2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * 2003-10-17 - Ported from altq
12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation is hereby granted (including for commercial or
16 * for-profit use), provided that both the copyright notice and this
17 * permission notice appear in all copies of the software, derivative
18 * works, or modified versions, and any portions thereof.
20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
35 * Carnegie Mellon encourages (but does not require) users of this
36 * software to return any improvements or extensions that they make,
37 * and to grant Carnegie Mellon the rights to redistribute these
38 * changes without encumbrance.
41 * H-FSC is described in Proceedings of SIGCOMM'97,
42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43 * Real-Time and Priority Service"
44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47 * when a class has an upperlimit, the fit-time is computed from the
48 * upperlimit service curve. the link-sharing scheduler does not schedule
49 * a class whose fit-time exceeds the current time.
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/errno.h>
56 #include <linux/compiler.h>
57 #include <linux/spinlock.h>
58 #include <linux/skbuff.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/list.h>
62 #include <linux/rbtree.h>
63 #include <linux/init.h>
64 #include <linux/rtnetlink.h>
65 #include <linux/pkt_sched.h>
66 #include <net/netlink.h>
67 #include <net/pkt_sched.h>
68 #include <net/pkt_cls.h>
69 #include <asm/div64.h>
72 * kernel internal service curve representation:
73 * coordinates are given by 64 bit unsigned integers.
74 * x-axis: unit is clock count.
75 * y-axis: unit is byte.
77 * The service curve parameters are converted to the internal
78 * representation. The slope values are scaled to avoid overflow.
79 * the inverse slope values as well as the y-projection of the 1st
80 * segment are kept in order to avoid 64-bit divide operations
81 * that are expensive on 32-bit architectures.
85 u64 sm1
; /* scaled slope of the 1st segment */
86 u64 ism1
; /* scaled inverse-slope of the 1st segment */
87 u64 dx
; /* the x-projection of the 1st segment */
88 u64 dy
; /* the y-projection of the 1st segment */
89 u64 sm2
; /* scaled slope of the 2nd segment */
90 u64 ism2
; /* scaled inverse-slope of the 2nd segment */
93 /* runtime service curve */
95 u64 x
; /* current starting position on x-axis */
96 u64 y
; /* current starting position on y-axis */
97 u64 sm1
; /* scaled slope of the 1st segment */
98 u64 ism1
; /* scaled inverse-slope of the 1st segment */
99 u64 dx
; /* the x-projection of the 1st segment */
100 u64 dy
; /* the y-projection of the 1st segment */
101 u64 sm2
; /* scaled slope of the 2nd segment */
102 u64 ism2
; /* scaled inverse-slope of the 2nd segment */
105 enum hfsc_class_flags
{
112 struct Qdisc_class_common cl_common
;
113 unsigned int refcnt
; /* usage count */
115 struct gnet_stats_basic_packed bstats
;
116 struct gnet_stats_queue qstats
;
117 struct gnet_stats_rate_est64 rate_est
;
118 unsigned int level
; /* class level in hierarchy */
119 struct tcf_proto __rcu
*filter_list
; /* filter list */
120 unsigned int filter_cnt
; /* filter count */
122 struct hfsc_sched
*sched
; /* scheduler data */
123 struct hfsc_class
*cl_parent
; /* parent class */
124 struct list_head siblings
; /* sibling classes */
125 struct list_head children
; /* child classes */
126 struct Qdisc
*qdisc
; /* leaf qdisc */
128 struct rb_node el_node
; /* qdisc's eligible tree member */
129 struct rb_root vt_tree
; /* active children sorted by cl_vt */
130 struct rb_node vt_node
; /* parent's vt_tree member */
131 struct rb_root cf_tree
; /* active children sorted by cl_f */
132 struct rb_node cf_node
; /* parent's cf_heap member */
133 struct list_head dlist
; /* drop list member */
135 u64 cl_total
; /* total work in bytes */
136 u64 cl_cumul
; /* cumulative work in bytes done by
137 real-time criteria */
139 u64 cl_d
; /* deadline*/
140 u64 cl_e
; /* eligible time */
141 u64 cl_vt
; /* virtual time */
142 u64 cl_f
; /* time when this class will fit for
143 link-sharing, max(myf, cfmin) */
144 u64 cl_myf
; /* my fit-time (calculated from this
145 class's own upperlimit curve) */
146 u64 cl_myfadj
; /* my fit-time adjustment (to cancel
147 history dependence) */
148 u64 cl_cfmin
; /* earliest children's fit-time (used
149 with cl_myf to obtain cl_f) */
150 u64 cl_cvtmin
; /* minimal virtual time among the
151 children fit for link-sharing
152 (monotonic within a period) */
153 u64 cl_vtadj
; /* intra-period cumulative vt
155 u64 cl_vtoff
; /* inter-period cumulative vt offset */
156 u64 cl_cvtmax
; /* max child's vt in the last period */
157 u64 cl_cvtoff
; /* cumulative cvtmax of all periods */
158 u64 cl_pcvtoff
; /* parent's cvtoff at initialization
161 struct internal_sc cl_rsc
; /* internal real-time service curve */
162 struct internal_sc cl_fsc
; /* internal fair service curve */
163 struct internal_sc cl_usc
; /* internal upperlimit service curve */
164 struct runtime_sc cl_deadline
; /* deadline curve */
165 struct runtime_sc cl_eligible
; /* eligible curve */
166 struct runtime_sc cl_virtual
; /* virtual curve */
167 struct runtime_sc cl_ulimit
; /* upperlimit curve */
169 unsigned long cl_flags
; /* which curves are valid */
170 unsigned long cl_vtperiod
; /* vt period sequence number */
171 unsigned long cl_parentperiod
;/* parent's vt period sequence number*/
172 unsigned long cl_nactive
; /* number of active children */
176 u16 defcls
; /* default class id */
177 struct hfsc_class root
; /* root class */
178 struct Qdisc_class_hash clhash
; /* class hash */
179 struct rb_root eligible
; /* eligible tree */
180 struct list_head droplist
; /* active leaf class list (for
182 struct qdisc_watchdog watchdog
; /* watchdog timer */
185 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
189 * eligible tree holds backlogged classes being sorted by their eligible times.
190 * there is one eligible tree per hfsc instance.
194 eltree_insert(struct hfsc_class
*cl
)
196 struct rb_node
**p
= &cl
->sched
->eligible
.rb_node
;
197 struct rb_node
*parent
= NULL
;
198 struct hfsc_class
*cl1
;
202 cl1
= rb_entry(parent
, struct hfsc_class
, el_node
);
203 if (cl
->cl_e
>= cl1
->cl_e
)
204 p
= &parent
->rb_right
;
206 p
= &parent
->rb_left
;
208 rb_link_node(&cl
->el_node
, parent
, p
);
209 rb_insert_color(&cl
->el_node
, &cl
->sched
->eligible
);
213 eltree_remove(struct hfsc_class
*cl
)
215 rb_erase(&cl
->el_node
, &cl
->sched
->eligible
);
219 eltree_update(struct hfsc_class
*cl
)
225 /* find the class with the minimum deadline among the eligible classes */
226 static inline struct hfsc_class
*
227 eltree_get_mindl(struct hfsc_sched
*q
, u64 cur_time
)
229 struct hfsc_class
*p
, *cl
= NULL
;
232 for (n
= rb_first(&q
->eligible
); n
!= NULL
; n
= rb_next(n
)) {
233 p
= rb_entry(n
, struct hfsc_class
, el_node
);
234 if (p
->cl_e
> cur_time
)
236 if (cl
== NULL
|| p
->cl_d
< cl
->cl_d
)
242 /* find the class with minimum eligible time among the eligible classes */
243 static inline struct hfsc_class
*
244 eltree_get_minel(struct hfsc_sched
*q
)
248 n
= rb_first(&q
->eligible
);
251 return rb_entry(n
, struct hfsc_class
, el_node
);
255 * vttree holds holds backlogged child classes being sorted by their virtual
256 * time. each intermediate class has one vttree.
259 vttree_insert(struct hfsc_class
*cl
)
261 struct rb_node
**p
= &cl
->cl_parent
->vt_tree
.rb_node
;
262 struct rb_node
*parent
= NULL
;
263 struct hfsc_class
*cl1
;
267 cl1
= rb_entry(parent
, struct hfsc_class
, vt_node
);
268 if (cl
->cl_vt
>= cl1
->cl_vt
)
269 p
= &parent
->rb_right
;
271 p
= &parent
->rb_left
;
273 rb_link_node(&cl
->vt_node
, parent
, p
);
274 rb_insert_color(&cl
->vt_node
, &cl
->cl_parent
->vt_tree
);
278 vttree_remove(struct hfsc_class
*cl
)
280 rb_erase(&cl
->vt_node
, &cl
->cl_parent
->vt_tree
);
284 vttree_update(struct hfsc_class
*cl
)
290 static inline struct hfsc_class
*
291 vttree_firstfit(struct hfsc_class
*cl
, u64 cur_time
)
293 struct hfsc_class
*p
;
296 for (n
= rb_first(&cl
->vt_tree
); n
!= NULL
; n
= rb_next(n
)) {
297 p
= rb_entry(n
, struct hfsc_class
, vt_node
);
298 if (p
->cl_f
<= cur_time
)
305 * get the leaf class with the minimum vt in the hierarchy
307 static struct hfsc_class
*
308 vttree_get_minvt(struct hfsc_class
*cl
, u64 cur_time
)
310 /* if root-class's cfmin is bigger than cur_time nothing to do */
311 if (cl
->cl_cfmin
> cur_time
)
314 while (cl
->level
> 0) {
315 cl
= vttree_firstfit(cl
, cur_time
);
319 * update parent's cl_cvtmin.
321 if (cl
->cl_parent
->cl_cvtmin
< cl
->cl_vt
)
322 cl
->cl_parent
->cl_cvtmin
= cl
->cl_vt
;
328 cftree_insert(struct hfsc_class
*cl
)
330 struct rb_node
**p
= &cl
->cl_parent
->cf_tree
.rb_node
;
331 struct rb_node
*parent
= NULL
;
332 struct hfsc_class
*cl1
;
336 cl1
= rb_entry(parent
, struct hfsc_class
, cf_node
);
337 if (cl
->cl_f
>= cl1
->cl_f
)
338 p
= &parent
->rb_right
;
340 p
= &parent
->rb_left
;
342 rb_link_node(&cl
->cf_node
, parent
, p
);
343 rb_insert_color(&cl
->cf_node
, &cl
->cl_parent
->cf_tree
);
347 cftree_remove(struct hfsc_class
*cl
)
349 rb_erase(&cl
->cf_node
, &cl
->cl_parent
->cf_tree
);
353 cftree_update(struct hfsc_class
*cl
)
360 * service curve support functions
362 * external service curve parameters
365 * internal service curve parameters
366 * sm: (bytes/psched_us) << SM_SHIFT
367 * ism: (psched_us/byte) << ISM_SHIFT
370 * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
372 * sm and ism are scaled in order to keep effective digits.
373 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
374 * digits in decimal using the following table.
376 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
377 * ------------+-------------------------------------------------------
378 * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3
380 * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125
382 * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
384 #define SM_SHIFT (30 - PSCHED_SHIFT)
385 #define ISM_SHIFT (8 + PSCHED_SHIFT)
387 #define SM_MASK ((1ULL << SM_SHIFT) - 1)
388 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
391 seg_x2y(u64 x
, u64 sm
)
397 * y = x * sm >> SM_SHIFT
398 * but divide it for the upper and lower bits to avoid overflow
400 y
= (x
>> SM_SHIFT
) * sm
+ (((x
& SM_MASK
) * sm
) >> SM_SHIFT
);
405 seg_y2x(u64 y
, u64 ism
)
411 else if (ism
== HT_INFINITY
)
414 x
= (y
>> ISM_SHIFT
) * ism
415 + (((y
& ISM_MASK
) * ism
) >> ISM_SHIFT
);
420 /* Convert m (bps) into sm (bytes/psched us) */
426 sm
= ((u64
)m
<< SM_SHIFT
);
427 sm
+= PSCHED_TICKS_PER_SEC
- 1;
428 do_div(sm
, PSCHED_TICKS_PER_SEC
);
432 /* convert m (bps) into ism (psched us/byte) */
441 ism
= ((u64
)PSCHED_TICKS_PER_SEC
<< ISM_SHIFT
);
448 /* convert d (us) into dx (psched us) */
454 dx
= ((u64
)d
* PSCHED_TICKS_PER_SEC
);
455 dx
+= USEC_PER_SEC
- 1;
456 do_div(dx
, USEC_PER_SEC
);
460 /* convert sm (bytes/psched us) into m (bps) */
466 m
= (sm
* PSCHED_TICKS_PER_SEC
) >> SM_SHIFT
;
470 /* convert dx (psched us) into d (us) */
476 d
= dx
* USEC_PER_SEC
;
477 do_div(d
, PSCHED_TICKS_PER_SEC
);
482 sc2isc(struct tc_service_curve
*sc
, struct internal_sc
*isc
)
484 isc
->sm1
= m2sm(sc
->m1
);
485 isc
->ism1
= m2ism(sc
->m1
);
486 isc
->dx
= d2dx(sc
->d
);
487 isc
->dy
= seg_x2y(isc
->dx
, isc
->sm1
);
488 isc
->sm2
= m2sm(sc
->m2
);
489 isc
->ism2
= m2ism(sc
->m2
);
493 * initialize the runtime service curve with the given internal
494 * service curve starting at (x, y).
497 rtsc_init(struct runtime_sc
*rtsc
, struct internal_sc
*isc
, u64 x
, u64 y
)
501 rtsc
->sm1
= isc
->sm1
;
502 rtsc
->ism1
= isc
->ism1
;
505 rtsc
->sm2
= isc
->sm2
;
506 rtsc
->ism2
= isc
->ism2
;
510 * calculate the y-projection of the runtime service curve by the
511 * given x-projection value
514 rtsc_y2x(struct runtime_sc
*rtsc
, u64 y
)
520 else if (y
<= rtsc
->y
+ rtsc
->dy
) {
521 /* x belongs to the 1st segment */
523 x
= rtsc
->x
+ rtsc
->dx
;
525 x
= rtsc
->x
+ seg_y2x(y
- rtsc
->y
, rtsc
->ism1
);
527 /* x belongs to the 2nd segment */
528 x
= rtsc
->x
+ rtsc
->dx
529 + seg_y2x(y
- rtsc
->y
- rtsc
->dy
, rtsc
->ism2
);
535 rtsc_x2y(struct runtime_sc
*rtsc
, u64 x
)
541 else if (x
<= rtsc
->x
+ rtsc
->dx
)
542 /* y belongs to the 1st segment */
543 y
= rtsc
->y
+ seg_x2y(x
- rtsc
->x
, rtsc
->sm1
);
545 /* y belongs to the 2nd segment */
546 y
= rtsc
->y
+ rtsc
->dy
547 + seg_x2y(x
- rtsc
->x
- rtsc
->dx
, rtsc
->sm2
);
552 * update the runtime service curve by taking the minimum of the current
553 * runtime service curve and the service curve starting at (x, y).
556 rtsc_min(struct runtime_sc
*rtsc
, struct internal_sc
*isc
, u64 x
, u64 y
)
561 if (isc
->sm1
<= isc
->sm2
) {
562 /* service curve is convex */
563 y1
= rtsc_x2y(rtsc
, x
);
565 /* the current rtsc is smaller */
573 * service curve is concave
574 * compute the two y values of the current rtsc
578 y1
= rtsc_x2y(rtsc
, x
);
580 /* rtsc is below isc, no change to rtsc */
584 y2
= rtsc_x2y(rtsc
, x
+ isc
->dx
);
585 if (y2
>= y
+ isc
->dy
) {
586 /* rtsc is above isc, replace rtsc by isc */
595 * the two curves intersect
596 * compute the offsets (dx, dy) using the reverse
597 * function of seg_x2y()
598 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
600 dx
= (y1
- y
) << SM_SHIFT
;
601 dsm
= isc
->sm1
- isc
->sm2
;
604 * check if (x, y1) belongs to the 1st segment of rtsc.
605 * if so, add the offset.
607 if (rtsc
->x
+ rtsc
->dx
> x
)
608 dx
+= rtsc
->x
+ rtsc
->dx
- x
;
609 dy
= seg_x2y(dx
, isc
->sm1
);
618 init_ed(struct hfsc_class
*cl
, unsigned int next_len
)
620 u64 cur_time
= psched_get_time();
622 /* update the deadline curve */
623 rtsc_min(&cl
->cl_deadline
, &cl
->cl_rsc
, cur_time
, cl
->cl_cumul
);
626 * update the eligible curve.
627 * for concave, it is equal to the deadline curve.
628 * for convex, it is a linear curve with slope m2.
630 cl
->cl_eligible
= cl
->cl_deadline
;
631 if (cl
->cl_rsc
.sm1
<= cl
->cl_rsc
.sm2
) {
632 cl
->cl_eligible
.dx
= 0;
633 cl
->cl_eligible
.dy
= 0;
636 /* compute e and d */
637 cl
->cl_e
= rtsc_y2x(&cl
->cl_eligible
, cl
->cl_cumul
);
638 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
644 update_ed(struct hfsc_class
*cl
, unsigned int next_len
)
646 cl
->cl_e
= rtsc_y2x(&cl
->cl_eligible
, cl
->cl_cumul
);
647 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
653 update_d(struct hfsc_class
*cl
, unsigned int next_len
)
655 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
659 update_cfmin(struct hfsc_class
*cl
)
661 struct rb_node
*n
= rb_first(&cl
->cf_tree
);
662 struct hfsc_class
*p
;
668 p
= rb_entry(n
, struct hfsc_class
, cf_node
);
669 cl
->cl_cfmin
= p
->cl_f
;
673 init_vf(struct hfsc_class
*cl
, unsigned int len
)
675 struct hfsc_class
*max_cl
;
682 for (; cl
->cl_parent
!= NULL
; cl
= cl
->cl_parent
) {
683 if (go_active
&& cl
->cl_nactive
++ == 0)
689 n
= rb_last(&cl
->cl_parent
->vt_tree
);
691 max_cl
= rb_entry(n
, struct hfsc_class
, vt_node
);
693 * set vt to the average of the min and max
694 * classes. if the parent's period didn't
695 * change, don't decrease vt of the class.
698 if (cl
->cl_parent
->cl_cvtmin
!= 0)
699 vt
= (cl
->cl_parent
->cl_cvtmin
+ vt
)/2;
701 if (cl
->cl_parent
->cl_vtperiod
!=
702 cl
->cl_parentperiod
|| vt
> cl
->cl_vt
)
706 * first child for a new parent backlog period.
707 * add parent's cvtmax to cvtoff to make a new
708 * vt (vtoff + vt) larger than the vt in the
709 * last period for all children.
711 vt
= cl
->cl_parent
->cl_cvtmax
;
712 cl
->cl_parent
->cl_cvtoff
+= vt
;
713 cl
->cl_parent
->cl_cvtmax
= 0;
714 cl
->cl_parent
->cl_cvtmin
= 0;
718 cl
->cl_vtoff
= cl
->cl_parent
->cl_cvtoff
-
721 /* update the virtual curve */
722 vt
= cl
->cl_vt
+ cl
->cl_vtoff
;
723 rtsc_min(&cl
->cl_virtual
, &cl
->cl_fsc
, vt
,
725 if (cl
->cl_virtual
.x
== vt
) {
726 cl
->cl_virtual
.x
-= cl
->cl_vtoff
;
731 cl
->cl_vtperiod
++; /* increment vt period */
732 cl
->cl_parentperiod
= cl
->cl_parent
->cl_vtperiod
;
733 if (cl
->cl_parent
->cl_nactive
== 0)
734 cl
->cl_parentperiod
++;
740 if (cl
->cl_flags
& HFSC_USC
) {
741 /* class has upper limit curve */
743 cur_time
= psched_get_time();
745 /* update the ulimit curve */
746 rtsc_min(&cl
->cl_ulimit
, &cl
->cl_usc
, cur_time
,
749 cl
->cl_myf
= rtsc_y2x(&cl
->cl_ulimit
,
755 f
= max(cl
->cl_myf
, cl
->cl_cfmin
);
760 update_cfmin(cl
->cl_parent
);
765 update_vf(struct hfsc_class
*cl
, unsigned int len
, u64 cur_time
)
767 u64 f
; /* , myf_bound, delta; */
770 if (cl
->qdisc
->q
.qlen
== 0 && cl
->cl_flags
& HFSC_FSC
)
773 for (; cl
->cl_parent
!= NULL
; cl
= cl
->cl_parent
) {
776 if (!(cl
->cl_flags
& HFSC_FSC
) || cl
->cl_nactive
== 0)
779 if (go_passive
&& --cl
->cl_nactive
== 0)
785 /* no more active child, going passive */
787 /* update cvtmax of the parent class */
788 if (cl
->cl_vt
> cl
->cl_parent
->cl_cvtmax
)
789 cl
->cl_parent
->cl_cvtmax
= cl
->cl_vt
;
791 /* remove this class from the vt tree */
795 update_cfmin(cl
->cl_parent
);
803 cl
->cl_vt
= rtsc_y2x(&cl
->cl_virtual
, cl
->cl_total
)
804 - cl
->cl_vtoff
+ cl
->cl_vtadj
;
807 * if vt of the class is smaller than cvtmin,
808 * the class was skipped in the past due to non-fit.
809 * if so, we need to adjust vtadj.
811 if (cl
->cl_vt
< cl
->cl_parent
->cl_cvtmin
) {
812 cl
->cl_vtadj
+= cl
->cl_parent
->cl_cvtmin
- cl
->cl_vt
;
813 cl
->cl_vt
= cl
->cl_parent
->cl_cvtmin
;
816 /* update the vt tree */
819 if (cl
->cl_flags
& HFSC_USC
) {
820 cl
->cl_myf
= cl
->cl_myfadj
+ rtsc_y2x(&cl
->cl_ulimit
,
824 * This code causes classes to stay way under their
825 * limit when multiple classes are used at gigabit
826 * speed. needs investigation. -kaber
829 * if myf lags behind by more than one clock tick
830 * from the current time, adjust myfadj to prevent
831 * a rate-limited class from going greedy.
832 * in a steady state under rate-limiting, myf
833 * fluctuates within one clock tick.
835 myf_bound
= cur_time
- PSCHED_JIFFIE2US(1);
836 if (cl
->cl_myf
< myf_bound
) {
837 delta
= cur_time
- cl
->cl_myf
;
838 cl
->cl_myfadj
+= delta
;
844 f
= max(cl
->cl_myf
, cl
->cl_cfmin
);
848 update_cfmin(cl
->cl_parent
);
854 set_active(struct hfsc_class
*cl
, unsigned int len
)
856 if (cl
->cl_flags
& HFSC_RSC
)
858 if (cl
->cl_flags
& HFSC_FSC
)
861 list_add_tail(&cl
->dlist
, &cl
->sched
->droplist
);
865 set_passive(struct hfsc_class
*cl
)
867 if (cl
->cl_flags
& HFSC_RSC
)
870 list_del(&cl
->dlist
);
873 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
874 * needs to be called explicitly to remove a class from vttree.
879 qdisc_peek_len(struct Qdisc
*sch
)
884 skb
= sch
->ops
->peek(sch
);
886 qdisc_warn_nonwc("qdisc_peek_len", sch
);
889 len
= qdisc_pkt_len(skb
);
895 hfsc_purge_queue(struct Qdisc
*sch
, struct hfsc_class
*cl
)
897 unsigned int len
= cl
->qdisc
->q
.qlen
;
899 qdisc_reset(cl
->qdisc
);
900 qdisc_tree_decrease_qlen(cl
->qdisc
, len
);
904 hfsc_adjust_levels(struct hfsc_class
*cl
)
906 struct hfsc_class
*p
;
911 list_for_each_entry(p
, &cl
->children
, siblings
) {
912 if (p
->level
>= level
)
913 level
= p
->level
+ 1;
916 } while ((cl
= cl
->cl_parent
) != NULL
);
919 static inline struct hfsc_class
*
920 hfsc_find_class(u32 classid
, struct Qdisc
*sch
)
922 struct hfsc_sched
*q
= qdisc_priv(sch
);
923 struct Qdisc_class_common
*clc
;
925 clc
= qdisc_class_find(&q
->clhash
, classid
);
928 return container_of(clc
, struct hfsc_class
, cl_common
);
932 hfsc_change_rsc(struct hfsc_class
*cl
, struct tc_service_curve
*rsc
,
935 sc2isc(rsc
, &cl
->cl_rsc
);
936 rtsc_init(&cl
->cl_deadline
, &cl
->cl_rsc
, cur_time
, cl
->cl_cumul
);
937 cl
->cl_eligible
= cl
->cl_deadline
;
938 if (cl
->cl_rsc
.sm1
<= cl
->cl_rsc
.sm2
) {
939 cl
->cl_eligible
.dx
= 0;
940 cl
->cl_eligible
.dy
= 0;
942 cl
->cl_flags
|= HFSC_RSC
;
946 hfsc_change_fsc(struct hfsc_class
*cl
, struct tc_service_curve
*fsc
)
948 sc2isc(fsc
, &cl
->cl_fsc
);
949 rtsc_init(&cl
->cl_virtual
, &cl
->cl_fsc
, cl
->cl_vt
, cl
->cl_total
);
950 cl
->cl_flags
|= HFSC_FSC
;
954 hfsc_change_usc(struct hfsc_class
*cl
, struct tc_service_curve
*usc
,
957 sc2isc(usc
, &cl
->cl_usc
);
958 rtsc_init(&cl
->cl_ulimit
, &cl
->cl_usc
, cur_time
, cl
->cl_total
);
959 cl
->cl_flags
|= HFSC_USC
;
962 static const struct nla_policy hfsc_policy
[TCA_HFSC_MAX
+ 1] = {
963 [TCA_HFSC_RSC
] = { .len
= sizeof(struct tc_service_curve
) },
964 [TCA_HFSC_FSC
] = { .len
= sizeof(struct tc_service_curve
) },
965 [TCA_HFSC_USC
] = { .len
= sizeof(struct tc_service_curve
) },
969 hfsc_change_class(struct Qdisc
*sch
, u32 classid
, u32 parentid
,
970 struct nlattr
**tca
, unsigned long *arg
)
972 struct hfsc_sched
*q
= qdisc_priv(sch
);
973 struct hfsc_class
*cl
= (struct hfsc_class
*)*arg
;
974 struct hfsc_class
*parent
= NULL
;
975 struct nlattr
*opt
= tca
[TCA_OPTIONS
];
976 struct nlattr
*tb
[TCA_HFSC_MAX
+ 1];
977 struct tc_service_curve
*rsc
= NULL
, *fsc
= NULL
, *usc
= NULL
;
984 err
= nla_parse_nested(tb
, TCA_HFSC_MAX
, opt
, hfsc_policy
);
988 if (tb
[TCA_HFSC_RSC
]) {
989 rsc
= nla_data(tb
[TCA_HFSC_RSC
]);
990 if (rsc
->m1
== 0 && rsc
->m2
== 0)
994 if (tb
[TCA_HFSC_FSC
]) {
995 fsc
= nla_data(tb
[TCA_HFSC_FSC
]);
996 if (fsc
->m1
== 0 && fsc
->m2
== 0)
1000 if (tb
[TCA_HFSC_USC
]) {
1001 usc
= nla_data(tb
[TCA_HFSC_USC
]);
1002 if (usc
->m1
== 0 && usc
->m2
== 0)
1008 if (cl
->cl_parent
&&
1009 cl
->cl_parent
->cl_common
.classid
!= parentid
)
1011 if (cl
->cl_parent
== NULL
&& parentid
!= TC_H_ROOT
)
1014 cur_time
= psched_get_time();
1016 if (tca
[TCA_RATE
]) {
1017 spinlock_t
*lock
= qdisc_root_sleeping_lock(sch
);
1019 err
= gen_replace_estimator(&cl
->bstats
, NULL
,
1029 hfsc_change_rsc(cl
, rsc
, cur_time
);
1031 hfsc_change_fsc(cl
, fsc
);
1033 hfsc_change_usc(cl
, usc
, cur_time
);
1035 if (cl
->qdisc
->q
.qlen
!= 0) {
1036 if (cl
->cl_flags
& HFSC_RSC
)
1037 update_ed(cl
, qdisc_peek_len(cl
->qdisc
));
1038 if (cl
->cl_flags
& HFSC_FSC
)
1039 update_vf(cl
, 0, cur_time
);
1041 sch_tree_unlock(sch
);
1046 if (parentid
== TC_H_ROOT
)
1051 parent
= hfsc_find_class(parentid
, sch
);
1056 if (classid
== 0 || TC_H_MAJ(classid
^ sch
->handle
) != 0)
1058 if (hfsc_find_class(classid
, sch
))
1061 if (rsc
== NULL
&& fsc
== NULL
)
1064 cl
= kzalloc(sizeof(struct hfsc_class
), GFP_KERNEL
);
1068 if (tca
[TCA_RATE
]) {
1069 err
= gen_new_estimator(&cl
->bstats
, NULL
, &cl
->rate_est
,
1070 qdisc_root_sleeping_lock(sch
),
1079 hfsc_change_rsc(cl
, rsc
, 0);
1081 hfsc_change_fsc(cl
, fsc
);
1083 hfsc_change_usc(cl
, usc
, 0);
1085 cl
->cl_common
.classid
= classid
;
1088 cl
->cl_parent
= parent
;
1089 cl
->qdisc
= qdisc_create_dflt(sch
->dev_queue
,
1090 &pfifo_qdisc_ops
, classid
);
1091 if (cl
->qdisc
== NULL
)
1092 cl
->qdisc
= &noop_qdisc
;
1093 INIT_LIST_HEAD(&cl
->children
);
1094 cl
->vt_tree
= RB_ROOT
;
1095 cl
->cf_tree
= RB_ROOT
;
1098 qdisc_class_hash_insert(&q
->clhash
, &cl
->cl_common
);
1099 list_add_tail(&cl
->siblings
, &parent
->children
);
1100 if (parent
->level
== 0)
1101 hfsc_purge_queue(sch
, parent
);
1102 hfsc_adjust_levels(parent
);
1103 cl
->cl_pcvtoff
= parent
->cl_cvtoff
;
1104 sch_tree_unlock(sch
);
1106 qdisc_class_hash_grow(sch
, &q
->clhash
);
1108 *arg
= (unsigned long)cl
;
1113 hfsc_destroy_class(struct Qdisc
*sch
, struct hfsc_class
*cl
)
1115 struct hfsc_sched
*q
= qdisc_priv(sch
);
1117 tcf_destroy_chain(&cl
->filter_list
);
1118 qdisc_destroy(cl
->qdisc
);
1119 gen_kill_estimator(&cl
->bstats
, &cl
->rate_est
);
1125 hfsc_delete_class(struct Qdisc
*sch
, unsigned long arg
)
1127 struct hfsc_sched
*q
= qdisc_priv(sch
);
1128 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1130 if (cl
->level
> 0 || cl
->filter_cnt
> 0 || cl
== &q
->root
)
1135 list_del(&cl
->siblings
);
1136 hfsc_adjust_levels(cl
->cl_parent
);
1138 hfsc_purge_queue(sch
, cl
);
1139 qdisc_class_hash_remove(&q
->clhash
, &cl
->cl_common
);
1141 BUG_ON(--cl
->refcnt
== 0);
1143 * This shouldn't happen: we "hold" one cops->get() when called
1144 * from tc_ctl_tclass; the destroy method is done from cops->put().
1147 sch_tree_unlock(sch
);
1151 static struct hfsc_class
*
1152 hfsc_classify(struct sk_buff
*skb
, struct Qdisc
*sch
, int *qerr
)
1154 struct hfsc_sched
*q
= qdisc_priv(sch
);
1155 struct hfsc_class
*head
, *cl
;
1156 struct tcf_result res
;
1157 struct tcf_proto
*tcf
;
1160 if (TC_H_MAJ(skb
->priority
^ sch
->handle
) == 0 &&
1161 (cl
= hfsc_find_class(skb
->priority
, sch
)) != NULL
)
1165 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
1167 tcf
= rcu_dereference_bh(q
->root
.filter_list
);
1168 while (tcf
&& (result
= tc_classify(skb
, tcf
, &res
)) >= 0) {
1169 #ifdef CONFIG_NET_CLS_ACT
1173 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_STOLEN
;
1178 cl
= (struct hfsc_class
*)res
.class;
1180 cl
= hfsc_find_class(res
.classid
, sch
);
1182 break; /* filter selected invalid classid */
1183 if (cl
->level
>= head
->level
)
1184 break; /* filter may only point downwards */
1188 return cl
; /* hit leaf class */
1190 /* apply inner filter chain */
1191 tcf
= rcu_dereference_bh(cl
->filter_list
);
1195 /* classification failed, try default class */
1196 cl
= hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch
->handle
), q
->defcls
), sch
);
1197 if (cl
== NULL
|| cl
->level
> 0)
1204 hfsc_graft_class(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
1207 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1212 new = qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
1213 cl
->cl_common
.classid
);
1219 hfsc_purge_queue(sch
, cl
);
1222 sch_tree_unlock(sch
);
1226 static struct Qdisc
*
1227 hfsc_class_leaf(struct Qdisc
*sch
, unsigned long arg
)
1229 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1238 hfsc_qlen_notify(struct Qdisc
*sch
, unsigned long arg
)
1240 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1242 if (cl
->qdisc
->q
.qlen
== 0) {
1243 update_vf(cl
, 0, 0);
1248 static unsigned long
1249 hfsc_get_class(struct Qdisc
*sch
, u32 classid
)
1251 struct hfsc_class
*cl
= hfsc_find_class(classid
, sch
);
1256 return (unsigned long)cl
;
1260 hfsc_put_class(struct Qdisc
*sch
, unsigned long arg
)
1262 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1264 if (--cl
->refcnt
== 0)
1265 hfsc_destroy_class(sch
, cl
);
1268 static unsigned long
1269 hfsc_bind_tcf(struct Qdisc
*sch
, unsigned long parent
, u32 classid
)
1271 struct hfsc_class
*p
= (struct hfsc_class
*)parent
;
1272 struct hfsc_class
*cl
= hfsc_find_class(classid
, sch
);
1275 if (p
!= NULL
&& p
->level
<= cl
->level
)
1280 return (unsigned long)cl
;
1284 hfsc_unbind_tcf(struct Qdisc
*sch
, unsigned long arg
)
1286 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1291 static struct tcf_proto __rcu
**
1292 hfsc_tcf_chain(struct Qdisc
*sch
, unsigned long arg
)
1294 struct hfsc_sched
*q
= qdisc_priv(sch
);
1295 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1300 return &cl
->filter_list
;
1304 hfsc_dump_sc(struct sk_buff
*skb
, int attr
, struct internal_sc
*sc
)
1306 struct tc_service_curve tsc
;
1308 tsc
.m1
= sm2m(sc
->sm1
);
1309 tsc
.d
= dx2d(sc
->dx
);
1310 tsc
.m2
= sm2m(sc
->sm2
);
1311 if (nla_put(skb
, attr
, sizeof(tsc
), &tsc
))
1312 goto nla_put_failure
;
1321 hfsc_dump_curves(struct sk_buff
*skb
, struct hfsc_class
*cl
)
1323 if ((cl
->cl_flags
& HFSC_RSC
) &&
1324 (hfsc_dump_sc(skb
, TCA_HFSC_RSC
, &cl
->cl_rsc
) < 0))
1325 goto nla_put_failure
;
1327 if ((cl
->cl_flags
& HFSC_FSC
) &&
1328 (hfsc_dump_sc(skb
, TCA_HFSC_FSC
, &cl
->cl_fsc
) < 0))
1329 goto nla_put_failure
;
1331 if ((cl
->cl_flags
& HFSC_USC
) &&
1332 (hfsc_dump_sc(skb
, TCA_HFSC_USC
, &cl
->cl_usc
) < 0))
1333 goto nla_put_failure
;
1342 hfsc_dump_class(struct Qdisc
*sch
, unsigned long arg
, struct sk_buff
*skb
,
1345 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1346 struct nlattr
*nest
;
1348 tcm
->tcm_parent
= cl
->cl_parent
? cl
->cl_parent
->cl_common
.classid
:
1350 tcm
->tcm_handle
= cl
->cl_common
.classid
;
1352 tcm
->tcm_info
= cl
->qdisc
->handle
;
1354 nest
= nla_nest_start(skb
, TCA_OPTIONS
);
1356 goto nla_put_failure
;
1357 if (hfsc_dump_curves(skb
, cl
) < 0)
1358 goto nla_put_failure
;
1359 return nla_nest_end(skb
, nest
);
1362 nla_nest_cancel(skb
, nest
);
1367 hfsc_dump_class_stats(struct Qdisc
*sch
, unsigned long arg
,
1368 struct gnet_dump
*d
)
1370 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1371 struct tc_hfsc_stats xstats
;
1373 cl
->qstats
.backlog
= cl
->qdisc
->qstats
.backlog
;
1374 xstats
.level
= cl
->level
;
1375 xstats
.period
= cl
->cl_vtperiod
;
1376 xstats
.work
= cl
->cl_total
;
1377 xstats
.rtwork
= cl
->cl_cumul
;
1379 if (gnet_stats_copy_basic(d
, NULL
, &cl
->bstats
) < 0 ||
1380 gnet_stats_copy_rate_est(d
, &cl
->bstats
, &cl
->rate_est
) < 0 ||
1381 gnet_stats_copy_queue(d
, NULL
, &cl
->qstats
, cl
->qdisc
->q
.qlen
) < 0)
1384 return gnet_stats_copy_app(d
, &xstats
, sizeof(xstats
));
1390 hfsc_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
1392 struct hfsc_sched
*q
= qdisc_priv(sch
);
1393 struct hfsc_class
*cl
;
1399 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1400 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
],
1402 if (arg
->count
< arg
->skip
) {
1406 if (arg
->fn(sch
, (unsigned long)cl
, arg
) < 0) {
1416 hfsc_schedule_watchdog(struct Qdisc
*sch
)
1418 struct hfsc_sched
*q
= qdisc_priv(sch
);
1419 struct hfsc_class
*cl
;
1422 cl
= eltree_get_minel(q
);
1424 next_time
= cl
->cl_e
;
1425 if (q
->root
.cl_cfmin
!= 0) {
1426 if (next_time
== 0 || next_time
> q
->root
.cl_cfmin
)
1427 next_time
= q
->root
.cl_cfmin
;
1429 WARN_ON(next_time
== 0);
1430 qdisc_watchdog_schedule(&q
->watchdog
, next_time
);
1434 hfsc_init_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
)
1436 struct hfsc_sched
*q
= qdisc_priv(sch
);
1437 struct tc_hfsc_qopt
*qopt
;
1440 if (opt
== NULL
|| nla_len(opt
) < sizeof(*qopt
))
1442 qopt
= nla_data(opt
);
1444 q
->defcls
= qopt
->defcls
;
1445 err
= qdisc_class_hash_init(&q
->clhash
);
1448 q
->eligible
= RB_ROOT
;
1449 INIT_LIST_HEAD(&q
->droplist
);
1451 q
->root
.cl_common
.classid
= sch
->handle
;
1454 q
->root
.qdisc
= qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
1456 if (q
->root
.qdisc
== NULL
)
1457 q
->root
.qdisc
= &noop_qdisc
;
1458 INIT_LIST_HEAD(&q
->root
.children
);
1459 q
->root
.vt_tree
= RB_ROOT
;
1460 q
->root
.cf_tree
= RB_ROOT
;
1462 qdisc_class_hash_insert(&q
->clhash
, &q
->root
.cl_common
);
1463 qdisc_class_hash_grow(sch
, &q
->clhash
);
1465 qdisc_watchdog_init(&q
->watchdog
, sch
);
1471 hfsc_change_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
)
1473 struct hfsc_sched
*q
= qdisc_priv(sch
);
1474 struct tc_hfsc_qopt
*qopt
;
1476 if (opt
== NULL
|| nla_len(opt
) < sizeof(*qopt
))
1478 qopt
= nla_data(opt
);
1481 q
->defcls
= qopt
->defcls
;
1482 sch_tree_unlock(sch
);
1488 hfsc_reset_class(struct hfsc_class
*cl
)
1501 cl
->cl_vtperiod
= 0;
1502 cl
->cl_parentperiod
= 0;
1509 cl
->vt_tree
= RB_ROOT
;
1510 cl
->cf_tree
= RB_ROOT
;
1511 qdisc_reset(cl
->qdisc
);
1513 if (cl
->cl_flags
& HFSC_RSC
)
1514 rtsc_init(&cl
->cl_deadline
, &cl
->cl_rsc
, 0, 0);
1515 if (cl
->cl_flags
& HFSC_FSC
)
1516 rtsc_init(&cl
->cl_virtual
, &cl
->cl_fsc
, 0, 0);
1517 if (cl
->cl_flags
& HFSC_USC
)
1518 rtsc_init(&cl
->cl_ulimit
, &cl
->cl_usc
, 0, 0);
1522 hfsc_reset_qdisc(struct Qdisc
*sch
)
1524 struct hfsc_sched
*q
= qdisc_priv(sch
);
1525 struct hfsc_class
*cl
;
1528 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1529 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], cl_common
.hnode
)
1530 hfsc_reset_class(cl
);
1532 q
->eligible
= RB_ROOT
;
1533 INIT_LIST_HEAD(&q
->droplist
);
1534 qdisc_watchdog_cancel(&q
->watchdog
);
1539 hfsc_destroy_qdisc(struct Qdisc
*sch
)
1541 struct hfsc_sched
*q
= qdisc_priv(sch
);
1542 struct hlist_node
*next
;
1543 struct hfsc_class
*cl
;
1546 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1547 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], cl_common
.hnode
)
1548 tcf_destroy_chain(&cl
->filter_list
);
1550 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1551 hlist_for_each_entry_safe(cl
, next
, &q
->clhash
.hash
[i
],
1553 hfsc_destroy_class(sch
, cl
);
1555 qdisc_class_hash_destroy(&q
->clhash
);
1556 qdisc_watchdog_cancel(&q
->watchdog
);
1560 hfsc_dump_qdisc(struct Qdisc
*sch
, struct sk_buff
*skb
)
1562 struct hfsc_sched
*q
= qdisc_priv(sch
);
1563 unsigned char *b
= skb_tail_pointer(skb
);
1564 struct tc_hfsc_qopt qopt
;
1565 struct hfsc_class
*cl
;
1568 sch
->qstats
.backlog
= 0;
1569 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1570 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], cl_common
.hnode
)
1571 sch
->qstats
.backlog
+= cl
->qdisc
->qstats
.backlog
;
1574 qopt
.defcls
= q
->defcls
;
1575 if (nla_put(skb
, TCA_OPTIONS
, sizeof(qopt
), &qopt
))
1576 goto nla_put_failure
;
1585 hfsc_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
)
1587 struct hfsc_class
*cl
;
1588 int uninitialized_var(err
);
1590 cl
= hfsc_classify(skb
, sch
, &err
);
1592 if (err
& __NET_XMIT_BYPASS
)
1593 qdisc_qstats_drop(sch
);
1598 err
= qdisc_enqueue(skb
, cl
->qdisc
);
1599 if (unlikely(err
!= NET_XMIT_SUCCESS
)) {
1600 if (net_xmit_drop_count(err
)) {
1602 qdisc_qstats_drop(sch
);
1607 if (cl
->qdisc
->q
.qlen
== 1)
1608 set_active(cl
, qdisc_pkt_len(skb
));
1612 return NET_XMIT_SUCCESS
;
1615 static struct sk_buff
*
1616 hfsc_dequeue(struct Qdisc
*sch
)
1618 struct hfsc_sched
*q
= qdisc_priv(sch
);
1619 struct hfsc_class
*cl
;
1620 struct sk_buff
*skb
;
1622 unsigned int next_len
;
1625 if (sch
->q
.qlen
== 0)
1628 cur_time
= psched_get_time();
1631 * if there are eligible classes, use real-time criteria.
1632 * find the class with the minimum deadline among
1633 * the eligible classes.
1635 cl
= eltree_get_mindl(q
, cur_time
);
1640 * use link-sharing criteria
1641 * get the class with the minimum vt in the hierarchy
1643 cl
= vttree_get_minvt(&q
->root
, cur_time
);
1645 qdisc_qstats_overlimit(sch
);
1646 hfsc_schedule_watchdog(sch
);
1651 skb
= qdisc_dequeue_peeked(cl
->qdisc
);
1653 qdisc_warn_nonwc("HFSC", cl
->qdisc
);
1657 bstats_update(&cl
->bstats
, skb
);
1658 update_vf(cl
, qdisc_pkt_len(skb
), cur_time
);
1660 cl
->cl_cumul
+= qdisc_pkt_len(skb
);
1662 if (cl
->qdisc
->q
.qlen
!= 0) {
1663 if (cl
->cl_flags
& HFSC_RSC
) {
1665 next_len
= qdisc_peek_len(cl
->qdisc
);
1667 update_ed(cl
, next_len
);
1669 update_d(cl
, next_len
);
1672 /* the class becomes passive */
1676 qdisc_unthrottled(sch
);
1677 qdisc_bstats_update(sch
, skb
);
1684 hfsc_drop(struct Qdisc
*sch
)
1686 struct hfsc_sched
*q
= qdisc_priv(sch
);
1687 struct hfsc_class
*cl
;
1690 list_for_each_entry(cl
, &q
->droplist
, dlist
) {
1691 if (cl
->qdisc
->ops
->drop
!= NULL
&&
1692 (len
= cl
->qdisc
->ops
->drop(cl
->qdisc
)) > 0) {
1693 if (cl
->qdisc
->q
.qlen
== 0) {
1694 update_vf(cl
, 0, 0);
1697 list_move_tail(&cl
->dlist
, &q
->droplist
);
1700 qdisc_qstats_drop(sch
);
1708 static const struct Qdisc_class_ops hfsc_class_ops
= {
1709 .change
= hfsc_change_class
,
1710 .delete = hfsc_delete_class
,
1711 .graft
= hfsc_graft_class
,
1712 .leaf
= hfsc_class_leaf
,
1713 .qlen_notify
= hfsc_qlen_notify
,
1714 .get
= hfsc_get_class
,
1715 .put
= hfsc_put_class
,
1716 .bind_tcf
= hfsc_bind_tcf
,
1717 .unbind_tcf
= hfsc_unbind_tcf
,
1718 .tcf_chain
= hfsc_tcf_chain
,
1719 .dump
= hfsc_dump_class
,
1720 .dump_stats
= hfsc_dump_class_stats
,
1724 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly
= {
1726 .init
= hfsc_init_qdisc
,
1727 .change
= hfsc_change_qdisc
,
1728 .reset
= hfsc_reset_qdisc
,
1729 .destroy
= hfsc_destroy_qdisc
,
1730 .dump
= hfsc_dump_qdisc
,
1731 .enqueue
= hfsc_enqueue
,
1732 .dequeue
= hfsc_dequeue
,
1733 .peek
= qdisc_peek_dequeued
,
1735 .cl_ops
= &hfsc_class_ops
,
1736 .priv_size
= sizeof(struct hfsc_sched
),
1737 .owner
= THIS_MODULE
1743 return register_qdisc(&hfsc_qdisc_ops
);
1749 unregister_qdisc(&hfsc_qdisc_ops
);
1752 MODULE_LICENSE("GPL");
1753 module_init(hfsc_init
);
1754 module_exit(hfsc_cleanup
);