.
852 tid_agg_rx
->head_seq_num
=
853 (tid_agg_rx
->head_seq_num
+
854 skipped
) & IEEE80211_SN_MASK
;
857 } else while (ieee80211_rx_reorder_ready(
858 &tid_agg_rx
->reorder_buf
[index
])) {
859 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, index
,
861 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
864 if (tid_agg_rx
->stored_mpdu_num
) {
865 j
= index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
867 for (; j
!= (index
- 1) % tid_agg_rx
->buf_size
;
868 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
869 if (ieee80211_rx_reorder_ready(
870 &tid_agg_rx
->reorder_buf
[j
]))
876 if (!tid_agg_rx
->removed
)
877 mod_timer(&tid_agg_rx
->reorder_timer
,
878 tid_agg_rx
->reorder_time
[j
] + 1 +
879 HT_RX_REORDER_BUF_TIMEOUT
);
881 del_timer(&tid_agg_rx
->reorder_timer
);
886 * As this function belongs to the RX path it must be under
887 * rcu_read_lock protection. It returns false if the frame
888 * can be processed immediately, true if it was consumed.
890 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data
*sdata
,
891 struct tid_ampdu_rx
*tid_agg_rx
,
893 struct sk_buff_head
*frames
)
895 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
896 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
897 u16 sc
= le16_to_cpu(hdr
->seq_ctrl
);
898 u16 mpdu_seq_num
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
899 u16 head_seq_num
, buf_size
;
903 spin_lock(&tid_agg_rx
->reorder_lock
);
906 * Offloaded BA sessions have no known starting sequence number so pick
907 * one from first Rxed frame for this tid after BA was started.
909 if (unlikely(tid_agg_rx
->auto_seq
)) {
910 tid_agg_rx
->auto_seq
= false;
911 tid_agg_rx
->ssn
= mpdu_seq_num
;
912 tid_agg_rx
->head_seq_num
= mpdu_seq_num
;
915 buf_size
= tid_agg_rx
->buf_size
;
916 head_seq_num
= tid_agg_rx
->head_seq_num
;
918 /* frame with out of date sequence number */
919 if (ieee80211_sn_less(mpdu_seq_num
, head_seq_num
)) {
925 * If frame the sequence number exceeds our buffering window
926 * size release some previous frames to make room for this one.
928 if (!ieee80211_sn_less(mpdu_seq_num
, head_seq_num
+ buf_size
)) {
929 head_seq_num
= ieee80211_sn_inc(
930 ieee80211_sn_sub(mpdu_seq_num
, buf_size
));
931 /* release stored frames up to new head to stack */
932 ieee80211_release_reorder_frames(sdata
, tid_agg_rx
,
933 head_seq_num
, frames
);
936 /* Now the new frame is always in the range of the reordering buffer */
938 index
= mpdu_seq_num
% tid_agg_rx
->buf_size
;
940 /* check if we already stored this frame */
941 if (ieee80211_rx_reorder_ready(&tid_agg_rx
->reorder_buf
[index
])) {
947 * If the current MPDU is in the right order and nothing else
948 * is stored we can process it directly, no need to buffer it.
949 * If it is first but there's something stored, we may be able
950 * to release frames after this one.
952 if (mpdu_seq_num
== tid_agg_rx
->head_seq_num
&&
953 tid_agg_rx
->stored_mpdu_num
== 0) {
954 if (!(status
->flag
& RX_FLAG_AMSDU_MORE
))
955 tid_agg_rx
->head_seq_num
=
956 ieee80211_sn_inc(tid_agg_rx
->head_seq_num
);
961 /* put the frame in the reordering buffer */
962 __skb_queue_tail(&tid_agg_rx
->reorder_buf
[index
], skb
);
963 if (!(status
->flag
& RX_FLAG_AMSDU_MORE
)) {
964 tid_agg_rx
->reorder_time
[index
] = jiffies
;
965 tid_agg_rx
->stored_mpdu_num
++;
966 ieee80211_sta_reorder_release(sdata
, tid_agg_rx
, frames
);
970 spin_unlock(&tid_agg_rx
->reorder_lock
);
975 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
976 * true if the MPDU was buffered, false if it should be processed.
978 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data
*rx
,
979 struct sk_buff_head
*frames
)
981 struct sk_buff
*skb
= rx
->skb
;
982 struct ieee80211_local
*local
= rx
->local
;
983 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
984 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
985 struct sta_info
*sta
= rx
->sta
;
986 struct tid_ampdu_rx
*tid_agg_rx
;
990 if (!ieee80211_is_data_qos(hdr
->frame_control
) ||
991 is_multicast_ether_addr(hdr
->addr1
))
995 * filter the QoS data rx stream according to
996 * STA/TID and check if this STA/TID is on aggregation
1002 ack_policy
= *ieee80211_get_qos_ctl(hdr
) &
1003 IEEE80211_QOS_CTL_ACK_POLICY_MASK
;
1004 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
1006 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
1010 /* qos null data frames are excluded */
1011 if (unlikely(hdr
->frame_control
& cpu_to_le16(IEEE80211_STYPE_NULLFUNC
)))
1014 /* not part of a BA session */
1015 if (ack_policy
!= IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK
&&
1016 ack_policy
!= IEEE80211_QOS_CTL_ACK_POLICY_NORMAL
)
1019 /* not actually part of this BA session */
1020 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
1023 /* new, potentially un-ordered, ampdu frame - process it */
1025 /* reset session timer */
1026 if (tid_agg_rx
->timeout
)
1027 tid_agg_rx
->last_rx
= jiffies
;
1029 /* if this mpdu is fragmented - terminate rx aggregation session */
1030 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1031 if (sc
& IEEE80211_SCTL_FRAG
) {
1032 skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
1033 skb_queue_tail(&rx
->sdata
->skb_queue
, skb
);
1034 ieee80211_queue_work(&local
->hw
, &rx
->sdata
->work
);
1039 * No locking needed -- we will only ever process one
1040 * RX packet at a time, and thus own tid_agg_rx. All
1041 * other code manipulating it needs to (and does) make
1042 * sure that we cannot get to it any more before doing
1045 if (ieee80211_sta_manage_reorder_buf(rx
->sdata
, tid_agg_rx
, skb
,
1050 __skb_queue_tail(frames
, skb
);
1053 static ieee80211_rx_result debug_noinline
1054 ieee80211_rx_h_check_dup(struct ieee80211_rx_data
*rx
)
1056 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1057 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1060 * Drop duplicate 802.11 retransmissions
1061 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1064 if (rx
->skb
->len
< 24)
1067 if (ieee80211_is_ctl(hdr
->frame_control
) ||
1068 ieee80211_is_qos_nullfunc(hdr
->frame_control
) ||
1069 is_multicast_ether_addr(hdr
->addr1
))
1073 if (unlikely(ieee80211_has_retry(hdr
->frame_control
) &&
1074 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] ==
1076 if (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) {
1077 rx
->local
->dot11FrameDuplicateCount
++;
1078 rx
->sta
->num_duplicates
++;
1080 return RX_DROP_UNUSABLE
;
1081 } else if (!(status
->flag
& RX_FLAG_AMSDU_MORE
)) {
1082 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] = hdr
->seq_ctrl
;
1089 static ieee80211_rx_result debug_noinline
1090 ieee80211_rx_h_check(struct ieee80211_rx_data
*rx
)
1092 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1094 if (unlikely(rx
->skb
->len
< 16)) {
1095 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_short
);
1096 return RX_DROP_MONITOR
;
1099 /* Drop disallowed frame classes based on STA auth/assoc state;
1100 * IEEE 802.11, Chap 5.5.
1102 * mac80211 filters only based on association state, i.e. it drops
1103 * Class 3 frames from not associated stations. hostapd sends
1104 * deauth/disassoc frames when needed. In addition, hostapd is
1105 * responsible for filtering on both auth and assoc states.
1108 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
1109 return ieee80211_rx_mesh_check(rx
);
1111 if (unlikely((ieee80211_is_data(hdr
->frame_control
) ||
1112 ieee80211_is_pspoll(hdr
->frame_control
)) &&
1113 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
1114 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_WDS
&&
1115 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_OCB
&&
1116 (!rx
->sta
|| !test_sta_flag(rx
->sta
, WLAN_STA_ASSOC
)))) {
1118 * accept port control frames from the AP even when it's not
1119 * yet marked ASSOC to prevent a race where we don't set the
1120 * assoc bit quickly enough before it sends the first frame
1122 if (rx
->sta
&& rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1123 ieee80211_is_data_present(hdr
->frame_control
)) {
1124 unsigned int hdrlen
;
1127 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
1129 if (rx
->skb
->len
< hdrlen
+ 8)
1130 return RX_DROP_MONITOR
;
1132 skb_copy_bits(rx
->skb
, hdrlen
+ 6, ðertype
, 2);
1133 if (ethertype
== rx
->sdata
->control_port_protocol
)
1137 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&&
1138 cfg80211_rx_spurious_frame(rx
->sdata
->dev
,
1141 return RX_DROP_UNUSABLE
;
1143 return RX_DROP_MONITOR
;
1150 static ieee80211_rx_result debug_noinline
1151 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data
*rx
)
1153 struct ieee80211_local
*local
;
1154 struct ieee80211_hdr
*hdr
;
1155 struct sk_buff
*skb
;
1159 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1161 if (!local
->pspolling
)
1164 if (!ieee80211_has_fromds(hdr
->frame_control
))
1165 /* this is not from AP */
1168 if (!ieee80211_is_data(hdr
->frame_control
))
1171 if (!ieee80211_has_moredata(hdr
->frame_control
)) {
1172 /* AP has no more frames buffered for us */
1173 local
->pspolling
= false;
1177 /* more data bit is set, let's request a new frame from the AP */
1178 ieee80211_send_pspoll(local
, rx
->sdata
);
1183 static void sta_ps_start(struct sta_info
*sta
)
1185 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1186 struct ieee80211_local
*local
= sdata
->local
;
1190 if (sta
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1191 sta
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
1192 ps
= &sdata
->bss
->ps
;
1196 atomic_inc(&ps
->num_sta_ps
);
1197 set_sta_flag(sta
, WLAN_STA_PS_STA
);
1198 if (!(local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
))
1199 drv_sta_notify(local
, sdata
, STA_NOTIFY_SLEEP
, &sta
->sta
);
1200 ps_dbg(sdata
, "STA %pM aid %d enters power save mode\n",
1201 sta
->sta
.addr
, sta
->sta
.aid
);
1203 if (!sta
->sta
.txq
[0])
1206 for (tid
= 0; tid
< ARRAY_SIZE(sta
->sta
.txq
); tid
++) {
1207 struct txq_info
*txqi
= to_txq_info(sta
->sta
.txq
[tid
]);
1209 if (!skb_queue_len(&txqi
->queue
))
1210 set_bit(tid
, &sta
->txq_buffered_tids
);
1212 clear_bit(tid
, &sta
->txq_buffered_tids
);
1216 static void sta_ps_end(struct sta_info
*sta
)
1218 ps_dbg(sta
->sdata
, "STA %pM aid %d exits power save mode\n",
1219 sta
->sta
.addr
, sta
->sta
.aid
);
1221 if (test_sta_flag(sta
, WLAN_STA_PS_DRIVER
)) {
1223 * Clear the flag only if the other one is still set
1224 * so that the TX path won't start TX'ing new frames
1225 * directly ... In the case that the driver flag isn't
1226 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1228 clear_sta_flag(sta
, WLAN_STA_PS_STA
);
1229 ps_dbg(sta
->sdata
, "STA %pM aid %d driver-ps-blocked\n",
1230 sta
->sta
.addr
, sta
->sta
.aid
);
1234 set_sta_flag(sta
, WLAN_STA_PS_DELIVER
);
1235 clear_sta_flag(sta
, WLAN_STA_PS_STA
);
1236 ieee80211_sta_ps_deliver_wakeup(sta
);
1239 int ieee80211_sta_ps_transition(struct ieee80211_sta
*sta
, bool start
)
1241 struct sta_info
*sta_inf
= container_of(sta
, struct sta_info
, sta
);
1244 WARN_ON(!(sta_inf
->local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
));
1246 /* Don't let the same PS state be set twice */
1247 in_ps
= test_sta_flag(sta_inf
, WLAN_STA_PS_STA
);
1248 if ((start
&& in_ps
) || (!start
&& !in_ps
))
1252 sta_ps_start(sta_inf
);
1254 sta_ps_end(sta_inf
);
1258 EXPORT_SYMBOL(ieee80211_sta_ps_transition
);
1260 static ieee80211_rx_result debug_noinline
1261 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data
*rx
)
1263 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1264 struct ieee80211_hdr
*hdr
= (void *)rx
->skb
->data
;
1265 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1268 if (!rx
->sta
|| !(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
1271 if (sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
1272 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
)
1276 * The device handles station powersave, so don't do anything about
1277 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1278 * it to mac80211 since they're handled.)
1280 if (sdata
->local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
)
1284 * Don't do anything if the station isn't already asleep. In
1285 * the uAPSD case, the station will probably be marked asleep,
1286 * in the PS-Poll case the station must be confused ...
1288 if (!test_sta_flag(rx
->sta
, WLAN_STA_PS_STA
))
1291 if (unlikely(ieee80211_is_pspoll(hdr
->frame_control
))) {
1292 if (!test_sta_flag(rx
->sta
, WLAN_STA_SP
)) {
1293 if (!test_sta_flag(rx
->sta
, WLAN_STA_PS_DRIVER
))
1294 ieee80211_sta_ps_deliver_poll_response(rx
->sta
);
1296 set_sta_flag(rx
->sta
, WLAN_STA_PSPOLL
);
1299 /* Free PS Poll skb here instead of returning RX_DROP that would
1300 * count as an dropped frame. */
1301 dev_kfree_skb(rx
->skb
);
1304 } else if (!ieee80211_has_morefrags(hdr
->frame_control
) &&
1305 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1306 ieee80211_has_pm(hdr
->frame_control
) &&
1307 (ieee80211_is_data_qos(hdr
->frame_control
) ||
1308 ieee80211_is_qos_nullfunc(hdr
->frame_control
))) {
1309 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
1310 ac
= ieee802_1d_to_ac
[tid
& 7];
1313 * If this AC is not trigger-enabled do nothing.
1315 * NB: This could/should check a separate bitmap of trigger-
1316 * enabled queues, but for now we only implement uAPSD w/o
1317 * TSPEC changes to the ACs, so they're always the same.
1319 if (!(rx
->sta
->sta
.uapsd_queues
& BIT(ac
)))
1322 /* if we are in a service period, do nothing */
1323 if (test_sta_flag(rx
->sta
, WLAN_STA_SP
))
1326 if (!test_sta_flag(rx
->sta
, WLAN_STA_PS_DRIVER
))
1327 ieee80211_sta_ps_deliver_uapsd(rx
->sta
);
1329 set_sta_flag(rx
->sta
, WLAN_STA_UAPSD
);
1335 static ieee80211_rx_result debug_noinline
1336 ieee80211_rx_h_sta_process(struct ieee80211_rx_data
*rx
)
1338 struct sta_info
*sta
= rx
->sta
;
1339 struct sk_buff
*skb
= rx
->skb
;
1340 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1341 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1348 * Update last_rx only for IBSS packets which are for the current
1349 * BSSID and for station already AUTHORIZED to avoid keeping the
1350 * current IBSS network alive in cases where other STAs start
1351 * using different BSSID. This will also give the station another
1352 * chance to restart the authentication/authorization in case
1353 * something went wrong the first time.
1355 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
) {
1356 u8
*bssid
= ieee80211_get_bssid(hdr
, rx
->skb
->len
,
1357 NL80211_IFTYPE_ADHOC
);
1358 if (ether_addr_equal(bssid
, rx
->sdata
->u
.ibss
.bssid
) &&
1359 test_sta_flag(sta
, WLAN_STA_AUTHORIZED
)) {
1360 sta
->last_rx
= jiffies
;
1361 if (ieee80211_is_data(hdr
->frame_control
) &&
1362 !is_multicast_ether_addr(hdr
->addr1
)) {
1363 sta
->last_rx_rate_idx
= status
->rate_idx
;
1364 sta
->last_rx_rate_flag
= status
->flag
;
1365 sta
->last_rx_rate_vht_flag
= status
->vht_flag
;
1366 sta
->last_rx_rate_vht_nss
= status
->vht_nss
;
1369 } else if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_OCB
) {
1370 u8
*bssid
= ieee80211_get_bssid(hdr
, rx
->skb
->len
,
1371 NL80211_IFTYPE_OCB
);
1372 /* OCB uses wild-card BSSID */
1373 if (is_broadcast_ether_addr(bssid
))
1374 sta
->last_rx
= jiffies
;
1375 } else if (!is_multicast_ether_addr(hdr
->addr1
)) {
1377 * Mesh beacons will update last_rx when if they are found to
1378 * match the current local configuration when processed.
1380 sta
->last_rx
= jiffies
;
1381 if (ieee80211_is_data(hdr
->frame_control
)) {
1382 sta
->last_rx_rate_idx
= status
->rate_idx
;
1383 sta
->last_rx_rate_flag
= status
->flag
;
1384 sta
->last_rx_rate_vht_flag
= status
->vht_flag
;
1385 sta
->last_rx_rate_vht_nss
= status
->vht_nss
;
1389 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
1392 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
1393 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
1395 sta
->rx_fragments
++;
1396 sta
->rx_bytes
+= rx
->skb
->len
;
1397 if (!(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
1398 sta
->last_signal
= status
->signal
;
1399 ewma_add(&sta
->avg_signal
, -status
->signal
);
1402 if (status
->chains
) {
1403 sta
->chains
= status
->chains
;
1404 for (i
= 0; i
< ARRAY_SIZE(status
->chain_signal
); i
++) {
1405 int signal
= status
->chain_signal
[i
];
1407 if (!(status
->chains
& BIT(i
)))
1410 sta
->chain_signal_last
[i
] = signal
;
1411 ewma_add(&sta
->chain_signal_avg
[i
], -signal
);
1416 * Change STA power saving mode only at the end of a frame
1417 * exchange sequence.
1419 if (!(sta
->local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
) &&
1420 !ieee80211_has_morefrags(hdr
->frame_control
) &&
1421 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1422 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1423 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) &&
1424 /* PM bit is only checked in frames where it isn't reserved,
1425 * in AP mode it's reserved in non-bufferable management frames
1426 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1428 (!ieee80211_is_mgmt(hdr
->frame_control
) ||
1429 ieee80211_is_bufferable_mmpdu(hdr
->frame_control
))) {
1430 if (test_sta_flag(sta
, WLAN_STA_PS_STA
)) {
1431 if (!ieee80211_has_pm(hdr
->frame_control
))
1434 if (ieee80211_has_pm(hdr
->frame_control
))
1439 /* mesh power save support */
1440 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
1441 ieee80211_mps_rx_h_sta_process(sta
, hdr
);
1444 * Drop (qos-)data::nullfunc frames silently, since they
1445 * are used only to control station power saving mode.
1447 if (ieee80211_is_nullfunc(hdr
->frame_control
) ||
1448 ieee80211_is_qos_nullfunc(hdr
->frame_control
)) {
1449 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_nullfunc
);
1452 * If we receive a 4-addr nullfunc frame from a STA
1453 * that was not moved to a 4-addr STA vlan yet send
1454 * the event to userspace and for older hostapd drop
1455 * the frame to the monitor interface.
1457 if (ieee80211_has_a4(hdr
->frame_control
) &&
1458 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1459 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1460 !rx
->sdata
->u
.vlan
.sta
))) {
1461 if (!test_and_set_sta_flag(sta
, WLAN_STA_4ADDR_EVENT
))
1462 cfg80211_rx_unexpected_4addr_frame(
1463 rx
->sdata
->dev
, sta
->sta
.addr
,
1465 return RX_DROP_MONITOR
;
1468 * Update counter and free packet here to avoid
1469 * counting this as a dropped packed.
1472 dev_kfree_skb(rx
->skb
);
1477 } /* ieee80211_rx_h_sta_process */
1479 static ieee80211_rx_result debug_noinline
1480 ieee80211_rx_h_decrypt(struct ieee80211_rx_data
*rx
)
1482 struct sk_buff
*skb
= rx
->skb
;
1483 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1484 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1487 ieee80211_rx_result result
= RX_DROP_UNUSABLE
;
1488 struct ieee80211_key
*sta_ptk
= NULL
;
1489 int mmie_keyidx
= -1;
1491 const struct ieee80211_cipher_scheme
*cs
= NULL
;
1496 * There are four types of keys:
1497 * - GTK (group keys)
1498 * - IGTK (group keys for management frames)
1499 * - PTK (pairwise keys)
1500 * - STK (station-to-station pairwise keys)
1502 * When selecting a key, we have to distinguish between multicast
1503 * (including broadcast) and unicast frames, the latter can only
1504 * use PTKs and STKs while the former always use GTKs and IGTKs.
1505 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1506 * unicast frames can also use key indices like GTKs. Hence, if we
1507 * don't have a PTK/STK we check the key index for a WEP key.
1509 * Note that in a regular BSS, multicast frames are sent by the
1510 * AP only, associated stations unicast the frame to the AP first
1511 * which then multicasts it on their behalf.
1513 * There is also a slight problem in IBSS mode: GTKs are negotiated
1514 * with each station, that is something we don't currently handle.
1515 * The spec seems to expect that one negotiates the same key with
1516 * every station but there's no such requirement; VLANs could be
1521 * No point in finding a key and decrypting if the frame is neither
1522 * addressed to us nor a multicast frame.
1524 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
1527 /* start without a key */
1529 fc
= hdr
->frame_control
;
1532 int keyid
= rx
->sta
->ptk_idx
;
1534 if (ieee80211_has_protected(fc
) && rx
->sta
->cipher_scheme
) {
1535 cs
= rx
->sta
->cipher_scheme
;
1536 keyid
= iwl80211_get_cs_keyid(cs
, rx
->skb
);
1537 if (unlikely(keyid
< 0))
1538 return RX_DROP_UNUSABLE
;
1540 sta_ptk
= rcu_dereference(rx
->sta
->ptk
[keyid
]);
1543 if (!ieee80211_has_protected(fc
))
1544 mmie_keyidx
= ieee80211_get_mmie_keyidx(rx
->skb
);
1546 if (!is_multicast_ether_addr(hdr
->addr1
) && sta_ptk
) {
1548 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1549 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1551 /* Skip decryption if the frame is not protected. */
1552 if (!ieee80211_has_protected(fc
))
1554 } else if (mmie_keyidx
>= 0) {
1555 /* Broadcast/multicast robust management frame / BIP */
1556 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1557 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1560 if (mmie_keyidx
< NUM_DEFAULT_KEYS
||
1561 mmie_keyidx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
1562 return RX_DROP_MONITOR
; /* unexpected BIP keyidx */
1564 rx
->key
= rcu_dereference(rx
->sta
->gtk
[mmie_keyidx
]);
1566 rx
->key
= rcu_dereference(rx
->sdata
->keys
[mmie_keyidx
]);
1567 } else if (!ieee80211_has_protected(fc
)) {
1569 * The frame was not protected, so skip decryption. However, we
1570 * need to set rx->key if there is a key that could have been
1571 * used so that the frame may be dropped if encryption would
1572 * have been expected.
1574 struct ieee80211_key
*key
= NULL
;
1575 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1578 if (ieee80211_is_mgmt(fc
) &&
1579 is_multicast_ether_addr(hdr
->addr1
) &&
1580 (key
= rcu_dereference(rx
->sdata
->default_mgmt_key
)))
1584 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
1585 key
= rcu_dereference(rx
->sta
->gtk
[i
]);
1591 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
1592 key
= rcu_dereference(sdata
->keys
[i
]);
1605 * The device doesn't give us the IV so we won't be
1606 * able to look up the key. That's ok though, we
1607 * don't need to decrypt the frame, we just won't
1608 * be able to keep statistics accurate.
1609 * Except for key threshold notifications, should
1610 * we somehow allow the driver to tell us which key
1611 * the hardware used if this flag is set?
1613 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1614 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1617 hdrlen
= ieee80211_hdrlen(fc
);
1620 keyidx
= iwl80211_get_cs_keyid(cs
, rx
->skb
);
1622 if (unlikely(keyidx
< 0))
1623 return RX_DROP_UNUSABLE
;
1625 if (rx
->skb
->len
< 8 + hdrlen
)
1626 return RX_DROP_UNUSABLE
; /* TODO: count this? */
1628 * no need to call ieee80211_wep_get_keyidx,
1629 * it verifies a bunch of things we've done already
1631 skb_copy_bits(rx
->skb
, hdrlen
+ 3, &keyid
, 1);
1632 keyidx
= keyid
>> 6;
1635 /* check per-station GTK first, if multicast packet */
1636 if (is_multicast_ether_addr(hdr
->addr1
) && rx
->sta
)
1637 rx
->key
= rcu_dereference(rx
->sta
->gtk
[keyidx
]);
1639 /* if not found, try default key */
1641 rx
->key
= rcu_dereference(rx
->sdata
->keys
[keyidx
]);
1644 * RSNA-protected unicast frames should always be
1645 * sent with pairwise or station-to-station keys,
1646 * but for WEP we allow using a key index as well.
1649 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP40
&&
1650 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP104
&&
1651 !is_multicast_ether_addr(hdr
->addr1
))
1657 if (unlikely(rx
->key
->flags
& KEY_FLAG_TAINTED
))
1658 return RX_DROP_MONITOR
;
1660 rx
->key
->tx_rx_count
++;
1661 /* TODO: add threshold stuff again */
1663 return RX_DROP_MONITOR
;
1666 switch (rx
->key
->conf
.cipher
) {
1667 case WLAN_CIPHER_SUITE_WEP40
:
1668 case WLAN_CIPHER_SUITE_WEP104
:
1669 result
= ieee80211_crypto_wep_decrypt(rx
);
1671 case WLAN_CIPHER_SUITE_TKIP
:
1672 result
= ieee80211_crypto_tkip_decrypt(rx
);
1674 case WLAN_CIPHER_SUITE_CCMP
:
1675 result
= ieee80211_crypto_ccmp_decrypt(
1676 rx
, IEEE80211_CCMP_MIC_LEN
);
1678 case WLAN_CIPHER_SUITE_CCMP_256
:
1679 result
= ieee80211_crypto_ccmp_decrypt(
1680 rx
, IEEE80211_CCMP_256_MIC_LEN
);
1682 case WLAN_CIPHER_SUITE_AES_CMAC
:
1683 result
= ieee80211_crypto_aes_cmac_decrypt(rx
);
1685 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
1686 result
= ieee80211_crypto_aes_cmac_256_decrypt(rx
);
1688 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
1689 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
1690 result
= ieee80211_crypto_aes_gmac_decrypt(rx
);
1692 case WLAN_CIPHER_SUITE_GCMP
:
1693 case WLAN_CIPHER_SUITE_GCMP_256
:
1694 result
= ieee80211_crypto_gcmp_decrypt(rx
);
1697 result
= ieee80211_crypto_hw_decrypt(rx
);
1700 /* the hdr variable is invalid after the decrypt handlers */
1702 /* either the frame has been decrypted or will be dropped */
1703 status
->flag
|= RX_FLAG_DECRYPTED
;
1708 static inline struct ieee80211_fragment_entry
*
1709 ieee80211_reassemble_add(struct ieee80211_sub_if_data
*sdata
,
1710 unsigned int frag
, unsigned int seq
, int rx_queue
,
1711 struct sk_buff
**skb
)
1713 struct ieee80211_fragment_entry
*entry
;
1715 entry
= &sdata
->fragments
[sdata
->fragment_next
++];
1716 if (sdata
->fragment_next
>= IEEE80211_FRAGMENT_MAX
)
1717 sdata
->fragment_next
= 0;
1719 if (!skb_queue_empty(&entry
->skb_list
))
1720 __skb_queue_purge(&entry
->skb_list
);
1722 __skb_queue_tail(&entry
->skb_list
, *skb
); /* no need for locking */
1724 entry
->first_frag_time
= jiffies
;
1726 entry
->rx_queue
= rx_queue
;
1727 entry
->last_frag
= frag
;
1729 entry
->extra_len
= 0;
1734 static inline struct ieee80211_fragment_entry
*
1735 ieee80211_reassemble_find(struct ieee80211_sub_if_data
*sdata
,
1736 unsigned int frag
, unsigned int seq
,
1737 int rx_queue
, struct ieee80211_hdr
*hdr
)
1739 struct ieee80211_fragment_entry
*entry
;
1742 idx
= sdata
->fragment_next
;
1743 for (i
= 0; i
< IEEE80211_FRAGMENT_MAX
; i
++) {
1744 struct ieee80211_hdr
*f_hdr
;
1748 idx
= IEEE80211_FRAGMENT_MAX
- 1;
1750 entry
= &sdata
->fragments
[idx
];
1751 if (skb_queue_empty(&entry
->skb_list
) || entry
->seq
!= seq
||
1752 entry
->rx_queue
!= rx_queue
||
1753 entry
->last_frag
+ 1 != frag
)
1756 f_hdr
= (struct ieee80211_hdr
*)entry
->skb_list
.next
->data
;
1759 * Check ftype and addresses are equal, else check next fragment
1761 if (((hdr
->frame_control
^ f_hdr
->frame_control
) &
1762 cpu_to_le16(IEEE80211_FCTL_FTYPE
)) ||
1763 !ether_addr_equal(hdr
->addr1
, f_hdr
->addr1
) ||
1764 !ether_addr_equal(hdr
->addr2
, f_hdr
->addr2
))
1767 if (time_after(jiffies
, entry
->first_frag_time
+ 2 * HZ
)) {
1768 __skb_queue_purge(&entry
->skb_list
);
1777 static ieee80211_rx_result debug_noinline
1778 ieee80211_rx_h_defragment(struct ieee80211_rx_data
*rx
)
1780 struct ieee80211_hdr
*hdr
;
1783 unsigned int frag
, seq
;
1784 struct ieee80211_fragment_entry
*entry
;
1785 struct sk_buff
*skb
;
1786 struct ieee80211_rx_status
*status
;
1788 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1789 fc
= hdr
->frame_control
;
1791 if (ieee80211_is_ctl(fc
))
1794 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1795 frag
= sc
& IEEE80211_SCTL_FRAG
;
1797 if (is_multicast_ether_addr(hdr
->addr1
)) {
1798 rx
->local
->dot11MulticastReceivedFrameCount
++;
1802 if (likely(!ieee80211_has_morefrags(fc
) && frag
== 0))
1805 I802_DEBUG_INC(rx
->local
->rx_handlers_fragments
);
1807 if (skb_linearize(rx
->skb
))
1808 return RX_DROP_UNUSABLE
;
1811 * skb_linearize() might change the skb->data and
1812 * previously cached variables (in this case, hdr) need to
1813 * be refreshed with the new data.
1815 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1816 seq
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
1819 /* This is the first fragment of a new frame. */
1820 entry
= ieee80211_reassemble_add(rx
->sdata
, frag
, seq
,
1821 rx
->seqno_idx
, &(rx
->skb
));
1823 (rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP
||
1824 rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP_256
) &&
1825 ieee80211_has_protected(fc
)) {
1826 int queue
= rx
->security_idx
;
1827 /* Store CCMP PN so that we can verify that the next
1828 * fragment has a sequential PN value. */
1830 memcpy(entry
->last_pn
,
1831 rx
->key
->u
.ccmp
.rx_pn
[queue
],
1832 IEEE80211_CCMP_PN_LEN
);
1837 /* This is a fragment for a frame that should already be pending in
1838 * fragment cache. Add this fragment to the end of the pending entry.
1840 entry
= ieee80211_reassemble_find(rx
->sdata
, frag
, seq
,
1841 rx
->seqno_idx
, hdr
);
1843 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
1844 return RX_DROP_MONITOR
;
1847 /* Verify that MPDUs within one MSDU have sequential PN values.
1848 * (IEEE 802.11i, 8.3.3.4.5) */
1851 u8 pn
[IEEE80211_CCMP_PN_LEN
], *rpn
;
1854 (rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP
&&
1855 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP_256
))
1856 return RX_DROP_UNUSABLE
;
1857 memcpy(pn
, entry
->last_pn
, IEEE80211_CCMP_PN_LEN
);
1858 for (i
= IEEE80211_CCMP_PN_LEN
- 1; i
>= 0; i
--) {
1863 queue
= rx
->security_idx
;
1864 rpn
= rx
->key
->u
.ccmp
.rx_pn
[queue
];
1865 if (memcmp(pn
, rpn
, IEEE80211_CCMP_PN_LEN
))
1866 return RX_DROP_UNUSABLE
;
1867 memcpy(entry
->last_pn
, pn
, IEEE80211_CCMP_PN_LEN
);
1870 skb_pull(rx
->skb
, ieee80211_hdrlen(fc
));
1871 __skb_queue_tail(&entry
->skb_list
, rx
->skb
);
1872 entry
->last_frag
= frag
;
1873 entry
->extra_len
+= rx
->skb
->len
;
1874 if (ieee80211_has_morefrags(fc
)) {
1879 rx
->skb
= __skb_dequeue(&entry
->skb_list
);
1880 if (skb_tailroom(rx
->skb
) < entry
->extra_len
) {
1881 I802_DEBUG_INC(rx
->local
->rx_expand_skb_head2
);
1882 if (unlikely(pskb_expand_head(rx
->skb
, 0, entry
->extra_len
,
1884 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
1885 __skb_queue_purge(&entry
->skb_list
);
1886 return RX_DROP_UNUSABLE
;
1889 while ((skb
= __skb_dequeue(&entry
->skb_list
))) {
1890 memcpy(skb_put(rx
->skb
, skb
->len
), skb
->data
, skb
->len
);
1894 /* Complete frame has been reassembled - process it now */
1895 status
= IEEE80211_SKB_RXCB(rx
->skb
);
1896 status
->rx_flags
|= IEEE80211_RX_FRAGMENTED
;
1899 ieee80211_led_rx(rx
->local
);
1902 rx
->sta
->rx_packets
++;
1906 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data
*rx
)
1908 if (unlikely(!rx
->sta
|| !test_sta_flag(rx
->sta
, WLAN_STA_AUTHORIZED
)))
1914 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data
*rx
, __le16 fc
)
1916 struct sk_buff
*skb
= rx
->skb
;
1917 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1920 * Pass through unencrypted frames if the hardware has
1921 * decrypted them already.
1923 if (status
->flag
& RX_FLAG_DECRYPTED
)
1926 /* Drop unencrypted frames if key is set. */
1927 if (unlikely(!ieee80211_has_protected(fc
) &&
1928 !ieee80211_is_nullfunc(fc
) &&
1929 ieee80211_is_data(fc
) && rx
->key
))
1935 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data
*rx
)
1937 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1938 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1939 __le16 fc
= hdr
->frame_control
;
1942 * Pass through unencrypted frames if the hardware has
1943 * decrypted them already.
1945 if (status
->flag
& RX_FLAG_DECRYPTED
)
1948 if (rx
->sta
&& test_sta_flag(rx
->sta
, WLAN_STA_MFP
)) {
1949 if (unlikely(!ieee80211_has_protected(fc
) &&
1950 ieee80211_is_unicast_robust_mgmt_frame(rx
->skb
) &&
1952 if (ieee80211_is_deauth(fc
) ||
1953 ieee80211_is_disassoc(fc
))
1954 cfg80211_rx_unprot_mlme_mgmt(rx
->sdata
->dev
,
1959 /* BIP does not use Protected field, so need to check MMIE */
1960 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx
->skb
) &&
1961 ieee80211_get_mmie_keyidx(rx
->skb
) < 0)) {
1962 if (ieee80211_is_deauth(fc
) ||
1963 ieee80211_is_disassoc(fc
))
1964 cfg80211_rx_unprot_mlme_mgmt(rx
->sdata
->dev
,
1970 * When using MFP, Action frames are not allowed prior to
1971 * having configured keys.
1973 if (unlikely(ieee80211_is_action(fc
) && !rx
->key
&&
1974 ieee80211_is_robust_mgmt_frame(rx
->skb
)))
1982 __ieee80211_data_to_8023(struct ieee80211_rx_data
*rx
, bool *port_control
)
1984 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1985 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1986 bool check_port_control
= false;
1987 struct ethhdr
*ehdr
;
1990 *port_control
= false;
1991 if (ieee80211_has_a4(hdr
->frame_control
) &&
1992 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& !sdata
->u
.vlan
.sta
)
1995 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1996 !!sdata
->u
.mgd
.use_4addr
!= !!ieee80211_has_a4(hdr
->frame_control
)) {
1998 if (!sdata
->u
.mgd
.use_4addr
)
2001 check_port_control
= true;
2004 if (is_multicast_ether_addr(hdr
->addr1
) &&
2005 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& sdata
->u
.vlan
.sta
)
2008 ret
= ieee80211_data_to_8023(rx
->skb
, sdata
->vif
.addr
, sdata
->vif
.type
);
2012 ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2013 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
)
2014 *port_control
= true;
2015 else if (check_port_control
)
2022 * requires that rx->skb is a frame with ethernet header
2024 static bool ieee80211_frame_allowed(struct ieee80211_rx_data
*rx
, __le16 fc
)
2026 static const u8 pae_group_addr
[ETH_ALEN
] __aligned(2)
2027 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2028 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2031 * Allow EAPOL frames to us/the PAE group address regardless
2032 * of whether the frame was encrypted or not.
2034 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
&&
2035 (ether_addr_equal(ehdr
->h_dest
, rx
->sdata
->vif
.addr
) ||
2036 ether_addr_equal(ehdr
->h_dest
, pae_group_addr
)))
2039 if (ieee80211_802_1x_port_control(rx
) ||
2040 ieee80211_drop_unencrypted(rx
, fc
))
2047 * requires that rx->skb is a frame with ethernet header
2050 ieee80211_deliver_skb(struct ieee80211_rx_data
*rx
)
2052 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2053 struct net_device
*dev
= sdata
->dev
;
2054 struct sk_buff
*skb
, *xmit_skb
;
2055 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2056 struct sta_info
*dsta
;
2057 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2059 dev
->stats
.rx_packets
++;
2060 dev
->stats
.rx_bytes
+= rx
->skb
->len
;
2065 if ((sdata
->vif
.type
== NL80211_IFTYPE_AP
||
2066 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) &&
2067 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
2068 (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) &&
2069 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
|| !sdata
->u
.vlan
.sta
)) {
2070 if (is_multicast_ether_addr(ehdr
->h_dest
)) {
2072 * send multicast frames both to higher layers in
2073 * local net stack and back to the wireless medium
2075 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
2077 net_info_ratelimited("%s: failed to clone multicast frame\n",
2080 dsta
= sta_info_get(sdata
, skb
->data
);
2083 * The destination station is associated to
2084 * this AP (in this VLAN), so send the frame
2085 * directly to it and do not pass it to local
2094 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2096 /* 'align' will only take the values 0 or 2 here since all
2097 * frames are required to be aligned to 2-byte boundaries
2098 * when being passed to mac80211; the code here works just
2099 * as well if that isn't true, but mac80211 assumes it can
2100 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2104 align
= (unsigned long)(skb
->data
+ sizeof(struct ethhdr
)) & 3;
2106 if (WARN_ON(skb_headroom(skb
) < 3)) {
2110 u8
*data
= skb
->data
;
2111 size_t len
= skb_headlen(skb
);
2113 memmove(skb
->data
, data
, len
);
2114 skb_set_tail_pointer(skb
, len
);
2121 /* deliver to local stack */
2122 skb
->protocol
= eth_type_trans(skb
, dev
);
2123 memset(skb
->cb
, 0, sizeof(skb
->cb
));
2124 if (!(rx
->flags
& IEEE80211_RX_REORDER_TIMER
) &&
2126 napi_gro_receive(rx
->local
->napi
, skb
);
2128 netif_receive_skb(skb
);
2133 * Send to wireless media and increase priority by 256 to
2134 * keep the received priority instead of reclassifying
2135 * the frame (see cfg80211_classify8021d).
2137 xmit_skb
->priority
+= 256;
2138 xmit_skb
->protocol
= htons(ETH_P_802_3
);
2139 skb_reset_network_header(xmit_skb
);
2140 skb_reset_mac_header(xmit_skb
);
2141 dev_queue_xmit(xmit_skb
);
2145 static ieee80211_rx_result debug_noinline
2146 ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
)
2148 struct net_device
*dev
= rx
->sdata
->dev
;
2149 struct sk_buff
*skb
= rx
->skb
;
2150 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2151 __le16 fc
= hdr
->frame_control
;
2152 struct sk_buff_head frame_list
;
2153 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2155 if (unlikely(!ieee80211_is_data(fc
)))
2158 if (unlikely(!ieee80211_is_data_present(fc
)))
2159 return RX_DROP_MONITOR
;
2161 if (!(status
->rx_flags
& IEEE80211_RX_AMSDU
))
2164 if (ieee80211_has_a4(hdr
->frame_control
) &&
2165 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
2166 !rx
->sdata
->u
.vlan
.sta
)
2167 return RX_DROP_UNUSABLE
;
2169 if (is_multicast_ether_addr(hdr
->addr1
) &&
2170 ((rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
2171 rx
->sdata
->u
.vlan
.sta
) ||
2172 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
2173 rx
->sdata
->u
.mgd
.use_4addr
)))
2174 return RX_DROP_UNUSABLE
;
2177 __skb_queue_head_init(&frame_list
);
2179 if (skb_linearize(skb
))
2180 return RX_DROP_UNUSABLE
;
2182 ieee80211_amsdu_to_8023s(skb
, &frame_list
, dev
->dev_addr
,
2183 rx
->sdata
->vif
.type
,
2184 rx
->local
->hw
.extra_tx_headroom
, true);
2186 while (!skb_queue_empty(&frame_list
)) {
2187 rx
->skb
= __skb_dequeue(&frame_list
);
2189 if (!ieee80211_frame_allowed(rx
, fc
)) {
2190 dev_kfree_skb(rx
->skb
);
2194 ieee80211_deliver_skb(rx
);
2200 #ifdef CONFIG_MAC80211_MESH
2201 static ieee80211_rx_result
2202 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data
*rx
)
2204 struct ieee80211_hdr
*fwd_hdr
, *hdr
;
2205 struct ieee80211_tx_info
*info
;
2206 struct ieee80211s_hdr
*mesh_hdr
;
2207 struct sk_buff
*skb
= rx
->skb
, *fwd_skb
;
2208 struct ieee80211_local
*local
= rx
->local
;
2209 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2210 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2211 struct ieee80211_if_mesh
*ifmsh
= &sdata
->u
.mesh
;
2214 hdr
= (struct ieee80211_hdr
*) skb
->data
;
2215 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
2217 /* make sure fixed part of mesh header is there, also checks skb len */
2218 if (!pskb_may_pull(rx
->skb
, hdrlen
+ 6))
2219 return RX_DROP_MONITOR
;
2221 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
2223 /* make sure full mesh header is there, also checks skb len */
2224 if (!pskb_may_pull(rx
->skb
,
2225 hdrlen
+ ieee80211_get_mesh_hdrlen(mesh_hdr
)))
2226 return RX_DROP_MONITOR
;
2228 /* reload pointers */
2229 hdr
= (struct ieee80211_hdr
*) skb
->data
;
2230 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
2232 if (ieee80211_drop_unencrypted(rx
, hdr
->frame_control
))
2233 return RX_DROP_MONITOR
;
2235 /* frame is in RMC, don't forward */
2236 if (ieee80211_is_data(hdr
->frame_control
) &&
2237 is_multicast_ether_addr(hdr
->addr1
) &&
2238 mesh_rmc_check(rx
->sdata
, hdr
->addr3
, mesh_hdr
))
2239 return RX_DROP_MONITOR
;
2241 if (!ieee80211_is_data(hdr
->frame_control
) ||
2242 !(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
2246 return RX_DROP_MONITOR
;
2248 if (mesh_hdr
->flags
& MESH_FLAGS_AE
) {
2249 struct mesh_path
*mppath
;
2253 if (is_multicast_ether_addr(hdr
->addr1
)) {
2254 mpp_addr
= hdr
->addr3
;
2255 proxied_addr
= mesh_hdr
->eaddr1
;
2256 } else if (mesh_hdr
->flags
& MESH_FLAGS_AE_A5_A6
) {
2257 /* has_a4 already checked in ieee80211_rx_mesh_check */
2258 mpp_addr
= hdr
->addr4
;
2259 proxied_addr
= mesh_hdr
->eaddr2
;
2261 return RX_DROP_MONITOR
;
2265 mppath
= mpp_path_lookup(sdata
, proxied_addr
);
2267 mpp_path_add(sdata
, proxied_addr
, mpp_addr
);
2269 spin_lock_bh(&mppath
->state_lock
);
2270 if (!ether_addr_equal(mppath
->mpp
, mpp_addr
))
2271 memcpy(mppath
->mpp
, mpp_addr
, ETH_ALEN
);
2272 spin_unlock_bh(&mppath
->state_lock
);
2277 /* Frame has reached destination. Don't forward */
2278 if (!is_multicast_ether_addr(hdr
->addr1
) &&
2279 ether_addr_equal(sdata
->vif
.addr
, hdr
->addr3
))
2282 q
= ieee80211_select_queue_80211(sdata
, skb
, hdr
);
2283 if (ieee80211_queue_stopped(&local
->hw
, q
)) {
2284 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_congestion
);
2285 return RX_DROP_MONITOR
;
2287 skb_set_queue_mapping(skb
, q
);
2289 if (!--mesh_hdr
->ttl
) {
2290 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_ttl
);
2294 if (!ifmsh
->mshcfg
.dot11MeshForwarding
)
2297 fwd_skb
= skb_copy(skb
, GFP_ATOMIC
);
2299 net_info_ratelimited("%s: failed to clone mesh frame\n",
2304 fwd_hdr
= (struct ieee80211_hdr
*) fwd_skb
->data
;
2305 fwd_hdr
->frame_control
&= ~cpu_to_le16(IEEE80211_FCTL_RETRY
);
2306 info
= IEEE80211_SKB_CB(fwd_skb
);
2307 memset(info
, 0, sizeof(*info
));
2308 info
->flags
|= IEEE80211_TX_INTFL_NEED_TXPROCESSING
;
2309 info
->control
.vif
= &rx
->sdata
->vif
;
2310 info
->control
.jiffies
= jiffies
;
2311 if (is_multicast_ether_addr(fwd_hdr
->addr1
)) {
2312 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_mcast
);
2313 memcpy(fwd_hdr
->addr2
, sdata
->vif
.addr
, ETH_ALEN
);
2314 /* update power mode indication when forwarding */
2315 ieee80211_mps_set_frame_flags(sdata
, NULL
, fwd_hdr
);
2316 } else if (!mesh_nexthop_lookup(sdata
, fwd_skb
)) {
2317 /* mesh power mode flags updated in mesh_nexthop_lookup */
2318 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_unicast
);
2320 /* unable to resolve next hop */
2321 mesh_path_error_tx(sdata
, ifmsh
->mshcfg
.element_ttl
,
2323 WLAN_REASON_MESH_PATH_NOFORWARD
,
2325 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_no_route
);
2327 return RX_DROP_MONITOR
;
2330 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_frames
);
2331 ieee80211_add_pending_skb(local
, fwd_skb
);
2333 if (is_multicast_ether_addr(hdr
->addr1
) ||
2334 sdata
->dev
->flags
& IFF_PROMISC
)
2337 return RX_DROP_MONITOR
;
2341 static ieee80211_rx_result debug_noinline
2342 ieee80211_rx_h_data(struct ieee80211_rx_data
*rx
)
2344 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2345 struct ieee80211_local
*local
= rx
->local
;
2346 struct net_device
*dev
= sdata
->dev
;
2347 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2348 __le16 fc
= hdr
->frame_control
;
2352 if (unlikely(!ieee80211_is_data(hdr
->frame_control
)))
2355 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
2356 return RX_DROP_MONITOR
;
2359 /* The seqno index has the same property as needed
2360 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2361 * for non-QoS-data frames. Here we know it's a data
2362 * frame, so count MSDUs.
2364 rx
->sta
->rx_msdu
[rx
->seqno_idx
]++;
2368 * Send unexpected-4addr-frame event to hostapd. For older versions,
2369 * also drop the frame to cooked monitor interfaces.
2371 if (ieee80211_has_a4(hdr
->frame_control
) &&
2372 sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
2374 !test_and_set_sta_flag(rx
->sta
, WLAN_STA_4ADDR_EVENT
))
2375 cfg80211_rx_unexpected_4addr_frame(
2376 rx
->sdata
->dev
, rx
->sta
->sta
.addr
, GFP_ATOMIC
);
2377 return RX_DROP_MONITOR
;
2380 err
= __ieee80211_data_to_8023(rx
, &port_control
);
2382 return RX_DROP_UNUSABLE
;
2384 if (!ieee80211_frame_allowed(rx
, fc
))
2385 return RX_DROP_MONITOR
;
2387 /* directly handle TDLS channel switch requests/responses */
2388 if (unlikely(((struct ethhdr
*)rx
->skb
->data
)->h_proto
==
2389 cpu_to_be16(ETH_P_TDLS
))) {
2390 struct ieee80211_tdls_data
*tf
= (void *)rx
->skb
->data
;
2392 if (pskb_may_pull(rx
->skb
,
2393 offsetof(struct ieee80211_tdls_data
, u
)) &&
2394 tf
->payload_type
== WLAN_TDLS_SNAP_RFTYPE
&&
2395 tf
->category
== WLAN_CATEGORY_TDLS
&&
2396 (tf
->action_code
== WLAN_TDLS_CHANNEL_SWITCH_REQUEST
||
2397 tf
->action_code
== WLAN_TDLS_CHANNEL_SWITCH_RESPONSE
)) {
2398 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TDLS_CHSW
;
2399 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
2400 ieee80211_queue_work(&rx
->local
->hw
, &sdata
->work
);
2402 rx
->sta
->rx_packets
++;
2408 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
2409 unlikely(port_control
) && sdata
->bss
) {
2410 sdata
= container_of(sdata
->bss
, struct ieee80211_sub_if_data
,
2418 if (local
->ps_sdata
&& local
->hw
.conf
.dynamic_ps_timeout
> 0 &&
2419 !is_multicast_ether_addr(
2420 ((struct ethhdr
*)rx
->skb
->data
)->h_dest
) &&
2421 (!local
->scanning
&&
2422 !test_bit(SDATA_STATE_OFFCHANNEL
, &sdata
->state
))) {
2423 mod_timer(&local
->dynamic_ps_timer
, jiffies
+
2424 msecs_to_jiffies(local
->hw
.conf
.dynamic_ps_timeout
));
2427 ieee80211_deliver_skb(rx
);
2432 static ieee80211_rx_result debug_noinline
2433 ieee80211_rx_h_ctrl(struct ieee80211_rx_data
*rx
, struct sk_buff_head
*frames
)
2435 struct sk_buff
*skb
= rx
->skb
;
2436 struct ieee80211_bar
*bar
= (struct ieee80211_bar
*)skb
->data
;
2437 struct tid_ampdu_rx
*tid_agg_rx
;
2441 if (likely(!ieee80211_is_ctl(bar
->frame_control
)))
2444 if (ieee80211_is_back_req(bar
->frame_control
)) {
2446 __le16 control
, start_seq_num
;
2447 } __packed bar_data
;
2450 return RX_DROP_MONITOR
;
2452 if (skb_copy_bits(skb
, offsetof(struct ieee80211_bar
, control
),
2453 &bar_data
, sizeof(bar_data
)))
2454 return RX_DROP_MONITOR
;
2456 tid
= le16_to_cpu(bar_data
.control
) >> 12;
2458 tid_agg_rx
= rcu_dereference(rx
->sta
->ampdu_mlme
.tid_rx
[tid
]);
2460 return RX_DROP_MONITOR
;
2462 start_seq_num
= le16_to_cpu(bar_data
.start_seq_num
) >> 4;
2464 /* reset session timer */
2465 if (tid_agg_rx
->timeout
)
2466 mod_timer(&tid_agg_rx
->session_timer
,
2467 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
2469 spin_lock(&tid_agg_rx
->reorder_lock
);
2470 /* release stored frames up to start of BAR */
2471 ieee80211_release_reorder_frames(rx
->sdata
, tid_agg_rx
,
2472 start_seq_num
, frames
);
2473 spin_unlock(&tid_agg_rx
->reorder_lock
);
2480 * After this point, we only want management frames,
2481 * so we can drop all remaining control frames to
2482 * cooked monitor interfaces.
2484 return RX_DROP_MONITOR
;
2487 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data
*sdata
,
2488 struct ieee80211_mgmt
*mgmt
,
2491 struct ieee80211_local
*local
= sdata
->local
;
2492 struct sk_buff
*skb
;
2493 struct ieee80211_mgmt
*resp
;
2495 if (!ether_addr_equal(mgmt
->da
, sdata
->vif
.addr
)) {
2496 /* Not to own unicast address */
2500 if (!ether_addr_equal(mgmt
->sa
, sdata
->u
.mgd
.bssid
) ||
2501 !ether_addr_equal(mgmt
->bssid
, sdata
->u
.mgd
.bssid
)) {
2502 /* Not from the current AP or not associated yet. */
2506 if (len
< 24 + 1 + sizeof(resp
->u
.action
.u
.sa_query
)) {
2507 /* Too short SA Query request frame */
2511 skb
= dev_alloc_skb(sizeof(*resp
) + local
->hw
.extra_tx_headroom
);
2515 skb_reserve(skb
, local
->hw
.extra_tx_headroom
);
2516 resp
= (struct ieee80211_mgmt
*) skb_put(skb
, 24);
2517 memset(resp
, 0, 24);
2518 memcpy(resp
->da
, mgmt
->sa
, ETH_ALEN
);
2519 memcpy(resp
->sa
, sdata
->vif
.addr
, ETH_ALEN
);
2520 memcpy(resp
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
);
2521 resp
->frame_control
= cpu_to_le16(IEEE80211_FTYPE_MGMT
|
2522 IEEE80211_STYPE_ACTION
);
2523 skb_put(skb
, 1 + sizeof(resp
->u
.action
.u
.sa_query
));
2524 resp
->u
.action
.category
= WLAN_CATEGORY_SA_QUERY
;
2525 resp
->u
.action
.u
.sa_query
.action
= WLAN_ACTION_SA_QUERY_RESPONSE
;
2526 memcpy(resp
->u
.action
.u
.sa_query
.trans_id
,
2527 mgmt
->u
.action
.u
.sa_query
.trans_id
,
2528 WLAN_SA_QUERY_TR_ID_LEN
);
2530 ieee80211_tx_skb(sdata
, skb
);
2533 static ieee80211_rx_result debug_noinline
2534 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data
*rx
)
2536 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2537 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2540 * From here on, look only at management frames.
2541 * Data and control frames are already handled,
2542 * and unknown (reserved) frames are useless.
2544 if (rx
->skb
->len
< 24)
2545 return RX_DROP_MONITOR
;
2547 if (!ieee80211_is_mgmt(mgmt
->frame_control
))
2548 return RX_DROP_MONITOR
;
2550 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&&
2551 ieee80211_is_beacon(mgmt
->frame_control
) &&
2552 !(rx
->flags
& IEEE80211_RX_BEACON_REPORTED
)) {
2555 if (rx
->local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
)
2556 sig
= status
->signal
;
2558 cfg80211_report_obss_beacon(rx
->local
->hw
.wiphy
,
2559 rx
->skb
->data
, rx
->skb
->len
,
2561 rx
->flags
|= IEEE80211_RX_BEACON_REPORTED
;
2564 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
2565 return RX_DROP_MONITOR
;
2567 if (ieee80211_drop_unencrypted_mgmt(rx
))
2568 return RX_DROP_UNUSABLE
;
2573 static ieee80211_rx_result debug_noinline
2574 ieee80211_rx_h_action(struct ieee80211_rx_data
*rx
)
2576 struct ieee80211_local
*local
= rx
->local
;
2577 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2578 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2579 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2580 int len
= rx
->skb
->len
;
2582 if (!ieee80211_is_action(mgmt
->frame_control
))
2585 /* drop too small frames */
2586 if (len
< IEEE80211_MIN_ACTION_SIZE
)
2587 return RX_DROP_UNUSABLE
;
2589 if (!rx
->sta
&& mgmt
->u
.action
.category
!= WLAN_CATEGORY_PUBLIC
&&
2590 mgmt
->u
.action
.category
!= WLAN_CATEGORY_SELF_PROTECTED
&&
2591 mgmt
->u
.action
.category
!= WLAN_CATEGORY_SPECTRUM_MGMT
)
2592 return RX_DROP_UNUSABLE
;
2594 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
2595 return RX_DROP_UNUSABLE
;
2597 switch (mgmt
->u
.action
.category
) {
2598 case WLAN_CATEGORY_HT
:
2599 /* reject HT action frames from stations not supporting HT */
2600 if (!rx
->sta
->sta
.ht_cap
.ht_supported
)
2603 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2604 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
2605 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2606 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
2607 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2610 /* verify action & smps_control/chanwidth are present */
2611 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 2)
2614 switch (mgmt
->u
.action
.u
.ht_smps
.action
) {
2615 case WLAN_HT_ACTION_SMPS
: {
2616 struct ieee80211_supported_band
*sband
;
2617 enum ieee80211_smps_mode smps_mode
;
2619 /* convert to HT capability */
2620 switch (mgmt
->u
.action
.u
.ht_smps
.smps_control
) {
2621 case WLAN_HT_SMPS_CONTROL_DISABLED
:
2622 smps_mode
= IEEE80211_SMPS_OFF
;
2624 case WLAN_HT_SMPS_CONTROL_STATIC
:
2625 smps_mode
= IEEE80211_SMPS_STATIC
;
2627 case WLAN_HT_SMPS_CONTROL_DYNAMIC
:
2628 smps_mode
= IEEE80211_SMPS_DYNAMIC
;
2634 /* if no change do nothing */
2635 if (rx
->sta
->sta
.smps_mode
== smps_mode
)
2637 rx
->sta
->sta
.smps_mode
= smps_mode
;
2639 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
2641 rate_control_rate_update(local
, sband
, rx
->sta
,
2642 IEEE80211_RC_SMPS_CHANGED
);
2645 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH
: {
2646 struct ieee80211_supported_band
*sband
;
2647 u8 chanwidth
= mgmt
->u
.action
.u
.ht_notify_cw
.chanwidth
;
2648 enum ieee80211_sta_rx_bandwidth max_bw
, new_bw
;
2650 /* If it doesn't support 40 MHz it can't change ... */
2651 if (!(rx
->sta
->sta
.ht_cap
.cap
&
2652 IEEE80211_HT_CAP_SUP_WIDTH_20_40
))
2655 if (chanwidth
== IEEE80211_HT_CHANWIDTH_20MHZ
)
2656 max_bw
= IEEE80211_STA_RX_BW_20
;
2658 max_bw
= ieee80211_sta_cap_rx_bw(rx
->sta
);
2660 /* set cur_max_bandwidth and recalc sta bw */
2661 rx
->sta
->cur_max_bandwidth
= max_bw
;
2662 new_bw
= ieee80211_sta_cur_vht_bw(rx
->sta
);
2664 if (rx
->sta
->sta
.bandwidth
== new_bw
)
2667 rx
->sta
->sta
.bandwidth
= new_bw
;
2668 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
2670 rate_control_rate_update(local
, sband
, rx
->sta
,
2671 IEEE80211_RC_BW_CHANGED
);
2679 case WLAN_CATEGORY_PUBLIC
:
2680 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2682 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2686 if (!ether_addr_equal(mgmt
->bssid
, sdata
->u
.mgd
.bssid
))
2688 if (mgmt
->u
.action
.u
.ext_chan_switch
.action_code
!=
2689 WLAN_PUB_ACTION_EXT_CHANSW_ANN
)
2691 if (len
< offsetof(struct ieee80211_mgmt
,
2692 u
.action
.u
.ext_chan_switch
.variable
))
2695 case WLAN_CATEGORY_VHT
:
2696 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2697 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
2698 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2699 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
2700 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2703 /* verify action code is present */
2704 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2707 switch (mgmt
->u
.action
.u
.vht_opmode_notif
.action_code
) {
2708 case WLAN_VHT_ACTION_OPMODE_NOTIF
: {
2711 /* verify opmode is present */
2712 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 2)
2715 opmode
= mgmt
->u
.action
.u
.vht_opmode_notif
.operating_mode
;
2717 ieee80211_vht_handle_opmode(rx
->sdata
, rx
->sta
,
2718 opmode
, status
->band
,
2726 case WLAN_CATEGORY_BACK
:
2727 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2728 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
2729 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2730 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
2731 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2734 /* verify action_code is present */
2735 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2738 switch (mgmt
->u
.action
.u
.addba_req
.action_code
) {
2739 case WLAN_ACTION_ADDBA_REQ
:
2740 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2741 sizeof(mgmt
->u
.action
.u
.addba_req
)))
2744 case WLAN_ACTION_ADDBA_RESP
:
2745 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2746 sizeof(mgmt
->u
.action
.u
.addba_resp
)))
2749 case WLAN_ACTION_DELBA
:
2750 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2751 sizeof(mgmt
->u
.action
.u
.delba
)))
2759 case WLAN_CATEGORY_SPECTRUM_MGMT
:
2760 /* verify action_code is present */
2761 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2764 switch (mgmt
->u
.action
.u
.measurement
.action_code
) {
2765 case WLAN_ACTION_SPCT_MSR_REQ
:
2766 if (status
->band
!= IEEE80211_BAND_5GHZ
)
2769 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2770 sizeof(mgmt
->u
.action
.u
.measurement
)))
2773 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2776 ieee80211_process_measurement_req(sdata
, mgmt
, len
);
2778 case WLAN_ACTION_SPCT_CHL_SWITCH
: {
2780 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2781 sizeof(mgmt
->u
.action
.u
.chan_switch
)))
2784 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2785 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
2786 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
)
2789 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
2790 bssid
= sdata
->u
.mgd
.bssid
;
2791 else if (sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
)
2792 bssid
= sdata
->u
.ibss
.bssid
;
2793 else if (sdata
->vif
.type
== NL80211_IFTYPE_MESH_POINT
)
2798 if (!ether_addr_equal(mgmt
->bssid
, bssid
))
2805 case WLAN_CATEGORY_SA_QUERY
:
2806 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2807 sizeof(mgmt
->u
.action
.u
.sa_query
)))
2810 switch (mgmt
->u
.action
.u
.sa_query
.action
) {
2811 case WLAN_ACTION_SA_QUERY_REQUEST
:
2812 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2814 ieee80211_process_sa_query_req(sdata
, mgmt
, len
);
2818 case WLAN_CATEGORY_SELF_PROTECTED
:
2819 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2820 sizeof(mgmt
->u
.action
.u
.self_prot
.action_code
)))
2823 switch (mgmt
->u
.action
.u
.self_prot
.action_code
) {
2824 case WLAN_SP_MESH_PEERING_OPEN
:
2825 case WLAN_SP_MESH_PEERING_CLOSE
:
2826 case WLAN_SP_MESH_PEERING_CONFIRM
:
2827 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
2829 if (sdata
->u
.mesh
.user_mpm
)
2830 /* userspace handles this frame */
2833 case WLAN_SP_MGK_INFORM
:
2834 case WLAN_SP_MGK_ACK
:
2835 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
2840 case WLAN_CATEGORY_MESH_ACTION
:
2841 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2842 sizeof(mgmt
->u
.action
.u
.mesh_action
.action_code
)))
2845 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
2847 if (mesh_action_is_path_sel(mgmt
) &&
2848 !mesh_path_sel_is_hwmp(sdata
))
2856 status
->rx_flags
|= IEEE80211_RX_MALFORMED_ACTION_FRM
;
2857 /* will return in the next handlers */
2862 rx
->sta
->rx_packets
++;
2863 dev_kfree_skb(rx
->skb
);
2867 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
2868 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
2869 ieee80211_queue_work(&local
->hw
, &sdata
->work
);
2871 rx
->sta
->rx_packets
++;
2875 static ieee80211_rx_result debug_noinline
2876 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data
*rx
)
2878 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2881 /* skip known-bad action frames and return them in the next handler */
2882 if (status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
)
2886 * Getting here means the kernel doesn't know how to handle
2887 * it, but maybe userspace does ... include returned frames
2888 * so userspace can register for those to know whether ones
2889 * it transmitted were processed or returned.
2892 if (rx
->local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
)
2893 sig
= status
->signal
;
2895 if (cfg80211_rx_mgmt(&rx
->sdata
->wdev
, status
->freq
, sig
,
2896 rx
->skb
->data
, rx
->skb
->len
, 0)) {
2898 rx
->sta
->rx_packets
++;
2899 dev_kfree_skb(rx
->skb
);
2906 static ieee80211_rx_result debug_noinline
2907 ieee80211_rx_h_action_return(struct ieee80211_rx_data
*rx
)
2909 struct ieee80211_local
*local
= rx
->local
;
2910 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2911 struct sk_buff
*nskb
;
2912 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2913 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2915 if (!ieee80211_is_action(mgmt
->frame_control
))
2919 * For AP mode, hostapd is responsible for handling any action
2920 * frames that we didn't handle, including returning unknown
2921 * ones. For all other modes we will return them to the sender,
2922 * setting the 0x80 bit in the action category, as required by
2923 * 802.11-2012 9.24.4.
2924 * Newer versions of hostapd shall also use the management frame
2925 * registration mechanisms, but older ones still use cooked
2926 * monitor interfaces so push all frames there.
2928 if (!(status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
) &&
2929 (sdata
->vif
.type
== NL80211_IFTYPE_AP
||
2930 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
))
2931 return RX_DROP_MONITOR
;
2933 if (is_multicast_ether_addr(mgmt
->da
))
2934 return RX_DROP_MONITOR
;
2936 /* do not return rejected action frames */
2937 if (mgmt
->u
.action
.category
& 0x80)
2938 return RX_DROP_UNUSABLE
;
2940 nskb
= skb_copy_expand(rx
->skb
, local
->hw
.extra_tx_headroom
, 0,
2943 struct ieee80211_mgmt
*nmgmt
= (void *)nskb
->data
;
2945 nmgmt
->u
.action
.category
|= 0x80;
2946 memcpy(nmgmt
->da
, nmgmt
->sa
, ETH_ALEN
);
2947 memcpy(nmgmt
->sa
, rx
->sdata
->vif
.addr
, ETH_ALEN
);
2949 memset(nskb
->cb
, 0, sizeof(nskb
->cb
));
2951 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_P2P_DEVICE
) {
2952 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(nskb
);
2954 info
->flags
= IEEE80211_TX_CTL_TX_OFFCHAN
|
2955 IEEE80211_TX_INTFL_OFFCHAN_TX_OK
|
2956 IEEE80211_TX_CTL_NO_CCK_RATE
;
2957 if (local
->hw
.flags
& IEEE80211_HW_QUEUE_CONTROL
)
2959 local
->hw
.offchannel_tx_hw_queue
;
2962 __ieee80211_tx_skb_tid_band(rx
->sdata
, nskb
, 7,
2965 dev_kfree_skb(rx
->skb
);
2969 static ieee80211_rx_result debug_noinline
2970 ieee80211_rx_h_mgmt(struct ieee80211_rx_data
*rx
)
2972 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2973 struct ieee80211_mgmt
*mgmt
= (void *)rx
->skb
->data
;
2976 stype
= mgmt
->frame_control
& cpu_to_le16(IEEE80211_FCTL_STYPE
);
2978 if (!ieee80211_vif_is_mesh(&sdata
->vif
) &&
2979 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
2980 sdata
->vif
.type
!= NL80211_IFTYPE_OCB
&&
2981 sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2982 return RX_DROP_MONITOR
;
2985 case cpu_to_le16(IEEE80211_STYPE_AUTH
):
2986 case cpu_to_le16(IEEE80211_STYPE_BEACON
):
2987 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP
):
2988 /* process for all: mesh, mlme, ibss */
2990 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP
):
2991 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP
):
2992 case cpu_to_le16(IEEE80211_STYPE_DEAUTH
):
2993 case cpu_to_le16(IEEE80211_STYPE_DISASSOC
):
2994 if (is_multicast_ether_addr(mgmt
->da
) &&
2995 !is_broadcast_ether_addr(mgmt
->da
))
2996 return RX_DROP_MONITOR
;
2998 /* process only for station */
2999 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3000 return RX_DROP_MONITOR
;
3002 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ
):
3003 /* process only for ibss and mesh */
3004 if (sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
3005 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
)
3006 return RX_DROP_MONITOR
;
3009 return RX_DROP_MONITOR
;
3012 /* queue up frame and kick off work to process it */
3013 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
3014 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
3015 ieee80211_queue_work(&rx
->local
->hw
, &sdata
->work
);
3017 rx
->sta
->rx_packets
++;
3022 /* TODO: use IEEE80211_RX_FRAGMENTED */
3023 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data
*rx
,
3024 struct ieee80211_rate
*rate
)
3026 struct ieee80211_sub_if_data
*sdata
;
3027 struct ieee80211_local
*local
= rx
->local
;
3028 struct sk_buff
*skb
= rx
->skb
, *skb2
;
3029 struct net_device
*prev_dev
= NULL
;
3030 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3031 int needed_headroom
;
3034 * If cooked monitor has been processed already, then
3035 * don't do it again. If not, set the flag.
3037 if (rx
->flags
& IEEE80211_RX_CMNTR
)
3039 rx
->flags
|= IEEE80211_RX_CMNTR
;
3041 /* If there are no cooked monitor interfaces, just free the SKB */
3042 if (!local
->cooked_mntrs
)
3045 /* vendor data is long removed here */
3046 status
->flag
&= ~RX_FLAG_RADIOTAP_VENDOR_DATA
;
3047 /* room for the radiotap header based on driver features */
3048 needed_headroom
= ieee80211_rx_radiotap_hdrlen(local
, status
, skb
);
3050 if (skb_headroom(skb
) < needed_headroom
&&
3051 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
))
3054 /* prepend radiotap information */
3055 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, needed_headroom
,
3058 skb_set_mac_header(skb
, 0);
3059 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3060 skb
->pkt_type
= PACKET_OTHERHOST
;
3061 skb
->protocol
= htons(ETH_P_802_2
);
3063 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
3064 if (!ieee80211_sdata_running(sdata
))
3067 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
||
3068 !(sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
))
3072 skb2
= skb_clone(skb
, GFP_ATOMIC
);
3074 skb2
->dev
= prev_dev
;
3075 netif_receive_skb(skb2
);
3079 prev_dev
= sdata
->dev
;
3080 sdata
->dev
->stats
.rx_packets
++;
3081 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
3085 skb
->dev
= prev_dev
;
3086 netif_receive_skb(skb
);
3094 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data
*rx
,
3095 ieee80211_rx_result res
)
3098 case RX_DROP_MONITOR
:
3099 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
3101 rx
->sta
->rx_dropped
++;
3104 struct ieee80211_rate
*rate
= NULL
;
3105 struct ieee80211_supported_band
*sband
;
3106 struct ieee80211_rx_status
*status
;
3108 status
= IEEE80211_SKB_RXCB((rx
->skb
));
3110 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
3111 if (!(status
->flag
& RX_FLAG_HT
) &&
3112 !(status
->flag
& RX_FLAG_VHT
))
3113 rate
= &sband
->bitrates
[status
->rate_idx
];
3115 ieee80211_rx_cooked_monitor(rx
, rate
);
3118 case RX_DROP_UNUSABLE
:
3119 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
3121 rx
->sta
->rx_dropped
++;
3122 dev_kfree_skb(rx
->skb
);
3125 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_queued
);
3130 static void ieee80211_rx_handlers(struct ieee80211_rx_data
*rx
,
3131 struct sk_buff_head
*frames
)
3133 ieee80211_rx_result res
= RX_DROP_MONITOR
;
3134 struct sk_buff
*skb
;
3136 #define CALL_RXH(rxh) \
3139 if (res != RX_CONTINUE) \
3143 /* Lock here to avoid hitting all of the data used in the RX
3144 * path (e.g. key data, station data, ...) concurrently when
3145 * a frame is released from the reorder buffer due to timeout
3146 * from the timer, potentially concurrently with RX from the
3149 spin_lock_bh(&rx
->local
->rx_path_lock
);
3151 while ((skb
= __skb_dequeue(frames
))) {
3153 * all the other fields are valid across frames
3154 * that belong to an aMPDU since they are on the
3155 * same TID from the same station
3159 CALL_RXH(ieee80211_rx_h_check_more_data
)
3160 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll
)
3161 CALL_RXH(ieee80211_rx_h_sta_process
)
3162 CALL_RXH(ieee80211_rx_h_decrypt
)
3163 CALL_RXH(ieee80211_rx_h_defragment
)
3164 CALL_RXH(ieee80211_rx_h_michael_mic_verify
)
3165 /* must be after MMIC verify so header is counted in MPDU mic */
3166 #ifdef CONFIG_MAC80211_MESH
3167 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
3168 CALL_RXH(ieee80211_rx_h_mesh_fwding
);
3170 CALL_RXH(ieee80211_rx_h_amsdu
)
3171 CALL_RXH(ieee80211_rx_h_data
)
3173 /* special treatment -- needs the queue */
3174 res
= ieee80211_rx_h_ctrl(rx
, frames
);
3175 if (res
!= RX_CONTINUE
)
3178 CALL_RXH(ieee80211_rx_h_mgmt_check
)
3179 CALL_RXH(ieee80211_rx_h_action
)
3180 CALL_RXH(ieee80211_rx_h_userspace_mgmt
)
3181 CALL_RXH(ieee80211_rx_h_action_return
)
3182 CALL_RXH(ieee80211_rx_h_mgmt
)
3185 ieee80211_rx_handlers_result(rx
, res
);
3190 spin_unlock_bh(&rx
->local
->rx_path_lock
);
3193 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data
*rx
)
3195 struct sk_buff_head reorder_release
;
3196 ieee80211_rx_result res
= RX_DROP_MONITOR
;
3198 __skb_queue_head_init(&reorder_release
);
3200 #define CALL_RXH(rxh) \
3203 if (res != RX_CONTINUE) \
3207 CALL_RXH(ieee80211_rx_h_check_dup
)
3208 CALL_RXH(ieee80211_rx_h_check
)
3210 ieee80211_rx_reorder_ampdu(rx
, &reorder_release
);
3212 ieee80211_rx_handlers(rx
, &reorder_release
);
3216 ieee80211_rx_handlers_result(rx
, res
);
3222 * This function makes calls into the RX path, therefore
3223 * it has to be invoked under RCU read lock.
3225 void ieee80211_release_reorder_timeout(struct sta_info
*sta
, int tid
)
3227 struct sk_buff_head frames
;
3228 struct ieee80211_rx_data rx
= {
3230 .sdata
= sta
->sdata
,
3231 .local
= sta
->local
,
3232 /* This is OK -- must be QoS data frame */
3233 .security_idx
= tid
,
3235 .flags
= IEEE80211_RX_REORDER_TIMER
,
3237 struct tid_ampdu_rx
*tid_agg_rx
;
3239 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
3243 __skb_queue_head_init(&frames
);
3245 spin_lock(&tid_agg_rx
->reorder_lock
);
3246 ieee80211_sta_reorder_release(sta
->sdata
, tid_agg_rx
, &frames
);
3247 spin_unlock(&tid_agg_rx
->reorder_lock
);
3249 ieee80211_rx_handlers(&rx
, &frames
);
3252 /* main receive path */
3254 static bool prepare_for_handlers(struct ieee80211_rx_data
*rx
,
3255 struct ieee80211_hdr
*hdr
)
3257 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3258 struct sk_buff
*skb
= rx
->skb
;
3259 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3260 u8
*bssid
= ieee80211_get_bssid(hdr
, skb
->len
, sdata
->vif
.type
);
3261 int multicast
= is_multicast_ether_addr(hdr
->addr1
);
3263 switch (sdata
->vif
.type
) {
3264 case NL80211_IFTYPE_STATION
:
3265 if (!bssid
&& !sdata
->u
.mgd
.use_4addr
)
3268 !ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
)) {
3269 if (!(sdata
->dev
->flags
& IFF_PROMISC
) ||
3270 sdata
->u
.mgd
.use_4addr
)
3272 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
3275 case NL80211_IFTYPE_ADHOC
:
3278 if (ether_addr_equal(sdata
->vif
.addr
, hdr
->addr2
) ||
3279 ether_addr_equal(sdata
->u
.ibss
.bssid
, hdr
->addr2
))
3281 if (ieee80211_is_beacon(hdr
->frame_control
)) {
3283 } else if (!ieee80211_bssid_match(bssid
, sdata
->u
.ibss
.bssid
)) {
3285 } else if (!multicast
&&
3286 !ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
)) {
3287 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
3289 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
3290 } else if (!rx
->sta
) {
3292 if (status
->flag
& (RX_FLAG_HT
| RX_FLAG_VHT
))
3293 rate_idx
= 0; /* TODO: HT/VHT rates */
3295 rate_idx
= status
->rate_idx
;
3296 ieee80211_ibss_rx_no_sta(sdata
, bssid
, hdr
->addr2
,
3300 case NL80211_IFTYPE_OCB
:
3303 if (ieee80211_is_beacon(hdr
->frame_control
)) {
3305 } else if (!is_broadcast_ether_addr(bssid
)) {
3306 ocb_dbg(sdata
, "BSSID mismatch in OCB mode!\n");
3308 } else if (!multicast
&&
3309 !ether_addr_equal(sdata
->dev
->dev_addr
,
3311 /* if we are in promisc mode we also accept
3312 * packets not destined for us
3314 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
3316 rx
->flags
&= ~IEEE80211_RX_RA_MATCH
;
3317 } else if (!rx
->sta
) {
3319 if (status
->flag
& RX_FLAG_HT
)
3320 rate_idx
= 0; /* TODO: HT rates */
3322 rate_idx
= status
->rate_idx
;
3323 ieee80211_ocb_rx_no_sta(sdata
, bssid
, hdr
->addr2
,
3327 case NL80211_IFTYPE_MESH_POINT
:
3329 !ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
)) {
3330 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
3333 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
3336 case NL80211_IFTYPE_AP_VLAN
:
3337 case NL80211_IFTYPE_AP
:
3339 if (!ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
))
3341 } else if (!ieee80211_bssid_match(bssid
, sdata
->vif
.addr
)) {
3343 * Accept public action frames even when the
3344 * BSSID doesn't match, this is used for P2P
3345 * and location updates. Note that mac80211
3346 * itself never looks at these frames.
3349 !ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
))
3351 if (ieee80211_is_public_action(hdr
, skb
->len
))
3353 if (!ieee80211_is_beacon(hdr
->frame_control
))
3355 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
3356 } else if (!ieee80211_has_tods(hdr
->frame_control
)) {
3357 /* ignore data frames to TDLS-peers */
3358 if (ieee80211_is_data(hdr
->frame_control
))
3360 /* ignore action frames to TDLS-peers */
3361 if (ieee80211_is_action(hdr
->frame_control
) &&
3362 !ether_addr_equal(bssid
, hdr
->addr1
))
3366 case NL80211_IFTYPE_WDS
:
3367 if (bssid
|| !ieee80211_is_data(hdr
->frame_control
))
3369 if (!ether_addr_equal(sdata
->u
.wds
.remote_addr
, hdr
->addr2
))
3372 case NL80211_IFTYPE_P2P_DEVICE
:
3373 if (!ieee80211_is_public_action(hdr
, skb
->len
) &&
3374 !ieee80211_is_probe_req(hdr
->frame_control
) &&
3375 !ieee80211_is_probe_resp(hdr
->frame_control
) &&
3376 !ieee80211_is_beacon(hdr
->frame_control
))
3378 if (!ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
) &&
3380 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
3383 /* should never get here */
3392 * This function returns whether or not the SKB
3393 * was destined for RX processing or not, which,
3394 * if consume is true, is equivalent to whether
3395 * or not the skb was consumed.
3397 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data
*rx
,
3398 struct sk_buff
*skb
, bool consume
)
3400 struct ieee80211_local
*local
= rx
->local
;
3401 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3402 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3403 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
3406 status
->rx_flags
|= IEEE80211_RX_RA_MATCH
;
3408 if (!prepare_for_handlers(rx
, hdr
))
3412 skb
= skb_copy(skb
, GFP_ATOMIC
);
3414 if (net_ratelimit())
3415 wiphy_debug(local
->hw
.wiphy
,
3416 "failed to copy skb for %s\n",
3424 ieee80211_invoke_rx_handlers(rx
);
3429 * This is the actual Rx frames handler. as it belongs to Rx path it must
3430 * be called with rcu_read_lock protection.
3432 static void __ieee80211_rx_handle_packet(struct ieee80211_hw
*hw
,
3433 struct sk_buff
*skb
)
3435 struct ieee80211_local
*local
= hw_to_local(hw
);
3436 struct ieee80211_sub_if_data
*sdata
;
3437 struct ieee80211_hdr
*hdr
;
3439 struct ieee80211_rx_data rx
;
3440 struct ieee80211_sub_if_data
*prev
;
3441 struct sta_info
*sta
, *prev_sta
;
3442 struct rhash_head
*tmp
;
3445 fc
= ((struct ieee80211_hdr
*)skb
->data
)->frame_control
;
3446 memset(&rx
, 0, sizeof(rx
));
3450 if (ieee80211_is_data(fc
) || ieee80211_is_mgmt(fc
))
3451 local
->dot11ReceivedFragmentCount
++;
3453 if (ieee80211_is_mgmt(fc
)) {
3454 /* drop frame if too short for header */
3455 if (skb
->len
< ieee80211_hdrlen(fc
))
3458 err
= skb_linearize(skb
);
3460 err
= !pskb_may_pull(skb
, ieee80211_hdrlen(fc
));
3468 hdr
= (struct ieee80211_hdr
*)skb
->data
;
3469 ieee80211_parse_qos(&rx
);
3470 ieee80211_verify_alignment(&rx
);
3472 if (unlikely(ieee80211_is_probe_resp(hdr
->frame_control
) ||
3473 ieee80211_is_beacon(hdr
->frame_control
)))
3474 ieee80211_scan_rx(local
, skb
);
3476 if (ieee80211_is_data(fc
)) {
3477 const struct bucket_table
*tbl
;
3481 tbl
= rht_dereference_rcu(local
->sta_hash
.tbl
, &local
->sta_hash
);
3483 for_each_sta_info(local
, tbl
, hdr
->addr2
, sta
, tmp
) {
3490 rx
.sdata
= prev_sta
->sdata
;
3491 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
3498 rx
.sdata
= prev_sta
->sdata
;
3500 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
3508 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
3509 if (!ieee80211_sdata_running(sdata
))
3512 if (sdata
->vif
.type
== NL80211_IFTYPE_MONITOR
||
3513 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
3517 * frame is destined for this interface, but if it's
3518 * not also for the previous one we handle that after
3519 * the loop to avoid copying the SKB once too much
3527 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
3529 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
3535 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
3538 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
3547 * This is the receive path handler. It is called by a low level driver when an
3548 * 802.11 MPDU is received from the hardware.
3550 void ieee80211_rx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
3552 struct ieee80211_local
*local
= hw_to_local(hw
);
3553 struct ieee80211_rate
*rate
= NULL
;
3554 struct ieee80211_supported_band
*sband
;
3555 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3557 WARN_ON_ONCE(softirq_count() == 0);
3559 if (WARN_ON(status
->band
>= IEEE80211_NUM_BANDS
))
3562 sband
= local
->hw
.wiphy
->bands
[status
->band
];
3563 if (WARN_ON(!sband
))
3567 * If we're suspending, it is possible although not too likely
3568 * that we'd be receiving frames after having already partially
3569 * quiesced the stack. We can't process such frames then since
3570 * that might, for example, cause stations to be added or other
3571 * driver callbacks be invoked.
3573 if (unlikely(local
->quiescing
|| local
->suspended
))
3576 /* We might be during a HW reconfig, prevent Rx for the same reason */
3577 if (unlikely(local
->in_reconfig
))
3581 * The same happens when we're not even started,
3582 * but that's worth a warning.
3584 if (WARN_ON(!local
->started
))
3587 if (likely(!(status
->flag
& RX_FLAG_FAILED_PLCP_CRC
))) {
3589 * Validate the rate, unless a PLCP error means that
3590 * we probably can't have a valid rate here anyway.
3593 if (status
->flag
& RX_FLAG_HT
) {
3595 * rate_idx is MCS index, which can be [0-76]
3598 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3600 * Anything else would be some sort of driver or
3601 * hardware error. The driver should catch hardware
3604 if (WARN(status
->rate_idx
> 76,
3605 "Rate marked as an HT rate but passed "
3606 "status->rate_idx is not "
3607 "an MCS index [0-76]: %d (0x%02x)\n",
3611 } else if (status
->flag
& RX_FLAG_VHT
) {
3612 if (WARN_ONCE(status
->rate_idx
> 9 ||
3614 status
->vht_nss
> 8,
3615 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3616 status
->rate_idx
, status
->vht_nss
))
3619 if (WARN_ON(status
->rate_idx
>= sband
->n_bitrates
))
3621 rate
= &sband
->bitrates
[status
->rate_idx
];
3625 status
->rx_flags
= 0;
3628 * key references and virtual interfaces are protected using RCU
3629 * and this requires that we are in a read-side RCU section during
3630 * receive processing
3635 * Frames with failed FCS/PLCP checksum are not returned,
3636 * all other frames are returned without radiotap header
3637 * if it was previously present.
3638 * Also, frames with less than 16 bytes are dropped.
3640 skb
= ieee80211_rx_monitor(local
, skb
, rate
);
3646 ieee80211_tpt_led_trig_rx(local
,
3647 ((struct ieee80211_hdr
*)skb
->data
)->frame_control
,
3649 __ieee80211_rx_handle_packet(hw
, skb
);
3657 EXPORT_SYMBOL(ieee80211_rx
);
3659 /* This is a version of the rx handler that can be called from hard irq
3660 * context. Post the skb on the queue and schedule the tasklet */
3661 void ieee80211_rx_irqsafe(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
3663 struct ieee80211_local
*local
= hw_to_local(hw
);
3665 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status
) > sizeof(skb
->cb
));
3667 skb
->pkt_type
= IEEE80211_RX_MSG
;
3668 skb_queue_tail(&local
->skb_queue
, skb
);
3669 tasklet_schedule(&local
->tasklet
);
3671 EXPORT_SYMBOL(ieee80211_rx_irqsafe
);