Linux 4.1.16
[linux/fpc-iii.git] / net / socket.c
blobdcbfa868e3984d04035bb8a2dc77de1c911b6239
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use);
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
219 int err;
220 int len;
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
240 return __put_user(klen, ulen);
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 static struct inode *sock_alloc_inode(struct super_block *sb)
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 RCU_INIT_POINTER(ei->socket.wq, wq);
262 ei->socket.state = SS_UNCONNECTED;
263 ei->socket.flags = 0;
264 ei->socket.ops = NULL;
265 ei->socket.sk = NULL;
266 ei->socket.file = NULL;
268 return &ei->vfs_inode;
271 static void sock_destroy_inode(struct inode *inode)
273 struct socket_alloc *ei;
274 struct socket_wq *wq;
276 ei = container_of(inode, struct socket_alloc, vfs_inode);
277 wq = rcu_dereference_protected(ei->socket.wq, 1);
278 kfree_rcu(wq, rcu);
279 kmem_cache_free(sock_inode_cachep, ei);
282 static void init_once(void *foo)
284 struct socket_alloc *ei = (struct socket_alloc *)foo;
286 inode_init_once(&ei->vfs_inode);
289 static int init_inodecache(void)
291 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
292 sizeof(struct socket_alloc),
294 (SLAB_HWCACHE_ALIGN |
295 SLAB_RECLAIM_ACCOUNT |
296 SLAB_MEM_SPREAD),
297 init_once);
298 if (sock_inode_cachep == NULL)
299 return -ENOMEM;
300 return 0;
303 static const struct super_operations sockfs_ops = {
304 .alloc_inode = sock_alloc_inode,
305 .destroy_inode = sock_destroy_inode,
306 .statfs = simple_statfs,
310 * sockfs_dname() is called from d_path().
312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
315 d_inode(dentry)->i_ino);
318 static const struct dentry_operations sockfs_dentry_operations = {
319 .d_dname = sockfs_dname,
322 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
323 int flags, const char *dev_name, void *data)
325 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
326 &sockfs_dentry_operations, SOCKFS_MAGIC);
329 static struct vfsmount *sock_mnt __read_mostly;
331 static struct file_system_type sock_fs_type = {
332 .name = "sockfs",
333 .mount = sockfs_mount,
334 .kill_sb = kill_anon_super,
338 * Obtains the first available file descriptor and sets it up for use.
340 * These functions create file structures and maps them to fd space
341 * of the current process. On success it returns file descriptor
342 * and file struct implicitly stored in sock->file.
343 * Note that another thread may close file descriptor before we return
344 * from this function. We use the fact that now we do not refer
345 * to socket after mapping. If one day we will need it, this
346 * function will increment ref. count on file by 1.
348 * In any case returned fd MAY BE not valid!
349 * This race condition is unavoidable
350 * with shared fd spaces, we cannot solve it inside kernel,
351 * but we take care of internal coherence yet.
354 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
356 struct qstr name = { .name = "" };
357 struct path path;
358 struct file *file;
360 if (dname) {
361 name.name = dname;
362 name.len = strlen(name.name);
363 } else if (sock->sk) {
364 name.name = sock->sk->sk_prot_creator->name;
365 name.len = strlen(name.name);
367 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
368 if (unlikely(!path.dentry))
369 return ERR_PTR(-ENOMEM);
370 path.mnt = mntget(sock_mnt);
372 d_instantiate(path.dentry, SOCK_INODE(sock));
374 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
375 &socket_file_ops);
376 if (unlikely(IS_ERR(file))) {
377 /* drop dentry, keep inode */
378 ihold(d_inode(path.dentry));
379 path_put(&path);
380 return file;
383 sock->file = file;
384 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
385 file->private_data = sock;
386 return file;
388 EXPORT_SYMBOL(sock_alloc_file);
390 static int sock_map_fd(struct socket *sock, int flags)
392 struct file *newfile;
393 int fd = get_unused_fd_flags(flags);
394 if (unlikely(fd < 0))
395 return fd;
397 newfile = sock_alloc_file(sock, flags, NULL);
398 if (likely(!IS_ERR(newfile))) {
399 fd_install(fd, newfile);
400 return fd;
403 put_unused_fd(fd);
404 return PTR_ERR(newfile);
407 struct socket *sock_from_file(struct file *file, int *err)
409 if (file->f_op == &socket_file_ops)
410 return file->private_data; /* set in sock_map_fd */
412 *err = -ENOTSOCK;
413 return NULL;
415 EXPORT_SYMBOL(sock_from_file);
418 * sockfd_lookup - Go from a file number to its socket slot
419 * @fd: file handle
420 * @err: pointer to an error code return
422 * The file handle passed in is locked and the socket it is bound
423 * too is returned. If an error occurs the err pointer is overwritten
424 * with a negative errno code and NULL is returned. The function checks
425 * for both invalid handles and passing a handle which is not a socket.
427 * On a success the socket object pointer is returned.
430 struct socket *sockfd_lookup(int fd, int *err)
432 struct file *file;
433 struct socket *sock;
435 file = fget(fd);
436 if (!file) {
437 *err = -EBADF;
438 return NULL;
441 sock = sock_from_file(file, err);
442 if (!sock)
443 fput(file);
444 return sock;
446 EXPORT_SYMBOL(sockfd_lookup);
448 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
450 struct fd f = fdget(fd);
451 struct socket *sock;
453 *err = -EBADF;
454 if (f.file) {
455 sock = sock_from_file(f.file, err);
456 if (likely(sock)) {
457 *fput_needed = f.flags;
458 return sock;
460 fdput(f);
462 return NULL;
465 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
466 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
467 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
468 static ssize_t sockfs_getxattr(struct dentry *dentry,
469 const char *name, void *value, size_t size)
471 const char *proto_name;
472 size_t proto_size;
473 int error;
475 error = -ENODATA;
476 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
477 proto_name = dentry->d_name.name;
478 proto_size = strlen(proto_name);
480 if (value) {
481 error = -ERANGE;
482 if (proto_size + 1 > size)
483 goto out;
485 strncpy(value, proto_name, proto_size + 1);
487 error = proto_size + 1;
490 out:
491 return error;
494 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
495 size_t size)
497 ssize_t len;
498 ssize_t used = 0;
500 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
501 if (len < 0)
502 return len;
503 used += len;
504 if (buffer) {
505 if (size < used)
506 return -ERANGE;
507 buffer += len;
510 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
511 used += len;
512 if (buffer) {
513 if (size < used)
514 return -ERANGE;
515 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
516 buffer += len;
519 return used;
522 static const struct inode_operations sockfs_inode_ops = {
523 .getxattr = sockfs_getxattr,
524 .listxattr = sockfs_listxattr,
528 * sock_alloc - allocate a socket
530 * Allocate a new inode and socket object. The two are bound together
531 * and initialised. The socket is then returned. If we are out of inodes
532 * NULL is returned.
535 static struct socket *sock_alloc(void)
537 struct inode *inode;
538 struct socket *sock;
540 inode = new_inode_pseudo(sock_mnt->mnt_sb);
541 if (!inode)
542 return NULL;
544 sock = SOCKET_I(inode);
546 kmemcheck_annotate_bitfield(sock, type);
547 inode->i_ino = get_next_ino();
548 inode->i_mode = S_IFSOCK | S_IRWXUGO;
549 inode->i_uid = current_fsuid();
550 inode->i_gid = current_fsgid();
551 inode->i_op = &sockfs_inode_ops;
553 this_cpu_add(sockets_in_use, 1);
554 return sock;
558 * sock_release - close a socket
559 * @sock: socket to close
561 * The socket is released from the protocol stack if it has a release
562 * callback, and the inode is then released if the socket is bound to
563 * an inode not a file.
566 void sock_release(struct socket *sock)
568 if (sock->ops) {
569 struct module *owner = sock->ops->owner;
571 sock->ops->release(sock);
572 sock->ops = NULL;
573 module_put(owner);
576 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
577 pr_err("%s: fasync list not empty!\n", __func__);
579 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
580 return;
582 this_cpu_sub(sockets_in_use, 1);
583 if (!sock->file) {
584 iput(SOCK_INODE(sock));
585 return;
587 sock->file = NULL;
589 EXPORT_SYMBOL(sock_release);
591 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
593 u8 flags = *tx_flags;
595 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
596 flags |= SKBTX_HW_TSTAMP;
598 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
599 flags |= SKBTX_SW_TSTAMP;
601 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
602 flags |= SKBTX_SCHED_TSTAMP;
604 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
605 flags |= SKBTX_ACK_TSTAMP;
607 *tx_flags = flags;
609 EXPORT_SYMBOL(__sock_tx_timestamp);
611 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
613 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
614 BUG_ON(ret == -EIOCBQUEUED);
615 return ret;
618 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
620 int err = security_socket_sendmsg(sock, msg,
621 msg_data_left(msg));
623 return err ?: sock_sendmsg_nosec(sock, msg);
625 EXPORT_SYMBOL(sock_sendmsg);
627 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
628 struct kvec *vec, size_t num, size_t size)
630 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
631 return sock_sendmsg(sock, msg);
633 EXPORT_SYMBOL(kernel_sendmsg);
636 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
638 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
639 struct sk_buff *skb)
641 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
642 struct scm_timestamping tss;
643 int empty = 1;
644 struct skb_shared_hwtstamps *shhwtstamps =
645 skb_hwtstamps(skb);
647 /* Race occurred between timestamp enabling and packet
648 receiving. Fill in the current time for now. */
649 if (need_software_tstamp && skb->tstamp.tv64 == 0)
650 __net_timestamp(skb);
652 if (need_software_tstamp) {
653 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
654 struct timeval tv;
655 skb_get_timestamp(skb, &tv);
656 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
657 sizeof(tv), &tv);
658 } else {
659 struct timespec ts;
660 skb_get_timestampns(skb, &ts);
661 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
662 sizeof(ts), &ts);
666 memset(&tss, 0, sizeof(tss));
667 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
668 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
669 empty = 0;
670 if (shhwtstamps &&
671 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
672 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
673 empty = 0;
674 if (!empty)
675 put_cmsg(msg, SOL_SOCKET,
676 SCM_TIMESTAMPING, sizeof(tss), &tss);
678 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
680 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
681 struct sk_buff *skb)
683 int ack;
685 if (!sock_flag(sk, SOCK_WIFI_STATUS))
686 return;
687 if (!skb->wifi_acked_valid)
688 return;
690 ack = skb->wifi_acked;
692 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
694 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
696 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
697 struct sk_buff *skb)
699 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
700 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
701 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
704 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
705 struct sk_buff *skb)
707 sock_recv_timestamp(msg, sk, skb);
708 sock_recv_drops(msg, sk, skb);
710 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
712 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
713 size_t size, int flags)
715 return sock->ops->recvmsg(sock, msg, size, flags);
718 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
719 int flags)
721 int err = security_socket_recvmsg(sock, msg, size, flags);
723 return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
725 EXPORT_SYMBOL(sock_recvmsg);
728 * kernel_recvmsg - Receive a message from a socket (kernel space)
729 * @sock: The socket to receive the message from
730 * @msg: Received message
731 * @vec: Input s/g array for message data
732 * @num: Size of input s/g array
733 * @size: Number of bytes to read
734 * @flags: Message flags (MSG_DONTWAIT, etc...)
736 * On return the msg structure contains the scatter/gather array passed in the
737 * vec argument. The array is modified so that it consists of the unfilled
738 * portion of the original array.
740 * The returned value is the total number of bytes received, or an error.
742 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
743 struct kvec *vec, size_t num, size_t size, int flags)
745 mm_segment_t oldfs = get_fs();
746 int result;
748 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
749 set_fs(KERNEL_DS);
750 result = sock_recvmsg(sock, msg, size, flags);
751 set_fs(oldfs);
752 return result;
754 EXPORT_SYMBOL(kernel_recvmsg);
756 static ssize_t sock_sendpage(struct file *file, struct page *page,
757 int offset, size_t size, loff_t *ppos, int more)
759 struct socket *sock;
760 int flags;
762 sock = file->private_data;
764 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
765 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
766 flags |= more;
768 return kernel_sendpage(sock, page, offset, size, flags);
771 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
772 struct pipe_inode_info *pipe, size_t len,
773 unsigned int flags)
775 struct socket *sock = file->private_data;
777 if (unlikely(!sock->ops->splice_read))
778 return -EINVAL;
780 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
783 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
785 struct file *file = iocb->ki_filp;
786 struct socket *sock = file->private_data;
787 struct msghdr msg = {.msg_iter = *to,
788 .msg_iocb = iocb};
789 ssize_t res;
791 if (file->f_flags & O_NONBLOCK)
792 msg.msg_flags = MSG_DONTWAIT;
794 if (iocb->ki_pos != 0)
795 return -ESPIPE;
797 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
798 return 0;
800 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
801 *to = msg.msg_iter;
802 return res;
805 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
807 struct file *file = iocb->ki_filp;
808 struct socket *sock = file->private_data;
809 struct msghdr msg = {.msg_iter = *from,
810 .msg_iocb = iocb};
811 ssize_t res;
813 if (iocb->ki_pos != 0)
814 return -ESPIPE;
816 if (file->f_flags & O_NONBLOCK)
817 msg.msg_flags = MSG_DONTWAIT;
819 if (sock->type == SOCK_SEQPACKET)
820 msg.msg_flags |= MSG_EOR;
822 res = sock_sendmsg(sock, &msg);
823 *from = msg.msg_iter;
824 return res;
828 * Atomic setting of ioctl hooks to avoid race
829 * with module unload.
832 static DEFINE_MUTEX(br_ioctl_mutex);
833 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
835 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
837 mutex_lock(&br_ioctl_mutex);
838 br_ioctl_hook = hook;
839 mutex_unlock(&br_ioctl_mutex);
841 EXPORT_SYMBOL(brioctl_set);
843 static DEFINE_MUTEX(vlan_ioctl_mutex);
844 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
846 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
848 mutex_lock(&vlan_ioctl_mutex);
849 vlan_ioctl_hook = hook;
850 mutex_unlock(&vlan_ioctl_mutex);
852 EXPORT_SYMBOL(vlan_ioctl_set);
854 static DEFINE_MUTEX(dlci_ioctl_mutex);
855 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
857 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
859 mutex_lock(&dlci_ioctl_mutex);
860 dlci_ioctl_hook = hook;
861 mutex_unlock(&dlci_ioctl_mutex);
863 EXPORT_SYMBOL(dlci_ioctl_set);
865 static long sock_do_ioctl(struct net *net, struct socket *sock,
866 unsigned int cmd, unsigned long arg)
868 int err;
869 void __user *argp = (void __user *)arg;
871 err = sock->ops->ioctl(sock, cmd, arg);
874 * If this ioctl is unknown try to hand it down
875 * to the NIC driver.
877 if (err == -ENOIOCTLCMD)
878 err = dev_ioctl(net, cmd, argp);
880 return err;
884 * With an ioctl, arg may well be a user mode pointer, but we don't know
885 * what to do with it - that's up to the protocol still.
888 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
890 struct socket *sock;
891 struct sock *sk;
892 void __user *argp = (void __user *)arg;
893 int pid, err;
894 struct net *net;
896 sock = file->private_data;
897 sk = sock->sk;
898 net = sock_net(sk);
899 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
900 err = dev_ioctl(net, cmd, argp);
901 } else
902 #ifdef CONFIG_WEXT_CORE
903 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
904 err = dev_ioctl(net, cmd, argp);
905 } else
906 #endif
907 switch (cmd) {
908 case FIOSETOWN:
909 case SIOCSPGRP:
910 err = -EFAULT;
911 if (get_user(pid, (int __user *)argp))
912 break;
913 f_setown(sock->file, pid, 1);
914 err = 0;
915 break;
916 case FIOGETOWN:
917 case SIOCGPGRP:
918 err = put_user(f_getown(sock->file),
919 (int __user *)argp);
920 break;
921 case SIOCGIFBR:
922 case SIOCSIFBR:
923 case SIOCBRADDBR:
924 case SIOCBRDELBR:
925 err = -ENOPKG;
926 if (!br_ioctl_hook)
927 request_module("bridge");
929 mutex_lock(&br_ioctl_mutex);
930 if (br_ioctl_hook)
931 err = br_ioctl_hook(net, cmd, argp);
932 mutex_unlock(&br_ioctl_mutex);
933 break;
934 case SIOCGIFVLAN:
935 case SIOCSIFVLAN:
936 err = -ENOPKG;
937 if (!vlan_ioctl_hook)
938 request_module("8021q");
940 mutex_lock(&vlan_ioctl_mutex);
941 if (vlan_ioctl_hook)
942 err = vlan_ioctl_hook(net, argp);
943 mutex_unlock(&vlan_ioctl_mutex);
944 break;
945 case SIOCADDDLCI:
946 case SIOCDELDLCI:
947 err = -ENOPKG;
948 if (!dlci_ioctl_hook)
949 request_module("dlci");
951 mutex_lock(&dlci_ioctl_mutex);
952 if (dlci_ioctl_hook)
953 err = dlci_ioctl_hook(cmd, argp);
954 mutex_unlock(&dlci_ioctl_mutex);
955 break;
956 default:
957 err = sock_do_ioctl(net, sock, cmd, arg);
958 break;
960 return err;
963 int sock_create_lite(int family, int type, int protocol, struct socket **res)
965 int err;
966 struct socket *sock = NULL;
968 err = security_socket_create(family, type, protocol, 1);
969 if (err)
970 goto out;
972 sock = sock_alloc();
973 if (!sock) {
974 err = -ENOMEM;
975 goto out;
978 sock->type = type;
979 err = security_socket_post_create(sock, family, type, protocol, 1);
980 if (err)
981 goto out_release;
983 out:
984 *res = sock;
985 return err;
986 out_release:
987 sock_release(sock);
988 sock = NULL;
989 goto out;
991 EXPORT_SYMBOL(sock_create_lite);
993 /* No kernel lock held - perfect */
994 static unsigned int sock_poll(struct file *file, poll_table *wait)
996 unsigned int busy_flag = 0;
997 struct socket *sock;
1000 * We can't return errors to poll, so it's either yes or no.
1002 sock = file->private_data;
1004 if (sk_can_busy_loop(sock->sk)) {
1005 /* this socket can poll_ll so tell the system call */
1006 busy_flag = POLL_BUSY_LOOP;
1008 /* once, only if requested by syscall */
1009 if (wait && (wait->_key & POLL_BUSY_LOOP))
1010 sk_busy_loop(sock->sk, 1);
1013 return busy_flag | sock->ops->poll(file, sock, wait);
1016 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1018 struct socket *sock = file->private_data;
1020 return sock->ops->mmap(file, sock, vma);
1023 static int sock_close(struct inode *inode, struct file *filp)
1025 sock_release(SOCKET_I(inode));
1026 return 0;
1030 * Update the socket async list
1032 * Fasync_list locking strategy.
1034 * 1. fasync_list is modified only under process context socket lock
1035 * i.e. under semaphore.
1036 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1037 * or under socket lock
1040 static int sock_fasync(int fd, struct file *filp, int on)
1042 struct socket *sock = filp->private_data;
1043 struct sock *sk = sock->sk;
1044 struct socket_wq *wq;
1046 if (sk == NULL)
1047 return -EINVAL;
1049 lock_sock(sk);
1050 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1051 fasync_helper(fd, filp, on, &wq->fasync_list);
1053 if (!wq->fasync_list)
1054 sock_reset_flag(sk, SOCK_FASYNC);
1055 else
1056 sock_set_flag(sk, SOCK_FASYNC);
1058 release_sock(sk);
1059 return 0;
1062 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1064 int sock_wake_async(struct socket *sock, int how, int band)
1066 struct socket_wq *wq;
1068 if (!sock)
1069 return -1;
1070 rcu_read_lock();
1071 wq = rcu_dereference(sock->wq);
1072 if (!wq || !wq->fasync_list) {
1073 rcu_read_unlock();
1074 return -1;
1076 switch (how) {
1077 case SOCK_WAKE_WAITD:
1078 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1079 break;
1080 goto call_kill;
1081 case SOCK_WAKE_SPACE:
1082 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1083 break;
1084 /* fall through */
1085 case SOCK_WAKE_IO:
1086 call_kill:
1087 kill_fasync(&wq->fasync_list, SIGIO, band);
1088 break;
1089 case SOCK_WAKE_URG:
1090 kill_fasync(&wq->fasync_list, SIGURG, band);
1092 rcu_read_unlock();
1093 return 0;
1095 EXPORT_SYMBOL(sock_wake_async);
1097 int __sock_create(struct net *net, int family, int type, int protocol,
1098 struct socket **res, int kern)
1100 int err;
1101 struct socket *sock;
1102 const struct net_proto_family *pf;
1105 * Check protocol is in range
1107 if (family < 0 || family >= NPROTO)
1108 return -EAFNOSUPPORT;
1109 if (type < 0 || type >= SOCK_MAX)
1110 return -EINVAL;
1112 /* Compatibility.
1114 This uglymoron is moved from INET layer to here to avoid
1115 deadlock in module load.
1117 if (family == PF_INET && type == SOCK_PACKET) {
1118 static int warned;
1119 if (!warned) {
1120 warned = 1;
1121 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1122 current->comm);
1124 family = PF_PACKET;
1127 err = security_socket_create(family, type, protocol, kern);
1128 if (err)
1129 return err;
1132 * Allocate the socket and allow the family to set things up. if
1133 * the protocol is 0, the family is instructed to select an appropriate
1134 * default.
1136 sock = sock_alloc();
1137 if (!sock) {
1138 net_warn_ratelimited("socket: no more sockets\n");
1139 return -ENFILE; /* Not exactly a match, but its the
1140 closest posix thing */
1143 sock->type = type;
1145 #ifdef CONFIG_MODULES
1146 /* Attempt to load a protocol module if the find failed.
1148 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1149 * requested real, full-featured networking support upon configuration.
1150 * Otherwise module support will break!
1152 if (rcu_access_pointer(net_families[family]) == NULL)
1153 request_module("net-pf-%d", family);
1154 #endif
1156 rcu_read_lock();
1157 pf = rcu_dereference(net_families[family]);
1158 err = -EAFNOSUPPORT;
1159 if (!pf)
1160 goto out_release;
1163 * We will call the ->create function, that possibly is in a loadable
1164 * module, so we have to bump that loadable module refcnt first.
1166 if (!try_module_get(pf->owner))
1167 goto out_release;
1169 /* Now protected by module ref count */
1170 rcu_read_unlock();
1172 err = pf->create(net, sock, protocol, kern);
1173 if (err < 0)
1174 goto out_module_put;
1177 * Now to bump the refcnt of the [loadable] module that owns this
1178 * socket at sock_release time we decrement its refcnt.
1180 if (!try_module_get(sock->ops->owner))
1181 goto out_module_busy;
1184 * Now that we're done with the ->create function, the [loadable]
1185 * module can have its refcnt decremented
1187 module_put(pf->owner);
1188 err = security_socket_post_create(sock, family, type, protocol, kern);
1189 if (err)
1190 goto out_sock_release;
1191 *res = sock;
1193 return 0;
1195 out_module_busy:
1196 err = -EAFNOSUPPORT;
1197 out_module_put:
1198 sock->ops = NULL;
1199 module_put(pf->owner);
1200 out_sock_release:
1201 sock_release(sock);
1202 return err;
1204 out_release:
1205 rcu_read_unlock();
1206 goto out_sock_release;
1208 EXPORT_SYMBOL(__sock_create);
1210 int sock_create(int family, int type, int protocol, struct socket **res)
1212 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1214 EXPORT_SYMBOL(sock_create);
1216 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1218 return __sock_create(&init_net, family, type, protocol, res, 1);
1220 EXPORT_SYMBOL(sock_create_kern);
1222 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1224 int retval;
1225 struct socket *sock;
1226 int flags;
1228 /* Check the SOCK_* constants for consistency. */
1229 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1230 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1231 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1232 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1234 flags = type & ~SOCK_TYPE_MASK;
1235 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1236 return -EINVAL;
1237 type &= SOCK_TYPE_MASK;
1239 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1240 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1242 retval = sock_create(family, type, protocol, &sock);
1243 if (retval < 0)
1244 goto out;
1246 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1247 if (retval < 0)
1248 goto out_release;
1250 out:
1251 /* It may be already another descriptor 8) Not kernel problem. */
1252 return retval;
1254 out_release:
1255 sock_release(sock);
1256 return retval;
1260 * Create a pair of connected sockets.
1263 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1264 int __user *, usockvec)
1266 struct socket *sock1, *sock2;
1267 int fd1, fd2, err;
1268 struct file *newfile1, *newfile2;
1269 int flags;
1271 flags = type & ~SOCK_TYPE_MASK;
1272 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1273 return -EINVAL;
1274 type &= SOCK_TYPE_MASK;
1276 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1277 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1280 * Obtain the first socket and check if the underlying protocol
1281 * supports the socketpair call.
1284 err = sock_create(family, type, protocol, &sock1);
1285 if (err < 0)
1286 goto out;
1288 err = sock_create(family, type, protocol, &sock2);
1289 if (err < 0)
1290 goto out_release_1;
1292 err = sock1->ops->socketpair(sock1, sock2);
1293 if (err < 0)
1294 goto out_release_both;
1296 fd1 = get_unused_fd_flags(flags);
1297 if (unlikely(fd1 < 0)) {
1298 err = fd1;
1299 goto out_release_both;
1302 fd2 = get_unused_fd_flags(flags);
1303 if (unlikely(fd2 < 0)) {
1304 err = fd2;
1305 goto out_put_unused_1;
1308 newfile1 = sock_alloc_file(sock1, flags, NULL);
1309 if (unlikely(IS_ERR(newfile1))) {
1310 err = PTR_ERR(newfile1);
1311 goto out_put_unused_both;
1314 newfile2 = sock_alloc_file(sock2, flags, NULL);
1315 if (IS_ERR(newfile2)) {
1316 err = PTR_ERR(newfile2);
1317 goto out_fput_1;
1320 err = put_user(fd1, &usockvec[0]);
1321 if (err)
1322 goto out_fput_both;
1324 err = put_user(fd2, &usockvec[1]);
1325 if (err)
1326 goto out_fput_both;
1328 audit_fd_pair(fd1, fd2);
1330 fd_install(fd1, newfile1);
1331 fd_install(fd2, newfile2);
1332 /* fd1 and fd2 may be already another descriptors.
1333 * Not kernel problem.
1336 return 0;
1338 out_fput_both:
1339 fput(newfile2);
1340 fput(newfile1);
1341 put_unused_fd(fd2);
1342 put_unused_fd(fd1);
1343 goto out;
1345 out_fput_1:
1346 fput(newfile1);
1347 put_unused_fd(fd2);
1348 put_unused_fd(fd1);
1349 sock_release(sock2);
1350 goto out;
1352 out_put_unused_both:
1353 put_unused_fd(fd2);
1354 out_put_unused_1:
1355 put_unused_fd(fd1);
1356 out_release_both:
1357 sock_release(sock2);
1358 out_release_1:
1359 sock_release(sock1);
1360 out:
1361 return err;
1365 * Bind a name to a socket. Nothing much to do here since it's
1366 * the protocol's responsibility to handle the local address.
1368 * We move the socket address to kernel space before we call
1369 * the protocol layer (having also checked the address is ok).
1372 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1374 struct socket *sock;
1375 struct sockaddr_storage address;
1376 int err, fput_needed;
1378 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1379 if (sock) {
1380 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1381 if (err >= 0) {
1382 err = security_socket_bind(sock,
1383 (struct sockaddr *)&address,
1384 addrlen);
1385 if (!err)
1386 err = sock->ops->bind(sock,
1387 (struct sockaddr *)
1388 &address, addrlen);
1390 fput_light(sock->file, fput_needed);
1392 return err;
1396 * Perform a listen. Basically, we allow the protocol to do anything
1397 * necessary for a listen, and if that works, we mark the socket as
1398 * ready for listening.
1401 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1403 struct socket *sock;
1404 int err, fput_needed;
1405 int somaxconn;
1407 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1408 if (sock) {
1409 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1410 if ((unsigned int)backlog > somaxconn)
1411 backlog = somaxconn;
1413 err = security_socket_listen(sock, backlog);
1414 if (!err)
1415 err = sock->ops->listen(sock, backlog);
1417 fput_light(sock->file, fput_needed);
1419 return err;
1423 * For accept, we attempt to create a new socket, set up the link
1424 * with the client, wake up the client, then return the new
1425 * connected fd. We collect the address of the connector in kernel
1426 * space and move it to user at the very end. This is unclean because
1427 * we open the socket then return an error.
1429 * 1003.1g adds the ability to recvmsg() to query connection pending
1430 * status to recvmsg. We need to add that support in a way thats
1431 * clean when we restucture accept also.
1434 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1435 int __user *, upeer_addrlen, int, flags)
1437 struct socket *sock, *newsock;
1438 struct file *newfile;
1439 int err, len, newfd, fput_needed;
1440 struct sockaddr_storage address;
1442 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1443 return -EINVAL;
1445 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1446 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1448 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1449 if (!sock)
1450 goto out;
1452 err = -ENFILE;
1453 newsock = sock_alloc();
1454 if (!newsock)
1455 goto out_put;
1457 newsock->type = sock->type;
1458 newsock->ops = sock->ops;
1461 * We don't need try_module_get here, as the listening socket (sock)
1462 * has the protocol module (sock->ops->owner) held.
1464 __module_get(newsock->ops->owner);
1466 newfd = get_unused_fd_flags(flags);
1467 if (unlikely(newfd < 0)) {
1468 err = newfd;
1469 sock_release(newsock);
1470 goto out_put;
1472 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1473 if (unlikely(IS_ERR(newfile))) {
1474 err = PTR_ERR(newfile);
1475 put_unused_fd(newfd);
1476 sock_release(newsock);
1477 goto out_put;
1480 err = security_socket_accept(sock, newsock);
1481 if (err)
1482 goto out_fd;
1484 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1485 if (err < 0)
1486 goto out_fd;
1488 if (upeer_sockaddr) {
1489 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1490 &len, 2) < 0) {
1491 err = -ECONNABORTED;
1492 goto out_fd;
1494 err = move_addr_to_user(&address,
1495 len, upeer_sockaddr, upeer_addrlen);
1496 if (err < 0)
1497 goto out_fd;
1500 /* File flags are not inherited via accept() unlike another OSes. */
1502 fd_install(newfd, newfile);
1503 err = newfd;
1505 out_put:
1506 fput_light(sock->file, fput_needed);
1507 out:
1508 return err;
1509 out_fd:
1510 fput(newfile);
1511 put_unused_fd(newfd);
1512 goto out_put;
1515 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1516 int __user *, upeer_addrlen)
1518 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1522 * Attempt to connect to a socket with the server address. The address
1523 * is in user space so we verify it is OK and move it to kernel space.
1525 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1526 * break bindings
1528 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1529 * other SEQPACKET protocols that take time to connect() as it doesn't
1530 * include the -EINPROGRESS status for such sockets.
1533 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1534 int, addrlen)
1536 struct socket *sock;
1537 struct sockaddr_storage address;
1538 int err, fput_needed;
1540 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1541 if (!sock)
1542 goto out;
1543 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1544 if (err < 0)
1545 goto out_put;
1547 err =
1548 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1549 if (err)
1550 goto out_put;
1552 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1553 sock->file->f_flags);
1554 out_put:
1555 fput_light(sock->file, fput_needed);
1556 out:
1557 return err;
1561 * Get the local address ('name') of a socket object. Move the obtained
1562 * name to user space.
1565 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1566 int __user *, usockaddr_len)
1568 struct socket *sock;
1569 struct sockaddr_storage address;
1570 int len, err, fput_needed;
1572 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1573 if (!sock)
1574 goto out;
1576 err = security_socket_getsockname(sock);
1577 if (err)
1578 goto out_put;
1580 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1581 if (err)
1582 goto out_put;
1583 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1585 out_put:
1586 fput_light(sock->file, fput_needed);
1587 out:
1588 return err;
1592 * Get the remote address ('name') of a socket object. Move the obtained
1593 * name to user space.
1596 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1597 int __user *, usockaddr_len)
1599 struct socket *sock;
1600 struct sockaddr_storage address;
1601 int len, err, fput_needed;
1603 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604 if (sock != NULL) {
1605 err = security_socket_getpeername(sock);
1606 if (err) {
1607 fput_light(sock->file, fput_needed);
1608 return err;
1611 err =
1612 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1614 if (!err)
1615 err = move_addr_to_user(&address, len, usockaddr,
1616 usockaddr_len);
1617 fput_light(sock->file, fput_needed);
1619 return err;
1623 * Send a datagram to a given address. We move the address into kernel
1624 * space and check the user space data area is readable before invoking
1625 * the protocol.
1628 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1629 unsigned int, flags, struct sockaddr __user *, addr,
1630 int, addr_len)
1632 struct socket *sock;
1633 struct sockaddr_storage address;
1634 int err;
1635 struct msghdr msg;
1636 struct iovec iov;
1637 int fput_needed;
1639 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1640 if (unlikely(err))
1641 return err;
1642 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1643 if (!sock)
1644 goto out;
1646 msg.msg_name = NULL;
1647 msg.msg_control = NULL;
1648 msg.msg_controllen = 0;
1649 msg.msg_namelen = 0;
1650 if (addr) {
1651 err = move_addr_to_kernel(addr, addr_len, &address);
1652 if (err < 0)
1653 goto out_put;
1654 msg.msg_name = (struct sockaddr *)&address;
1655 msg.msg_namelen = addr_len;
1657 if (sock->file->f_flags & O_NONBLOCK)
1658 flags |= MSG_DONTWAIT;
1659 msg.msg_flags = flags;
1660 err = sock_sendmsg(sock, &msg);
1662 out_put:
1663 fput_light(sock->file, fput_needed);
1664 out:
1665 return err;
1669 * Send a datagram down a socket.
1672 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1673 unsigned int, flags)
1675 return sys_sendto(fd, buff, len, flags, NULL, 0);
1679 * Receive a frame from the socket and optionally record the address of the
1680 * sender. We verify the buffers are writable and if needed move the
1681 * sender address from kernel to user space.
1684 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1685 unsigned int, flags, struct sockaddr __user *, addr,
1686 int __user *, addr_len)
1688 struct socket *sock;
1689 struct iovec iov;
1690 struct msghdr msg;
1691 struct sockaddr_storage address;
1692 int err, err2;
1693 int fput_needed;
1695 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1696 if (unlikely(err))
1697 return err;
1698 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1699 if (!sock)
1700 goto out;
1702 msg.msg_control = NULL;
1703 msg.msg_controllen = 0;
1704 /* Save some cycles and don't copy the address if not needed */
1705 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1706 /* We assume all kernel code knows the size of sockaddr_storage */
1707 msg.msg_namelen = 0;
1708 msg.msg_iocb = NULL;
1709 if (sock->file->f_flags & O_NONBLOCK)
1710 flags |= MSG_DONTWAIT;
1711 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1713 if (err >= 0 && addr != NULL) {
1714 err2 = move_addr_to_user(&address,
1715 msg.msg_namelen, addr, addr_len);
1716 if (err2 < 0)
1717 err = err2;
1720 fput_light(sock->file, fput_needed);
1721 out:
1722 return err;
1726 * Receive a datagram from a socket.
1729 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1730 unsigned int, flags)
1732 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1736 * Set a socket option. Because we don't know the option lengths we have
1737 * to pass the user mode parameter for the protocols to sort out.
1740 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1741 char __user *, optval, int, optlen)
1743 int err, fput_needed;
1744 struct socket *sock;
1746 if (optlen < 0)
1747 return -EINVAL;
1749 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1750 if (sock != NULL) {
1751 err = security_socket_setsockopt(sock, level, optname);
1752 if (err)
1753 goto out_put;
1755 if (level == SOL_SOCKET)
1756 err =
1757 sock_setsockopt(sock, level, optname, optval,
1758 optlen);
1759 else
1760 err =
1761 sock->ops->setsockopt(sock, level, optname, optval,
1762 optlen);
1763 out_put:
1764 fput_light(sock->file, fput_needed);
1766 return err;
1770 * Get a socket option. Because we don't know the option lengths we have
1771 * to pass a user mode parameter for the protocols to sort out.
1774 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1775 char __user *, optval, int __user *, optlen)
1777 int err, fput_needed;
1778 struct socket *sock;
1780 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1781 if (sock != NULL) {
1782 err = security_socket_getsockopt(sock, level, optname);
1783 if (err)
1784 goto out_put;
1786 if (level == SOL_SOCKET)
1787 err =
1788 sock_getsockopt(sock, level, optname, optval,
1789 optlen);
1790 else
1791 err =
1792 sock->ops->getsockopt(sock, level, optname, optval,
1793 optlen);
1794 out_put:
1795 fput_light(sock->file, fput_needed);
1797 return err;
1801 * Shutdown a socket.
1804 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1806 int err, fput_needed;
1807 struct socket *sock;
1809 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1810 if (sock != NULL) {
1811 err = security_socket_shutdown(sock, how);
1812 if (!err)
1813 err = sock->ops->shutdown(sock, how);
1814 fput_light(sock->file, fput_needed);
1816 return err;
1819 /* A couple of helpful macros for getting the address of the 32/64 bit
1820 * fields which are the same type (int / unsigned) on our platforms.
1822 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1823 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1824 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1826 struct used_address {
1827 struct sockaddr_storage name;
1828 unsigned int name_len;
1831 static int copy_msghdr_from_user(struct msghdr *kmsg,
1832 struct user_msghdr __user *umsg,
1833 struct sockaddr __user **save_addr,
1834 struct iovec **iov)
1836 struct sockaddr __user *uaddr;
1837 struct iovec __user *uiov;
1838 size_t nr_segs;
1839 ssize_t err;
1841 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1842 __get_user(uaddr, &umsg->msg_name) ||
1843 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1844 __get_user(uiov, &umsg->msg_iov) ||
1845 __get_user(nr_segs, &umsg->msg_iovlen) ||
1846 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1847 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1848 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1849 return -EFAULT;
1851 if (!uaddr)
1852 kmsg->msg_namelen = 0;
1854 if (kmsg->msg_namelen < 0)
1855 return -EINVAL;
1857 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1858 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1860 if (save_addr)
1861 *save_addr = uaddr;
1863 if (uaddr && kmsg->msg_namelen) {
1864 if (!save_addr) {
1865 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1866 kmsg->msg_name);
1867 if (err < 0)
1868 return err;
1870 } else {
1871 kmsg->msg_name = NULL;
1872 kmsg->msg_namelen = 0;
1875 if (nr_segs > UIO_MAXIOV)
1876 return -EMSGSIZE;
1878 kmsg->msg_iocb = NULL;
1880 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1881 UIO_FASTIOV, iov, &kmsg->msg_iter);
1884 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1885 struct msghdr *msg_sys, unsigned int flags,
1886 struct used_address *used_address)
1888 struct compat_msghdr __user *msg_compat =
1889 (struct compat_msghdr __user *)msg;
1890 struct sockaddr_storage address;
1891 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1892 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1893 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1894 /* 20 is size of ipv6_pktinfo */
1895 unsigned char *ctl_buf = ctl;
1896 int ctl_len;
1897 ssize_t err;
1899 msg_sys->msg_name = &address;
1901 if (MSG_CMSG_COMPAT & flags)
1902 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1903 else
1904 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1905 if (err < 0)
1906 return err;
1908 err = -ENOBUFS;
1910 if (msg_sys->msg_controllen > INT_MAX)
1911 goto out_freeiov;
1912 ctl_len = msg_sys->msg_controllen;
1913 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1914 err =
1915 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1916 sizeof(ctl));
1917 if (err)
1918 goto out_freeiov;
1919 ctl_buf = msg_sys->msg_control;
1920 ctl_len = msg_sys->msg_controllen;
1921 } else if (ctl_len) {
1922 if (ctl_len > sizeof(ctl)) {
1923 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1924 if (ctl_buf == NULL)
1925 goto out_freeiov;
1927 err = -EFAULT;
1929 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1930 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1931 * checking falls down on this.
1933 if (copy_from_user(ctl_buf,
1934 (void __user __force *)msg_sys->msg_control,
1935 ctl_len))
1936 goto out_freectl;
1937 msg_sys->msg_control = ctl_buf;
1939 msg_sys->msg_flags = flags;
1941 if (sock->file->f_flags & O_NONBLOCK)
1942 msg_sys->msg_flags |= MSG_DONTWAIT;
1944 * If this is sendmmsg() and current destination address is same as
1945 * previously succeeded address, omit asking LSM's decision.
1946 * used_address->name_len is initialized to UINT_MAX so that the first
1947 * destination address never matches.
1949 if (used_address && msg_sys->msg_name &&
1950 used_address->name_len == msg_sys->msg_namelen &&
1951 !memcmp(&used_address->name, msg_sys->msg_name,
1952 used_address->name_len)) {
1953 err = sock_sendmsg_nosec(sock, msg_sys);
1954 goto out_freectl;
1956 err = sock_sendmsg(sock, msg_sys);
1958 * If this is sendmmsg() and sending to current destination address was
1959 * successful, remember it.
1961 if (used_address && err >= 0) {
1962 used_address->name_len = msg_sys->msg_namelen;
1963 if (msg_sys->msg_name)
1964 memcpy(&used_address->name, msg_sys->msg_name,
1965 used_address->name_len);
1968 out_freectl:
1969 if (ctl_buf != ctl)
1970 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1971 out_freeiov:
1972 kfree(iov);
1973 return err;
1977 * BSD sendmsg interface
1980 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1982 int fput_needed, err;
1983 struct msghdr msg_sys;
1984 struct socket *sock;
1986 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1987 if (!sock)
1988 goto out;
1990 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1992 fput_light(sock->file, fput_needed);
1993 out:
1994 return err;
1997 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1999 if (flags & MSG_CMSG_COMPAT)
2000 return -EINVAL;
2001 return __sys_sendmsg(fd, msg, flags);
2005 * Linux sendmmsg interface
2008 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2009 unsigned int flags)
2011 int fput_needed, err, datagrams;
2012 struct socket *sock;
2013 struct mmsghdr __user *entry;
2014 struct compat_mmsghdr __user *compat_entry;
2015 struct msghdr msg_sys;
2016 struct used_address used_address;
2018 if (vlen > UIO_MAXIOV)
2019 vlen = UIO_MAXIOV;
2021 datagrams = 0;
2023 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2024 if (!sock)
2025 return err;
2027 used_address.name_len = UINT_MAX;
2028 entry = mmsg;
2029 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2030 err = 0;
2032 while (datagrams < vlen) {
2033 if (MSG_CMSG_COMPAT & flags) {
2034 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2035 &msg_sys, flags, &used_address);
2036 if (err < 0)
2037 break;
2038 err = __put_user(err, &compat_entry->msg_len);
2039 ++compat_entry;
2040 } else {
2041 err = ___sys_sendmsg(sock,
2042 (struct user_msghdr __user *)entry,
2043 &msg_sys, flags, &used_address);
2044 if (err < 0)
2045 break;
2046 err = put_user(err, &entry->msg_len);
2047 ++entry;
2050 if (err)
2051 break;
2052 ++datagrams;
2055 fput_light(sock->file, fput_needed);
2057 /* We only return an error if no datagrams were able to be sent */
2058 if (datagrams != 0)
2059 return datagrams;
2061 return err;
2064 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2065 unsigned int, vlen, unsigned int, flags)
2067 if (flags & MSG_CMSG_COMPAT)
2068 return -EINVAL;
2069 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2072 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2073 struct msghdr *msg_sys, unsigned int flags, int nosec)
2075 struct compat_msghdr __user *msg_compat =
2076 (struct compat_msghdr __user *)msg;
2077 struct iovec iovstack[UIO_FASTIOV];
2078 struct iovec *iov = iovstack;
2079 unsigned long cmsg_ptr;
2080 int total_len, len;
2081 ssize_t err;
2083 /* kernel mode address */
2084 struct sockaddr_storage addr;
2086 /* user mode address pointers */
2087 struct sockaddr __user *uaddr;
2088 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2090 msg_sys->msg_name = &addr;
2092 if (MSG_CMSG_COMPAT & flags)
2093 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2094 else
2095 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2096 if (err < 0)
2097 return err;
2098 total_len = iov_iter_count(&msg_sys->msg_iter);
2100 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2101 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2103 /* We assume all kernel code knows the size of sockaddr_storage */
2104 msg_sys->msg_namelen = 0;
2106 if (sock->file->f_flags & O_NONBLOCK)
2107 flags |= MSG_DONTWAIT;
2108 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2109 total_len, flags);
2110 if (err < 0)
2111 goto out_freeiov;
2112 len = err;
2114 if (uaddr != NULL) {
2115 err = move_addr_to_user(&addr,
2116 msg_sys->msg_namelen, uaddr,
2117 uaddr_len);
2118 if (err < 0)
2119 goto out_freeiov;
2121 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2122 COMPAT_FLAGS(msg));
2123 if (err)
2124 goto out_freeiov;
2125 if (MSG_CMSG_COMPAT & flags)
2126 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2127 &msg_compat->msg_controllen);
2128 else
2129 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2130 &msg->msg_controllen);
2131 if (err)
2132 goto out_freeiov;
2133 err = len;
2135 out_freeiov:
2136 kfree(iov);
2137 return err;
2141 * BSD recvmsg interface
2144 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2146 int fput_needed, err;
2147 struct msghdr msg_sys;
2148 struct socket *sock;
2150 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2151 if (!sock)
2152 goto out;
2154 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2156 fput_light(sock->file, fput_needed);
2157 out:
2158 return err;
2161 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2162 unsigned int, flags)
2164 if (flags & MSG_CMSG_COMPAT)
2165 return -EINVAL;
2166 return __sys_recvmsg(fd, msg, flags);
2170 * Linux recvmmsg interface
2173 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2174 unsigned int flags, struct timespec *timeout)
2176 int fput_needed, err, datagrams;
2177 struct socket *sock;
2178 struct mmsghdr __user *entry;
2179 struct compat_mmsghdr __user *compat_entry;
2180 struct msghdr msg_sys;
2181 struct timespec end_time;
2183 if (timeout &&
2184 poll_select_set_timeout(&end_time, timeout->tv_sec,
2185 timeout->tv_nsec))
2186 return -EINVAL;
2188 datagrams = 0;
2190 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2191 if (!sock)
2192 return err;
2194 err = sock_error(sock->sk);
2195 if (err)
2196 goto out_put;
2198 entry = mmsg;
2199 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2201 while (datagrams < vlen) {
2203 * No need to ask LSM for more than the first datagram.
2205 if (MSG_CMSG_COMPAT & flags) {
2206 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2207 &msg_sys, flags & ~MSG_WAITFORONE,
2208 datagrams);
2209 if (err < 0)
2210 break;
2211 err = __put_user(err, &compat_entry->msg_len);
2212 ++compat_entry;
2213 } else {
2214 err = ___sys_recvmsg(sock,
2215 (struct user_msghdr __user *)entry,
2216 &msg_sys, flags & ~MSG_WAITFORONE,
2217 datagrams);
2218 if (err < 0)
2219 break;
2220 err = put_user(err, &entry->msg_len);
2221 ++entry;
2224 if (err)
2225 break;
2226 ++datagrams;
2228 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2229 if (flags & MSG_WAITFORONE)
2230 flags |= MSG_DONTWAIT;
2232 if (timeout) {
2233 ktime_get_ts(timeout);
2234 *timeout = timespec_sub(end_time, *timeout);
2235 if (timeout->tv_sec < 0) {
2236 timeout->tv_sec = timeout->tv_nsec = 0;
2237 break;
2240 /* Timeout, return less than vlen datagrams */
2241 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2242 break;
2245 /* Out of band data, return right away */
2246 if (msg_sys.msg_flags & MSG_OOB)
2247 break;
2250 out_put:
2251 fput_light(sock->file, fput_needed);
2253 if (err == 0)
2254 return datagrams;
2256 if (datagrams != 0) {
2258 * We may return less entries than requested (vlen) if the
2259 * sock is non block and there aren't enough datagrams...
2261 if (err != -EAGAIN) {
2263 * ... or if recvmsg returns an error after we
2264 * received some datagrams, where we record the
2265 * error to return on the next call or if the
2266 * app asks about it using getsockopt(SO_ERROR).
2268 sock->sk->sk_err = -err;
2271 return datagrams;
2274 return err;
2277 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2278 unsigned int, vlen, unsigned int, flags,
2279 struct timespec __user *, timeout)
2281 int datagrams;
2282 struct timespec timeout_sys;
2284 if (flags & MSG_CMSG_COMPAT)
2285 return -EINVAL;
2287 if (!timeout)
2288 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2290 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2291 return -EFAULT;
2293 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2295 if (datagrams > 0 &&
2296 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2297 datagrams = -EFAULT;
2299 return datagrams;
2302 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2303 /* Argument list sizes for sys_socketcall */
2304 #define AL(x) ((x) * sizeof(unsigned long))
2305 static const unsigned char nargs[21] = {
2306 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2307 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2308 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2309 AL(4), AL(5), AL(4)
2312 #undef AL
2315 * System call vectors.
2317 * Argument checking cleaned up. Saved 20% in size.
2318 * This function doesn't need to set the kernel lock because
2319 * it is set by the callees.
2322 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2324 unsigned long a[AUDITSC_ARGS];
2325 unsigned long a0, a1;
2326 int err;
2327 unsigned int len;
2329 if (call < 1 || call > SYS_SENDMMSG)
2330 return -EINVAL;
2332 len = nargs[call];
2333 if (len > sizeof(a))
2334 return -EINVAL;
2336 /* copy_from_user should be SMP safe. */
2337 if (copy_from_user(a, args, len))
2338 return -EFAULT;
2340 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2341 if (err)
2342 return err;
2344 a0 = a[0];
2345 a1 = a[1];
2347 switch (call) {
2348 case SYS_SOCKET:
2349 err = sys_socket(a0, a1, a[2]);
2350 break;
2351 case SYS_BIND:
2352 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2353 break;
2354 case SYS_CONNECT:
2355 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2356 break;
2357 case SYS_LISTEN:
2358 err = sys_listen(a0, a1);
2359 break;
2360 case SYS_ACCEPT:
2361 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2362 (int __user *)a[2], 0);
2363 break;
2364 case SYS_GETSOCKNAME:
2365 err =
2366 sys_getsockname(a0, (struct sockaddr __user *)a1,
2367 (int __user *)a[2]);
2368 break;
2369 case SYS_GETPEERNAME:
2370 err =
2371 sys_getpeername(a0, (struct sockaddr __user *)a1,
2372 (int __user *)a[2]);
2373 break;
2374 case SYS_SOCKETPAIR:
2375 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2376 break;
2377 case SYS_SEND:
2378 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2379 break;
2380 case SYS_SENDTO:
2381 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2382 (struct sockaddr __user *)a[4], a[5]);
2383 break;
2384 case SYS_RECV:
2385 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2386 break;
2387 case SYS_RECVFROM:
2388 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2389 (struct sockaddr __user *)a[4],
2390 (int __user *)a[5]);
2391 break;
2392 case SYS_SHUTDOWN:
2393 err = sys_shutdown(a0, a1);
2394 break;
2395 case SYS_SETSOCKOPT:
2396 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2397 break;
2398 case SYS_GETSOCKOPT:
2399 err =
2400 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2401 (int __user *)a[4]);
2402 break;
2403 case SYS_SENDMSG:
2404 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2405 break;
2406 case SYS_SENDMMSG:
2407 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2408 break;
2409 case SYS_RECVMSG:
2410 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2411 break;
2412 case SYS_RECVMMSG:
2413 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2414 (struct timespec __user *)a[4]);
2415 break;
2416 case SYS_ACCEPT4:
2417 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2418 (int __user *)a[2], a[3]);
2419 break;
2420 default:
2421 err = -EINVAL;
2422 break;
2424 return err;
2427 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2430 * sock_register - add a socket protocol handler
2431 * @ops: description of protocol
2433 * This function is called by a protocol handler that wants to
2434 * advertise its address family, and have it linked into the
2435 * socket interface. The value ops->family corresponds to the
2436 * socket system call protocol family.
2438 int sock_register(const struct net_proto_family *ops)
2440 int err;
2442 if (ops->family >= NPROTO) {
2443 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2444 return -ENOBUFS;
2447 spin_lock(&net_family_lock);
2448 if (rcu_dereference_protected(net_families[ops->family],
2449 lockdep_is_held(&net_family_lock)))
2450 err = -EEXIST;
2451 else {
2452 rcu_assign_pointer(net_families[ops->family], ops);
2453 err = 0;
2455 spin_unlock(&net_family_lock);
2457 pr_info("NET: Registered protocol family %d\n", ops->family);
2458 return err;
2460 EXPORT_SYMBOL(sock_register);
2463 * sock_unregister - remove a protocol handler
2464 * @family: protocol family to remove
2466 * This function is called by a protocol handler that wants to
2467 * remove its address family, and have it unlinked from the
2468 * new socket creation.
2470 * If protocol handler is a module, then it can use module reference
2471 * counts to protect against new references. If protocol handler is not
2472 * a module then it needs to provide its own protection in
2473 * the ops->create routine.
2475 void sock_unregister(int family)
2477 BUG_ON(family < 0 || family >= NPROTO);
2479 spin_lock(&net_family_lock);
2480 RCU_INIT_POINTER(net_families[family], NULL);
2481 spin_unlock(&net_family_lock);
2483 synchronize_rcu();
2485 pr_info("NET: Unregistered protocol family %d\n", family);
2487 EXPORT_SYMBOL(sock_unregister);
2489 static int __init sock_init(void)
2491 int err;
2493 * Initialize the network sysctl infrastructure.
2495 err = net_sysctl_init();
2496 if (err)
2497 goto out;
2500 * Initialize skbuff SLAB cache
2502 skb_init();
2505 * Initialize the protocols module.
2508 init_inodecache();
2510 err = register_filesystem(&sock_fs_type);
2511 if (err)
2512 goto out_fs;
2513 sock_mnt = kern_mount(&sock_fs_type);
2514 if (IS_ERR(sock_mnt)) {
2515 err = PTR_ERR(sock_mnt);
2516 goto out_mount;
2519 /* The real protocol initialization is performed in later initcalls.
2522 #ifdef CONFIG_NETFILTER
2523 err = netfilter_init();
2524 if (err)
2525 goto out;
2526 #endif
2528 ptp_classifier_init();
2530 out:
2531 return err;
2533 out_mount:
2534 unregister_filesystem(&sock_fs_type);
2535 out_fs:
2536 goto out;
2539 core_initcall(sock_init); /* early initcall */
2541 #ifdef CONFIG_PROC_FS
2542 void socket_seq_show(struct seq_file *seq)
2544 int cpu;
2545 int counter = 0;
2547 for_each_possible_cpu(cpu)
2548 counter += per_cpu(sockets_in_use, cpu);
2550 /* It can be negative, by the way. 8) */
2551 if (counter < 0)
2552 counter = 0;
2554 seq_printf(seq, "sockets: used %d\n", counter);
2556 #endif /* CONFIG_PROC_FS */
2558 #ifdef CONFIG_COMPAT
2559 static int do_siocgstamp(struct net *net, struct socket *sock,
2560 unsigned int cmd, void __user *up)
2562 mm_segment_t old_fs = get_fs();
2563 struct timeval ktv;
2564 int err;
2566 set_fs(KERNEL_DS);
2567 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2568 set_fs(old_fs);
2569 if (!err)
2570 err = compat_put_timeval(&ktv, up);
2572 return err;
2575 static int do_siocgstampns(struct net *net, struct socket *sock,
2576 unsigned int cmd, void __user *up)
2578 mm_segment_t old_fs = get_fs();
2579 struct timespec kts;
2580 int err;
2582 set_fs(KERNEL_DS);
2583 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2584 set_fs(old_fs);
2585 if (!err)
2586 err = compat_put_timespec(&kts, up);
2588 return err;
2591 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2593 struct ifreq __user *uifr;
2594 int err;
2596 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2597 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2598 return -EFAULT;
2600 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2601 if (err)
2602 return err;
2604 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2605 return -EFAULT;
2607 return 0;
2610 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2612 struct compat_ifconf ifc32;
2613 struct ifconf ifc;
2614 struct ifconf __user *uifc;
2615 struct compat_ifreq __user *ifr32;
2616 struct ifreq __user *ifr;
2617 unsigned int i, j;
2618 int err;
2620 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2621 return -EFAULT;
2623 memset(&ifc, 0, sizeof(ifc));
2624 if (ifc32.ifcbuf == 0) {
2625 ifc32.ifc_len = 0;
2626 ifc.ifc_len = 0;
2627 ifc.ifc_req = NULL;
2628 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2629 } else {
2630 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2631 sizeof(struct ifreq);
2632 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2633 ifc.ifc_len = len;
2634 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2635 ifr32 = compat_ptr(ifc32.ifcbuf);
2636 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2637 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2638 return -EFAULT;
2639 ifr++;
2640 ifr32++;
2643 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2644 return -EFAULT;
2646 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2647 if (err)
2648 return err;
2650 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2651 return -EFAULT;
2653 ifr = ifc.ifc_req;
2654 ifr32 = compat_ptr(ifc32.ifcbuf);
2655 for (i = 0, j = 0;
2656 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2657 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2658 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2659 return -EFAULT;
2660 ifr32++;
2661 ifr++;
2664 if (ifc32.ifcbuf == 0) {
2665 /* Translate from 64-bit structure multiple to
2666 * a 32-bit one.
2668 i = ifc.ifc_len;
2669 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2670 ifc32.ifc_len = i;
2671 } else {
2672 ifc32.ifc_len = i;
2674 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2675 return -EFAULT;
2677 return 0;
2680 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2682 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2683 bool convert_in = false, convert_out = false;
2684 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2685 struct ethtool_rxnfc __user *rxnfc;
2686 struct ifreq __user *ifr;
2687 u32 rule_cnt = 0, actual_rule_cnt;
2688 u32 ethcmd;
2689 u32 data;
2690 int ret;
2692 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2693 return -EFAULT;
2695 compat_rxnfc = compat_ptr(data);
2697 if (get_user(ethcmd, &compat_rxnfc->cmd))
2698 return -EFAULT;
2700 /* Most ethtool structures are defined without padding.
2701 * Unfortunately struct ethtool_rxnfc is an exception.
2703 switch (ethcmd) {
2704 default:
2705 break;
2706 case ETHTOOL_GRXCLSRLALL:
2707 /* Buffer size is variable */
2708 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2709 return -EFAULT;
2710 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2711 return -ENOMEM;
2712 buf_size += rule_cnt * sizeof(u32);
2713 /* fall through */
2714 case ETHTOOL_GRXRINGS:
2715 case ETHTOOL_GRXCLSRLCNT:
2716 case ETHTOOL_GRXCLSRULE:
2717 case ETHTOOL_SRXCLSRLINS:
2718 convert_out = true;
2719 /* fall through */
2720 case ETHTOOL_SRXCLSRLDEL:
2721 buf_size += sizeof(struct ethtool_rxnfc);
2722 convert_in = true;
2723 break;
2726 ifr = compat_alloc_user_space(buf_size);
2727 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2729 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2730 return -EFAULT;
2732 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2733 &ifr->ifr_ifru.ifru_data))
2734 return -EFAULT;
2736 if (convert_in) {
2737 /* We expect there to be holes between fs.m_ext and
2738 * fs.ring_cookie and at the end of fs, but nowhere else.
2740 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2741 sizeof(compat_rxnfc->fs.m_ext) !=
2742 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2743 sizeof(rxnfc->fs.m_ext));
2744 BUILD_BUG_ON(
2745 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2746 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2747 offsetof(struct ethtool_rxnfc, fs.location) -
2748 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2750 if (copy_in_user(rxnfc, compat_rxnfc,
2751 (void __user *)(&rxnfc->fs.m_ext + 1) -
2752 (void __user *)rxnfc) ||
2753 copy_in_user(&rxnfc->fs.ring_cookie,
2754 &compat_rxnfc->fs.ring_cookie,
2755 (void __user *)(&rxnfc->fs.location + 1) -
2756 (void __user *)&rxnfc->fs.ring_cookie) ||
2757 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2758 sizeof(rxnfc->rule_cnt)))
2759 return -EFAULT;
2762 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2763 if (ret)
2764 return ret;
2766 if (convert_out) {
2767 if (copy_in_user(compat_rxnfc, rxnfc,
2768 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2769 (const void __user *)rxnfc) ||
2770 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2771 &rxnfc->fs.ring_cookie,
2772 (const void __user *)(&rxnfc->fs.location + 1) -
2773 (const void __user *)&rxnfc->fs.ring_cookie) ||
2774 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2775 sizeof(rxnfc->rule_cnt)))
2776 return -EFAULT;
2778 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2779 /* As an optimisation, we only copy the actual
2780 * number of rules that the underlying
2781 * function returned. Since Mallory might
2782 * change the rule count in user memory, we
2783 * check that it is less than the rule count
2784 * originally given (as the user buffer size),
2785 * which has been range-checked.
2787 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2788 return -EFAULT;
2789 if (actual_rule_cnt < rule_cnt)
2790 rule_cnt = actual_rule_cnt;
2791 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2792 &rxnfc->rule_locs[0],
2793 rule_cnt * sizeof(u32)))
2794 return -EFAULT;
2798 return 0;
2801 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2803 void __user *uptr;
2804 compat_uptr_t uptr32;
2805 struct ifreq __user *uifr;
2807 uifr = compat_alloc_user_space(sizeof(*uifr));
2808 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2809 return -EFAULT;
2811 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2812 return -EFAULT;
2814 uptr = compat_ptr(uptr32);
2816 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2817 return -EFAULT;
2819 return dev_ioctl(net, SIOCWANDEV, uifr);
2822 static int bond_ioctl(struct net *net, unsigned int cmd,
2823 struct compat_ifreq __user *ifr32)
2825 struct ifreq kifr;
2826 mm_segment_t old_fs;
2827 int err;
2829 switch (cmd) {
2830 case SIOCBONDENSLAVE:
2831 case SIOCBONDRELEASE:
2832 case SIOCBONDSETHWADDR:
2833 case SIOCBONDCHANGEACTIVE:
2834 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2835 return -EFAULT;
2837 old_fs = get_fs();
2838 set_fs(KERNEL_DS);
2839 err = dev_ioctl(net, cmd,
2840 (struct ifreq __user __force *) &kifr);
2841 set_fs(old_fs);
2843 return err;
2844 default:
2845 return -ENOIOCTLCMD;
2849 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2850 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2851 struct compat_ifreq __user *u_ifreq32)
2853 struct ifreq __user *u_ifreq64;
2854 char tmp_buf[IFNAMSIZ];
2855 void __user *data64;
2856 u32 data32;
2858 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2859 IFNAMSIZ))
2860 return -EFAULT;
2861 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2862 return -EFAULT;
2863 data64 = compat_ptr(data32);
2865 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2867 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2868 IFNAMSIZ))
2869 return -EFAULT;
2870 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2871 return -EFAULT;
2873 return dev_ioctl(net, cmd, u_ifreq64);
2876 static int dev_ifsioc(struct net *net, struct socket *sock,
2877 unsigned int cmd, struct compat_ifreq __user *uifr32)
2879 struct ifreq __user *uifr;
2880 int err;
2882 uifr = compat_alloc_user_space(sizeof(*uifr));
2883 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2884 return -EFAULT;
2886 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2888 if (!err) {
2889 switch (cmd) {
2890 case SIOCGIFFLAGS:
2891 case SIOCGIFMETRIC:
2892 case SIOCGIFMTU:
2893 case SIOCGIFMEM:
2894 case SIOCGIFHWADDR:
2895 case SIOCGIFINDEX:
2896 case SIOCGIFADDR:
2897 case SIOCGIFBRDADDR:
2898 case SIOCGIFDSTADDR:
2899 case SIOCGIFNETMASK:
2900 case SIOCGIFPFLAGS:
2901 case SIOCGIFTXQLEN:
2902 case SIOCGMIIPHY:
2903 case SIOCGMIIREG:
2904 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2905 err = -EFAULT;
2906 break;
2909 return err;
2912 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2913 struct compat_ifreq __user *uifr32)
2915 struct ifreq ifr;
2916 struct compat_ifmap __user *uifmap32;
2917 mm_segment_t old_fs;
2918 int err;
2920 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2921 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2922 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2923 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2924 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2925 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2926 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2927 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2928 if (err)
2929 return -EFAULT;
2931 old_fs = get_fs();
2932 set_fs(KERNEL_DS);
2933 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2934 set_fs(old_fs);
2936 if (cmd == SIOCGIFMAP && !err) {
2937 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2938 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2939 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2940 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2941 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2942 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2943 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2944 if (err)
2945 err = -EFAULT;
2947 return err;
2950 struct rtentry32 {
2951 u32 rt_pad1;
2952 struct sockaddr rt_dst; /* target address */
2953 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2954 struct sockaddr rt_genmask; /* target network mask (IP) */
2955 unsigned short rt_flags;
2956 short rt_pad2;
2957 u32 rt_pad3;
2958 unsigned char rt_tos;
2959 unsigned char rt_class;
2960 short rt_pad4;
2961 short rt_metric; /* +1 for binary compatibility! */
2962 /* char * */ u32 rt_dev; /* forcing the device at add */
2963 u32 rt_mtu; /* per route MTU/Window */
2964 u32 rt_window; /* Window clamping */
2965 unsigned short rt_irtt; /* Initial RTT */
2968 struct in6_rtmsg32 {
2969 struct in6_addr rtmsg_dst;
2970 struct in6_addr rtmsg_src;
2971 struct in6_addr rtmsg_gateway;
2972 u32 rtmsg_type;
2973 u16 rtmsg_dst_len;
2974 u16 rtmsg_src_len;
2975 u32 rtmsg_metric;
2976 u32 rtmsg_info;
2977 u32 rtmsg_flags;
2978 s32 rtmsg_ifindex;
2981 static int routing_ioctl(struct net *net, struct socket *sock,
2982 unsigned int cmd, void __user *argp)
2984 int ret;
2985 void *r = NULL;
2986 struct in6_rtmsg r6;
2987 struct rtentry r4;
2988 char devname[16];
2989 u32 rtdev;
2990 mm_segment_t old_fs = get_fs();
2992 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2993 struct in6_rtmsg32 __user *ur6 = argp;
2994 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2995 3 * sizeof(struct in6_addr));
2996 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2997 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2998 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2999 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3000 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3001 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3002 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3004 r = (void *) &r6;
3005 } else { /* ipv4 */
3006 struct rtentry32 __user *ur4 = argp;
3007 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3008 3 * sizeof(struct sockaddr));
3009 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3010 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3011 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3012 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3013 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3014 ret |= get_user(rtdev, &(ur4->rt_dev));
3015 if (rtdev) {
3016 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3017 r4.rt_dev = (char __user __force *)devname;
3018 devname[15] = 0;
3019 } else
3020 r4.rt_dev = NULL;
3022 r = (void *) &r4;
3025 if (ret) {
3026 ret = -EFAULT;
3027 goto out;
3030 set_fs(KERNEL_DS);
3031 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3032 set_fs(old_fs);
3034 out:
3035 return ret;
3038 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3039 * for some operations; this forces use of the newer bridge-utils that
3040 * use compatible ioctls
3042 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3044 compat_ulong_t tmp;
3046 if (get_user(tmp, argp))
3047 return -EFAULT;
3048 if (tmp == BRCTL_GET_VERSION)
3049 return BRCTL_VERSION + 1;
3050 return -EINVAL;
3053 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3054 unsigned int cmd, unsigned long arg)
3056 void __user *argp = compat_ptr(arg);
3057 struct sock *sk = sock->sk;
3058 struct net *net = sock_net(sk);
3060 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3061 return compat_ifr_data_ioctl(net, cmd, argp);
3063 switch (cmd) {
3064 case SIOCSIFBR:
3065 case SIOCGIFBR:
3066 return old_bridge_ioctl(argp);
3067 case SIOCGIFNAME:
3068 return dev_ifname32(net, argp);
3069 case SIOCGIFCONF:
3070 return dev_ifconf(net, argp);
3071 case SIOCETHTOOL:
3072 return ethtool_ioctl(net, argp);
3073 case SIOCWANDEV:
3074 return compat_siocwandev(net, argp);
3075 case SIOCGIFMAP:
3076 case SIOCSIFMAP:
3077 return compat_sioc_ifmap(net, cmd, argp);
3078 case SIOCBONDENSLAVE:
3079 case SIOCBONDRELEASE:
3080 case SIOCBONDSETHWADDR:
3081 case SIOCBONDCHANGEACTIVE:
3082 return bond_ioctl(net, cmd, argp);
3083 case SIOCADDRT:
3084 case SIOCDELRT:
3085 return routing_ioctl(net, sock, cmd, argp);
3086 case SIOCGSTAMP:
3087 return do_siocgstamp(net, sock, cmd, argp);
3088 case SIOCGSTAMPNS:
3089 return do_siocgstampns(net, sock, cmd, argp);
3090 case SIOCBONDSLAVEINFOQUERY:
3091 case SIOCBONDINFOQUERY:
3092 case SIOCSHWTSTAMP:
3093 case SIOCGHWTSTAMP:
3094 return compat_ifr_data_ioctl(net, cmd, argp);
3096 case FIOSETOWN:
3097 case SIOCSPGRP:
3098 case FIOGETOWN:
3099 case SIOCGPGRP:
3100 case SIOCBRADDBR:
3101 case SIOCBRDELBR:
3102 case SIOCGIFVLAN:
3103 case SIOCSIFVLAN:
3104 case SIOCADDDLCI:
3105 case SIOCDELDLCI:
3106 return sock_ioctl(file, cmd, arg);
3108 case SIOCGIFFLAGS:
3109 case SIOCSIFFLAGS:
3110 case SIOCGIFMETRIC:
3111 case SIOCSIFMETRIC:
3112 case SIOCGIFMTU:
3113 case SIOCSIFMTU:
3114 case SIOCGIFMEM:
3115 case SIOCSIFMEM:
3116 case SIOCGIFHWADDR:
3117 case SIOCSIFHWADDR:
3118 case SIOCADDMULTI:
3119 case SIOCDELMULTI:
3120 case SIOCGIFINDEX:
3121 case SIOCGIFADDR:
3122 case SIOCSIFADDR:
3123 case SIOCSIFHWBROADCAST:
3124 case SIOCDIFADDR:
3125 case SIOCGIFBRDADDR:
3126 case SIOCSIFBRDADDR:
3127 case SIOCGIFDSTADDR:
3128 case SIOCSIFDSTADDR:
3129 case SIOCGIFNETMASK:
3130 case SIOCSIFNETMASK:
3131 case SIOCSIFPFLAGS:
3132 case SIOCGIFPFLAGS:
3133 case SIOCGIFTXQLEN:
3134 case SIOCSIFTXQLEN:
3135 case SIOCBRADDIF:
3136 case SIOCBRDELIF:
3137 case SIOCSIFNAME:
3138 case SIOCGMIIPHY:
3139 case SIOCGMIIREG:
3140 case SIOCSMIIREG:
3141 return dev_ifsioc(net, sock, cmd, argp);
3143 case SIOCSARP:
3144 case SIOCGARP:
3145 case SIOCDARP:
3146 case SIOCATMARK:
3147 return sock_do_ioctl(net, sock, cmd, arg);
3150 return -ENOIOCTLCMD;
3153 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3154 unsigned long arg)
3156 struct socket *sock = file->private_data;
3157 int ret = -ENOIOCTLCMD;
3158 struct sock *sk;
3159 struct net *net;
3161 sk = sock->sk;
3162 net = sock_net(sk);
3164 if (sock->ops->compat_ioctl)
3165 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3167 if (ret == -ENOIOCTLCMD &&
3168 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3169 ret = compat_wext_handle_ioctl(net, cmd, arg);
3171 if (ret == -ENOIOCTLCMD)
3172 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3174 return ret;
3176 #endif
3178 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3180 return sock->ops->bind(sock, addr, addrlen);
3182 EXPORT_SYMBOL(kernel_bind);
3184 int kernel_listen(struct socket *sock, int backlog)
3186 return sock->ops->listen(sock, backlog);
3188 EXPORT_SYMBOL(kernel_listen);
3190 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3192 struct sock *sk = sock->sk;
3193 int err;
3195 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3196 newsock);
3197 if (err < 0)
3198 goto done;
3200 err = sock->ops->accept(sock, *newsock, flags);
3201 if (err < 0) {
3202 sock_release(*newsock);
3203 *newsock = NULL;
3204 goto done;
3207 (*newsock)->ops = sock->ops;
3208 __module_get((*newsock)->ops->owner);
3210 done:
3211 return err;
3213 EXPORT_SYMBOL(kernel_accept);
3215 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3216 int flags)
3218 return sock->ops->connect(sock, addr, addrlen, flags);
3220 EXPORT_SYMBOL(kernel_connect);
3222 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3223 int *addrlen)
3225 return sock->ops->getname(sock, addr, addrlen, 0);
3227 EXPORT_SYMBOL(kernel_getsockname);
3229 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3230 int *addrlen)
3232 return sock->ops->getname(sock, addr, addrlen, 1);
3234 EXPORT_SYMBOL(kernel_getpeername);
3236 int kernel_getsockopt(struct socket *sock, int level, int optname,
3237 char *optval, int *optlen)
3239 mm_segment_t oldfs = get_fs();
3240 char __user *uoptval;
3241 int __user *uoptlen;
3242 int err;
3244 uoptval = (char __user __force *) optval;
3245 uoptlen = (int __user __force *) optlen;
3247 set_fs(KERNEL_DS);
3248 if (level == SOL_SOCKET)
3249 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3250 else
3251 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3252 uoptlen);
3253 set_fs(oldfs);
3254 return err;
3256 EXPORT_SYMBOL(kernel_getsockopt);
3258 int kernel_setsockopt(struct socket *sock, int level, int optname,
3259 char *optval, unsigned int optlen)
3261 mm_segment_t oldfs = get_fs();
3262 char __user *uoptval;
3263 int err;
3265 uoptval = (char __user __force *) optval;
3267 set_fs(KERNEL_DS);
3268 if (level == SOL_SOCKET)
3269 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3270 else
3271 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3272 optlen);
3273 set_fs(oldfs);
3274 return err;
3276 EXPORT_SYMBOL(kernel_setsockopt);
3278 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3279 size_t size, int flags)
3281 if (sock->ops->sendpage)
3282 return sock->ops->sendpage(sock, page, offset, size, flags);
3284 return sock_no_sendpage(sock, page, offset, size, flags);
3286 EXPORT_SYMBOL(kernel_sendpage);
3288 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3290 mm_segment_t oldfs = get_fs();
3291 int err;
3293 set_fs(KERNEL_DS);
3294 err = sock->ops->ioctl(sock, cmd, arg);
3295 set_fs(oldfs);
3297 return err;
3299 EXPORT_SYMBOL(kernel_sock_ioctl);
3301 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3303 return sock->ops->shutdown(sock, how);
3305 EXPORT_SYMBOL(kernel_sock_shutdown);