Linux 4.1.16
[linux/fpc-iii.git] / net / mac80211 / rx.c
blob5793f75c5ffde91de02e9698bd27500ff4640826
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
36 * monitor mode reception
38 * This function cleans up the SKB, i.e. it removes all the stuff
39 * only useful for monitoring.
41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
42 struct sk_buff *skb,
43 unsigned int rtap_vendor_space)
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
56 __pskb_pull(skb, rtap_vendor_space);
58 return skb;
61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
62 unsigned int rtap_vendor_space)
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
67 hdr = (void *)(skb->data + rtap_vendor_space);
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return true;
74 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
75 return true;
77 if (ieee80211_is_ctl(hdr->frame_control) &&
78 !ieee80211_is_pspoll(hdr->frame_control) &&
79 !ieee80211_is_back_req(hdr->frame_control))
80 return true;
82 return false;
85 static int
86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
87 struct ieee80211_rx_status *status,
88 struct sk_buff *skb)
90 int len;
92 /* always present fields */
93 len = sizeof(struct ieee80211_radiotap_header) + 8;
95 /* allocate extra bitmaps */
96 if (status->chains)
97 len += 4 * hweight8(status->chains);
99 if (ieee80211_have_rx_timestamp(status)) {
100 len = ALIGN(len, 8);
101 len += 8;
103 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
104 len += 1;
106 /* antenna field, if we don't have per-chain info */
107 if (!status->chains)
108 len += 1;
110 /* padding for RX_FLAGS if necessary */
111 len = ALIGN(len, 2);
113 if (status->flag & RX_FLAG_HT) /* HT info */
114 len += 3;
116 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
117 len = ALIGN(len, 4);
118 len += 8;
121 if (status->flag & RX_FLAG_VHT) {
122 len = ALIGN(len, 2);
123 len += 12;
126 if (status->chains) {
127 /* antenna and antenna signal fields */
128 len += 2 * hweight8(status->chains);
131 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
132 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
134 /* vendor presence bitmap */
135 len += 4;
136 /* alignment for fixed 6-byte vendor data header */
137 len = ALIGN(len, 2);
138 /* vendor data header */
139 len += 6;
140 if (WARN_ON(rtap->align == 0))
141 rtap->align = 1;
142 len = ALIGN(len, rtap->align);
143 len += rtap->len + rtap->pad;
146 return len;
150 * ieee80211_add_rx_radiotap_header - add radiotap header
152 * add a radiotap header containing all the fields which the hardware provided.
154 static void
155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
156 struct sk_buff *skb,
157 struct ieee80211_rate *rate,
158 int rtap_len, bool has_fcs)
160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
161 struct ieee80211_radiotap_header *rthdr;
162 unsigned char *pos;
163 __le32 *it_present;
164 u32 it_present_val;
165 u16 rx_flags = 0;
166 u16 channel_flags = 0;
167 int mpdulen, chain;
168 unsigned long chains = status->chains;
169 struct ieee80211_vendor_radiotap rtap = {};
171 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
172 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
173 /* rtap.len and rtap.pad are undone immediately */
174 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
177 mpdulen = skb->len;
178 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
179 mpdulen += FCS_LEN;
181 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
182 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
183 it_present = &rthdr->it_present;
185 /* radiotap header, set always present flags */
186 rthdr->it_len = cpu_to_le16(rtap_len);
187 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
188 BIT(IEEE80211_RADIOTAP_CHANNEL) |
189 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
191 if (!status->chains)
192 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
194 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
195 it_present_val |=
196 BIT(IEEE80211_RADIOTAP_EXT) |
197 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
198 put_unaligned_le32(it_present_val, it_present);
199 it_present++;
200 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
201 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
204 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
205 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
206 BIT(IEEE80211_RADIOTAP_EXT);
207 put_unaligned_le32(it_present_val, it_present);
208 it_present++;
209 it_present_val = rtap.present;
212 put_unaligned_le32(it_present_val, it_present);
214 pos = (void *)(it_present + 1);
216 /* the order of the following fields is important */
218 /* IEEE80211_RADIOTAP_TSFT */
219 if (ieee80211_have_rx_timestamp(status)) {
220 /* padding */
221 while ((pos - (u8 *)rthdr) & 7)
222 *pos++ = 0;
223 put_unaligned_le64(
224 ieee80211_calculate_rx_timestamp(local, status,
225 mpdulen, 0),
226 pos);
227 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
228 pos += 8;
231 /* IEEE80211_RADIOTAP_FLAGS */
232 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
233 *pos |= IEEE80211_RADIOTAP_F_FCS;
234 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
235 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
236 if (status->flag & RX_FLAG_SHORTPRE)
237 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
238 pos++;
240 /* IEEE80211_RADIOTAP_RATE */
241 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
243 * Without rate information don't add it. If we have,
244 * MCS information is a separate field in radiotap,
245 * added below. The byte here is needed as padding
246 * for the channel though, so initialise it to 0.
248 *pos = 0;
249 } else {
250 int shift = 0;
251 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
252 if (status->flag & RX_FLAG_10MHZ)
253 shift = 1;
254 else if (status->flag & RX_FLAG_5MHZ)
255 shift = 2;
256 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
258 pos++;
260 /* IEEE80211_RADIOTAP_CHANNEL */
261 put_unaligned_le16(status->freq, pos);
262 pos += 2;
263 if (status->flag & RX_FLAG_10MHZ)
264 channel_flags |= IEEE80211_CHAN_HALF;
265 else if (status->flag & RX_FLAG_5MHZ)
266 channel_flags |= IEEE80211_CHAN_QUARTER;
268 if (status->band == IEEE80211_BAND_5GHZ)
269 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
270 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
271 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
272 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
273 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
274 else if (rate)
275 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
276 else
277 channel_flags |= IEEE80211_CHAN_2GHZ;
278 put_unaligned_le16(channel_flags, pos);
279 pos += 2;
281 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
282 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
283 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
284 *pos = status->signal;
285 rthdr->it_present |=
286 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
287 pos++;
290 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
292 if (!status->chains) {
293 /* IEEE80211_RADIOTAP_ANTENNA */
294 *pos = status->antenna;
295 pos++;
298 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
300 /* IEEE80211_RADIOTAP_RX_FLAGS */
301 /* ensure 2 byte alignment for the 2 byte field as required */
302 if ((pos - (u8 *)rthdr) & 1)
303 *pos++ = 0;
304 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
305 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
306 put_unaligned_le16(rx_flags, pos);
307 pos += 2;
309 if (status->flag & RX_FLAG_HT) {
310 unsigned int stbc;
312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
313 *pos++ = local->hw.radiotap_mcs_details;
314 *pos = 0;
315 if (status->flag & RX_FLAG_SHORT_GI)
316 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
317 if (status->flag & RX_FLAG_40MHZ)
318 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
319 if (status->flag & RX_FLAG_HT_GF)
320 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
321 if (status->flag & RX_FLAG_LDPC)
322 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
323 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
324 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
325 pos++;
326 *pos++ = status->rate_idx;
329 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
330 u16 flags = 0;
332 /* ensure 4 byte alignment */
333 while ((pos - (u8 *)rthdr) & 3)
334 pos++;
335 rthdr->it_present |=
336 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
337 put_unaligned_le32(status->ampdu_reference, pos);
338 pos += 4;
339 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
340 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
341 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
342 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
343 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
344 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
345 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
346 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
347 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
348 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
349 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
350 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
351 put_unaligned_le16(flags, pos);
352 pos += 2;
353 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
354 *pos++ = status->ampdu_delimiter_crc;
355 else
356 *pos++ = 0;
357 *pos++ = 0;
360 if (status->flag & RX_FLAG_VHT) {
361 u16 known = local->hw.radiotap_vht_details;
363 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
364 put_unaligned_le16(known, pos);
365 pos += 2;
366 /* flags */
367 if (status->flag & RX_FLAG_SHORT_GI)
368 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
369 /* in VHT, STBC is binary */
370 if (status->flag & RX_FLAG_STBC_MASK)
371 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
372 if (status->vht_flag & RX_VHT_FLAG_BF)
373 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
374 pos++;
375 /* bandwidth */
376 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
377 *pos++ = 4;
378 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
379 *pos++ = 11;
380 else if (status->flag & RX_FLAG_40MHZ)
381 *pos++ = 1;
382 else /* 20 MHz */
383 *pos++ = 0;
384 /* MCS/NSS */
385 *pos = (status->rate_idx << 4) | status->vht_nss;
386 pos += 4;
387 /* coding field */
388 if (status->flag & RX_FLAG_LDPC)
389 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
390 pos++;
391 /* group ID */
392 pos++;
393 /* partial_aid */
394 pos += 2;
397 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
398 *pos++ = status->chain_signal[chain];
399 *pos++ = chain;
402 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
403 /* ensure 2 byte alignment for the vendor field as required */
404 if ((pos - (u8 *)rthdr) & 1)
405 *pos++ = 0;
406 *pos++ = rtap.oui[0];
407 *pos++ = rtap.oui[1];
408 *pos++ = rtap.oui[2];
409 *pos++ = rtap.subns;
410 put_unaligned_le16(rtap.len, pos);
411 pos += 2;
412 /* align the actual payload as requested */
413 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
414 *pos++ = 0;
415 /* data (and possible padding) already follows */
420 * This function copies a received frame to all monitor interfaces and
421 * returns a cleaned-up SKB that no longer includes the FCS nor the
422 * radiotap header the driver might have added.
424 static struct sk_buff *
425 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
426 struct ieee80211_rate *rate)
428 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
429 struct ieee80211_sub_if_data *sdata;
430 int rt_hdrlen, needed_headroom;
431 struct sk_buff *skb, *skb2;
432 struct net_device *prev_dev = NULL;
433 int present_fcs_len = 0;
434 unsigned int rtap_vendor_space = 0;
436 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
437 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
439 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
443 * First, we may need to make a copy of the skb because
444 * (1) we need to modify it for radiotap (if not present), and
445 * (2) the other RX handlers will modify the skb we got.
447 * We don't need to, of course, if we aren't going to return
448 * the SKB because it has a bad FCS/PLCP checksum.
451 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
452 present_fcs_len = FCS_LEN;
454 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
455 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
456 dev_kfree_skb(origskb);
457 return NULL;
460 if (!local->monitors) {
461 if (should_drop_frame(origskb, present_fcs_len,
462 rtap_vendor_space)) {
463 dev_kfree_skb(origskb);
464 return NULL;
467 return remove_monitor_info(local, origskb, rtap_vendor_space);
470 /* room for the radiotap header based on driver features */
471 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
472 needed_headroom = rt_hdrlen - rtap_vendor_space;
474 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
475 /* only need to expand headroom if necessary */
476 skb = origskb;
477 origskb = NULL;
480 * This shouldn't trigger often because most devices have an
481 * RX header they pull before we get here, and that should
482 * be big enough for our radiotap information. We should
483 * probably export the length to drivers so that we can have
484 * them allocate enough headroom to start with.
486 if (skb_headroom(skb) < needed_headroom &&
487 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
488 dev_kfree_skb(skb);
489 return NULL;
491 } else {
493 * Need to make a copy and possibly remove radiotap header
494 * and FCS from the original.
496 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
498 origskb = remove_monitor_info(local, origskb,
499 rtap_vendor_space);
501 if (!skb)
502 return origskb;
505 /* prepend radiotap information */
506 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
508 skb_reset_mac_header(skb);
509 skb->ip_summed = CHECKSUM_UNNECESSARY;
510 skb->pkt_type = PACKET_OTHERHOST;
511 skb->protocol = htons(ETH_P_802_2);
513 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
514 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
515 continue;
517 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
518 continue;
520 if (!ieee80211_sdata_running(sdata))
521 continue;
523 if (prev_dev) {
524 skb2 = skb_clone(skb, GFP_ATOMIC);
525 if (skb2) {
526 skb2->dev = prev_dev;
527 netif_receive_skb(skb2);
531 prev_dev = sdata->dev;
532 sdata->dev->stats.rx_packets++;
533 sdata->dev->stats.rx_bytes += skb->len;
536 if (prev_dev) {
537 skb->dev = prev_dev;
538 netif_receive_skb(skb);
539 } else
540 dev_kfree_skb(skb);
542 return origskb;
545 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
547 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
548 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
549 int tid, seqno_idx, security_idx;
551 /* does the frame have a qos control field? */
552 if (ieee80211_is_data_qos(hdr->frame_control)) {
553 u8 *qc = ieee80211_get_qos_ctl(hdr);
554 /* frame has qos control */
555 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
556 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
557 status->rx_flags |= IEEE80211_RX_AMSDU;
559 seqno_idx = tid;
560 security_idx = tid;
561 } else {
563 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
565 * Sequence numbers for management frames, QoS data
566 * frames with a broadcast/multicast address in the
567 * Address 1 field, and all non-QoS data frames sent
568 * by QoS STAs are assigned using an additional single
569 * modulo-4096 counter, [...]
571 * We also use that counter for non-QoS STAs.
573 seqno_idx = IEEE80211_NUM_TIDS;
574 security_idx = 0;
575 if (ieee80211_is_mgmt(hdr->frame_control))
576 security_idx = IEEE80211_NUM_TIDS;
577 tid = 0;
580 rx->seqno_idx = seqno_idx;
581 rx->security_idx = security_idx;
582 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
583 * For now, set skb->priority to 0 for other cases. */
584 rx->skb->priority = (tid > 7) ? 0 : tid;
588 * DOC: Packet alignment
590 * Drivers always need to pass packets that are aligned to two-byte boundaries
591 * to the stack.
593 * Additionally, should, if possible, align the payload data in a way that
594 * guarantees that the contained IP header is aligned to a four-byte
595 * boundary. In the case of regular frames, this simply means aligning the
596 * payload to a four-byte boundary (because either the IP header is directly
597 * contained, or IV/RFC1042 headers that have a length divisible by four are
598 * in front of it). If the payload data is not properly aligned and the
599 * architecture doesn't support efficient unaligned operations, mac80211
600 * will align the data.
602 * With A-MSDU frames, however, the payload data address must yield two modulo
603 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
604 * push the IP header further back to a multiple of four again. Thankfully, the
605 * specs were sane enough this time around to require padding each A-MSDU
606 * subframe to a length that is a multiple of four.
608 * Padding like Atheros hardware adds which is between the 802.11 header and
609 * the payload is not supported, the driver is required to move the 802.11
610 * header to be directly in front of the payload in that case.
612 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
614 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
615 WARN_ONCE((unsigned long)rx->skb->data & 1,
616 "unaligned packet at 0x%p\n", rx->skb->data);
617 #endif
621 /* rx handlers */
623 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
625 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
627 if (is_multicast_ether_addr(hdr->addr1))
628 return 0;
630 return ieee80211_is_robust_mgmt_frame(skb);
634 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
636 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
638 if (!is_multicast_ether_addr(hdr->addr1))
639 return 0;
641 return ieee80211_is_robust_mgmt_frame(skb);
645 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
646 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
648 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
649 struct ieee80211_mmie *mmie;
650 struct ieee80211_mmie_16 *mmie16;
652 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
653 return -1;
655 if (!ieee80211_is_robust_mgmt_frame(skb))
656 return -1; /* not a robust management frame */
658 mmie = (struct ieee80211_mmie *)
659 (skb->data + skb->len - sizeof(*mmie));
660 if (mmie->element_id == WLAN_EID_MMIE &&
661 mmie->length == sizeof(*mmie) - 2)
662 return le16_to_cpu(mmie->key_id);
664 mmie16 = (struct ieee80211_mmie_16 *)
665 (skb->data + skb->len - sizeof(*mmie16));
666 if (skb->len >= 24 + sizeof(*mmie16) &&
667 mmie16->element_id == WLAN_EID_MMIE &&
668 mmie16->length == sizeof(*mmie16) - 2)
669 return le16_to_cpu(mmie16->key_id);
671 return -1;
674 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
675 struct sk_buff *skb)
677 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
678 __le16 fc;
679 int hdrlen;
680 u8 keyid;
682 fc = hdr->frame_control;
683 hdrlen = ieee80211_hdrlen(fc);
685 if (skb->len < hdrlen + cs->hdr_len)
686 return -EINVAL;
688 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
689 keyid &= cs->key_idx_mask;
690 keyid >>= cs->key_idx_shift;
692 return keyid;
695 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
697 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
698 char *dev_addr = rx->sdata->vif.addr;
700 if (ieee80211_is_data(hdr->frame_control)) {
701 if (is_multicast_ether_addr(hdr->addr1)) {
702 if (ieee80211_has_tods(hdr->frame_control) ||
703 !ieee80211_has_fromds(hdr->frame_control))
704 return RX_DROP_MONITOR;
705 if (ether_addr_equal(hdr->addr3, dev_addr))
706 return RX_DROP_MONITOR;
707 } else {
708 if (!ieee80211_has_a4(hdr->frame_control))
709 return RX_DROP_MONITOR;
710 if (ether_addr_equal(hdr->addr4, dev_addr))
711 return RX_DROP_MONITOR;
715 /* If there is not an established peer link and this is not a peer link
716 * establisment frame, beacon or probe, drop the frame.
719 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
720 struct ieee80211_mgmt *mgmt;
722 if (!ieee80211_is_mgmt(hdr->frame_control))
723 return RX_DROP_MONITOR;
725 if (ieee80211_is_action(hdr->frame_control)) {
726 u8 category;
728 /* make sure category field is present */
729 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
730 return RX_DROP_MONITOR;
732 mgmt = (struct ieee80211_mgmt *)hdr;
733 category = mgmt->u.action.category;
734 if (category != WLAN_CATEGORY_MESH_ACTION &&
735 category != WLAN_CATEGORY_SELF_PROTECTED)
736 return RX_DROP_MONITOR;
737 return RX_CONTINUE;
740 if (ieee80211_is_probe_req(hdr->frame_control) ||
741 ieee80211_is_probe_resp(hdr->frame_control) ||
742 ieee80211_is_beacon(hdr->frame_control) ||
743 ieee80211_is_auth(hdr->frame_control))
744 return RX_CONTINUE;
746 return RX_DROP_MONITOR;
749 return RX_CONTINUE;
752 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
753 struct tid_ampdu_rx *tid_agg_rx,
754 int index,
755 struct sk_buff_head *frames)
757 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
758 struct sk_buff *skb;
759 struct ieee80211_rx_status *status;
761 lockdep_assert_held(&tid_agg_rx->reorder_lock);
763 if (skb_queue_empty(skb_list))
764 goto no_frame;
766 if (!ieee80211_rx_reorder_ready(skb_list)) {
767 __skb_queue_purge(skb_list);
768 goto no_frame;
771 /* release frames from the reorder ring buffer */
772 tid_agg_rx->stored_mpdu_num--;
773 while ((skb = __skb_dequeue(skb_list))) {
774 status = IEEE80211_SKB_RXCB(skb);
775 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
776 __skb_queue_tail(frames, skb);
779 no_frame:
780 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
783 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
784 struct tid_ampdu_rx *tid_agg_rx,
785 u16 head_seq_num,
786 struct sk_buff_head *frames)
788 int index;
790 lockdep_assert_held(&tid_agg_rx->reorder_lock);
792 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
793 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
794 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
795 frames);
800 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
801 * the skb was added to the buffer longer than this time ago, the earlier
802 * frames that have not yet been received are assumed to be lost and the skb
803 * can be released for processing. This may also release other skb's from the
804 * reorder buffer if there are no additional gaps between the frames.
806 * Callers must hold tid_agg_rx->reorder_lock.
808 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
810 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
811 struct tid_ampdu_rx *tid_agg_rx,
812 struct sk_buff_head *frames)
814 int index, i, j;
816 lockdep_assert_held(&tid_agg_rx->reorder_lock);
818 /* release the buffer until next missing frame */
819 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
820 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
821 tid_agg_rx->stored_mpdu_num) {
823 * No buffers ready to be released, but check whether any
824 * frames in the reorder buffer have timed out.
826 int skipped = 1;
827 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
828 j = (j + 1) % tid_agg_rx->buf_size) {
829 if (!ieee80211_rx_reorder_ready(
830 &tid_agg_rx->reorder_buf[j])) {
831 skipped++;
832 continue;
834 if (skipped &&
835 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
836 HT_RX_REORDER_BUF_TIMEOUT))
837 goto set_release_timer;
839 /* don't leave incomplete A-MSDUs around */
840 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
841 i = (i + 1) % tid_agg_rx->buf_size)
842 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
844 ht_dbg_ratelimited(sdata,
845 "release an RX reorder frame due to timeout on earlier frames\n");
846 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
847 frames);
850 * Increment the head seq# also for the skipped slots.
852 tid_agg_rx->head_seq_num =
853 (tid_agg_rx->head_seq_num +
854 skipped) & IEEE80211_SN_MASK;
855 skipped = 0;
857 } else while (ieee80211_rx_reorder_ready(
858 &tid_agg_rx->reorder_buf[index])) {
859 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
860 frames);
861 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
864 if (tid_agg_rx->stored_mpdu_num) {
865 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
867 for (; j != (index - 1) % tid_agg_rx->buf_size;
868 j = (j + 1) % tid_agg_rx->buf_size) {
869 if (ieee80211_rx_reorder_ready(
870 &tid_agg_rx->reorder_buf[j]))
871 break;
874 set_release_timer:
876 if (!tid_agg_rx->removed)
877 mod_timer(&tid_agg_rx->reorder_timer,
878 tid_agg_rx->reorder_time[j] + 1 +
879 HT_RX_REORDER_BUF_TIMEOUT);
880 } else {
881 del_timer(&tid_agg_rx->reorder_timer);
886 * As this function belongs to the RX path it must be under
887 * rcu_read_lock protection. It returns false if the frame
888 * can be processed immediately, true if it was consumed.
890 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
891 struct tid_ampdu_rx *tid_agg_rx,
892 struct sk_buff *skb,
893 struct sk_buff_head *frames)
895 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
896 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
897 u16 sc = le16_to_cpu(hdr->seq_ctrl);
898 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
899 u16 head_seq_num, buf_size;
900 int index;
901 bool ret = true;
903 spin_lock(&tid_agg_rx->reorder_lock);
906 * Offloaded BA sessions have no known starting sequence number so pick
907 * one from first Rxed frame for this tid after BA was started.
909 if (unlikely(tid_agg_rx->auto_seq)) {
910 tid_agg_rx->auto_seq = false;
911 tid_agg_rx->ssn = mpdu_seq_num;
912 tid_agg_rx->head_seq_num = mpdu_seq_num;
915 buf_size = tid_agg_rx->buf_size;
916 head_seq_num = tid_agg_rx->head_seq_num;
918 /* frame with out of date sequence number */
919 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
920 dev_kfree_skb(skb);
921 goto out;
925 * If frame the sequence number exceeds our buffering window
926 * size release some previous frames to make room for this one.
928 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
929 head_seq_num = ieee80211_sn_inc(
930 ieee80211_sn_sub(mpdu_seq_num, buf_size));
931 /* release stored frames up to new head to stack */
932 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
933 head_seq_num, frames);
936 /* Now the new frame is always in the range of the reordering buffer */
938 index = mpdu_seq_num % tid_agg_rx->buf_size;
940 /* check if we already stored this frame */
941 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
942 dev_kfree_skb(skb);
943 goto out;
947 * If the current MPDU is in the right order and nothing else
948 * is stored we can process it directly, no need to buffer it.
949 * If it is first but there's something stored, we may be able
950 * to release frames after this one.
952 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
953 tid_agg_rx->stored_mpdu_num == 0) {
954 if (!(status->flag & RX_FLAG_AMSDU_MORE))
955 tid_agg_rx->head_seq_num =
956 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
957 ret = false;
958 goto out;
961 /* put the frame in the reordering buffer */
962 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
963 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
964 tid_agg_rx->reorder_time[index] = jiffies;
965 tid_agg_rx->stored_mpdu_num++;
966 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
969 out:
970 spin_unlock(&tid_agg_rx->reorder_lock);
971 return ret;
975 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
976 * true if the MPDU was buffered, false if it should be processed.
978 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
979 struct sk_buff_head *frames)
981 struct sk_buff *skb = rx->skb;
982 struct ieee80211_local *local = rx->local;
983 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
984 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
985 struct sta_info *sta = rx->sta;
986 struct tid_ampdu_rx *tid_agg_rx;
987 u16 sc;
988 u8 tid, ack_policy;
990 if (!ieee80211_is_data_qos(hdr->frame_control) ||
991 is_multicast_ether_addr(hdr->addr1))
992 goto dont_reorder;
995 * filter the QoS data rx stream according to
996 * STA/TID and check if this STA/TID is on aggregation
999 if (!sta)
1000 goto dont_reorder;
1002 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1003 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1004 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1006 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1007 if (!tid_agg_rx)
1008 goto dont_reorder;
1010 /* qos null data frames are excluded */
1011 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1012 goto dont_reorder;
1014 /* not part of a BA session */
1015 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1016 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1017 goto dont_reorder;
1019 /* not actually part of this BA session */
1020 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1021 goto dont_reorder;
1023 /* new, potentially un-ordered, ampdu frame - process it */
1025 /* reset session timer */
1026 if (tid_agg_rx->timeout)
1027 tid_agg_rx->last_rx = jiffies;
1029 /* if this mpdu is fragmented - terminate rx aggregation session */
1030 sc = le16_to_cpu(hdr->seq_ctrl);
1031 if (sc & IEEE80211_SCTL_FRAG) {
1032 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1033 skb_queue_tail(&rx->sdata->skb_queue, skb);
1034 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1035 return;
1039 * No locking needed -- we will only ever process one
1040 * RX packet at a time, and thus own tid_agg_rx. All
1041 * other code manipulating it needs to (and does) make
1042 * sure that we cannot get to it any more before doing
1043 * anything with it.
1045 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1046 frames))
1047 return;
1049 dont_reorder:
1050 __skb_queue_tail(frames, skb);
1053 static ieee80211_rx_result debug_noinline
1054 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1056 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1057 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1060 * Drop duplicate 802.11 retransmissions
1061 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1064 if (rx->skb->len < 24)
1065 return RX_CONTINUE;
1067 if (ieee80211_is_ctl(hdr->frame_control) ||
1068 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1069 is_multicast_ether_addr(hdr->addr1))
1070 return RX_CONTINUE;
1072 if (rx->sta) {
1073 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1074 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1075 hdr->seq_ctrl)) {
1076 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1077 rx->local->dot11FrameDuplicateCount++;
1078 rx->sta->num_duplicates++;
1080 return RX_DROP_UNUSABLE;
1081 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1082 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1086 return RX_CONTINUE;
1089 static ieee80211_rx_result debug_noinline
1090 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1092 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1094 if (unlikely(rx->skb->len < 16)) {
1095 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1096 return RX_DROP_MONITOR;
1099 /* Drop disallowed frame classes based on STA auth/assoc state;
1100 * IEEE 802.11, Chap 5.5.
1102 * mac80211 filters only based on association state, i.e. it drops
1103 * Class 3 frames from not associated stations. hostapd sends
1104 * deauth/disassoc frames when needed. In addition, hostapd is
1105 * responsible for filtering on both auth and assoc states.
1108 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1109 return ieee80211_rx_mesh_check(rx);
1111 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1112 ieee80211_is_pspoll(hdr->frame_control)) &&
1113 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1114 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1115 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1116 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1118 * accept port control frames from the AP even when it's not
1119 * yet marked ASSOC to prevent a race where we don't set the
1120 * assoc bit quickly enough before it sends the first frame
1122 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1123 ieee80211_is_data_present(hdr->frame_control)) {
1124 unsigned int hdrlen;
1125 __be16 ethertype;
1127 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1129 if (rx->skb->len < hdrlen + 8)
1130 return RX_DROP_MONITOR;
1132 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1133 if (ethertype == rx->sdata->control_port_protocol)
1134 return RX_CONTINUE;
1137 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1138 cfg80211_rx_spurious_frame(rx->sdata->dev,
1139 hdr->addr2,
1140 GFP_ATOMIC))
1141 return RX_DROP_UNUSABLE;
1143 return RX_DROP_MONITOR;
1146 return RX_CONTINUE;
1150 static ieee80211_rx_result debug_noinline
1151 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1153 struct ieee80211_local *local;
1154 struct ieee80211_hdr *hdr;
1155 struct sk_buff *skb;
1157 local = rx->local;
1158 skb = rx->skb;
1159 hdr = (struct ieee80211_hdr *) skb->data;
1161 if (!local->pspolling)
1162 return RX_CONTINUE;
1164 if (!ieee80211_has_fromds(hdr->frame_control))
1165 /* this is not from AP */
1166 return RX_CONTINUE;
1168 if (!ieee80211_is_data(hdr->frame_control))
1169 return RX_CONTINUE;
1171 if (!ieee80211_has_moredata(hdr->frame_control)) {
1172 /* AP has no more frames buffered for us */
1173 local->pspolling = false;
1174 return RX_CONTINUE;
1177 /* more data bit is set, let's request a new frame from the AP */
1178 ieee80211_send_pspoll(local, rx->sdata);
1180 return RX_CONTINUE;
1183 static void sta_ps_start(struct sta_info *sta)
1185 struct ieee80211_sub_if_data *sdata = sta->sdata;
1186 struct ieee80211_local *local = sdata->local;
1187 struct ps_data *ps;
1188 int tid;
1190 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1191 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1192 ps = &sdata->bss->ps;
1193 else
1194 return;
1196 atomic_inc(&ps->num_sta_ps);
1197 set_sta_flag(sta, WLAN_STA_PS_STA);
1198 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1199 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1200 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1201 sta->sta.addr, sta->sta.aid);
1203 if (!sta->sta.txq[0])
1204 return;
1206 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1207 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1209 if (!skb_queue_len(&txqi->queue))
1210 set_bit(tid, &sta->txq_buffered_tids);
1211 else
1212 clear_bit(tid, &sta->txq_buffered_tids);
1216 static void sta_ps_end(struct sta_info *sta)
1218 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1219 sta->sta.addr, sta->sta.aid);
1221 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1223 * Clear the flag only if the other one is still set
1224 * so that the TX path won't start TX'ing new frames
1225 * directly ... In the case that the driver flag isn't
1226 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1228 clear_sta_flag(sta, WLAN_STA_PS_STA);
1229 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1230 sta->sta.addr, sta->sta.aid);
1231 return;
1234 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1235 clear_sta_flag(sta, WLAN_STA_PS_STA);
1236 ieee80211_sta_ps_deliver_wakeup(sta);
1239 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1241 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1242 bool in_ps;
1244 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1246 /* Don't let the same PS state be set twice */
1247 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1248 if ((start && in_ps) || (!start && !in_ps))
1249 return -EINVAL;
1251 if (start)
1252 sta_ps_start(sta_inf);
1253 else
1254 sta_ps_end(sta_inf);
1256 return 0;
1258 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1260 static ieee80211_rx_result debug_noinline
1261 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1263 struct ieee80211_sub_if_data *sdata = rx->sdata;
1264 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1265 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1266 int tid, ac;
1268 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1269 return RX_CONTINUE;
1271 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1272 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1273 return RX_CONTINUE;
1276 * The device handles station powersave, so don't do anything about
1277 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1278 * it to mac80211 since they're handled.)
1280 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1281 return RX_CONTINUE;
1284 * Don't do anything if the station isn't already asleep. In
1285 * the uAPSD case, the station will probably be marked asleep,
1286 * in the PS-Poll case the station must be confused ...
1288 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1289 return RX_CONTINUE;
1291 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1292 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1293 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1294 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1295 else
1296 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1299 /* Free PS Poll skb here instead of returning RX_DROP that would
1300 * count as an dropped frame. */
1301 dev_kfree_skb(rx->skb);
1303 return RX_QUEUED;
1304 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1305 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1306 ieee80211_has_pm(hdr->frame_control) &&
1307 (ieee80211_is_data_qos(hdr->frame_control) ||
1308 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1309 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1310 ac = ieee802_1d_to_ac[tid & 7];
1313 * If this AC is not trigger-enabled do nothing.
1315 * NB: This could/should check a separate bitmap of trigger-
1316 * enabled queues, but for now we only implement uAPSD w/o
1317 * TSPEC changes to the ACs, so they're always the same.
1319 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1320 return RX_CONTINUE;
1322 /* if we are in a service period, do nothing */
1323 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1324 return RX_CONTINUE;
1326 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1327 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1328 else
1329 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1332 return RX_CONTINUE;
1335 static ieee80211_rx_result debug_noinline
1336 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1338 struct sta_info *sta = rx->sta;
1339 struct sk_buff *skb = rx->skb;
1340 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1341 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1342 int i;
1344 if (!sta)
1345 return RX_CONTINUE;
1348 * Update last_rx only for IBSS packets which are for the current
1349 * BSSID and for station already AUTHORIZED to avoid keeping the
1350 * current IBSS network alive in cases where other STAs start
1351 * using different BSSID. This will also give the station another
1352 * chance to restart the authentication/authorization in case
1353 * something went wrong the first time.
1355 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1356 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1357 NL80211_IFTYPE_ADHOC);
1358 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1359 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1360 sta->last_rx = jiffies;
1361 if (ieee80211_is_data(hdr->frame_control) &&
1362 !is_multicast_ether_addr(hdr->addr1)) {
1363 sta->last_rx_rate_idx = status->rate_idx;
1364 sta->last_rx_rate_flag = status->flag;
1365 sta->last_rx_rate_vht_flag = status->vht_flag;
1366 sta->last_rx_rate_vht_nss = status->vht_nss;
1369 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1370 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1371 NL80211_IFTYPE_OCB);
1372 /* OCB uses wild-card BSSID */
1373 if (is_broadcast_ether_addr(bssid))
1374 sta->last_rx = jiffies;
1375 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1377 * Mesh beacons will update last_rx when if they are found to
1378 * match the current local configuration when processed.
1380 sta->last_rx = jiffies;
1381 if (ieee80211_is_data(hdr->frame_control)) {
1382 sta->last_rx_rate_idx = status->rate_idx;
1383 sta->last_rx_rate_flag = status->flag;
1384 sta->last_rx_rate_vht_flag = status->vht_flag;
1385 sta->last_rx_rate_vht_nss = status->vht_nss;
1389 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1390 return RX_CONTINUE;
1392 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1393 ieee80211_sta_rx_notify(rx->sdata, hdr);
1395 sta->rx_fragments++;
1396 sta->rx_bytes += rx->skb->len;
1397 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1398 sta->last_signal = status->signal;
1399 ewma_add(&sta->avg_signal, -status->signal);
1402 if (status->chains) {
1403 sta->chains = status->chains;
1404 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1405 int signal = status->chain_signal[i];
1407 if (!(status->chains & BIT(i)))
1408 continue;
1410 sta->chain_signal_last[i] = signal;
1411 ewma_add(&sta->chain_signal_avg[i], -signal);
1416 * Change STA power saving mode only at the end of a frame
1417 * exchange sequence.
1419 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1420 !ieee80211_has_morefrags(hdr->frame_control) &&
1421 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1422 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1423 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1424 /* PM bit is only checked in frames where it isn't reserved,
1425 * in AP mode it's reserved in non-bufferable management frames
1426 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1428 (!ieee80211_is_mgmt(hdr->frame_control) ||
1429 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1430 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1431 if (!ieee80211_has_pm(hdr->frame_control))
1432 sta_ps_end(sta);
1433 } else {
1434 if (ieee80211_has_pm(hdr->frame_control))
1435 sta_ps_start(sta);
1439 /* mesh power save support */
1440 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1441 ieee80211_mps_rx_h_sta_process(sta, hdr);
1444 * Drop (qos-)data::nullfunc frames silently, since they
1445 * are used only to control station power saving mode.
1447 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1448 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1449 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1452 * If we receive a 4-addr nullfunc frame from a STA
1453 * that was not moved to a 4-addr STA vlan yet send
1454 * the event to userspace and for older hostapd drop
1455 * the frame to the monitor interface.
1457 if (ieee80211_has_a4(hdr->frame_control) &&
1458 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1459 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1460 !rx->sdata->u.vlan.sta))) {
1461 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1462 cfg80211_rx_unexpected_4addr_frame(
1463 rx->sdata->dev, sta->sta.addr,
1464 GFP_ATOMIC);
1465 return RX_DROP_MONITOR;
1468 * Update counter and free packet here to avoid
1469 * counting this as a dropped packed.
1471 sta->rx_packets++;
1472 dev_kfree_skb(rx->skb);
1473 return RX_QUEUED;
1476 return RX_CONTINUE;
1477 } /* ieee80211_rx_h_sta_process */
1479 static ieee80211_rx_result debug_noinline
1480 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1482 struct sk_buff *skb = rx->skb;
1483 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1484 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1485 int keyidx;
1486 int hdrlen;
1487 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1488 struct ieee80211_key *sta_ptk = NULL;
1489 int mmie_keyidx = -1;
1490 __le16 fc;
1491 const struct ieee80211_cipher_scheme *cs = NULL;
1494 * Key selection 101
1496 * There are four types of keys:
1497 * - GTK (group keys)
1498 * - IGTK (group keys for management frames)
1499 * - PTK (pairwise keys)
1500 * - STK (station-to-station pairwise keys)
1502 * When selecting a key, we have to distinguish between multicast
1503 * (including broadcast) and unicast frames, the latter can only
1504 * use PTKs and STKs while the former always use GTKs and IGTKs.
1505 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1506 * unicast frames can also use key indices like GTKs. Hence, if we
1507 * don't have a PTK/STK we check the key index for a WEP key.
1509 * Note that in a regular BSS, multicast frames are sent by the
1510 * AP only, associated stations unicast the frame to the AP first
1511 * which then multicasts it on their behalf.
1513 * There is also a slight problem in IBSS mode: GTKs are negotiated
1514 * with each station, that is something we don't currently handle.
1515 * The spec seems to expect that one negotiates the same key with
1516 * every station but there's no such requirement; VLANs could be
1517 * possible.
1521 * No point in finding a key and decrypting if the frame is neither
1522 * addressed to us nor a multicast frame.
1524 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1525 return RX_CONTINUE;
1527 /* start without a key */
1528 rx->key = NULL;
1529 fc = hdr->frame_control;
1531 if (rx->sta) {
1532 int keyid = rx->sta->ptk_idx;
1534 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1535 cs = rx->sta->cipher_scheme;
1536 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1537 if (unlikely(keyid < 0))
1538 return RX_DROP_UNUSABLE;
1540 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1543 if (!ieee80211_has_protected(fc))
1544 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1546 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1547 rx->key = sta_ptk;
1548 if ((status->flag & RX_FLAG_DECRYPTED) &&
1549 (status->flag & RX_FLAG_IV_STRIPPED))
1550 return RX_CONTINUE;
1551 /* Skip decryption if the frame is not protected. */
1552 if (!ieee80211_has_protected(fc))
1553 return RX_CONTINUE;
1554 } else if (mmie_keyidx >= 0) {
1555 /* Broadcast/multicast robust management frame / BIP */
1556 if ((status->flag & RX_FLAG_DECRYPTED) &&
1557 (status->flag & RX_FLAG_IV_STRIPPED))
1558 return RX_CONTINUE;
1560 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1561 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1562 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1563 if (rx->sta)
1564 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1565 if (!rx->key)
1566 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1567 } else if (!ieee80211_has_protected(fc)) {
1569 * The frame was not protected, so skip decryption. However, we
1570 * need to set rx->key if there is a key that could have been
1571 * used so that the frame may be dropped if encryption would
1572 * have been expected.
1574 struct ieee80211_key *key = NULL;
1575 struct ieee80211_sub_if_data *sdata = rx->sdata;
1576 int i;
1578 if (ieee80211_is_mgmt(fc) &&
1579 is_multicast_ether_addr(hdr->addr1) &&
1580 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1581 rx->key = key;
1582 else {
1583 if (rx->sta) {
1584 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1585 key = rcu_dereference(rx->sta->gtk[i]);
1586 if (key)
1587 break;
1590 if (!key) {
1591 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1592 key = rcu_dereference(sdata->keys[i]);
1593 if (key)
1594 break;
1597 if (key)
1598 rx->key = key;
1600 return RX_CONTINUE;
1601 } else {
1602 u8 keyid;
1605 * The device doesn't give us the IV so we won't be
1606 * able to look up the key. That's ok though, we
1607 * don't need to decrypt the frame, we just won't
1608 * be able to keep statistics accurate.
1609 * Except for key threshold notifications, should
1610 * we somehow allow the driver to tell us which key
1611 * the hardware used if this flag is set?
1613 if ((status->flag & RX_FLAG_DECRYPTED) &&
1614 (status->flag & RX_FLAG_IV_STRIPPED))
1615 return RX_CONTINUE;
1617 hdrlen = ieee80211_hdrlen(fc);
1619 if (cs) {
1620 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1622 if (unlikely(keyidx < 0))
1623 return RX_DROP_UNUSABLE;
1624 } else {
1625 if (rx->skb->len < 8 + hdrlen)
1626 return RX_DROP_UNUSABLE; /* TODO: count this? */
1628 * no need to call ieee80211_wep_get_keyidx,
1629 * it verifies a bunch of things we've done already
1631 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1632 keyidx = keyid >> 6;
1635 /* check per-station GTK first, if multicast packet */
1636 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1637 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1639 /* if not found, try default key */
1640 if (!rx->key) {
1641 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1644 * RSNA-protected unicast frames should always be
1645 * sent with pairwise or station-to-station keys,
1646 * but for WEP we allow using a key index as well.
1648 if (rx->key &&
1649 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1650 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1651 !is_multicast_ether_addr(hdr->addr1))
1652 rx->key = NULL;
1656 if (rx->key) {
1657 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1658 return RX_DROP_MONITOR;
1660 rx->key->tx_rx_count++;
1661 /* TODO: add threshold stuff again */
1662 } else {
1663 return RX_DROP_MONITOR;
1666 switch (rx->key->conf.cipher) {
1667 case WLAN_CIPHER_SUITE_WEP40:
1668 case WLAN_CIPHER_SUITE_WEP104:
1669 result = ieee80211_crypto_wep_decrypt(rx);
1670 break;
1671 case WLAN_CIPHER_SUITE_TKIP:
1672 result = ieee80211_crypto_tkip_decrypt(rx);
1673 break;
1674 case WLAN_CIPHER_SUITE_CCMP:
1675 result = ieee80211_crypto_ccmp_decrypt(
1676 rx, IEEE80211_CCMP_MIC_LEN);
1677 break;
1678 case WLAN_CIPHER_SUITE_CCMP_256:
1679 result = ieee80211_crypto_ccmp_decrypt(
1680 rx, IEEE80211_CCMP_256_MIC_LEN);
1681 break;
1682 case WLAN_CIPHER_SUITE_AES_CMAC:
1683 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1684 break;
1685 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1686 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1687 break;
1688 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1689 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1690 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1691 break;
1692 case WLAN_CIPHER_SUITE_GCMP:
1693 case WLAN_CIPHER_SUITE_GCMP_256:
1694 result = ieee80211_crypto_gcmp_decrypt(rx);
1695 break;
1696 default:
1697 result = ieee80211_crypto_hw_decrypt(rx);
1700 /* the hdr variable is invalid after the decrypt handlers */
1702 /* either the frame has been decrypted or will be dropped */
1703 status->flag |= RX_FLAG_DECRYPTED;
1705 return result;
1708 static inline struct ieee80211_fragment_entry *
1709 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1710 unsigned int frag, unsigned int seq, int rx_queue,
1711 struct sk_buff **skb)
1713 struct ieee80211_fragment_entry *entry;
1715 entry = &sdata->fragments[sdata->fragment_next++];
1716 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1717 sdata->fragment_next = 0;
1719 if (!skb_queue_empty(&entry->skb_list))
1720 __skb_queue_purge(&entry->skb_list);
1722 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1723 *skb = NULL;
1724 entry->first_frag_time = jiffies;
1725 entry->seq = seq;
1726 entry->rx_queue = rx_queue;
1727 entry->last_frag = frag;
1728 entry->ccmp = 0;
1729 entry->extra_len = 0;
1731 return entry;
1734 static inline struct ieee80211_fragment_entry *
1735 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1736 unsigned int frag, unsigned int seq,
1737 int rx_queue, struct ieee80211_hdr *hdr)
1739 struct ieee80211_fragment_entry *entry;
1740 int i, idx;
1742 idx = sdata->fragment_next;
1743 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1744 struct ieee80211_hdr *f_hdr;
1746 idx--;
1747 if (idx < 0)
1748 idx = IEEE80211_FRAGMENT_MAX - 1;
1750 entry = &sdata->fragments[idx];
1751 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1752 entry->rx_queue != rx_queue ||
1753 entry->last_frag + 1 != frag)
1754 continue;
1756 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1759 * Check ftype and addresses are equal, else check next fragment
1761 if (((hdr->frame_control ^ f_hdr->frame_control) &
1762 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1763 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1764 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1765 continue;
1767 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1768 __skb_queue_purge(&entry->skb_list);
1769 continue;
1771 return entry;
1774 return NULL;
1777 static ieee80211_rx_result debug_noinline
1778 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1780 struct ieee80211_hdr *hdr;
1781 u16 sc;
1782 __le16 fc;
1783 unsigned int frag, seq;
1784 struct ieee80211_fragment_entry *entry;
1785 struct sk_buff *skb;
1786 struct ieee80211_rx_status *status;
1788 hdr = (struct ieee80211_hdr *)rx->skb->data;
1789 fc = hdr->frame_control;
1791 if (ieee80211_is_ctl(fc))
1792 return RX_CONTINUE;
1794 sc = le16_to_cpu(hdr->seq_ctrl);
1795 frag = sc & IEEE80211_SCTL_FRAG;
1797 if (is_multicast_ether_addr(hdr->addr1)) {
1798 rx->local->dot11MulticastReceivedFrameCount++;
1799 goto out_no_led;
1802 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1803 goto out;
1805 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1807 if (skb_linearize(rx->skb))
1808 return RX_DROP_UNUSABLE;
1811 * skb_linearize() might change the skb->data and
1812 * previously cached variables (in this case, hdr) need to
1813 * be refreshed with the new data.
1815 hdr = (struct ieee80211_hdr *)rx->skb->data;
1816 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1818 if (frag == 0) {
1819 /* This is the first fragment of a new frame. */
1820 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1821 rx->seqno_idx, &(rx->skb));
1822 if (rx->key &&
1823 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1824 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) &&
1825 ieee80211_has_protected(fc)) {
1826 int queue = rx->security_idx;
1827 /* Store CCMP PN so that we can verify that the next
1828 * fragment has a sequential PN value. */
1829 entry->ccmp = 1;
1830 memcpy(entry->last_pn,
1831 rx->key->u.ccmp.rx_pn[queue],
1832 IEEE80211_CCMP_PN_LEN);
1834 return RX_QUEUED;
1837 /* This is a fragment for a frame that should already be pending in
1838 * fragment cache. Add this fragment to the end of the pending entry.
1840 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1841 rx->seqno_idx, hdr);
1842 if (!entry) {
1843 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1844 return RX_DROP_MONITOR;
1847 /* Verify that MPDUs within one MSDU have sequential PN values.
1848 * (IEEE 802.11i, 8.3.3.4.5) */
1849 if (entry->ccmp) {
1850 int i;
1851 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1852 int queue;
1853 if (!rx->key ||
1854 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1855 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256))
1856 return RX_DROP_UNUSABLE;
1857 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1858 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1859 pn[i]++;
1860 if (pn[i])
1861 break;
1863 queue = rx->security_idx;
1864 rpn = rx->key->u.ccmp.rx_pn[queue];
1865 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1866 return RX_DROP_UNUSABLE;
1867 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1870 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1871 __skb_queue_tail(&entry->skb_list, rx->skb);
1872 entry->last_frag = frag;
1873 entry->extra_len += rx->skb->len;
1874 if (ieee80211_has_morefrags(fc)) {
1875 rx->skb = NULL;
1876 return RX_QUEUED;
1879 rx->skb = __skb_dequeue(&entry->skb_list);
1880 if (skb_tailroom(rx->skb) < entry->extra_len) {
1881 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1882 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1883 GFP_ATOMIC))) {
1884 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1885 __skb_queue_purge(&entry->skb_list);
1886 return RX_DROP_UNUSABLE;
1889 while ((skb = __skb_dequeue(&entry->skb_list))) {
1890 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1891 dev_kfree_skb(skb);
1894 /* Complete frame has been reassembled - process it now */
1895 status = IEEE80211_SKB_RXCB(rx->skb);
1896 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1898 out:
1899 ieee80211_led_rx(rx->local);
1900 out_no_led:
1901 if (rx->sta)
1902 rx->sta->rx_packets++;
1903 return RX_CONTINUE;
1906 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1908 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1909 return -EACCES;
1911 return 0;
1914 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1916 struct sk_buff *skb = rx->skb;
1917 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1920 * Pass through unencrypted frames if the hardware has
1921 * decrypted them already.
1923 if (status->flag & RX_FLAG_DECRYPTED)
1924 return 0;
1926 /* Drop unencrypted frames if key is set. */
1927 if (unlikely(!ieee80211_has_protected(fc) &&
1928 !ieee80211_is_nullfunc(fc) &&
1929 ieee80211_is_data(fc) && rx->key))
1930 return -EACCES;
1932 return 0;
1935 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1937 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1938 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1939 __le16 fc = hdr->frame_control;
1942 * Pass through unencrypted frames if the hardware has
1943 * decrypted them already.
1945 if (status->flag & RX_FLAG_DECRYPTED)
1946 return 0;
1948 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1949 if (unlikely(!ieee80211_has_protected(fc) &&
1950 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1951 rx->key)) {
1952 if (ieee80211_is_deauth(fc) ||
1953 ieee80211_is_disassoc(fc))
1954 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1955 rx->skb->data,
1956 rx->skb->len);
1957 return -EACCES;
1959 /* BIP does not use Protected field, so need to check MMIE */
1960 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1961 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1962 if (ieee80211_is_deauth(fc) ||
1963 ieee80211_is_disassoc(fc))
1964 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1965 rx->skb->data,
1966 rx->skb->len);
1967 return -EACCES;
1970 * When using MFP, Action frames are not allowed prior to
1971 * having configured keys.
1973 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1974 ieee80211_is_robust_mgmt_frame(rx->skb)))
1975 return -EACCES;
1978 return 0;
1981 static int
1982 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1984 struct ieee80211_sub_if_data *sdata = rx->sdata;
1985 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1986 bool check_port_control = false;
1987 struct ethhdr *ehdr;
1988 int ret;
1990 *port_control = false;
1991 if (ieee80211_has_a4(hdr->frame_control) &&
1992 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1993 return -1;
1995 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1996 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1998 if (!sdata->u.mgd.use_4addr)
1999 return -1;
2000 else
2001 check_port_control = true;
2004 if (is_multicast_ether_addr(hdr->addr1) &&
2005 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2006 return -1;
2008 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2009 if (ret < 0)
2010 return ret;
2012 ehdr = (struct ethhdr *) rx->skb->data;
2013 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2014 *port_control = true;
2015 else if (check_port_control)
2016 return -1;
2018 return 0;
2022 * requires that rx->skb is a frame with ethernet header
2024 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2026 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2027 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2028 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2031 * Allow EAPOL frames to us/the PAE group address regardless
2032 * of whether the frame was encrypted or not.
2034 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2035 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2036 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2037 return true;
2039 if (ieee80211_802_1x_port_control(rx) ||
2040 ieee80211_drop_unencrypted(rx, fc))
2041 return false;
2043 return true;
2047 * requires that rx->skb is a frame with ethernet header
2049 static void
2050 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2052 struct ieee80211_sub_if_data *sdata = rx->sdata;
2053 struct net_device *dev = sdata->dev;
2054 struct sk_buff *skb, *xmit_skb;
2055 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2056 struct sta_info *dsta;
2057 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2059 dev->stats.rx_packets++;
2060 dev->stats.rx_bytes += rx->skb->len;
2062 skb = rx->skb;
2063 xmit_skb = NULL;
2065 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2066 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2067 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2068 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
2069 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2070 if (is_multicast_ether_addr(ehdr->h_dest)) {
2072 * send multicast frames both to higher layers in
2073 * local net stack and back to the wireless medium
2075 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2076 if (!xmit_skb)
2077 net_info_ratelimited("%s: failed to clone multicast frame\n",
2078 dev->name);
2079 } else {
2080 dsta = sta_info_get(sdata, skb->data);
2081 if (dsta) {
2083 * The destination station is associated to
2084 * this AP (in this VLAN), so send the frame
2085 * directly to it and do not pass it to local
2086 * net stack.
2088 xmit_skb = skb;
2089 skb = NULL;
2094 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2095 if (skb) {
2096 /* 'align' will only take the values 0 or 2 here since all
2097 * frames are required to be aligned to 2-byte boundaries
2098 * when being passed to mac80211; the code here works just
2099 * as well if that isn't true, but mac80211 assumes it can
2100 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2102 int align;
2104 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2105 if (align) {
2106 if (WARN_ON(skb_headroom(skb) < 3)) {
2107 dev_kfree_skb(skb);
2108 skb = NULL;
2109 } else {
2110 u8 *data = skb->data;
2111 size_t len = skb_headlen(skb);
2112 skb->data -= align;
2113 memmove(skb->data, data, len);
2114 skb_set_tail_pointer(skb, len);
2118 #endif
2120 if (skb) {
2121 /* deliver to local stack */
2122 skb->protocol = eth_type_trans(skb, dev);
2123 memset(skb->cb, 0, sizeof(skb->cb));
2124 if (!(rx->flags & IEEE80211_RX_REORDER_TIMER) &&
2125 rx->local->napi)
2126 napi_gro_receive(rx->local->napi, skb);
2127 else
2128 netif_receive_skb(skb);
2131 if (xmit_skb) {
2133 * Send to wireless media and increase priority by 256 to
2134 * keep the received priority instead of reclassifying
2135 * the frame (see cfg80211_classify8021d).
2137 xmit_skb->priority += 256;
2138 xmit_skb->protocol = htons(ETH_P_802_3);
2139 skb_reset_network_header(xmit_skb);
2140 skb_reset_mac_header(xmit_skb);
2141 dev_queue_xmit(xmit_skb);
2145 static ieee80211_rx_result debug_noinline
2146 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2148 struct net_device *dev = rx->sdata->dev;
2149 struct sk_buff *skb = rx->skb;
2150 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2151 __le16 fc = hdr->frame_control;
2152 struct sk_buff_head frame_list;
2153 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2155 if (unlikely(!ieee80211_is_data(fc)))
2156 return RX_CONTINUE;
2158 if (unlikely(!ieee80211_is_data_present(fc)))
2159 return RX_DROP_MONITOR;
2161 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2162 return RX_CONTINUE;
2164 if (ieee80211_has_a4(hdr->frame_control) &&
2165 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2166 !rx->sdata->u.vlan.sta)
2167 return RX_DROP_UNUSABLE;
2169 if (is_multicast_ether_addr(hdr->addr1) &&
2170 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2171 rx->sdata->u.vlan.sta) ||
2172 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2173 rx->sdata->u.mgd.use_4addr)))
2174 return RX_DROP_UNUSABLE;
2176 skb->dev = dev;
2177 __skb_queue_head_init(&frame_list);
2179 if (skb_linearize(skb))
2180 return RX_DROP_UNUSABLE;
2182 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2183 rx->sdata->vif.type,
2184 rx->local->hw.extra_tx_headroom, true);
2186 while (!skb_queue_empty(&frame_list)) {
2187 rx->skb = __skb_dequeue(&frame_list);
2189 if (!ieee80211_frame_allowed(rx, fc)) {
2190 dev_kfree_skb(rx->skb);
2191 continue;
2194 ieee80211_deliver_skb(rx);
2197 return RX_QUEUED;
2200 #ifdef CONFIG_MAC80211_MESH
2201 static ieee80211_rx_result
2202 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2204 struct ieee80211_hdr *fwd_hdr, *hdr;
2205 struct ieee80211_tx_info *info;
2206 struct ieee80211s_hdr *mesh_hdr;
2207 struct sk_buff *skb = rx->skb, *fwd_skb;
2208 struct ieee80211_local *local = rx->local;
2209 struct ieee80211_sub_if_data *sdata = rx->sdata;
2210 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2211 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2212 u16 q, hdrlen;
2214 hdr = (struct ieee80211_hdr *) skb->data;
2215 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2217 /* make sure fixed part of mesh header is there, also checks skb len */
2218 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2219 return RX_DROP_MONITOR;
2221 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2223 /* make sure full mesh header is there, also checks skb len */
2224 if (!pskb_may_pull(rx->skb,
2225 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2226 return RX_DROP_MONITOR;
2228 /* reload pointers */
2229 hdr = (struct ieee80211_hdr *) skb->data;
2230 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2232 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2233 return RX_DROP_MONITOR;
2235 /* frame is in RMC, don't forward */
2236 if (ieee80211_is_data(hdr->frame_control) &&
2237 is_multicast_ether_addr(hdr->addr1) &&
2238 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2239 return RX_DROP_MONITOR;
2241 if (!ieee80211_is_data(hdr->frame_control) ||
2242 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2243 return RX_CONTINUE;
2245 if (!mesh_hdr->ttl)
2246 return RX_DROP_MONITOR;
2248 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2249 struct mesh_path *mppath;
2250 char *proxied_addr;
2251 char *mpp_addr;
2253 if (is_multicast_ether_addr(hdr->addr1)) {
2254 mpp_addr = hdr->addr3;
2255 proxied_addr = mesh_hdr->eaddr1;
2256 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2257 /* has_a4 already checked in ieee80211_rx_mesh_check */
2258 mpp_addr = hdr->addr4;
2259 proxied_addr = mesh_hdr->eaddr2;
2260 } else {
2261 return RX_DROP_MONITOR;
2264 rcu_read_lock();
2265 mppath = mpp_path_lookup(sdata, proxied_addr);
2266 if (!mppath) {
2267 mpp_path_add(sdata, proxied_addr, mpp_addr);
2268 } else {
2269 spin_lock_bh(&mppath->state_lock);
2270 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2271 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2272 spin_unlock_bh(&mppath->state_lock);
2274 rcu_read_unlock();
2277 /* Frame has reached destination. Don't forward */
2278 if (!is_multicast_ether_addr(hdr->addr1) &&
2279 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2280 return RX_CONTINUE;
2282 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2283 if (ieee80211_queue_stopped(&local->hw, q)) {
2284 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2285 return RX_DROP_MONITOR;
2287 skb_set_queue_mapping(skb, q);
2289 if (!--mesh_hdr->ttl) {
2290 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2291 goto out;
2294 if (!ifmsh->mshcfg.dot11MeshForwarding)
2295 goto out;
2297 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2298 if (!fwd_skb) {
2299 net_info_ratelimited("%s: failed to clone mesh frame\n",
2300 sdata->name);
2301 goto out;
2304 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2305 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2306 info = IEEE80211_SKB_CB(fwd_skb);
2307 memset(info, 0, sizeof(*info));
2308 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2309 info->control.vif = &rx->sdata->vif;
2310 info->control.jiffies = jiffies;
2311 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2312 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2313 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2314 /* update power mode indication when forwarding */
2315 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2316 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2317 /* mesh power mode flags updated in mesh_nexthop_lookup */
2318 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2319 } else {
2320 /* unable to resolve next hop */
2321 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2322 fwd_hdr->addr3, 0,
2323 WLAN_REASON_MESH_PATH_NOFORWARD,
2324 fwd_hdr->addr2);
2325 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2326 kfree_skb(fwd_skb);
2327 return RX_DROP_MONITOR;
2330 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2331 ieee80211_add_pending_skb(local, fwd_skb);
2332 out:
2333 if (is_multicast_ether_addr(hdr->addr1) ||
2334 sdata->dev->flags & IFF_PROMISC)
2335 return RX_CONTINUE;
2336 else
2337 return RX_DROP_MONITOR;
2339 #endif
2341 static ieee80211_rx_result debug_noinline
2342 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2344 struct ieee80211_sub_if_data *sdata = rx->sdata;
2345 struct ieee80211_local *local = rx->local;
2346 struct net_device *dev = sdata->dev;
2347 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2348 __le16 fc = hdr->frame_control;
2349 bool port_control;
2350 int err;
2352 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2353 return RX_CONTINUE;
2355 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2356 return RX_DROP_MONITOR;
2358 if (rx->sta) {
2359 /* The seqno index has the same property as needed
2360 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2361 * for non-QoS-data frames. Here we know it's a data
2362 * frame, so count MSDUs.
2364 rx->sta->rx_msdu[rx->seqno_idx]++;
2368 * Send unexpected-4addr-frame event to hostapd. For older versions,
2369 * also drop the frame to cooked monitor interfaces.
2371 if (ieee80211_has_a4(hdr->frame_control) &&
2372 sdata->vif.type == NL80211_IFTYPE_AP) {
2373 if (rx->sta &&
2374 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2375 cfg80211_rx_unexpected_4addr_frame(
2376 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2377 return RX_DROP_MONITOR;
2380 err = __ieee80211_data_to_8023(rx, &port_control);
2381 if (unlikely(err))
2382 return RX_DROP_UNUSABLE;
2384 if (!ieee80211_frame_allowed(rx, fc))
2385 return RX_DROP_MONITOR;
2387 /* directly handle TDLS channel switch requests/responses */
2388 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2389 cpu_to_be16(ETH_P_TDLS))) {
2390 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2392 if (pskb_may_pull(rx->skb,
2393 offsetof(struct ieee80211_tdls_data, u)) &&
2394 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2395 tf->category == WLAN_CATEGORY_TDLS &&
2396 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2397 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2398 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW;
2399 skb_queue_tail(&sdata->skb_queue, rx->skb);
2400 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2401 if (rx->sta)
2402 rx->sta->rx_packets++;
2404 return RX_QUEUED;
2408 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2409 unlikely(port_control) && sdata->bss) {
2410 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2411 u.ap);
2412 dev = sdata->dev;
2413 rx->sdata = sdata;
2416 rx->skb->dev = dev;
2418 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2419 !is_multicast_ether_addr(
2420 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2421 (!local->scanning &&
2422 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2423 mod_timer(&local->dynamic_ps_timer, jiffies +
2424 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2427 ieee80211_deliver_skb(rx);
2429 return RX_QUEUED;
2432 static ieee80211_rx_result debug_noinline
2433 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2435 struct sk_buff *skb = rx->skb;
2436 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2437 struct tid_ampdu_rx *tid_agg_rx;
2438 u16 start_seq_num;
2439 u16 tid;
2441 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2442 return RX_CONTINUE;
2444 if (ieee80211_is_back_req(bar->frame_control)) {
2445 struct {
2446 __le16 control, start_seq_num;
2447 } __packed bar_data;
2449 if (!rx->sta)
2450 return RX_DROP_MONITOR;
2452 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2453 &bar_data, sizeof(bar_data)))
2454 return RX_DROP_MONITOR;
2456 tid = le16_to_cpu(bar_data.control) >> 12;
2458 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2459 if (!tid_agg_rx)
2460 return RX_DROP_MONITOR;
2462 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2464 /* reset session timer */
2465 if (tid_agg_rx->timeout)
2466 mod_timer(&tid_agg_rx->session_timer,
2467 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2469 spin_lock(&tid_agg_rx->reorder_lock);
2470 /* release stored frames up to start of BAR */
2471 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2472 start_seq_num, frames);
2473 spin_unlock(&tid_agg_rx->reorder_lock);
2475 kfree_skb(skb);
2476 return RX_QUEUED;
2480 * After this point, we only want management frames,
2481 * so we can drop all remaining control frames to
2482 * cooked monitor interfaces.
2484 return RX_DROP_MONITOR;
2487 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2488 struct ieee80211_mgmt *mgmt,
2489 size_t len)
2491 struct ieee80211_local *local = sdata->local;
2492 struct sk_buff *skb;
2493 struct ieee80211_mgmt *resp;
2495 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2496 /* Not to own unicast address */
2497 return;
2500 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2501 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2502 /* Not from the current AP or not associated yet. */
2503 return;
2506 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2507 /* Too short SA Query request frame */
2508 return;
2511 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2512 if (skb == NULL)
2513 return;
2515 skb_reserve(skb, local->hw.extra_tx_headroom);
2516 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2517 memset(resp, 0, 24);
2518 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2519 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2520 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2521 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2522 IEEE80211_STYPE_ACTION);
2523 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2524 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2525 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2526 memcpy(resp->u.action.u.sa_query.trans_id,
2527 mgmt->u.action.u.sa_query.trans_id,
2528 WLAN_SA_QUERY_TR_ID_LEN);
2530 ieee80211_tx_skb(sdata, skb);
2533 static ieee80211_rx_result debug_noinline
2534 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2536 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2537 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2540 * From here on, look only at management frames.
2541 * Data and control frames are already handled,
2542 * and unknown (reserved) frames are useless.
2544 if (rx->skb->len < 24)
2545 return RX_DROP_MONITOR;
2547 if (!ieee80211_is_mgmt(mgmt->frame_control))
2548 return RX_DROP_MONITOR;
2550 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2551 ieee80211_is_beacon(mgmt->frame_control) &&
2552 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2553 int sig = 0;
2555 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2556 sig = status->signal;
2558 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2559 rx->skb->data, rx->skb->len,
2560 status->freq, sig);
2561 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2564 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2565 return RX_DROP_MONITOR;
2567 if (ieee80211_drop_unencrypted_mgmt(rx))
2568 return RX_DROP_UNUSABLE;
2570 return RX_CONTINUE;
2573 static ieee80211_rx_result debug_noinline
2574 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2576 struct ieee80211_local *local = rx->local;
2577 struct ieee80211_sub_if_data *sdata = rx->sdata;
2578 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2579 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2580 int len = rx->skb->len;
2582 if (!ieee80211_is_action(mgmt->frame_control))
2583 return RX_CONTINUE;
2585 /* drop too small frames */
2586 if (len < IEEE80211_MIN_ACTION_SIZE)
2587 return RX_DROP_UNUSABLE;
2589 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2590 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2591 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2592 return RX_DROP_UNUSABLE;
2594 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2595 return RX_DROP_UNUSABLE;
2597 switch (mgmt->u.action.category) {
2598 case WLAN_CATEGORY_HT:
2599 /* reject HT action frames from stations not supporting HT */
2600 if (!rx->sta->sta.ht_cap.ht_supported)
2601 goto invalid;
2603 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2604 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2605 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2606 sdata->vif.type != NL80211_IFTYPE_AP &&
2607 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2608 break;
2610 /* verify action & smps_control/chanwidth are present */
2611 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2612 goto invalid;
2614 switch (mgmt->u.action.u.ht_smps.action) {
2615 case WLAN_HT_ACTION_SMPS: {
2616 struct ieee80211_supported_band *sband;
2617 enum ieee80211_smps_mode smps_mode;
2619 /* convert to HT capability */
2620 switch (mgmt->u.action.u.ht_smps.smps_control) {
2621 case WLAN_HT_SMPS_CONTROL_DISABLED:
2622 smps_mode = IEEE80211_SMPS_OFF;
2623 break;
2624 case WLAN_HT_SMPS_CONTROL_STATIC:
2625 smps_mode = IEEE80211_SMPS_STATIC;
2626 break;
2627 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2628 smps_mode = IEEE80211_SMPS_DYNAMIC;
2629 break;
2630 default:
2631 goto invalid;
2634 /* if no change do nothing */
2635 if (rx->sta->sta.smps_mode == smps_mode)
2636 goto handled;
2637 rx->sta->sta.smps_mode = smps_mode;
2639 sband = rx->local->hw.wiphy->bands[status->band];
2641 rate_control_rate_update(local, sband, rx->sta,
2642 IEEE80211_RC_SMPS_CHANGED);
2643 goto handled;
2645 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2646 struct ieee80211_supported_band *sband;
2647 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2648 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2650 /* If it doesn't support 40 MHz it can't change ... */
2651 if (!(rx->sta->sta.ht_cap.cap &
2652 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2653 goto handled;
2655 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2656 max_bw = IEEE80211_STA_RX_BW_20;
2657 else
2658 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2660 /* set cur_max_bandwidth and recalc sta bw */
2661 rx->sta->cur_max_bandwidth = max_bw;
2662 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2664 if (rx->sta->sta.bandwidth == new_bw)
2665 goto handled;
2667 rx->sta->sta.bandwidth = new_bw;
2668 sband = rx->local->hw.wiphy->bands[status->band];
2670 rate_control_rate_update(local, sband, rx->sta,
2671 IEEE80211_RC_BW_CHANGED);
2672 goto handled;
2674 default:
2675 goto invalid;
2678 break;
2679 case WLAN_CATEGORY_PUBLIC:
2680 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2681 goto invalid;
2682 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2683 break;
2684 if (!rx->sta)
2685 break;
2686 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2687 break;
2688 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2689 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2690 break;
2691 if (len < offsetof(struct ieee80211_mgmt,
2692 u.action.u.ext_chan_switch.variable))
2693 goto invalid;
2694 goto queue;
2695 case WLAN_CATEGORY_VHT:
2696 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2697 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2698 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2699 sdata->vif.type != NL80211_IFTYPE_AP &&
2700 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2701 break;
2703 /* verify action code is present */
2704 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2705 goto invalid;
2707 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2708 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2709 u8 opmode;
2711 /* verify opmode is present */
2712 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2713 goto invalid;
2715 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2717 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2718 opmode, status->band,
2719 false);
2720 goto handled;
2722 default:
2723 break;
2725 break;
2726 case WLAN_CATEGORY_BACK:
2727 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2728 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2729 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2730 sdata->vif.type != NL80211_IFTYPE_AP &&
2731 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2732 break;
2734 /* verify action_code is present */
2735 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2736 break;
2738 switch (mgmt->u.action.u.addba_req.action_code) {
2739 case WLAN_ACTION_ADDBA_REQ:
2740 if (len < (IEEE80211_MIN_ACTION_SIZE +
2741 sizeof(mgmt->u.action.u.addba_req)))
2742 goto invalid;
2743 break;
2744 case WLAN_ACTION_ADDBA_RESP:
2745 if (len < (IEEE80211_MIN_ACTION_SIZE +
2746 sizeof(mgmt->u.action.u.addba_resp)))
2747 goto invalid;
2748 break;
2749 case WLAN_ACTION_DELBA:
2750 if (len < (IEEE80211_MIN_ACTION_SIZE +
2751 sizeof(mgmt->u.action.u.delba)))
2752 goto invalid;
2753 break;
2754 default:
2755 goto invalid;
2758 goto queue;
2759 case WLAN_CATEGORY_SPECTRUM_MGMT:
2760 /* verify action_code is present */
2761 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2762 break;
2764 switch (mgmt->u.action.u.measurement.action_code) {
2765 case WLAN_ACTION_SPCT_MSR_REQ:
2766 if (status->band != IEEE80211_BAND_5GHZ)
2767 break;
2769 if (len < (IEEE80211_MIN_ACTION_SIZE +
2770 sizeof(mgmt->u.action.u.measurement)))
2771 break;
2773 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2774 break;
2776 ieee80211_process_measurement_req(sdata, mgmt, len);
2777 goto handled;
2778 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2779 u8 *bssid;
2780 if (len < (IEEE80211_MIN_ACTION_SIZE +
2781 sizeof(mgmt->u.action.u.chan_switch)))
2782 break;
2784 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2785 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2786 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2787 break;
2789 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2790 bssid = sdata->u.mgd.bssid;
2791 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2792 bssid = sdata->u.ibss.bssid;
2793 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2794 bssid = mgmt->sa;
2795 else
2796 break;
2798 if (!ether_addr_equal(mgmt->bssid, bssid))
2799 break;
2801 goto queue;
2804 break;
2805 case WLAN_CATEGORY_SA_QUERY:
2806 if (len < (IEEE80211_MIN_ACTION_SIZE +
2807 sizeof(mgmt->u.action.u.sa_query)))
2808 break;
2810 switch (mgmt->u.action.u.sa_query.action) {
2811 case WLAN_ACTION_SA_QUERY_REQUEST:
2812 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2813 break;
2814 ieee80211_process_sa_query_req(sdata, mgmt, len);
2815 goto handled;
2817 break;
2818 case WLAN_CATEGORY_SELF_PROTECTED:
2819 if (len < (IEEE80211_MIN_ACTION_SIZE +
2820 sizeof(mgmt->u.action.u.self_prot.action_code)))
2821 break;
2823 switch (mgmt->u.action.u.self_prot.action_code) {
2824 case WLAN_SP_MESH_PEERING_OPEN:
2825 case WLAN_SP_MESH_PEERING_CLOSE:
2826 case WLAN_SP_MESH_PEERING_CONFIRM:
2827 if (!ieee80211_vif_is_mesh(&sdata->vif))
2828 goto invalid;
2829 if (sdata->u.mesh.user_mpm)
2830 /* userspace handles this frame */
2831 break;
2832 goto queue;
2833 case WLAN_SP_MGK_INFORM:
2834 case WLAN_SP_MGK_ACK:
2835 if (!ieee80211_vif_is_mesh(&sdata->vif))
2836 goto invalid;
2837 break;
2839 break;
2840 case WLAN_CATEGORY_MESH_ACTION:
2841 if (len < (IEEE80211_MIN_ACTION_SIZE +
2842 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2843 break;
2845 if (!ieee80211_vif_is_mesh(&sdata->vif))
2846 break;
2847 if (mesh_action_is_path_sel(mgmt) &&
2848 !mesh_path_sel_is_hwmp(sdata))
2849 break;
2850 goto queue;
2853 return RX_CONTINUE;
2855 invalid:
2856 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2857 /* will return in the next handlers */
2858 return RX_CONTINUE;
2860 handled:
2861 if (rx->sta)
2862 rx->sta->rx_packets++;
2863 dev_kfree_skb(rx->skb);
2864 return RX_QUEUED;
2866 queue:
2867 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2868 skb_queue_tail(&sdata->skb_queue, rx->skb);
2869 ieee80211_queue_work(&local->hw, &sdata->work);
2870 if (rx->sta)
2871 rx->sta->rx_packets++;
2872 return RX_QUEUED;
2875 static ieee80211_rx_result debug_noinline
2876 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2878 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2879 int sig = 0;
2881 /* skip known-bad action frames and return them in the next handler */
2882 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2883 return RX_CONTINUE;
2886 * Getting here means the kernel doesn't know how to handle
2887 * it, but maybe userspace does ... include returned frames
2888 * so userspace can register for those to know whether ones
2889 * it transmitted were processed or returned.
2892 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2893 sig = status->signal;
2895 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2896 rx->skb->data, rx->skb->len, 0)) {
2897 if (rx->sta)
2898 rx->sta->rx_packets++;
2899 dev_kfree_skb(rx->skb);
2900 return RX_QUEUED;
2903 return RX_CONTINUE;
2906 static ieee80211_rx_result debug_noinline
2907 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2909 struct ieee80211_local *local = rx->local;
2910 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2911 struct sk_buff *nskb;
2912 struct ieee80211_sub_if_data *sdata = rx->sdata;
2913 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2915 if (!ieee80211_is_action(mgmt->frame_control))
2916 return RX_CONTINUE;
2919 * For AP mode, hostapd is responsible for handling any action
2920 * frames that we didn't handle, including returning unknown
2921 * ones. For all other modes we will return them to the sender,
2922 * setting the 0x80 bit in the action category, as required by
2923 * 802.11-2012 9.24.4.
2924 * Newer versions of hostapd shall also use the management frame
2925 * registration mechanisms, but older ones still use cooked
2926 * monitor interfaces so push all frames there.
2928 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2929 (sdata->vif.type == NL80211_IFTYPE_AP ||
2930 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2931 return RX_DROP_MONITOR;
2933 if (is_multicast_ether_addr(mgmt->da))
2934 return RX_DROP_MONITOR;
2936 /* do not return rejected action frames */
2937 if (mgmt->u.action.category & 0x80)
2938 return RX_DROP_UNUSABLE;
2940 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2941 GFP_ATOMIC);
2942 if (nskb) {
2943 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2945 nmgmt->u.action.category |= 0x80;
2946 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2947 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2949 memset(nskb->cb, 0, sizeof(nskb->cb));
2951 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2952 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2954 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2955 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2956 IEEE80211_TX_CTL_NO_CCK_RATE;
2957 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2958 info->hw_queue =
2959 local->hw.offchannel_tx_hw_queue;
2962 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2963 status->band);
2965 dev_kfree_skb(rx->skb);
2966 return RX_QUEUED;
2969 static ieee80211_rx_result debug_noinline
2970 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2972 struct ieee80211_sub_if_data *sdata = rx->sdata;
2973 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2974 __le16 stype;
2976 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2978 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2979 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2980 sdata->vif.type != NL80211_IFTYPE_OCB &&
2981 sdata->vif.type != NL80211_IFTYPE_STATION)
2982 return RX_DROP_MONITOR;
2984 switch (stype) {
2985 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2986 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2987 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2988 /* process for all: mesh, mlme, ibss */
2989 break;
2990 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2991 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2992 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2993 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2994 if (is_multicast_ether_addr(mgmt->da) &&
2995 !is_broadcast_ether_addr(mgmt->da))
2996 return RX_DROP_MONITOR;
2998 /* process only for station */
2999 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3000 return RX_DROP_MONITOR;
3001 break;
3002 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3003 /* process only for ibss and mesh */
3004 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3005 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3006 return RX_DROP_MONITOR;
3007 break;
3008 default:
3009 return RX_DROP_MONITOR;
3012 /* queue up frame and kick off work to process it */
3013 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3014 skb_queue_tail(&sdata->skb_queue, rx->skb);
3015 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3016 if (rx->sta)
3017 rx->sta->rx_packets++;
3019 return RX_QUEUED;
3022 /* TODO: use IEEE80211_RX_FRAGMENTED */
3023 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3024 struct ieee80211_rate *rate)
3026 struct ieee80211_sub_if_data *sdata;
3027 struct ieee80211_local *local = rx->local;
3028 struct sk_buff *skb = rx->skb, *skb2;
3029 struct net_device *prev_dev = NULL;
3030 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3031 int needed_headroom;
3034 * If cooked monitor has been processed already, then
3035 * don't do it again. If not, set the flag.
3037 if (rx->flags & IEEE80211_RX_CMNTR)
3038 goto out_free_skb;
3039 rx->flags |= IEEE80211_RX_CMNTR;
3041 /* If there are no cooked monitor interfaces, just free the SKB */
3042 if (!local->cooked_mntrs)
3043 goto out_free_skb;
3045 /* vendor data is long removed here */
3046 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3047 /* room for the radiotap header based on driver features */
3048 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3050 if (skb_headroom(skb) < needed_headroom &&
3051 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3052 goto out_free_skb;
3054 /* prepend radiotap information */
3055 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3056 false);
3058 skb_set_mac_header(skb, 0);
3059 skb->ip_summed = CHECKSUM_UNNECESSARY;
3060 skb->pkt_type = PACKET_OTHERHOST;
3061 skb->protocol = htons(ETH_P_802_2);
3063 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3064 if (!ieee80211_sdata_running(sdata))
3065 continue;
3067 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3068 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3069 continue;
3071 if (prev_dev) {
3072 skb2 = skb_clone(skb, GFP_ATOMIC);
3073 if (skb2) {
3074 skb2->dev = prev_dev;
3075 netif_receive_skb(skb2);
3079 prev_dev = sdata->dev;
3080 sdata->dev->stats.rx_packets++;
3081 sdata->dev->stats.rx_bytes += skb->len;
3084 if (prev_dev) {
3085 skb->dev = prev_dev;
3086 netif_receive_skb(skb);
3087 return;
3090 out_free_skb:
3091 dev_kfree_skb(skb);
3094 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3095 ieee80211_rx_result res)
3097 switch (res) {
3098 case RX_DROP_MONITOR:
3099 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3100 if (rx->sta)
3101 rx->sta->rx_dropped++;
3102 /* fall through */
3103 case RX_CONTINUE: {
3104 struct ieee80211_rate *rate = NULL;
3105 struct ieee80211_supported_band *sband;
3106 struct ieee80211_rx_status *status;
3108 status = IEEE80211_SKB_RXCB((rx->skb));
3110 sband = rx->local->hw.wiphy->bands[status->band];
3111 if (!(status->flag & RX_FLAG_HT) &&
3112 !(status->flag & RX_FLAG_VHT))
3113 rate = &sband->bitrates[status->rate_idx];
3115 ieee80211_rx_cooked_monitor(rx, rate);
3116 break;
3118 case RX_DROP_UNUSABLE:
3119 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3120 if (rx->sta)
3121 rx->sta->rx_dropped++;
3122 dev_kfree_skb(rx->skb);
3123 break;
3124 case RX_QUEUED:
3125 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3126 break;
3130 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3131 struct sk_buff_head *frames)
3133 ieee80211_rx_result res = RX_DROP_MONITOR;
3134 struct sk_buff *skb;
3136 #define CALL_RXH(rxh) \
3137 do { \
3138 res = rxh(rx); \
3139 if (res != RX_CONTINUE) \
3140 goto rxh_next; \
3141 } while (0);
3143 /* Lock here to avoid hitting all of the data used in the RX
3144 * path (e.g. key data, station data, ...) concurrently when
3145 * a frame is released from the reorder buffer due to timeout
3146 * from the timer, potentially concurrently with RX from the
3147 * driver.
3149 spin_lock_bh(&rx->local->rx_path_lock);
3151 while ((skb = __skb_dequeue(frames))) {
3153 * all the other fields are valid across frames
3154 * that belong to an aMPDU since they are on the
3155 * same TID from the same station
3157 rx->skb = skb;
3159 CALL_RXH(ieee80211_rx_h_check_more_data)
3160 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3161 CALL_RXH(ieee80211_rx_h_sta_process)
3162 CALL_RXH(ieee80211_rx_h_decrypt)
3163 CALL_RXH(ieee80211_rx_h_defragment)
3164 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3165 /* must be after MMIC verify so header is counted in MPDU mic */
3166 #ifdef CONFIG_MAC80211_MESH
3167 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3168 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3169 #endif
3170 CALL_RXH(ieee80211_rx_h_amsdu)
3171 CALL_RXH(ieee80211_rx_h_data)
3173 /* special treatment -- needs the queue */
3174 res = ieee80211_rx_h_ctrl(rx, frames);
3175 if (res != RX_CONTINUE)
3176 goto rxh_next;
3178 CALL_RXH(ieee80211_rx_h_mgmt_check)
3179 CALL_RXH(ieee80211_rx_h_action)
3180 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3181 CALL_RXH(ieee80211_rx_h_action_return)
3182 CALL_RXH(ieee80211_rx_h_mgmt)
3184 rxh_next:
3185 ieee80211_rx_handlers_result(rx, res);
3187 #undef CALL_RXH
3190 spin_unlock_bh(&rx->local->rx_path_lock);
3193 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3195 struct sk_buff_head reorder_release;
3196 ieee80211_rx_result res = RX_DROP_MONITOR;
3198 __skb_queue_head_init(&reorder_release);
3200 #define CALL_RXH(rxh) \
3201 do { \
3202 res = rxh(rx); \
3203 if (res != RX_CONTINUE) \
3204 goto rxh_next; \
3205 } while (0);
3207 CALL_RXH(ieee80211_rx_h_check_dup)
3208 CALL_RXH(ieee80211_rx_h_check)
3210 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3212 ieee80211_rx_handlers(rx, &reorder_release);
3213 return;
3215 rxh_next:
3216 ieee80211_rx_handlers_result(rx, res);
3218 #undef CALL_RXH
3222 * This function makes calls into the RX path, therefore
3223 * it has to be invoked under RCU read lock.
3225 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3227 struct sk_buff_head frames;
3228 struct ieee80211_rx_data rx = {
3229 .sta = sta,
3230 .sdata = sta->sdata,
3231 .local = sta->local,
3232 /* This is OK -- must be QoS data frame */
3233 .security_idx = tid,
3234 .seqno_idx = tid,
3235 .flags = IEEE80211_RX_REORDER_TIMER,
3237 struct tid_ampdu_rx *tid_agg_rx;
3239 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3240 if (!tid_agg_rx)
3241 return;
3243 __skb_queue_head_init(&frames);
3245 spin_lock(&tid_agg_rx->reorder_lock);
3246 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3247 spin_unlock(&tid_agg_rx->reorder_lock);
3249 ieee80211_rx_handlers(&rx, &frames);
3252 /* main receive path */
3254 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3255 struct ieee80211_hdr *hdr)
3257 struct ieee80211_sub_if_data *sdata = rx->sdata;
3258 struct sk_buff *skb = rx->skb;
3259 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3260 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3261 int multicast = is_multicast_ether_addr(hdr->addr1);
3263 switch (sdata->vif.type) {
3264 case NL80211_IFTYPE_STATION:
3265 if (!bssid && !sdata->u.mgd.use_4addr)
3266 return false;
3267 if (!multicast &&
3268 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3269 if (!(sdata->dev->flags & IFF_PROMISC) ||
3270 sdata->u.mgd.use_4addr)
3271 return false;
3272 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3274 break;
3275 case NL80211_IFTYPE_ADHOC:
3276 if (!bssid)
3277 return false;
3278 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3279 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3280 return false;
3281 if (ieee80211_is_beacon(hdr->frame_control)) {
3282 return true;
3283 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3284 return false;
3285 } else if (!multicast &&
3286 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3287 if (!(sdata->dev->flags & IFF_PROMISC))
3288 return false;
3289 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3290 } else if (!rx->sta) {
3291 int rate_idx;
3292 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3293 rate_idx = 0; /* TODO: HT/VHT rates */
3294 else
3295 rate_idx = status->rate_idx;
3296 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3297 BIT(rate_idx));
3299 break;
3300 case NL80211_IFTYPE_OCB:
3301 if (!bssid)
3302 return false;
3303 if (ieee80211_is_beacon(hdr->frame_control)) {
3304 return false;
3305 } else if (!is_broadcast_ether_addr(bssid)) {
3306 ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n");
3307 return false;
3308 } else if (!multicast &&
3309 !ether_addr_equal(sdata->dev->dev_addr,
3310 hdr->addr1)) {
3311 /* if we are in promisc mode we also accept
3312 * packets not destined for us
3314 if (!(sdata->dev->flags & IFF_PROMISC))
3315 return false;
3316 rx->flags &= ~IEEE80211_RX_RA_MATCH;
3317 } else if (!rx->sta) {
3318 int rate_idx;
3319 if (status->flag & RX_FLAG_HT)
3320 rate_idx = 0; /* TODO: HT rates */
3321 else
3322 rate_idx = status->rate_idx;
3323 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3324 BIT(rate_idx));
3326 break;
3327 case NL80211_IFTYPE_MESH_POINT:
3328 if (!multicast &&
3329 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3330 if (!(sdata->dev->flags & IFF_PROMISC))
3331 return false;
3333 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3335 break;
3336 case NL80211_IFTYPE_AP_VLAN:
3337 case NL80211_IFTYPE_AP:
3338 if (!bssid) {
3339 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3340 return false;
3341 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3343 * Accept public action frames even when the
3344 * BSSID doesn't match, this is used for P2P
3345 * and location updates. Note that mac80211
3346 * itself never looks at these frames.
3348 if (!multicast &&
3349 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3350 return false;
3351 if (ieee80211_is_public_action(hdr, skb->len))
3352 return true;
3353 if (!ieee80211_is_beacon(hdr->frame_control))
3354 return false;
3355 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3356 } else if (!ieee80211_has_tods(hdr->frame_control)) {
3357 /* ignore data frames to TDLS-peers */
3358 if (ieee80211_is_data(hdr->frame_control))
3359 return false;
3360 /* ignore action frames to TDLS-peers */
3361 if (ieee80211_is_action(hdr->frame_control) &&
3362 !ether_addr_equal(bssid, hdr->addr1))
3363 return false;
3365 break;
3366 case NL80211_IFTYPE_WDS:
3367 if (bssid || !ieee80211_is_data(hdr->frame_control))
3368 return false;
3369 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3370 return false;
3371 break;
3372 case NL80211_IFTYPE_P2P_DEVICE:
3373 if (!ieee80211_is_public_action(hdr, skb->len) &&
3374 !ieee80211_is_probe_req(hdr->frame_control) &&
3375 !ieee80211_is_probe_resp(hdr->frame_control) &&
3376 !ieee80211_is_beacon(hdr->frame_control))
3377 return false;
3378 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3379 !multicast)
3380 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3381 break;
3382 default:
3383 /* should never get here */
3384 WARN_ON_ONCE(1);
3385 break;
3388 return true;
3392 * This function returns whether or not the SKB
3393 * was destined for RX processing or not, which,
3394 * if consume is true, is equivalent to whether
3395 * or not the skb was consumed.
3397 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3398 struct sk_buff *skb, bool consume)
3400 struct ieee80211_local *local = rx->local;
3401 struct ieee80211_sub_if_data *sdata = rx->sdata;
3402 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3403 struct ieee80211_hdr *hdr = (void *)skb->data;
3405 rx->skb = skb;
3406 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3408 if (!prepare_for_handlers(rx, hdr))
3409 return false;
3411 if (!consume) {
3412 skb = skb_copy(skb, GFP_ATOMIC);
3413 if (!skb) {
3414 if (net_ratelimit())
3415 wiphy_debug(local->hw.wiphy,
3416 "failed to copy skb for %s\n",
3417 sdata->name);
3418 return true;
3421 rx->skb = skb;
3424 ieee80211_invoke_rx_handlers(rx);
3425 return true;
3429 * This is the actual Rx frames handler. as it belongs to Rx path it must
3430 * be called with rcu_read_lock protection.
3432 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3433 struct sk_buff *skb)
3435 struct ieee80211_local *local = hw_to_local(hw);
3436 struct ieee80211_sub_if_data *sdata;
3437 struct ieee80211_hdr *hdr;
3438 __le16 fc;
3439 struct ieee80211_rx_data rx;
3440 struct ieee80211_sub_if_data *prev;
3441 struct sta_info *sta, *prev_sta;
3442 struct rhash_head *tmp;
3443 int err = 0;
3445 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3446 memset(&rx, 0, sizeof(rx));
3447 rx.skb = skb;
3448 rx.local = local;
3450 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3451 local->dot11ReceivedFragmentCount++;
3453 if (ieee80211_is_mgmt(fc)) {
3454 /* drop frame if too short for header */
3455 if (skb->len < ieee80211_hdrlen(fc))
3456 err = -ENOBUFS;
3457 else
3458 err = skb_linearize(skb);
3459 } else {
3460 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3463 if (err) {
3464 dev_kfree_skb(skb);
3465 return;
3468 hdr = (struct ieee80211_hdr *)skb->data;
3469 ieee80211_parse_qos(&rx);
3470 ieee80211_verify_alignment(&rx);
3472 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3473 ieee80211_is_beacon(hdr->frame_control)))
3474 ieee80211_scan_rx(local, skb);
3476 if (ieee80211_is_data(fc)) {
3477 const struct bucket_table *tbl;
3479 prev_sta = NULL;
3481 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3483 for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3484 if (!prev_sta) {
3485 prev_sta = sta;
3486 continue;
3489 rx.sta = prev_sta;
3490 rx.sdata = prev_sta->sdata;
3491 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3493 prev_sta = sta;
3496 if (prev_sta) {
3497 rx.sta = prev_sta;
3498 rx.sdata = prev_sta->sdata;
3500 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3501 return;
3502 goto out;
3506 prev = NULL;
3508 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3509 if (!ieee80211_sdata_running(sdata))
3510 continue;
3512 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3513 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3514 continue;
3517 * frame is destined for this interface, but if it's
3518 * not also for the previous one we handle that after
3519 * the loop to avoid copying the SKB once too much
3522 if (!prev) {
3523 prev = sdata;
3524 continue;
3527 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3528 rx.sdata = prev;
3529 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3531 prev = sdata;
3534 if (prev) {
3535 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3536 rx.sdata = prev;
3538 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3539 return;
3542 out:
3543 dev_kfree_skb(skb);
3547 * This is the receive path handler. It is called by a low level driver when an
3548 * 802.11 MPDU is received from the hardware.
3550 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3552 struct ieee80211_local *local = hw_to_local(hw);
3553 struct ieee80211_rate *rate = NULL;
3554 struct ieee80211_supported_band *sband;
3555 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3557 WARN_ON_ONCE(softirq_count() == 0);
3559 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3560 goto drop;
3562 sband = local->hw.wiphy->bands[status->band];
3563 if (WARN_ON(!sband))
3564 goto drop;
3567 * If we're suspending, it is possible although not too likely
3568 * that we'd be receiving frames after having already partially
3569 * quiesced the stack. We can't process such frames then since
3570 * that might, for example, cause stations to be added or other
3571 * driver callbacks be invoked.
3573 if (unlikely(local->quiescing || local->suspended))
3574 goto drop;
3576 /* We might be during a HW reconfig, prevent Rx for the same reason */
3577 if (unlikely(local->in_reconfig))
3578 goto drop;
3581 * The same happens when we're not even started,
3582 * but that's worth a warning.
3584 if (WARN_ON(!local->started))
3585 goto drop;
3587 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3589 * Validate the rate, unless a PLCP error means that
3590 * we probably can't have a valid rate here anyway.
3593 if (status->flag & RX_FLAG_HT) {
3595 * rate_idx is MCS index, which can be [0-76]
3596 * as documented on:
3598 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3600 * Anything else would be some sort of driver or
3601 * hardware error. The driver should catch hardware
3602 * errors.
3604 if (WARN(status->rate_idx > 76,
3605 "Rate marked as an HT rate but passed "
3606 "status->rate_idx is not "
3607 "an MCS index [0-76]: %d (0x%02x)\n",
3608 status->rate_idx,
3609 status->rate_idx))
3610 goto drop;
3611 } else if (status->flag & RX_FLAG_VHT) {
3612 if (WARN_ONCE(status->rate_idx > 9 ||
3613 !status->vht_nss ||
3614 status->vht_nss > 8,
3615 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3616 status->rate_idx, status->vht_nss))
3617 goto drop;
3618 } else {
3619 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3620 goto drop;
3621 rate = &sband->bitrates[status->rate_idx];
3625 status->rx_flags = 0;
3628 * key references and virtual interfaces are protected using RCU
3629 * and this requires that we are in a read-side RCU section during
3630 * receive processing
3632 rcu_read_lock();
3635 * Frames with failed FCS/PLCP checksum are not returned,
3636 * all other frames are returned without radiotap header
3637 * if it was previously present.
3638 * Also, frames with less than 16 bytes are dropped.
3640 skb = ieee80211_rx_monitor(local, skb, rate);
3641 if (!skb) {
3642 rcu_read_unlock();
3643 return;
3646 ieee80211_tpt_led_trig_rx(local,
3647 ((struct ieee80211_hdr *)skb->data)->frame_control,
3648 skb->len);
3649 __ieee80211_rx_handle_packet(hw, skb);
3651 rcu_read_unlock();
3653 return;
3654 drop:
3655 kfree_skb(skb);
3657 EXPORT_SYMBOL(ieee80211_rx);
3659 /* This is a version of the rx handler that can be called from hard irq
3660 * context. Post the skb on the queue and schedule the tasklet */
3661 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3663 struct ieee80211_local *local = hw_to_local(hw);
3665 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3667 skb->pkt_type = IEEE80211_RX_MSG;
3668 skb_queue_tail(&local->skb_queue, skb);
3669 tasklet_schedule(&local->tasklet);
3671 EXPORT_SYMBOL(ieee80211_rx_irqsafe);