2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
44 /* When transmitting messages in rds_send_xmit, we need to emerge from
45 * time to time and briefly release the CPU. Otherwise the softlock watchdog
47 * Also, it seems fairer to not let one busy connection stall all the
50 * send_batch_count is the number of times we'll loop in send_xmit. Setting
51 * it to 0 will restore the old behavior (where we looped until we had
54 static int send_batch_count
= 64;
55 module_param(send_batch_count
, int, 0444);
56 MODULE_PARM_DESC(send_batch_count
, " batch factor when working the send queue");
58 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
);
61 * Reset the send state. Callers must ensure that this doesn't race with
64 void rds_send_reset(struct rds_connection
*conn
)
66 struct rds_message
*rm
, *tmp
;
69 if (conn
->c_xmit_rm
) {
71 conn
->c_xmit_rm
= NULL
;
72 /* Tell the user the RDMA op is no longer mapped by the
73 * transport. This isn't entirely true (it's flushed out
74 * independently) but as the connection is down, there's
75 * no ongoing RDMA to/from that memory */
76 rds_message_unmapped(rm
);
81 conn
->c_xmit_hdr_off
= 0;
82 conn
->c_xmit_data_off
= 0;
83 conn
->c_xmit_atomic_sent
= 0;
84 conn
->c_xmit_rdma_sent
= 0;
85 conn
->c_xmit_data_sent
= 0;
87 conn
->c_map_queued
= 0;
89 conn
->c_unacked_packets
= rds_sysctl_max_unacked_packets
;
90 conn
->c_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
92 /* Mark messages as retransmissions, and move them to the send q */
93 spin_lock_irqsave(&conn
->c_lock
, flags
);
94 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
95 set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
96 set_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
);
98 list_splice_init(&conn
->c_retrans
, &conn
->c_send_queue
);
99 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
102 static int acquire_in_xmit(struct rds_connection
*conn
)
104 return test_and_set_bit(RDS_IN_XMIT
, &conn
->c_flags
) == 0;
107 static void release_in_xmit(struct rds_connection
*conn
)
109 clear_bit(RDS_IN_XMIT
, &conn
->c_flags
);
110 smp_mb__after_atomic();
112 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
113 * hot path and finding waiters is very rare. We don't want to walk
114 * the system-wide hashed waitqueue buckets in the fast path only to
115 * almost never find waiters.
117 if (waitqueue_active(&conn
->c_waitq
))
118 wake_up_all(&conn
->c_waitq
);
122 * We're making the conscious trade-off here to only send one message
123 * down the connection at a time.
125 * - tx queueing is a simple fifo list
126 * - reassembly is optional and easily done by transports per conn
127 * - no per flow rx lookup at all, straight to the socket
128 * - less per-frag memory and wire overhead
130 * - queued acks can be delayed behind large messages
132 * - small message latency is higher behind queued large messages
133 * - large message latency isn't starved by intervening small sends
135 int rds_send_xmit(struct rds_connection
*conn
)
137 struct rds_message
*rm
;
140 struct scatterlist
*sg
;
142 LIST_HEAD(to_be_dropped
);
144 unsigned long send_gen
= 0;
150 * sendmsg calls here after having queued its message on the send
151 * queue. We only have one task feeding the connection at a time. If
152 * another thread is already feeding the queue then we back off. This
153 * avoids blocking the caller and trading per-connection data between
154 * caches per message.
156 if (!acquire_in_xmit(conn
)) {
157 rds_stats_inc(s_send_lock_contention
);
163 * we record the send generation after doing the xmit acquire.
164 * if someone else manages to jump in and do some work, we'll use
165 * this to avoid a goto restart farther down.
167 * The acquire_in_xmit() check above ensures that only one
168 * caller can increment c_send_gen at any time.
171 send_gen
= conn
->c_send_gen
;
174 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
175 * we do the opposite to avoid races.
177 if (!rds_conn_up(conn
)) {
178 release_in_xmit(conn
);
183 if (conn
->c_trans
->xmit_prepare
)
184 conn
->c_trans
->xmit_prepare(conn
);
187 * spin trying to push headers and data down the connection until
188 * the connection doesn't make forward progress.
192 rm
= conn
->c_xmit_rm
;
195 * If between sending messages, we can send a pending congestion
198 if (!rm
&& test_and_clear_bit(0, &conn
->c_map_queued
)) {
199 rm
= rds_cong_update_alloc(conn
);
204 rm
->data
.op_active
= 1;
206 conn
->c_xmit_rm
= rm
;
210 * If not already working on one, grab the next message.
212 * c_xmit_rm holds a ref while we're sending this message down
213 * the connction. We can use this ref while holding the
214 * send_sem.. rds_send_reset() is serialized with it.
221 /* we want to process as big a batch as we can, but
222 * we also want to avoid softlockups. If we've been
223 * through a lot of messages, lets back off and see
224 * if anyone else jumps in
226 if (batch_count
>= 1024)
229 spin_lock_irqsave(&conn
->c_lock
, flags
);
231 if (!list_empty(&conn
->c_send_queue
)) {
232 rm
= list_entry(conn
->c_send_queue
.next
,
235 rds_message_addref(rm
);
238 * Move the message from the send queue to the retransmit
241 list_move_tail(&rm
->m_conn_item
, &conn
->c_retrans
);
244 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
249 /* Unfortunately, the way Infiniband deals with
250 * RDMA to a bad MR key is by moving the entire
251 * queue pair to error state. We cold possibly
252 * recover from that, but right now we drop the
254 * Therefore, we never retransmit messages with RDMA ops.
256 if (rm
->rdma
.op_active
&&
257 test_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
)) {
258 spin_lock_irqsave(&conn
->c_lock
, flags
);
259 if (test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
))
260 list_move(&rm
->m_conn_item
, &to_be_dropped
);
261 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
265 /* Require an ACK every once in a while */
266 len
= ntohl(rm
->m_inc
.i_hdr
.h_len
);
267 if (conn
->c_unacked_packets
== 0 ||
268 conn
->c_unacked_bytes
< len
) {
269 __set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
271 conn
->c_unacked_packets
= rds_sysctl_max_unacked_packets
;
272 conn
->c_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
273 rds_stats_inc(s_send_ack_required
);
275 conn
->c_unacked_bytes
-= len
;
276 conn
->c_unacked_packets
--;
279 conn
->c_xmit_rm
= rm
;
282 /* The transport either sends the whole rdma or none of it */
283 if (rm
->rdma
.op_active
&& !conn
->c_xmit_rdma_sent
) {
284 rm
->m_final_op
= &rm
->rdma
;
285 ret
= conn
->c_trans
->xmit_rdma(conn
, &rm
->rdma
);
288 conn
->c_xmit_rdma_sent
= 1;
290 /* The transport owns the mapped memory for now.
291 * You can't unmap it while it's on the send queue */
292 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
295 if (rm
->atomic
.op_active
&& !conn
->c_xmit_atomic_sent
) {
296 rm
->m_final_op
= &rm
->atomic
;
297 ret
= conn
->c_trans
->xmit_atomic(conn
, &rm
->atomic
);
300 conn
->c_xmit_atomic_sent
= 1;
302 /* The transport owns the mapped memory for now.
303 * You can't unmap it while it's on the send queue */
304 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
308 * A number of cases require an RDS header to be sent
309 * even if there is no data.
310 * We permit 0-byte sends; rds-ping depends on this.
311 * However, if there are exclusively attached silent ops,
312 * we skip the hdr/data send, to enable silent operation.
314 if (rm
->data
.op_nents
== 0) {
316 int all_ops_are_silent
= 1;
318 ops_present
= (rm
->atomic
.op_active
|| rm
->rdma
.op_active
);
319 if (rm
->atomic
.op_active
&& !rm
->atomic
.op_silent
)
320 all_ops_are_silent
= 0;
321 if (rm
->rdma
.op_active
&& !rm
->rdma
.op_silent
)
322 all_ops_are_silent
= 0;
324 if (ops_present
&& all_ops_are_silent
325 && !rm
->m_rdma_cookie
)
326 rm
->data
.op_active
= 0;
329 if (rm
->data
.op_active
&& !conn
->c_xmit_data_sent
) {
330 rm
->m_final_op
= &rm
->data
;
331 ret
= conn
->c_trans
->xmit(conn
, rm
,
332 conn
->c_xmit_hdr_off
,
334 conn
->c_xmit_data_off
);
338 if (conn
->c_xmit_hdr_off
< sizeof(struct rds_header
)) {
339 tmp
= min_t(int, ret
,
340 sizeof(struct rds_header
) -
341 conn
->c_xmit_hdr_off
);
342 conn
->c_xmit_hdr_off
+= tmp
;
346 sg
= &rm
->data
.op_sg
[conn
->c_xmit_sg
];
348 tmp
= min_t(int, ret
, sg
->length
-
349 conn
->c_xmit_data_off
);
350 conn
->c_xmit_data_off
+= tmp
;
352 if (conn
->c_xmit_data_off
== sg
->length
) {
353 conn
->c_xmit_data_off
= 0;
357 conn
->c_xmit_sg
== rm
->data
.op_nents
);
361 if (conn
->c_xmit_hdr_off
== sizeof(struct rds_header
) &&
362 (conn
->c_xmit_sg
== rm
->data
.op_nents
))
363 conn
->c_xmit_data_sent
= 1;
367 * A rm will only take multiple times through this loop
368 * if there is a data op. Thus, if the data is sent (or there was
369 * none), then we're done with the rm.
371 if (!rm
->data
.op_active
|| conn
->c_xmit_data_sent
) {
372 conn
->c_xmit_rm
= NULL
;
374 conn
->c_xmit_hdr_off
= 0;
375 conn
->c_xmit_data_off
= 0;
376 conn
->c_xmit_rdma_sent
= 0;
377 conn
->c_xmit_atomic_sent
= 0;
378 conn
->c_xmit_data_sent
= 0;
385 if (conn
->c_trans
->xmit_complete
)
386 conn
->c_trans
->xmit_complete(conn
);
387 release_in_xmit(conn
);
389 /* Nuke any messages we decided not to retransmit. */
390 if (!list_empty(&to_be_dropped
)) {
391 /* irqs on here, so we can put(), unlike above */
392 list_for_each_entry(rm
, &to_be_dropped
, m_conn_item
)
394 rds_send_remove_from_sock(&to_be_dropped
, RDS_RDMA_DROPPED
);
398 * Other senders can queue a message after we last test the send queue
399 * but before we clear RDS_IN_XMIT. In that case they'd back off and
400 * not try and send their newly queued message. We need to check the
401 * send queue after having cleared RDS_IN_XMIT so that their message
402 * doesn't get stuck on the send queue.
404 * If the transport cannot continue (i.e ret != 0), then it must
405 * call us when more room is available, such as from the tx
406 * completion handler.
408 * We have an extra generation check here so that if someone manages
409 * to jump in after our release_in_xmit, we'll see that they have done
410 * some work and we will skip our goto
414 if (!list_empty(&conn
->c_send_queue
) &&
415 send_gen
== conn
->c_send_gen
) {
416 rds_stats_inc(s_send_lock_queue_raced
);
424 static void rds_send_sndbuf_remove(struct rds_sock
*rs
, struct rds_message
*rm
)
426 u32 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
428 assert_spin_locked(&rs
->rs_lock
);
430 BUG_ON(rs
->rs_snd_bytes
< len
);
431 rs
->rs_snd_bytes
-= len
;
433 if (rs
->rs_snd_bytes
== 0)
434 rds_stats_inc(s_send_queue_empty
);
437 static inline int rds_send_is_acked(struct rds_message
*rm
, u64 ack
,
438 is_acked_func is_acked
)
441 return is_acked(rm
, ack
);
442 return be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
) <= ack
;
446 * This is pretty similar to what happens below in the ACK
447 * handling code - except that we call here as soon as we get
448 * the IB send completion on the RDMA op and the accompanying
451 void rds_rdma_send_complete(struct rds_message
*rm
, int status
)
453 struct rds_sock
*rs
= NULL
;
454 struct rm_rdma_op
*ro
;
455 struct rds_notifier
*notifier
;
458 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
461 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
) &&
462 ro
->op_active
&& ro
->op_notify
&& ro
->op_notifier
) {
463 notifier
= ro
->op_notifier
;
465 sock_hold(rds_rs_to_sk(rs
));
467 notifier
->n_status
= status
;
468 spin_lock(&rs
->rs_lock
);
469 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
470 spin_unlock(&rs
->rs_lock
);
472 ro
->op_notifier
= NULL
;
475 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
478 rds_wake_sk_sleep(rs
);
479 sock_put(rds_rs_to_sk(rs
));
482 EXPORT_SYMBOL_GPL(rds_rdma_send_complete
);
485 * Just like above, except looks at atomic op
487 void rds_atomic_send_complete(struct rds_message
*rm
, int status
)
489 struct rds_sock
*rs
= NULL
;
490 struct rm_atomic_op
*ao
;
491 struct rds_notifier
*notifier
;
494 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
497 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)
498 && ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
499 notifier
= ao
->op_notifier
;
501 sock_hold(rds_rs_to_sk(rs
));
503 notifier
->n_status
= status
;
504 spin_lock(&rs
->rs_lock
);
505 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
506 spin_unlock(&rs
->rs_lock
);
508 ao
->op_notifier
= NULL
;
511 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
514 rds_wake_sk_sleep(rs
);
515 sock_put(rds_rs_to_sk(rs
));
518 EXPORT_SYMBOL_GPL(rds_atomic_send_complete
);
521 * This is the same as rds_rdma_send_complete except we
522 * don't do any locking - we have all the ingredients (message,
523 * socket, socket lock) and can just move the notifier.
526 __rds_send_complete(struct rds_sock
*rs
, struct rds_message
*rm
, int status
)
528 struct rm_rdma_op
*ro
;
529 struct rm_atomic_op
*ao
;
532 if (ro
->op_active
&& ro
->op_notify
&& ro
->op_notifier
) {
533 ro
->op_notifier
->n_status
= status
;
534 list_add_tail(&ro
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
535 ro
->op_notifier
= NULL
;
539 if (ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
540 ao
->op_notifier
->n_status
= status
;
541 list_add_tail(&ao
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
542 ao
->op_notifier
= NULL
;
545 /* No need to wake the app - caller does this */
549 * This is called from the IB send completion when we detect
550 * a RDMA operation that failed with remote access error.
551 * So speed is not an issue here.
553 struct rds_message
*rds_send_get_message(struct rds_connection
*conn
,
554 struct rm_rdma_op
*op
)
556 struct rds_message
*rm
, *tmp
, *found
= NULL
;
559 spin_lock_irqsave(&conn
->c_lock
, flags
);
561 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
562 if (&rm
->rdma
== op
) {
563 atomic_inc(&rm
->m_refcount
);
569 list_for_each_entry_safe(rm
, tmp
, &conn
->c_send_queue
, m_conn_item
) {
570 if (&rm
->rdma
== op
) {
571 atomic_inc(&rm
->m_refcount
);
578 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
582 EXPORT_SYMBOL_GPL(rds_send_get_message
);
585 * This removes messages from the socket's list if they're on it. The list
586 * argument must be private to the caller, we must be able to modify it
587 * without locks. The messages must have a reference held for their
588 * position on the list. This function will drop that reference after
589 * removing the messages from the 'messages' list regardless of if it found
590 * the messages on the socket list or not.
592 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
)
595 struct rds_sock
*rs
= NULL
;
596 struct rds_message
*rm
;
598 while (!list_empty(messages
)) {
601 rm
= list_entry(messages
->next
, struct rds_message
,
603 list_del_init(&rm
->m_conn_item
);
606 * If we see this flag cleared then we're *sure* that someone
607 * else beat us to removing it from the sock. If we race
608 * with their flag update we'll get the lock and then really
609 * see that the flag has been cleared.
611 * The message spinlock makes sure nobody clears rm->m_rs
612 * while we're messing with it. It does not prevent the
613 * message from being removed from the socket, though.
615 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
616 if (!test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
))
617 goto unlock_and_drop
;
619 if (rs
!= rm
->m_rs
) {
621 rds_wake_sk_sleep(rs
);
622 sock_put(rds_rs_to_sk(rs
));
626 sock_hold(rds_rs_to_sk(rs
));
629 goto unlock_and_drop
;
630 spin_lock(&rs
->rs_lock
);
632 if (test_and_clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)) {
633 struct rm_rdma_op
*ro
= &rm
->rdma
;
634 struct rds_notifier
*notifier
;
636 list_del_init(&rm
->m_sock_item
);
637 rds_send_sndbuf_remove(rs
, rm
);
639 if (ro
->op_active
&& ro
->op_notifier
&&
640 (ro
->op_notify
|| (ro
->op_recverr
&& status
))) {
641 notifier
= ro
->op_notifier
;
642 list_add_tail(¬ifier
->n_list
,
643 &rs
->rs_notify_queue
);
644 if (!notifier
->n_status
)
645 notifier
->n_status
= status
;
646 rm
->rdma
.op_notifier
= NULL
;
651 spin_unlock(&rs
->rs_lock
);
654 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
661 rds_wake_sk_sleep(rs
);
662 sock_put(rds_rs_to_sk(rs
));
667 * Transports call here when they've determined that the receiver queued
668 * messages up to, and including, the given sequence number. Messages are
669 * moved to the retrans queue when rds_send_xmit picks them off the send
670 * queue. This means that in the TCP case, the message may not have been
671 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
672 * checks the RDS_MSG_HAS_ACK_SEQ bit.
674 void rds_send_drop_acked(struct rds_connection
*conn
, u64 ack
,
675 is_acked_func is_acked
)
677 struct rds_message
*rm
, *tmp
;
681 spin_lock_irqsave(&conn
->c_lock
, flags
);
683 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
684 if (!rds_send_is_acked(rm
, ack
, is_acked
))
687 list_move(&rm
->m_conn_item
, &list
);
688 clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
691 /* order flag updates with spin locks */
692 if (!list_empty(&list
))
693 smp_mb__after_atomic();
695 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
697 /* now remove the messages from the sock list as needed */
698 rds_send_remove_from_sock(&list
, RDS_RDMA_SUCCESS
);
700 EXPORT_SYMBOL_GPL(rds_send_drop_acked
);
702 void rds_send_drop_to(struct rds_sock
*rs
, struct sockaddr_in
*dest
)
704 struct rds_message
*rm
, *tmp
;
705 struct rds_connection
*conn
;
709 /* get all the messages we're dropping under the rs lock */
710 spin_lock_irqsave(&rs
->rs_lock
, flags
);
712 list_for_each_entry_safe(rm
, tmp
, &rs
->rs_send_queue
, m_sock_item
) {
713 if (dest
&& (dest
->sin_addr
.s_addr
!= rm
->m_daddr
||
714 dest
->sin_port
!= rm
->m_inc
.i_hdr
.h_dport
))
717 list_move(&rm
->m_sock_item
, &list
);
718 rds_send_sndbuf_remove(rs
, rm
);
719 clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
722 /* order flag updates with the rs lock */
723 smp_mb__after_atomic();
725 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
727 if (list_empty(&list
))
730 /* Remove the messages from the conn */
731 list_for_each_entry(rm
, &list
, m_sock_item
) {
733 conn
= rm
->m_inc
.i_conn
;
735 spin_lock_irqsave(&conn
->c_lock
, flags
);
737 * Maybe someone else beat us to removing rm from the conn.
738 * If we race with their flag update we'll get the lock and
739 * then really see that the flag has been cleared.
741 if (!test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
)) {
742 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
743 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
745 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
748 list_del_init(&rm
->m_conn_item
);
749 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
752 * Couldn't grab m_rs_lock in top loop (lock ordering),
755 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
757 spin_lock(&rs
->rs_lock
);
758 __rds_send_complete(rs
, rm
, RDS_RDMA_CANCELED
);
759 spin_unlock(&rs
->rs_lock
);
762 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
767 rds_wake_sk_sleep(rs
);
769 while (!list_empty(&list
)) {
770 rm
= list_entry(list
.next
, struct rds_message
, m_sock_item
);
771 list_del_init(&rm
->m_sock_item
);
773 rds_message_wait(rm
);
779 * we only want this to fire once so we use the callers 'queued'. It's
780 * possible that another thread can race with us and remove the
781 * message from the flow with RDS_CANCEL_SENT_TO.
783 static int rds_send_queue_rm(struct rds_sock
*rs
, struct rds_connection
*conn
,
784 struct rds_message
*rm
, __be16 sport
,
785 __be16 dport
, int *queued
)
793 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
795 /* this is the only place which holds both the socket's rs_lock
796 * and the connection's c_lock */
797 spin_lock_irqsave(&rs
->rs_lock
, flags
);
800 * If there is a little space in sndbuf, we don't queue anything,
801 * and userspace gets -EAGAIN. But poll() indicates there's send
802 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
803 * freed up by incoming acks. So we check the *old* value of
804 * rs_snd_bytes here to allow the last msg to exceed the buffer,
805 * and poll() now knows no more data can be sent.
807 if (rs
->rs_snd_bytes
< rds_sk_sndbuf(rs
)) {
808 rs
->rs_snd_bytes
+= len
;
810 /* let recv side know we are close to send space exhaustion.
811 * This is probably not the optimal way to do it, as this
812 * means we set the flag on *all* messages as soon as our
813 * throughput hits a certain threshold.
815 if (rs
->rs_snd_bytes
>= rds_sk_sndbuf(rs
) / 2)
816 __set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
818 list_add_tail(&rm
->m_sock_item
, &rs
->rs_send_queue
);
819 set_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
820 rds_message_addref(rm
);
823 /* The code ordering is a little weird, but we're
824 trying to minimize the time we hold c_lock */
825 rds_message_populate_header(&rm
->m_inc
.i_hdr
, sport
, dport
, 0);
826 rm
->m_inc
.i_conn
= conn
;
827 rds_message_addref(rm
);
829 spin_lock(&conn
->c_lock
);
830 rm
->m_inc
.i_hdr
.h_sequence
= cpu_to_be64(conn
->c_next_tx_seq
++);
831 list_add_tail(&rm
->m_conn_item
, &conn
->c_send_queue
);
832 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
833 spin_unlock(&conn
->c_lock
);
835 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
836 rm
, len
, rs
, rs
->rs_snd_bytes
,
837 (unsigned long long)be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
));
842 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
848 * rds_message is getting to be quite complicated, and we'd like to allocate
849 * it all in one go. This figures out how big it needs to be up front.
851 static int rds_rm_size(struct msghdr
*msg
, int data_len
)
853 struct cmsghdr
*cmsg
;
858 for_each_cmsghdr(cmsg
, msg
) {
859 if (!CMSG_OK(msg
, cmsg
))
862 if (cmsg
->cmsg_level
!= SOL_RDS
)
865 switch (cmsg
->cmsg_type
) {
866 case RDS_CMSG_RDMA_ARGS
:
868 retval
= rds_rdma_extra_size(CMSG_DATA(cmsg
));
875 case RDS_CMSG_RDMA_DEST
:
876 case RDS_CMSG_RDMA_MAP
:
878 /* these are valid but do no add any size */
881 case RDS_CMSG_ATOMIC_CSWP
:
882 case RDS_CMSG_ATOMIC_FADD
:
883 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
884 case RDS_CMSG_MASKED_ATOMIC_FADD
:
886 size
+= sizeof(struct scatterlist
);
895 size
+= ceil(data_len
, PAGE_SIZE
) * sizeof(struct scatterlist
);
897 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
898 if (cmsg_groups
== 3)
904 static int rds_cmsg_send(struct rds_sock
*rs
, struct rds_message
*rm
,
905 struct msghdr
*msg
, int *allocated_mr
)
907 struct cmsghdr
*cmsg
;
910 for_each_cmsghdr(cmsg
, msg
) {
911 if (!CMSG_OK(msg
, cmsg
))
914 if (cmsg
->cmsg_level
!= SOL_RDS
)
917 /* As a side effect, RDMA_DEST and RDMA_MAP will set
918 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
920 switch (cmsg
->cmsg_type
) {
921 case RDS_CMSG_RDMA_ARGS
:
922 ret
= rds_cmsg_rdma_args(rs
, rm
, cmsg
);
925 case RDS_CMSG_RDMA_DEST
:
926 ret
= rds_cmsg_rdma_dest(rs
, rm
, cmsg
);
929 case RDS_CMSG_RDMA_MAP
:
930 ret
= rds_cmsg_rdma_map(rs
, rm
, cmsg
);
934 case RDS_CMSG_ATOMIC_CSWP
:
935 case RDS_CMSG_ATOMIC_FADD
:
936 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
937 case RDS_CMSG_MASKED_ATOMIC_FADD
:
938 ret
= rds_cmsg_atomic(rs
, rm
, cmsg
);
952 int rds_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t payload_len
)
954 struct sock
*sk
= sock
->sk
;
955 struct rds_sock
*rs
= rds_sk_to_rs(sk
);
956 DECLARE_SOCKADDR(struct sockaddr_in
*, usin
, msg
->msg_name
);
959 struct rds_message
*rm
= NULL
;
960 struct rds_connection
*conn
;
962 int queued
= 0, allocated_mr
= 0;
963 int nonblock
= msg
->msg_flags
& MSG_DONTWAIT
;
964 long timeo
= sock_sndtimeo(sk
, nonblock
);
966 /* Mirror Linux UDP mirror of BSD error message compatibility */
967 /* XXX: Perhaps MSG_MORE someday */
968 if (msg
->msg_flags
& ~(MSG_DONTWAIT
| MSG_CMSG_COMPAT
)) {
973 if (msg
->msg_namelen
) {
974 /* XXX fail non-unicast destination IPs? */
975 if (msg
->msg_namelen
< sizeof(*usin
) || usin
->sin_family
!= AF_INET
) {
979 daddr
= usin
->sin_addr
.s_addr
;
980 dport
= usin
->sin_port
;
982 /* We only care about consistency with ->connect() */
984 daddr
= rs
->rs_conn_addr
;
985 dport
= rs
->rs_conn_port
;
990 if (daddr
== 0 || rs
->rs_bound_addr
== 0) {
992 ret
= -ENOTCONN
; /* XXX not a great errno */
997 /* size of rm including all sgs */
998 ret
= rds_rm_size(msg
, payload_len
);
1002 rm
= rds_message_alloc(ret
, GFP_KERNEL
);
1008 /* Attach data to the rm */
1010 rm
->data
.op_sg
= rds_message_alloc_sgs(rm
, ceil(payload_len
, PAGE_SIZE
));
1011 if (!rm
->data
.op_sg
) {
1015 ret
= rds_message_copy_from_user(rm
, &msg
->msg_iter
);
1019 rm
->data
.op_active
= 1;
1021 rm
->m_daddr
= daddr
;
1023 /* rds_conn_create has a spinlock that runs with IRQ off.
1024 * Caching the conn in the socket helps a lot. */
1025 if (rs
->rs_conn
&& rs
->rs_conn
->c_faddr
== daddr
)
1028 conn
= rds_conn_create_outgoing(rs
->rs_bound_addr
, daddr
,
1030 sock
->sk
->sk_allocation
);
1032 ret
= PTR_ERR(conn
);
1038 /* Parse any control messages the user may have included. */
1039 ret
= rds_cmsg_send(rs
, rm
, msg
, &allocated_mr
);
1043 if (rm
->rdma
.op_active
&& !conn
->c_trans
->xmit_rdma
) {
1044 printk_ratelimited(KERN_NOTICE
"rdma_op %p conn xmit_rdma %p\n",
1045 &rm
->rdma
, conn
->c_trans
->xmit_rdma
);
1050 if (rm
->atomic
.op_active
&& !conn
->c_trans
->xmit_atomic
) {
1051 printk_ratelimited(KERN_NOTICE
"atomic_op %p conn xmit_atomic %p\n",
1052 &rm
->atomic
, conn
->c_trans
->xmit_atomic
);
1057 rds_conn_connect_if_down(conn
);
1059 ret
= rds_cong_wait(conn
->c_fcong
, dport
, nonblock
, rs
);
1061 rs
->rs_seen_congestion
= 1;
1065 while (!rds_send_queue_rm(rs
, conn
, rm
, rs
->rs_bound_port
,
1067 rds_stats_inc(s_send_queue_full
);
1068 /* XXX make sure this is reasonable */
1069 if (payload_len
> rds_sk_sndbuf(rs
)) {
1078 timeo
= wait_event_interruptible_timeout(*sk_sleep(sk
),
1079 rds_send_queue_rm(rs
, conn
, rm
,
1084 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued
, timeo
);
1085 if (timeo
> 0 || timeo
== MAX_SCHEDULE_TIMEOUT
)
1095 * By now we've committed to the send. We reuse rds_send_worker()
1096 * to retry sends in the rds thread if the transport asks us to.
1098 rds_stats_inc(s_send_queued
);
1100 if (!test_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
))
1101 rds_send_xmit(conn
);
1103 rds_message_put(rm
);
1107 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1108 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1109 * or in any other way, we need to destroy the MR again */
1111 rds_rdma_unuse(rs
, rds_rdma_cookie_key(rm
->m_rdma_cookie
), 1);
1114 rds_message_put(rm
);
1119 * Reply to a ping packet.
1122 rds_send_pong(struct rds_connection
*conn
, __be16 dport
)
1124 struct rds_message
*rm
;
1125 unsigned long flags
;
1128 rm
= rds_message_alloc(0, GFP_ATOMIC
);
1134 rm
->m_daddr
= conn
->c_faddr
;
1135 rm
->data
.op_active
= 1;
1137 rds_conn_connect_if_down(conn
);
1139 ret
= rds_cong_wait(conn
->c_fcong
, dport
, 1, NULL
);
1143 spin_lock_irqsave(&conn
->c_lock
, flags
);
1144 list_add_tail(&rm
->m_conn_item
, &conn
->c_send_queue
);
1145 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
1146 rds_message_addref(rm
);
1147 rm
->m_inc
.i_conn
= conn
;
1149 rds_message_populate_header(&rm
->m_inc
.i_hdr
, 0, dport
,
1150 conn
->c_next_tx_seq
);
1151 conn
->c_next_tx_seq
++;
1152 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
1154 rds_stats_inc(s_send_queued
);
1155 rds_stats_inc(s_send_pong
);
1157 if (!test_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
))
1158 queue_delayed_work(rds_wq
, &conn
->c_send_w
, 0);
1160 rds_message_put(rm
);
1165 rds_message_put(rm
);