Linux 4.1.16
[linux/fpc-iii.git] / net / vmw_vsock / af_vsock.c
blob2ec86e652a19802ec7f81e7443d29bbdf468b174
1 /*
2 * VMware vSockets Driver
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
16 /* Implementation notes:
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the SS_LISTEN state. When a connection
40 * request is received (the second kind of socket mentioned above), we create a
41 * new socket and refer to it as a pending socket. These pending sockets are
42 * placed on the pending connection list of the listener socket. When future
43 * packets are received for the address the listener socket is bound to, we
44 * check if the source of the packet is from one that has an existing pending
45 * connection. If it does, we process the packet for the pending socket. When
46 * that socket reaches the connected state, it is removed from the listener
47 * socket's pending list and enqueued in the listener socket's accept queue.
48 * Callers of accept(2) will accept connected sockets from the listener socket's
49 * accept queue. If the socket cannot be accepted for some reason then it is
50 * marked rejected. Once the connection is accepted, it is owned by the user
51 * process and the responsibility for cleanup falls with that user process.
53 * - It is possible that these pending sockets will never reach the connected
54 * state; in fact, we may never receive another packet after the connection
55 * request. Because of this, we must schedule a cleanup function to run in the
56 * future, after some amount of time passes where a connection should have been
57 * established. This function ensures that the socket is off all lists so it
58 * cannot be retrieved, then drops all references to the socket so it is cleaned
59 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
60 * function will also cleanup rejected sockets, those that reach the connected
61 * state but leave it before they have been accepted.
63 * - Sockets created by user action will be cleaned up when the user process
64 * calls close(2), causing our release implementation to be called. Our release
65 * implementation will perform some cleanup then drop the last reference so our
66 * sk_destruct implementation is invoked. Our sk_destruct implementation will
67 * perform additional cleanup that's common for both types of sockets.
69 * - A socket's reference count is what ensures that the structure won't be
70 * freed. Each entry in a list (such as the "global" bound and connected tables
71 * and the listener socket's pending list and connected queue) ensures a
72 * reference. When we defer work until process context and pass a socket as our
73 * argument, we must ensure the reference count is increased to ensure the
74 * socket isn't freed before the function is run; the deferred function will
75 * then drop the reference.
78 #include <linux/types.h>
79 #include <linux/bitops.h>
80 #include <linux/cred.h>
81 #include <linux/init.h>
82 #include <linux/io.h>
83 #include <linux/kernel.h>
84 #include <linux/kmod.h>
85 #include <linux/list.h>
86 #include <linux/miscdevice.h>
87 #include <linux/module.h>
88 #include <linux/mutex.h>
89 #include <linux/net.h>
90 #include <linux/poll.h>
91 #include <linux/skbuff.h>
92 #include <linux/smp.h>
93 #include <linux/socket.h>
94 #include <linux/stddef.h>
95 #include <linux/unistd.h>
96 #include <linux/wait.h>
97 #include <linux/workqueue.h>
98 #include <net/sock.h>
99 #include <net/af_vsock.h>
101 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
102 static void vsock_sk_destruct(struct sock *sk);
103 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
105 /* Protocol family. */
106 static struct proto vsock_proto = {
107 .name = "AF_VSOCK",
108 .owner = THIS_MODULE,
109 .obj_size = sizeof(struct vsock_sock),
112 /* The default peer timeout indicates how long we will wait for a peer response
113 * to a control message.
115 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
117 #define SS_LISTEN 255
119 static const struct vsock_transport *transport;
120 static DEFINE_MUTEX(vsock_register_mutex);
122 /**** EXPORTS ****/
124 /* Get the ID of the local context. This is transport dependent. */
126 int vm_sockets_get_local_cid(void)
128 return transport->get_local_cid();
130 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
132 /**** UTILS ****/
134 /* Each bound VSocket is stored in the bind hash table and each connected
135 * VSocket is stored in the connected hash table.
137 * Unbound sockets are all put on the same list attached to the end of the hash
138 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
139 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
140 * represents the list that addr hashes to).
142 * Specifically, we initialize the vsock_bind_table array to a size of
143 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
144 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
145 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
146 * mods with VSOCK_HASH_SIZE to ensure this.
148 #define VSOCK_HASH_SIZE 251
149 #define MAX_PORT_RETRIES 24
151 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
152 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
153 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
155 /* XXX This can probably be implemented in a better way. */
156 #define VSOCK_CONN_HASH(src, dst) \
157 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
158 #define vsock_connected_sockets(src, dst) \
159 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
160 #define vsock_connected_sockets_vsk(vsk) \
161 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
163 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
164 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
165 static DEFINE_SPINLOCK(vsock_table_lock);
167 /* Autobind this socket to the local address if necessary. */
168 static int vsock_auto_bind(struct vsock_sock *vsk)
170 struct sock *sk = sk_vsock(vsk);
171 struct sockaddr_vm local_addr;
173 if (vsock_addr_bound(&vsk->local_addr))
174 return 0;
175 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
176 return __vsock_bind(sk, &local_addr);
179 static void vsock_init_tables(void)
181 int i;
183 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
184 INIT_LIST_HEAD(&vsock_bind_table[i]);
186 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
187 INIT_LIST_HEAD(&vsock_connected_table[i]);
190 static void __vsock_insert_bound(struct list_head *list,
191 struct vsock_sock *vsk)
193 sock_hold(&vsk->sk);
194 list_add(&vsk->bound_table, list);
197 static void __vsock_insert_connected(struct list_head *list,
198 struct vsock_sock *vsk)
200 sock_hold(&vsk->sk);
201 list_add(&vsk->connected_table, list);
204 static void __vsock_remove_bound(struct vsock_sock *vsk)
206 list_del_init(&vsk->bound_table);
207 sock_put(&vsk->sk);
210 static void __vsock_remove_connected(struct vsock_sock *vsk)
212 list_del_init(&vsk->connected_table);
213 sock_put(&vsk->sk);
216 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
218 struct vsock_sock *vsk;
220 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
221 if (addr->svm_port == vsk->local_addr.svm_port)
222 return sk_vsock(vsk);
224 return NULL;
227 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
228 struct sockaddr_vm *dst)
230 struct vsock_sock *vsk;
232 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
233 connected_table) {
234 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
235 dst->svm_port == vsk->local_addr.svm_port) {
236 return sk_vsock(vsk);
240 return NULL;
243 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
245 return !list_empty(&vsk->bound_table);
248 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
250 return !list_empty(&vsk->connected_table);
253 static void vsock_insert_unbound(struct vsock_sock *vsk)
255 spin_lock_bh(&vsock_table_lock);
256 __vsock_insert_bound(vsock_unbound_sockets, vsk);
257 spin_unlock_bh(&vsock_table_lock);
260 void vsock_insert_connected(struct vsock_sock *vsk)
262 struct list_head *list = vsock_connected_sockets(
263 &vsk->remote_addr, &vsk->local_addr);
265 spin_lock_bh(&vsock_table_lock);
266 __vsock_insert_connected(list, vsk);
267 spin_unlock_bh(&vsock_table_lock);
269 EXPORT_SYMBOL_GPL(vsock_insert_connected);
271 void vsock_remove_bound(struct vsock_sock *vsk)
273 spin_lock_bh(&vsock_table_lock);
274 __vsock_remove_bound(vsk);
275 spin_unlock_bh(&vsock_table_lock);
277 EXPORT_SYMBOL_GPL(vsock_remove_bound);
279 void vsock_remove_connected(struct vsock_sock *vsk)
281 spin_lock_bh(&vsock_table_lock);
282 __vsock_remove_connected(vsk);
283 spin_unlock_bh(&vsock_table_lock);
285 EXPORT_SYMBOL_GPL(vsock_remove_connected);
287 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
289 struct sock *sk;
291 spin_lock_bh(&vsock_table_lock);
292 sk = __vsock_find_bound_socket(addr);
293 if (sk)
294 sock_hold(sk);
296 spin_unlock_bh(&vsock_table_lock);
298 return sk;
300 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
302 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
303 struct sockaddr_vm *dst)
305 struct sock *sk;
307 spin_lock_bh(&vsock_table_lock);
308 sk = __vsock_find_connected_socket(src, dst);
309 if (sk)
310 sock_hold(sk);
312 spin_unlock_bh(&vsock_table_lock);
314 return sk;
316 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
318 static bool vsock_in_bound_table(struct vsock_sock *vsk)
320 bool ret;
322 spin_lock_bh(&vsock_table_lock);
323 ret = __vsock_in_bound_table(vsk);
324 spin_unlock_bh(&vsock_table_lock);
326 return ret;
329 static bool vsock_in_connected_table(struct vsock_sock *vsk)
331 bool ret;
333 spin_lock_bh(&vsock_table_lock);
334 ret = __vsock_in_connected_table(vsk);
335 spin_unlock_bh(&vsock_table_lock);
337 return ret;
340 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
342 int i;
344 spin_lock_bh(&vsock_table_lock);
346 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
347 struct vsock_sock *vsk;
348 list_for_each_entry(vsk, &vsock_connected_table[i],
349 connected_table)
350 fn(sk_vsock(vsk));
353 spin_unlock_bh(&vsock_table_lock);
355 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
357 void vsock_add_pending(struct sock *listener, struct sock *pending)
359 struct vsock_sock *vlistener;
360 struct vsock_sock *vpending;
362 vlistener = vsock_sk(listener);
363 vpending = vsock_sk(pending);
365 sock_hold(pending);
366 sock_hold(listener);
367 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
369 EXPORT_SYMBOL_GPL(vsock_add_pending);
371 void vsock_remove_pending(struct sock *listener, struct sock *pending)
373 struct vsock_sock *vpending = vsock_sk(pending);
375 list_del_init(&vpending->pending_links);
376 sock_put(listener);
377 sock_put(pending);
379 EXPORT_SYMBOL_GPL(vsock_remove_pending);
381 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
383 struct vsock_sock *vlistener;
384 struct vsock_sock *vconnected;
386 vlistener = vsock_sk(listener);
387 vconnected = vsock_sk(connected);
389 sock_hold(connected);
390 sock_hold(listener);
391 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
393 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
395 static struct sock *vsock_dequeue_accept(struct sock *listener)
397 struct vsock_sock *vlistener;
398 struct vsock_sock *vconnected;
400 vlistener = vsock_sk(listener);
402 if (list_empty(&vlistener->accept_queue))
403 return NULL;
405 vconnected = list_entry(vlistener->accept_queue.next,
406 struct vsock_sock, accept_queue);
408 list_del_init(&vconnected->accept_queue);
409 sock_put(listener);
410 /* The caller will need a reference on the connected socket so we let
411 * it call sock_put().
414 return sk_vsock(vconnected);
417 static bool vsock_is_accept_queue_empty(struct sock *sk)
419 struct vsock_sock *vsk = vsock_sk(sk);
420 return list_empty(&vsk->accept_queue);
423 static bool vsock_is_pending(struct sock *sk)
425 struct vsock_sock *vsk = vsock_sk(sk);
426 return !list_empty(&vsk->pending_links);
429 static int vsock_send_shutdown(struct sock *sk, int mode)
431 return transport->shutdown(vsock_sk(sk), mode);
434 void vsock_pending_work(struct work_struct *work)
436 struct sock *sk;
437 struct sock *listener;
438 struct vsock_sock *vsk;
439 bool cleanup;
441 vsk = container_of(work, struct vsock_sock, dwork.work);
442 sk = sk_vsock(vsk);
443 listener = vsk->listener;
444 cleanup = true;
446 lock_sock(listener);
447 lock_sock(sk);
449 if (vsock_is_pending(sk)) {
450 vsock_remove_pending(listener, sk);
451 } else if (!vsk->rejected) {
452 /* We are not on the pending list and accept() did not reject
453 * us, so we must have been accepted by our user process. We
454 * just need to drop our references to the sockets and be on
455 * our way.
457 cleanup = false;
458 goto out;
461 listener->sk_ack_backlog--;
463 /* We need to remove ourself from the global connected sockets list so
464 * incoming packets can't find this socket, and to reduce the reference
465 * count.
467 if (vsock_in_connected_table(vsk))
468 vsock_remove_connected(vsk);
470 sk->sk_state = SS_FREE;
472 out:
473 release_sock(sk);
474 release_sock(listener);
475 if (cleanup)
476 sock_put(sk);
478 sock_put(sk);
479 sock_put(listener);
481 EXPORT_SYMBOL_GPL(vsock_pending_work);
483 /**** SOCKET OPERATIONS ****/
485 static int __vsock_bind_stream(struct vsock_sock *vsk,
486 struct sockaddr_vm *addr)
488 static u32 port = LAST_RESERVED_PORT + 1;
489 struct sockaddr_vm new_addr;
491 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
493 if (addr->svm_port == VMADDR_PORT_ANY) {
494 bool found = false;
495 unsigned int i;
497 for (i = 0; i < MAX_PORT_RETRIES; i++) {
498 if (port <= LAST_RESERVED_PORT)
499 port = LAST_RESERVED_PORT + 1;
501 new_addr.svm_port = port++;
503 if (!__vsock_find_bound_socket(&new_addr)) {
504 found = true;
505 break;
509 if (!found)
510 return -EADDRNOTAVAIL;
511 } else {
512 /* If port is in reserved range, ensure caller
513 * has necessary privileges.
515 if (addr->svm_port <= LAST_RESERVED_PORT &&
516 !capable(CAP_NET_BIND_SERVICE)) {
517 return -EACCES;
520 if (__vsock_find_bound_socket(&new_addr))
521 return -EADDRINUSE;
524 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
526 /* Remove stream sockets from the unbound list and add them to the hash
527 * table for easy lookup by its address. The unbound list is simply an
528 * extra entry at the end of the hash table, a trick used by AF_UNIX.
530 __vsock_remove_bound(vsk);
531 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
533 return 0;
536 static int __vsock_bind_dgram(struct vsock_sock *vsk,
537 struct sockaddr_vm *addr)
539 return transport->dgram_bind(vsk, addr);
542 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
544 struct vsock_sock *vsk = vsock_sk(sk);
545 u32 cid;
546 int retval;
548 /* First ensure this socket isn't already bound. */
549 if (vsock_addr_bound(&vsk->local_addr))
550 return -EINVAL;
552 /* Now bind to the provided address or select appropriate values if
553 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
554 * like AF_INET prevents binding to a non-local IP address (in most
555 * cases), we only allow binding to the local CID.
557 cid = transport->get_local_cid();
558 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
559 return -EADDRNOTAVAIL;
561 switch (sk->sk_socket->type) {
562 case SOCK_STREAM:
563 spin_lock_bh(&vsock_table_lock);
564 retval = __vsock_bind_stream(vsk, addr);
565 spin_unlock_bh(&vsock_table_lock);
566 break;
568 case SOCK_DGRAM:
569 retval = __vsock_bind_dgram(vsk, addr);
570 break;
572 default:
573 retval = -EINVAL;
574 break;
577 return retval;
580 struct sock *__vsock_create(struct net *net,
581 struct socket *sock,
582 struct sock *parent,
583 gfp_t priority,
584 unsigned short type)
586 struct sock *sk;
587 struct vsock_sock *psk;
588 struct vsock_sock *vsk;
590 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto);
591 if (!sk)
592 return NULL;
594 sock_init_data(sock, sk);
596 /* sk->sk_type is normally set in sock_init_data, but only if sock is
597 * non-NULL. We make sure that our sockets always have a type by
598 * setting it here if needed.
600 if (!sock)
601 sk->sk_type = type;
603 vsk = vsock_sk(sk);
604 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
605 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
607 sk->sk_destruct = vsock_sk_destruct;
608 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
609 sk->sk_state = 0;
610 sock_reset_flag(sk, SOCK_DONE);
612 INIT_LIST_HEAD(&vsk->bound_table);
613 INIT_LIST_HEAD(&vsk->connected_table);
614 vsk->listener = NULL;
615 INIT_LIST_HEAD(&vsk->pending_links);
616 INIT_LIST_HEAD(&vsk->accept_queue);
617 vsk->rejected = false;
618 vsk->sent_request = false;
619 vsk->ignore_connecting_rst = false;
620 vsk->peer_shutdown = 0;
622 psk = parent ? vsock_sk(parent) : NULL;
623 if (parent) {
624 vsk->trusted = psk->trusted;
625 vsk->owner = get_cred(psk->owner);
626 vsk->connect_timeout = psk->connect_timeout;
627 } else {
628 vsk->trusted = capable(CAP_NET_ADMIN);
629 vsk->owner = get_current_cred();
630 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
633 if (transport->init(vsk, psk) < 0) {
634 sk_free(sk);
635 return NULL;
638 if (sock)
639 vsock_insert_unbound(vsk);
641 return sk;
643 EXPORT_SYMBOL_GPL(__vsock_create);
645 static void __vsock_release(struct sock *sk)
647 if (sk) {
648 struct sk_buff *skb;
649 struct sock *pending;
650 struct vsock_sock *vsk;
652 vsk = vsock_sk(sk);
653 pending = NULL; /* Compiler warning. */
655 if (vsock_in_bound_table(vsk))
656 vsock_remove_bound(vsk);
658 if (vsock_in_connected_table(vsk))
659 vsock_remove_connected(vsk);
661 transport->release(vsk);
663 lock_sock(sk);
664 sock_orphan(sk);
665 sk->sk_shutdown = SHUTDOWN_MASK;
667 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
668 kfree_skb(skb);
670 /* Clean up any sockets that never were accepted. */
671 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
672 __vsock_release(pending);
673 sock_put(pending);
676 release_sock(sk);
677 sock_put(sk);
681 static void vsock_sk_destruct(struct sock *sk)
683 struct vsock_sock *vsk = vsock_sk(sk);
685 transport->destruct(vsk);
687 /* When clearing these addresses, there's no need to set the family and
688 * possibly register the address family with the kernel.
690 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
691 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
693 put_cred(vsk->owner);
696 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
698 int err;
700 err = sock_queue_rcv_skb(sk, skb);
701 if (err)
702 kfree_skb(skb);
704 return err;
707 s64 vsock_stream_has_data(struct vsock_sock *vsk)
709 return transport->stream_has_data(vsk);
711 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
713 s64 vsock_stream_has_space(struct vsock_sock *vsk)
715 return transport->stream_has_space(vsk);
717 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
719 static int vsock_release(struct socket *sock)
721 __vsock_release(sock->sk);
722 sock->sk = NULL;
723 sock->state = SS_FREE;
725 return 0;
728 static int
729 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
731 int err;
732 struct sock *sk;
733 struct sockaddr_vm *vm_addr;
735 sk = sock->sk;
737 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
738 return -EINVAL;
740 lock_sock(sk);
741 err = __vsock_bind(sk, vm_addr);
742 release_sock(sk);
744 return err;
747 static int vsock_getname(struct socket *sock,
748 struct sockaddr *addr, int *addr_len, int peer)
750 int err;
751 struct sock *sk;
752 struct vsock_sock *vsk;
753 struct sockaddr_vm *vm_addr;
755 sk = sock->sk;
756 vsk = vsock_sk(sk);
757 err = 0;
759 lock_sock(sk);
761 if (peer) {
762 if (sock->state != SS_CONNECTED) {
763 err = -ENOTCONN;
764 goto out;
766 vm_addr = &vsk->remote_addr;
767 } else {
768 vm_addr = &vsk->local_addr;
771 if (!vm_addr) {
772 err = -EINVAL;
773 goto out;
776 /* sys_getsockname() and sys_getpeername() pass us a
777 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
778 * that macro is defined in socket.c instead of .h, so we hardcode its
779 * value here.
781 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
782 memcpy(addr, vm_addr, sizeof(*vm_addr));
783 *addr_len = sizeof(*vm_addr);
785 out:
786 release_sock(sk);
787 return err;
790 static int vsock_shutdown(struct socket *sock, int mode)
792 int err;
793 struct sock *sk;
795 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
796 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
797 * here like the other address families do. Note also that the
798 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
799 * which is what we want.
801 mode++;
803 if ((mode & ~SHUTDOWN_MASK) || !mode)
804 return -EINVAL;
806 /* If this is a STREAM socket and it is not connected then bail out
807 * immediately. If it is a DGRAM socket then we must first kick the
808 * socket so that it wakes up from any sleeping calls, for example
809 * recv(), and then afterwards return the error.
812 sk = sock->sk;
813 if (sock->state == SS_UNCONNECTED) {
814 err = -ENOTCONN;
815 if (sk->sk_type == SOCK_STREAM)
816 return err;
817 } else {
818 sock->state = SS_DISCONNECTING;
819 err = 0;
822 /* Receive and send shutdowns are treated alike. */
823 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
824 if (mode) {
825 lock_sock(sk);
826 sk->sk_shutdown |= mode;
827 sk->sk_state_change(sk);
828 release_sock(sk);
830 if (sk->sk_type == SOCK_STREAM) {
831 sock_reset_flag(sk, SOCK_DONE);
832 vsock_send_shutdown(sk, mode);
836 return err;
839 static unsigned int vsock_poll(struct file *file, struct socket *sock,
840 poll_table *wait)
842 struct sock *sk;
843 unsigned int mask;
844 struct vsock_sock *vsk;
846 sk = sock->sk;
847 vsk = vsock_sk(sk);
849 poll_wait(file, sk_sleep(sk), wait);
850 mask = 0;
852 if (sk->sk_err)
853 /* Signify that there has been an error on this socket. */
854 mask |= POLLERR;
856 /* INET sockets treat local write shutdown and peer write shutdown as a
857 * case of POLLHUP set.
859 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
860 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
861 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
862 mask |= POLLHUP;
865 if (sk->sk_shutdown & RCV_SHUTDOWN ||
866 vsk->peer_shutdown & SEND_SHUTDOWN) {
867 mask |= POLLRDHUP;
870 if (sock->type == SOCK_DGRAM) {
871 /* For datagram sockets we can read if there is something in
872 * the queue and write as long as the socket isn't shutdown for
873 * sending.
875 if (!skb_queue_empty(&sk->sk_receive_queue) ||
876 (sk->sk_shutdown & RCV_SHUTDOWN)) {
877 mask |= POLLIN | POLLRDNORM;
880 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
881 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
883 } else if (sock->type == SOCK_STREAM) {
884 lock_sock(sk);
886 /* Listening sockets that have connections in their accept
887 * queue can be read.
889 if (sk->sk_state == SS_LISTEN
890 && !vsock_is_accept_queue_empty(sk))
891 mask |= POLLIN | POLLRDNORM;
893 /* If there is something in the queue then we can read. */
894 if (transport->stream_is_active(vsk) &&
895 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
896 bool data_ready_now = false;
897 int ret = transport->notify_poll_in(
898 vsk, 1, &data_ready_now);
899 if (ret < 0) {
900 mask |= POLLERR;
901 } else {
902 if (data_ready_now)
903 mask |= POLLIN | POLLRDNORM;
908 /* Sockets whose connections have been closed, reset, or
909 * terminated should also be considered read, and we check the
910 * shutdown flag for that.
912 if (sk->sk_shutdown & RCV_SHUTDOWN ||
913 vsk->peer_shutdown & SEND_SHUTDOWN) {
914 mask |= POLLIN | POLLRDNORM;
917 /* Connected sockets that can produce data can be written. */
918 if (sk->sk_state == SS_CONNECTED) {
919 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
920 bool space_avail_now = false;
921 int ret = transport->notify_poll_out(
922 vsk, 1, &space_avail_now);
923 if (ret < 0) {
924 mask |= POLLERR;
925 } else {
926 if (space_avail_now)
927 /* Remove POLLWRBAND since INET
928 * sockets are not setting it.
930 mask |= POLLOUT | POLLWRNORM;
936 /* Simulate INET socket poll behaviors, which sets
937 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
938 * but local send is not shutdown.
940 if (sk->sk_state == SS_UNCONNECTED) {
941 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
942 mask |= POLLOUT | POLLWRNORM;
946 release_sock(sk);
949 return mask;
952 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
953 size_t len)
955 int err;
956 struct sock *sk;
957 struct vsock_sock *vsk;
958 struct sockaddr_vm *remote_addr;
960 if (msg->msg_flags & MSG_OOB)
961 return -EOPNOTSUPP;
963 /* For now, MSG_DONTWAIT is always assumed... */
964 err = 0;
965 sk = sock->sk;
966 vsk = vsock_sk(sk);
968 lock_sock(sk);
970 err = vsock_auto_bind(vsk);
971 if (err)
972 goto out;
975 /* If the provided message contains an address, use that. Otherwise
976 * fall back on the socket's remote handle (if it has been connected).
978 if (msg->msg_name &&
979 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
980 &remote_addr) == 0) {
981 /* Ensure this address is of the right type and is a valid
982 * destination.
985 if (remote_addr->svm_cid == VMADDR_CID_ANY)
986 remote_addr->svm_cid = transport->get_local_cid();
988 if (!vsock_addr_bound(remote_addr)) {
989 err = -EINVAL;
990 goto out;
992 } else if (sock->state == SS_CONNECTED) {
993 remote_addr = &vsk->remote_addr;
995 if (remote_addr->svm_cid == VMADDR_CID_ANY)
996 remote_addr->svm_cid = transport->get_local_cid();
998 /* XXX Should connect() or this function ensure remote_addr is
999 * bound?
1001 if (!vsock_addr_bound(&vsk->remote_addr)) {
1002 err = -EINVAL;
1003 goto out;
1005 } else {
1006 err = -EINVAL;
1007 goto out;
1010 if (!transport->dgram_allow(remote_addr->svm_cid,
1011 remote_addr->svm_port)) {
1012 err = -EINVAL;
1013 goto out;
1016 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1018 out:
1019 release_sock(sk);
1020 return err;
1023 static int vsock_dgram_connect(struct socket *sock,
1024 struct sockaddr *addr, int addr_len, int flags)
1026 int err;
1027 struct sock *sk;
1028 struct vsock_sock *vsk;
1029 struct sockaddr_vm *remote_addr;
1031 sk = sock->sk;
1032 vsk = vsock_sk(sk);
1034 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1035 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1036 lock_sock(sk);
1037 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1038 VMADDR_PORT_ANY);
1039 sock->state = SS_UNCONNECTED;
1040 release_sock(sk);
1041 return 0;
1042 } else if (err != 0)
1043 return -EINVAL;
1045 lock_sock(sk);
1047 err = vsock_auto_bind(vsk);
1048 if (err)
1049 goto out;
1051 if (!transport->dgram_allow(remote_addr->svm_cid,
1052 remote_addr->svm_port)) {
1053 err = -EINVAL;
1054 goto out;
1057 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1058 sock->state = SS_CONNECTED;
1060 out:
1061 release_sock(sk);
1062 return err;
1065 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1066 size_t len, int flags)
1068 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1071 static const struct proto_ops vsock_dgram_ops = {
1072 .family = PF_VSOCK,
1073 .owner = THIS_MODULE,
1074 .release = vsock_release,
1075 .bind = vsock_bind,
1076 .connect = vsock_dgram_connect,
1077 .socketpair = sock_no_socketpair,
1078 .accept = sock_no_accept,
1079 .getname = vsock_getname,
1080 .poll = vsock_poll,
1081 .ioctl = sock_no_ioctl,
1082 .listen = sock_no_listen,
1083 .shutdown = vsock_shutdown,
1084 .setsockopt = sock_no_setsockopt,
1085 .getsockopt = sock_no_getsockopt,
1086 .sendmsg = vsock_dgram_sendmsg,
1087 .recvmsg = vsock_dgram_recvmsg,
1088 .mmap = sock_no_mmap,
1089 .sendpage = sock_no_sendpage,
1092 static void vsock_connect_timeout(struct work_struct *work)
1094 struct sock *sk;
1095 struct vsock_sock *vsk;
1097 vsk = container_of(work, struct vsock_sock, dwork.work);
1098 sk = sk_vsock(vsk);
1100 lock_sock(sk);
1101 if (sk->sk_state == SS_CONNECTING &&
1102 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1103 sk->sk_state = SS_UNCONNECTED;
1104 sk->sk_err = ETIMEDOUT;
1105 sk->sk_error_report(sk);
1107 release_sock(sk);
1109 sock_put(sk);
1112 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1113 int addr_len, int flags)
1115 int err;
1116 struct sock *sk;
1117 struct vsock_sock *vsk;
1118 struct sockaddr_vm *remote_addr;
1119 long timeout;
1120 DEFINE_WAIT(wait);
1122 err = 0;
1123 sk = sock->sk;
1124 vsk = vsock_sk(sk);
1126 lock_sock(sk);
1128 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1129 switch (sock->state) {
1130 case SS_CONNECTED:
1131 err = -EISCONN;
1132 goto out;
1133 case SS_DISCONNECTING:
1134 err = -EINVAL;
1135 goto out;
1136 case SS_CONNECTING:
1137 /* This continues on so we can move sock into the SS_CONNECTED
1138 * state once the connection has completed (at which point err
1139 * will be set to zero also). Otherwise, we will either wait
1140 * for the connection or return -EALREADY should this be a
1141 * non-blocking call.
1143 err = -EALREADY;
1144 break;
1145 default:
1146 if ((sk->sk_state == SS_LISTEN) ||
1147 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1148 err = -EINVAL;
1149 goto out;
1152 /* The hypervisor and well-known contexts do not have socket
1153 * endpoints.
1155 if (!transport->stream_allow(remote_addr->svm_cid,
1156 remote_addr->svm_port)) {
1157 err = -ENETUNREACH;
1158 goto out;
1161 /* Set the remote address that we are connecting to. */
1162 memcpy(&vsk->remote_addr, remote_addr,
1163 sizeof(vsk->remote_addr));
1165 err = vsock_auto_bind(vsk);
1166 if (err)
1167 goto out;
1169 sk->sk_state = SS_CONNECTING;
1171 err = transport->connect(vsk);
1172 if (err < 0)
1173 goto out;
1175 /* Mark sock as connecting and set the error code to in
1176 * progress in case this is a non-blocking connect.
1178 sock->state = SS_CONNECTING;
1179 err = -EINPROGRESS;
1182 /* The receive path will handle all communication until we are able to
1183 * enter the connected state. Here we wait for the connection to be
1184 * completed or a notification of an error.
1186 timeout = vsk->connect_timeout;
1187 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1189 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1190 if (flags & O_NONBLOCK) {
1191 /* If we're not going to block, we schedule a timeout
1192 * function to generate a timeout on the connection
1193 * attempt, in case the peer doesn't respond in a
1194 * timely manner. We hold on to the socket until the
1195 * timeout fires.
1197 sock_hold(sk);
1198 INIT_DELAYED_WORK(&vsk->dwork,
1199 vsock_connect_timeout);
1200 schedule_delayed_work(&vsk->dwork, timeout);
1202 /* Skip ahead to preserve error code set above. */
1203 goto out_wait;
1206 release_sock(sk);
1207 timeout = schedule_timeout(timeout);
1208 lock_sock(sk);
1210 if (signal_pending(current)) {
1211 err = sock_intr_errno(timeout);
1212 goto out_wait_error;
1213 } else if (timeout == 0) {
1214 err = -ETIMEDOUT;
1215 goto out_wait_error;
1218 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1221 if (sk->sk_err) {
1222 err = -sk->sk_err;
1223 goto out_wait_error;
1224 } else
1225 err = 0;
1227 out_wait:
1228 finish_wait(sk_sleep(sk), &wait);
1229 out:
1230 release_sock(sk);
1231 return err;
1233 out_wait_error:
1234 sk->sk_state = SS_UNCONNECTED;
1235 sock->state = SS_UNCONNECTED;
1236 goto out_wait;
1239 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1241 struct sock *listener;
1242 int err;
1243 struct sock *connected;
1244 struct vsock_sock *vconnected;
1245 long timeout;
1246 DEFINE_WAIT(wait);
1248 err = 0;
1249 listener = sock->sk;
1251 lock_sock(listener);
1253 if (sock->type != SOCK_STREAM) {
1254 err = -EOPNOTSUPP;
1255 goto out;
1258 if (listener->sk_state != SS_LISTEN) {
1259 err = -EINVAL;
1260 goto out;
1263 /* Wait for children sockets to appear; these are the new sockets
1264 * created upon connection establishment.
1266 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1267 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1269 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1270 listener->sk_err == 0) {
1271 release_sock(listener);
1272 timeout = schedule_timeout(timeout);
1273 lock_sock(listener);
1275 if (signal_pending(current)) {
1276 err = sock_intr_errno(timeout);
1277 goto out_wait;
1278 } else if (timeout == 0) {
1279 err = -EAGAIN;
1280 goto out_wait;
1283 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1286 if (listener->sk_err)
1287 err = -listener->sk_err;
1289 if (connected) {
1290 listener->sk_ack_backlog--;
1292 lock_sock(connected);
1293 vconnected = vsock_sk(connected);
1295 /* If the listener socket has received an error, then we should
1296 * reject this socket and return. Note that we simply mark the
1297 * socket rejected, drop our reference, and let the cleanup
1298 * function handle the cleanup; the fact that we found it in
1299 * the listener's accept queue guarantees that the cleanup
1300 * function hasn't run yet.
1302 if (err) {
1303 vconnected->rejected = true;
1304 release_sock(connected);
1305 sock_put(connected);
1306 goto out_wait;
1309 newsock->state = SS_CONNECTED;
1310 sock_graft(connected, newsock);
1311 release_sock(connected);
1312 sock_put(connected);
1315 out_wait:
1316 finish_wait(sk_sleep(listener), &wait);
1317 out:
1318 release_sock(listener);
1319 return err;
1322 static int vsock_listen(struct socket *sock, int backlog)
1324 int err;
1325 struct sock *sk;
1326 struct vsock_sock *vsk;
1328 sk = sock->sk;
1330 lock_sock(sk);
1332 if (sock->type != SOCK_STREAM) {
1333 err = -EOPNOTSUPP;
1334 goto out;
1337 if (sock->state != SS_UNCONNECTED) {
1338 err = -EINVAL;
1339 goto out;
1342 vsk = vsock_sk(sk);
1344 if (!vsock_addr_bound(&vsk->local_addr)) {
1345 err = -EINVAL;
1346 goto out;
1349 sk->sk_max_ack_backlog = backlog;
1350 sk->sk_state = SS_LISTEN;
1352 err = 0;
1354 out:
1355 release_sock(sk);
1356 return err;
1359 static int vsock_stream_setsockopt(struct socket *sock,
1360 int level,
1361 int optname,
1362 char __user *optval,
1363 unsigned int optlen)
1365 int err;
1366 struct sock *sk;
1367 struct vsock_sock *vsk;
1368 u64 val;
1370 if (level != AF_VSOCK)
1371 return -ENOPROTOOPT;
1373 #define COPY_IN(_v) \
1374 do { \
1375 if (optlen < sizeof(_v)) { \
1376 err = -EINVAL; \
1377 goto exit; \
1379 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1380 err = -EFAULT; \
1381 goto exit; \
1383 } while (0)
1385 err = 0;
1386 sk = sock->sk;
1387 vsk = vsock_sk(sk);
1389 lock_sock(sk);
1391 switch (optname) {
1392 case SO_VM_SOCKETS_BUFFER_SIZE:
1393 COPY_IN(val);
1394 transport->set_buffer_size(vsk, val);
1395 break;
1397 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1398 COPY_IN(val);
1399 transport->set_max_buffer_size(vsk, val);
1400 break;
1402 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1403 COPY_IN(val);
1404 transport->set_min_buffer_size(vsk, val);
1405 break;
1407 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1408 struct timeval tv;
1409 COPY_IN(tv);
1410 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1411 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1412 vsk->connect_timeout = tv.tv_sec * HZ +
1413 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1414 if (vsk->connect_timeout == 0)
1415 vsk->connect_timeout =
1416 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1418 } else {
1419 err = -ERANGE;
1421 break;
1424 default:
1425 err = -ENOPROTOOPT;
1426 break;
1429 #undef COPY_IN
1431 exit:
1432 release_sock(sk);
1433 return err;
1436 static int vsock_stream_getsockopt(struct socket *sock,
1437 int level, int optname,
1438 char __user *optval,
1439 int __user *optlen)
1441 int err;
1442 int len;
1443 struct sock *sk;
1444 struct vsock_sock *vsk;
1445 u64 val;
1447 if (level != AF_VSOCK)
1448 return -ENOPROTOOPT;
1450 err = get_user(len, optlen);
1451 if (err != 0)
1452 return err;
1454 #define COPY_OUT(_v) \
1455 do { \
1456 if (len < sizeof(_v)) \
1457 return -EINVAL; \
1459 len = sizeof(_v); \
1460 if (copy_to_user(optval, &_v, len) != 0) \
1461 return -EFAULT; \
1463 } while (0)
1465 err = 0;
1466 sk = sock->sk;
1467 vsk = vsock_sk(sk);
1469 switch (optname) {
1470 case SO_VM_SOCKETS_BUFFER_SIZE:
1471 val = transport->get_buffer_size(vsk);
1472 COPY_OUT(val);
1473 break;
1475 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1476 val = transport->get_max_buffer_size(vsk);
1477 COPY_OUT(val);
1478 break;
1480 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1481 val = transport->get_min_buffer_size(vsk);
1482 COPY_OUT(val);
1483 break;
1485 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1486 struct timeval tv;
1487 tv.tv_sec = vsk->connect_timeout / HZ;
1488 tv.tv_usec =
1489 (vsk->connect_timeout -
1490 tv.tv_sec * HZ) * (1000000 / HZ);
1491 COPY_OUT(tv);
1492 break;
1494 default:
1495 return -ENOPROTOOPT;
1498 err = put_user(len, optlen);
1499 if (err != 0)
1500 return -EFAULT;
1502 #undef COPY_OUT
1504 return 0;
1507 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1508 size_t len)
1510 struct sock *sk;
1511 struct vsock_sock *vsk;
1512 ssize_t total_written;
1513 long timeout;
1514 int err;
1515 struct vsock_transport_send_notify_data send_data;
1517 DEFINE_WAIT(wait);
1519 sk = sock->sk;
1520 vsk = vsock_sk(sk);
1521 total_written = 0;
1522 err = 0;
1524 if (msg->msg_flags & MSG_OOB)
1525 return -EOPNOTSUPP;
1527 lock_sock(sk);
1529 /* Callers should not provide a destination with stream sockets. */
1530 if (msg->msg_namelen) {
1531 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1532 goto out;
1535 /* Send data only if both sides are not shutdown in the direction. */
1536 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1537 vsk->peer_shutdown & RCV_SHUTDOWN) {
1538 err = -EPIPE;
1539 goto out;
1542 if (sk->sk_state != SS_CONNECTED ||
1543 !vsock_addr_bound(&vsk->local_addr)) {
1544 err = -ENOTCONN;
1545 goto out;
1548 if (!vsock_addr_bound(&vsk->remote_addr)) {
1549 err = -EDESTADDRREQ;
1550 goto out;
1553 /* Wait for room in the produce queue to enqueue our user's data. */
1554 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1556 err = transport->notify_send_init(vsk, &send_data);
1557 if (err < 0)
1558 goto out;
1560 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1562 while (total_written < len) {
1563 ssize_t written;
1565 while (vsock_stream_has_space(vsk) == 0 &&
1566 sk->sk_err == 0 &&
1567 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1568 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1570 /* Don't wait for non-blocking sockets. */
1571 if (timeout == 0) {
1572 err = -EAGAIN;
1573 goto out_wait;
1576 err = transport->notify_send_pre_block(vsk, &send_data);
1577 if (err < 0)
1578 goto out_wait;
1580 release_sock(sk);
1581 timeout = schedule_timeout(timeout);
1582 lock_sock(sk);
1583 if (signal_pending(current)) {
1584 err = sock_intr_errno(timeout);
1585 goto out_wait;
1586 } else if (timeout == 0) {
1587 err = -EAGAIN;
1588 goto out_wait;
1591 prepare_to_wait(sk_sleep(sk), &wait,
1592 TASK_INTERRUPTIBLE);
1595 /* These checks occur both as part of and after the loop
1596 * conditional since we need to check before and after
1597 * sleeping.
1599 if (sk->sk_err) {
1600 err = -sk->sk_err;
1601 goto out_wait;
1602 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1603 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1604 err = -EPIPE;
1605 goto out_wait;
1608 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1609 if (err < 0)
1610 goto out_wait;
1612 /* Note that enqueue will only write as many bytes as are free
1613 * in the produce queue, so we don't need to ensure len is
1614 * smaller than the queue size. It is the caller's
1615 * responsibility to check how many bytes we were able to send.
1618 written = transport->stream_enqueue(
1619 vsk, msg,
1620 len - total_written);
1621 if (written < 0) {
1622 err = -ENOMEM;
1623 goto out_wait;
1626 total_written += written;
1628 err = transport->notify_send_post_enqueue(
1629 vsk, written, &send_data);
1630 if (err < 0)
1631 goto out_wait;
1635 out_wait:
1636 if (total_written > 0)
1637 err = total_written;
1638 finish_wait(sk_sleep(sk), &wait);
1639 out:
1640 release_sock(sk);
1641 return err;
1645 static int
1646 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1647 int flags)
1649 struct sock *sk;
1650 struct vsock_sock *vsk;
1651 int err;
1652 size_t target;
1653 ssize_t copied;
1654 long timeout;
1655 struct vsock_transport_recv_notify_data recv_data;
1657 DEFINE_WAIT(wait);
1659 sk = sock->sk;
1660 vsk = vsock_sk(sk);
1661 err = 0;
1663 lock_sock(sk);
1665 if (sk->sk_state != SS_CONNECTED) {
1666 /* Recvmsg is supposed to return 0 if a peer performs an
1667 * orderly shutdown. Differentiate between that case and when a
1668 * peer has not connected or a local shutdown occured with the
1669 * SOCK_DONE flag.
1671 if (sock_flag(sk, SOCK_DONE))
1672 err = 0;
1673 else
1674 err = -ENOTCONN;
1676 goto out;
1679 if (flags & MSG_OOB) {
1680 err = -EOPNOTSUPP;
1681 goto out;
1684 /* We don't check peer_shutdown flag here since peer may actually shut
1685 * down, but there can be data in the queue that a local socket can
1686 * receive.
1688 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1689 err = 0;
1690 goto out;
1693 /* It is valid on Linux to pass in a zero-length receive buffer. This
1694 * is not an error. We may as well bail out now.
1696 if (!len) {
1697 err = 0;
1698 goto out;
1701 /* We must not copy less than target bytes into the user's buffer
1702 * before returning successfully, so we wait for the consume queue to
1703 * have that much data to consume before dequeueing. Note that this
1704 * makes it impossible to handle cases where target is greater than the
1705 * queue size.
1707 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1708 if (target >= transport->stream_rcvhiwat(vsk)) {
1709 err = -ENOMEM;
1710 goto out;
1712 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1713 copied = 0;
1715 err = transport->notify_recv_init(vsk, target, &recv_data);
1716 if (err < 0)
1717 goto out;
1719 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1721 while (1) {
1722 s64 ready = vsock_stream_has_data(vsk);
1724 if (ready < 0) {
1725 /* Invalid queue pair content. XXX This should be
1726 * changed to a connection reset in a later change.
1729 err = -ENOMEM;
1730 goto out_wait;
1731 } else if (ready > 0) {
1732 ssize_t read;
1734 err = transport->notify_recv_pre_dequeue(
1735 vsk, target, &recv_data);
1736 if (err < 0)
1737 break;
1739 read = transport->stream_dequeue(
1740 vsk, msg,
1741 len - copied, flags);
1742 if (read < 0) {
1743 err = -ENOMEM;
1744 break;
1747 copied += read;
1749 err = transport->notify_recv_post_dequeue(
1750 vsk, target, read,
1751 !(flags & MSG_PEEK), &recv_data);
1752 if (err < 0)
1753 goto out_wait;
1755 if (read >= target || flags & MSG_PEEK)
1756 break;
1758 target -= read;
1759 } else {
1760 if (sk->sk_err != 0 || (sk->sk_shutdown & RCV_SHUTDOWN)
1761 || (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1762 break;
1764 /* Don't wait for non-blocking sockets. */
1765 if (timeout == 0) {
1766 err = -EAGAIN;
1767 break;
1770 err = transport->notify_recv_pre_block(
1771 vsk, target, &recv_data);
1772 if (err < 0)
1773 break;
1775 release_sock(sk);
1776 timeout = schedule_timeout(timeout);
1777 lock_sock(sk);
1779 if (signal_pending(current)) {
1780 err = sock_intr_errno(timeout);
1781 break;
1782 } else if (timeout == 0) {
1783 err = -EAGAIN;
1784 break;
1787 prepare_to_wait(sk_sleep(sk), &wait,
1788 TASK_INTERRUPTIBLE);
1792 if (sk->sk_err)
1793 err = -sk->sk_err;
1794 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1795 err = 0;
1797 if (copied > 0) {
1798 /* We only do these additional bookkeeping/notification steps
1799 * if we actually copied something out of the queue pair
1800 * instead of just peeking ahead.
1803 if (!(flags & MSG_PEEK)) {
1804 /* If the other side has shutdown for sending and there
1805 * is nothing more to read, then modify the socket
1806 * state.
1808 if (vsk->peer_shutdown & SEND_SHUTDOWN) {
1809 if (vsock_stream_has_data(vsk) <= 0) {
1810 sk->sk_state = SS_UNCONNECTED;
1811 sock_set_flag(sk, SOCK_DONE);
1812 sk->sk_state_change(sk);
1816 err = copied;
1819 out_wait:
1820 finish_wait(sk_sleep(sk), &wait);
1821 out:
1822 release_sock(sk);
1823 return err;
1826 static const struct proto_ops vsock_stream_ops = {
1827 .family = PF_VSOCK,
1828 .owner = THIS_MODULE,
1829 .release = vsock_release,
1830 .bind = vsock_bind,
1831 .connect = vsock_stream_connect,
1832 .socketpair = sock_no_socketpair,
1833 .accept = vsock_accept,
1834 .getname = vsock_getname,
1835 .poll = vsock_poll,
1836 .ioctl = sock_no_ioctl,
1837 .listen = vsock_listen,
1838 .shutdown = vsock_shutdown,
1839 .setsockopt = vsock_stream_setsockopt,
1840 .getsockopt = vsock_stream_getsockopt,
1841 .sendmsg = vsock_stream_sendmsg,
1842 .recvmsg = vsock_stream_recvmsg,
1843 .mmap = sock_no_mmap,
1844 .sendpage = sock_no_sendpage,
1847 static int vsock_create(struct net *net, struct socket *sock,
1848 int protocol, int kern)
1850 if (!sock)
1851 return -EINVAL;
1853 if (protocol && protocol != PF_VSOCK)
1854 return -EPROTONOSUPPORT;
1856 switch (sock->type) {
1857 case SOCK_DGRAM:
1858 sock->ops = &vsock_dgram_ops;
1859 break;
1860 case SOCK_STREAM:
1861 sock->ops = &vsock_stream_ops;
1862 break;
1863 default:
1864 return -ESOCKTNOSUPPORT;
1867 sock->state = SS_UNCONNECTED;
1869 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0) ? 0 : -ENOMEM;
1872 static const struct net_proto_family vsock_family_ops = {
1873 .family = AF_VSOCK,
1874 .create = vsock_create,
1875 .owner = THIS_MODULE,
1878 static long vsock_dev_do_ioctl(struct file *filp,
1879 unsigned int cmd, void __user *ptr)
1881 u32 __user *p = ptr;
1882 int retval = 0;
1884 switch (cmd) {
1885 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1886 if (put_user(transport->get_local_cid(), p) != 0)
1887 retval = -EFAULT;
1888 break;
1890 default:
1891 pr_err("Unknown ioctl %d\n", cmd);
1892 retval = -EINVAL;
1895 return retval;
1898 static long vsock_dev_ioctl(struct file *filp,
1899 unsigned int cmd, unsigned long arg)
1901 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1904 #ifdef CONFIG_COMPAT
1905 static long vsock_dev_compat_ioctl(struct file *filp,
1906 unsigned int cmd, unsigned long arg)
1908 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1910 #endif
1912 static const struct file_operations vsock_device_ops = {
1913 .owner = THIS_MODULE,
1914 .unlocked_ioctl = vsock_dev_ioctl,
1915 #ifdef CONFIG_COMPAT
1916 .compat_ioctl = vsock_dev_compat_ioctl,
1917 #endif
1918 .open = nonseekable_open,
1921 static struct miscdevice vsock_device = {
1922 .name = "vsock",
1923 .fops = &vsock_device_ops,
1926 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1928 int err = mutex_lock_interruptible(&vsock_register_mutex);
1930 if (err)
1931 return err;
1933 if (transport) {
1934 err = -EBUSY;
1935 goto err_busy;
1938 /* Transport must be the owner of the protocol so that it can't
1939 * unload while there are open sockets.
1941 vsock_proto.owner = owner;
1942 transport = t;
1944 vsock_init_tables();
1946 vsock_device.minor = MISC_DYNAMIC_MINOR;
1947 err = misc_register(&vsock_device);
1948 if (err) {
1949 pr_err("Failed to register misc device\n");
1950 return -ENOENT;
1953 err = proto_register(&vsock_proto, 1); /* we want our slab */
1954 if (err) {
1955 pr_err("Cannot register vsock protocol\n");
1956 goto err_misc_deregister;
1959 err = sock_register(&vsock_family_ops);
1960 if (err) {
1961 pr_err("could not register af_vsock (%d) address family: %d\n",
1962 AF_VSOCK, err);
1963 goto err_unregister_proto;
1966 mutex_unlock(&vsock_register_mutex);
1967 return 0;
1969 err_unregister_proto:
1970 proto_unregister(&vsock_proto);
1971 err_misc_deregister:
1972 misc_deregister(&vsock_device);
1973 transport = NULL;
1974 err_busy:
1975 mutex_unlock(&vsock_register_mutex);
1976 return err;
1978 EXPORT_SYMBOL_GPL(__vsock_core_init);
1980 void vsock_core_exit(void)
1982 mutex_lock(&vsock_register_mutex);
1984 misc_deregister(&vsock_device);
1985 sock_unregister(AF_VSOCK);
1986 proto_unregister(&vsock_proto);
1988 /* We do not want the assignment below re-ordered. */
1989 mb();
1990 transport = NULL;
1992 mutex_unlock(&vsock_register_mutex);
1994 EXPORT_SYMBOL_GPL(vsock_core_exit);
1996 MODULE_AUTHOR("VMware, Inc.");
1997 MODULE_DESCRIPTION("VMware Virtual Socket Family");
1998 MODULE_VERSION("1.0.1.0-k");
1999 MODULE_LICENSE("GPL v2");