2 * Driver for SiS7019 Audio Accelerator
4 * Copyright (C) 2004-2007, David Dillow
5 * Written by David Dillow <dave@thedillows.org>
6 * Inspired by the Trident 4D-WaveDX/NX driver.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, version 2.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/time.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <sound/core.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/initval.h>
36 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
37 MODULE_DESCRIPTION("SiS7019");
38 MODULE_LICENSE("GPL");
39 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
41 static int index
= SNDRV_DEFAULT_IDX1
; /* Index 0-MAX */
42 static char *id
= SNDRV_DEFAULT_STR1
; /* ID for this card */
43 static bool enable
= 1;
44 static int codecs
= 1;
46 module_param(index
, int, 0444);
47 MODULE_PARM_DESC(index
, "Index value for SiS7019 Audio Accelerator.");
48 module_param(id
, charp
, 0444);
49 MODULE_PARM_DESC(id
, "ID string for SiS7019 Audio Accelerator.");
50 module_param(enable
, bool, 0444);
51 MODULE_PARM_DESC(enable
, "Enable SiS7019 Audio Accelerator.");
52 module_param(codecs
, int, 0444);
53 MODULE_PARM_DESC(codecs
, "Set bit to indicate that codec number is expected to be present (default 1)");
55 static const struct pci_device_id snd_sis7019_ids
[] = {
56 { PCI_DEVICE(PCI_VENDOR_ID_SI
, 0x7019) },
60 MODULE_DEVICE_TABLE(pci
, snd_sis7019_ids
);
62 /* There are three timing modes for the voices.
64 * For both playback and capture, when the buffer is one or two periods long,
65 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
66 * to let us know when the periods have ended.
68 * When performing playback with more than two periods per buffer, we set
69 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
70 * reach it. We then update the offset and continue on until we are
71 * interrupted for the next period.
73 * Capture channels do not have a SSO, so we allocate a playback channel to
74 * use as a timer for the capture periods. We use the SSO on the playback
75 * channel to clock out virtual periods, and adjust the virtual period length
76 * to maintain synchronization. This algorithm came from the Trident driver.
78 * FIXME: It'd be nice to make use of some of the synth features in the
79 * hardware, but a woeful lack of documentation is a significant roadblock.
83 #define VOICE_IN_USE 1
84 #define VOICE_CAPTURE 2
85 #define VOICE_SSO_TIMING 4
86 #define VOICE_SYNC_TIMING 8
94 struct snd_pcm_substream
*substream
;
96 void __iomem
*ctrl_base
;
97 void __iomem
*wave_base
;
98 void __iomem
*sync_base
;
102 /* We need four pages to store our wave parameters during a suspend. If
103 * we're not doing power management, we still need to allocate a page
104 * for the silence buffer.
106 #ifdef CONFIG_PM_SLEEP
107 #define SIS_SUSPEND_PAGES 4
109 #define SIS_SUSPEND_PAGES 1
113 unsigned long ioport
;
114 void __iomem
*ioaddr
;
120 struct snd_card
*card
;
121 struct snd_ac97
*ac97
[3];
123 /* Protect against more than one thread hitting the AC97
124 * registers (in a more polite manner than pounding the hardware
127 struct mutex ac97_mutex
;
129 /* voice_lock protects allocation/freeing of the voice descriptions
131 spinlock_t voice_lock
;
133 struct voice voices
[64];
134 struct voice capture_voice
;
136 /* Allocate pages to store the internal wave state during
137 * suspends. When we're operating, this can be used as a silence
138 * buffer for a timing channel.
140 void *suspend_state
[SIS_SUSPEND_PAGES
];
143 dma_addr_t silence_dma_addr
;
146 /* These values are also used by the module param 'codecs' to indicate
147 * which codecs should be present.
149 #define SIS_PRIMARY_CODEC_PRESENT 0x0001
150 #define SIS_SECONDARY_CODEC_PRESENT 0x0002
151 #define SIS_TERTIARY_CODEC_PRESENT 0x0004
153 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
154 * documented range of 8-0xfff8 samples. Given that they are 0-based,
155 * that places our period/buffer range at 9-0xfff9 samples. That makes the
156 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
157 * max samples / min samples gives us the max periods in a buffer.
159 * We'll add a constraint upon open that limits the period and buffer sample
160 * size to values that are legal for the hardware.
162 static struct snd_pcm_hardware sis_playback_hw_info
= {
163 .info
= (SNDRV_PCM_INFO_MMAP
|
164 SNDRV_PCM_INFO_MMAP_VALID
|
165 SNDRV_PCM_INFO_INTERLEAVED
|
166 SNDRV_PCM_INFO_BLOCK_TRANSFER
|
167 SNDRV_PCM_INFO_SYNC_START
|
168 SNDRV_PCM_INFO_RESUME
),
169 .formats
= (SNDRV_PCM_FMTBIT_S8
| SNDRV_PCM_FMTBIT_U8
|
170 SNDRV_PCM_FMTBIT_S16_LE
| SNDRV_PCM_FMTBIT_U16_LE
),
171 .rates
= SNDRV_PCM_RATE_8000_48000
| SNDRV_PCM_RATE_CONTINUOUS
,
176 .buffer_bytes_max
= (0xfff9 * 4),
177 .period_bytes_min
= 9,
178 .period_bytes_max
= (0xfff9 * 4),
180 .periods_max
= (0xfff9 / 9),
183 static struct snd_pcm_hardware sis_capture_hw_info
= {
184 .info
= (SNDRV_PCM_INFO_MMAP
|
185 SNDRV_PCM_INFO_MMAP_VALID
|
186 SNDRV_PCM_INFO_INTERLEAVED
|
187 SNDRV_PCM_INFO_BLOCK_TRANSFER
|
188 SNDRV_PCM_INFO_SYNC_START
|
189 SNDRV_PCM_INFO_RESUME
),
190 .formats
= (SNDRV_PCM_FMTBIT_S8
| SNDRV_PCM_FMTBIT_U8
|
191 SNDRV_PCM_FMTBIT_S16_LE
| SNDRV_PCM_FMTBIT_U16_LE
),
192 .rates
= SNDRV_PCM_RATE_48000
,
197 .buffer_bytes_max
= (0xfff9 * 4),
198 .period_bytes_min
= 9,
199 .period_bytes_max
= (0xfff9 * 4),
201 .periods_max
= (0xfff9 / 9),
204 static void sis_update_sso(struct voice
*voice
, u16 period
)
206 void __iomem
*base
= voice
->ctrl_base
;
208 voice
->sso
+= period
;
209 if (voice
->sso
>= voice
->buffer_size
)
210 voice
->sso
-= voice
->buffer_size
;
212 /* Enforce the documented hardware minimum offset */
216 /* The SSO is in the upper 16 bits of the register. */
217 writew(voice
->sso
& 0xffff, base
+ SIS_PLAY_DMA_SSO_ESO
+ 2);
220 static void sis_update_voice(struct voice
*voice
)
222 if (voice
->flags
& VOICE_SSO_TIMING
) {
223 sis_update_sso(voice
, voice
->period_size
);
224 } else if (voice
->flags
& VOICE_SYNC_TIMING
) {
227 /* If we've not hit the end of the virtual period, update
228 * our records and keep going.
230 if (voice
->vperiod
> voice
->period_size
) {
231 voice
->vperiod
-= voice
->period_size
;
232 if (voice
->vperiod
< voice
->period_size
)
233 sis_update_sso(voice
, voice
->vperiod
);
235 sis_update_sso(voice
, voice
->period_size
);
239 /* Calculate our relative offset between the target and
240 * the actual CSO value. Since we're operating in a loop,
241 * if the value is more than half way around, we can
242 * consider ourselves wrapped.
244 sync
= voice
->sync_cso
;
245 sync
-= readw(voice
->sync_base
+ SIS_CAPTURE_DMA_FORMAT_CSO
);
246 if (sync
> (voice
->sync_buffer_size
/ 2))
247 sync
-= voice
->sync_buffer_size
;
249 /* If sync is positive, then we interrupted too early, and
250 * we'll need to come back in a few samples and try again.
251 * There's a minimum wait, as it takes some time for the DMA
252 * engine to startup, etc...
257 sis_update_sso(voice
, sync
);
261 /* Ok, we interrupted right on time, or (hopefully) just
262 * a bit late. We'll adjst our next waiting period based
263 * on how close we got.
265 * We need to stay just behind the actual channel to ensure
266 * it really is past a period when we get our interrupt --
267 * otherwise we'll fall into the early code above and have
268 * a minimum wait time, which makes us quite late here,
269 * eating into the user's time to refresh the buffer, esp.
270 * if using small periods.
272 * If we're less than 9 samples behind, we're on target.
273 * Otherwise, shorten the next vperiod by the amount we've
277 voice
->vperiod
= voice
->sync_period_size
+ 1;
279 voice
->vperiod
= voice
->sync_period_size
+ sync
+ 10;
281 if (voice
->vperiod
< voice
->buffer_size
) {
282 sis_update_sso(voice
, voice
->vperiod
);
285 sis_update_sso(voice
, voice
->period_size
);
287 sync
= voice
->sync_cso
+ voice
->sync_period_size
;
288 if (sync
>= voice
->sync_buffer_size
)
289 sync
-= voice
->sync_buffer_size
;
290 voice
->sync_cso
= sync
;
293 snd_pcm_period_elapsed(voice
->substream
);
296 static void sis_voice_irq(u32 status
, struct voice
*voice
)
304 sis_update_voice(voice
);
309 static irqreturn_t
sis_interrupt(int irq
, void *dev
)
311 struct sis7019
*sis
= dev
;
312 unsigned long io
= sis
->ioport
;
316 /* We only use the DMA interrupts, and we don't enable any other
317 * source of interrupts. But, it is possible to see an interrupt
318 * status that didn't actually interrupt us, so eliminate anything
319 * we're not expecting to avoid falsely claiming an IRQ, and an
320 * ensuing endless loop.
322 intr
= inl(io
+ SIS_GISR
);
323 intr
&= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS
|
324 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS
;
329 status
= inl(io
+ SIS_PISR_A
);
331 sis_voice_irq(status
, sis
->voices
);
332 outl(status
, io
+ SIS_PISR_A
);
335 status
= inl(io
+ SIS_PISR_B
);
337 sis_voice_irq(status
, &sis
->voices
[32]);
338 outl(status
, io
+ SIS_PISR_B
);
341 status
= inl(io
+ SIS_RISR
);
343 voice
= &sis
->capture_voice
;
345 snd_pcm_period_elapsed(voice
->substream
);
347 outl(status
, io
+ SIS_RISR
);
350 outl(intr
, io
+ SIS_GISR
);
351 intr
= inl(io
+ SIS_GISR
);
352 intr
&= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS
|
353 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS
;
359 static u32
sis_rate_to_delta(unsigned int rate
)
363 /* This was copied from the trident driver, but it seems its gotten
364 * around a bit... nevertheless, it works well.
366 * We special case 44100 and 8000 since rounding with the equation
367 * does not give us an accurate enough value. For 11025 and 22050
368 * the equation gives us the best answer. All other frequencies will
369 * also use the equation. JDW
373 else if (rate
== 8000)
375 else if (rate
== 48000)
378 delta
= (((rate
<< 12) + 24000) / 48000) & 0x0000ffff;
382 static void __sis_map_silence(struct sis7019
*sis
)
384 /* Helper function: must hold sis->voice_lock on entry */
385 if (!sis
->silence_users
)
386 sis
->silence_dma_addr
= pci_map_single(sis
->pci
,
387 sis
->suspend_state
[0],
388 4096, PCI_DMA_TODEVICE
);
389 sis
->silence_users
++;
392 static void __sis_unmap_silence(struct sis7019
*sis
)
394 /* Helper function: must hold sis->voice_lock on entry */
395 sis
->silence_users
--;
396 if (!sis
->silence_users
)
397 pci_unmap_single(sis
->pci
, sis
->silence_dma_addr
, 4096,
401 static void sis_free_voice(struct sis7019
*sis
, struct voice
*voice
)
405 spin_lock_irqsave(&sis
->voice_lock
, flags
);
407 __sis_unmap_silence(sis
);
408 voice
->timing
->flags
&= ~(VOICE_IN_USE
| VOICE_SSO_TIMING
|
410 voice
->timing
= NULL
;
412 voice
->flags
&= ~(VOICE_IN_USE
| VOICE_SSO_TIMING
| VOICE_SYNC_TIMING
);
413 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
416 static struct voice
*__sis_alloc_playback_voice(struct sis7019
*sis
)
418 /* Must hold the voice_lock on entry */
422 for (i
= 0; i
< 64; i
++) {
423 voice
= &sis
->voices
[i
];
424 if (voice
->flags
& VOICE_IN_USE
)
426 voice
->flags
|= VOICE_IN_USE
;
435 static struct voice
*sis_alloc_playback_voice(struct sis7019
*sis
)
440 spin_lock_irqsave(&sis
->voice_lock
, flags
);
441 voice
= __sis_alloc_playback_voice(sis
);
442 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
447 static int sis_alloc_timing_voice(struct snd_pcm_substream
*substream
,
448 struct snd_pcm_hw_params
*hw_params
)
450 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
451 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
452 struct voice
*voice
= runtime
->private_data
;
453 unsigned int period_size
, buffer_size
;
457 /* If there are one or two periods per buffer, we don't need a
458 * timing voice, as we can use the capture channel's interrupts
459 * to clock out the periods.
461 period_size
= params_period_size(hw_params
);
462 buffer_size
= params_buffer_size(hw_params
);
463 needed
= (period_size
!= buffer_size
&&
464 period_size
!= (buffer_size
/ 2));
466 if (needed
&& !voice
->timing
) {
467 spin_lock_irqsave(&sis
->voice_lock
, flags
);
468 voice
->timing
= __sis_alloc_playback_voice(sis
);
470 __sis_map_silence(sis
);
471 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
474 voice
->timing
->substream
= substream
;
475 } else if (!needed
&& voice
->timing
) {
476 sis_free_voice(sis
, voice
);
477 voice
->timing
= NULL
;
483 static int sis_playback_open(struct snd_pcm_substream
*substream
)
485 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
486 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
489 voice
= sis_alloc_playback_voice(sis
);
493 voice
->substream
= substream
;
494 runtime
->private_data
= voice
;
495 runtime
->hw
= sis_playback_hw_info
;
496 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_PERIOD_SIZE
,
498 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
500 snd_pcm_set_sync(substream
);
504 static int sis_substream_close(struct snd_pcm_substream
*substream
)
506 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
507 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
508 struct voice
*voice
= runtime
->private_data
;
510 sis_free_voice(sis
, voice
);
514 static int sis_playback_hw_params(struct snd_pcm_substream
*substream
,
515 struct snd_pcm_hw_params
*hw_params
)
517 return snd_pcm_lib_malloc_pages(substream
,
518 params_buffer_bytes(hw_params
));
521 static int sis_hw_free(struct snd_pcm_substream
*substream
)
523 return snd_pcm_lib_free_pages(substream
);
526 static int sis_pcm_playback_prepare(struct snd_pcm_substream
*substream
)
528 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
529 struct voice
*voice
= runtime
->private_data
;
530 void __iomem
*ctrl_base
= voice
->ctrl_base
;
531 void __iomem
*wave_base
= voice
->wave_base
;
532 u32 format
, dma_addr
, control
, sso_eso
, delta
, reg
;
535 /* We rely on the PCM core to ensure that the parameters for this
536 * substream do not change on us while we're programming the HW.
539 if (snd_pcm_format_width(runtime
->format
) == 8)
540 format
|= SIS_PLAY_DMA_FORMAT_8BIT
;
541 if (!snd_pcm_format_signed(runtime
->format
))
542 format
|= SIS_PLAY_DMA_FORMAT_UNSIGNED
;
543 if (runtime
->channels
== 1)
544 format
|= SIS_PLAY_DMA_FORMAT_MONO
;
546 /* The baseline setup is for a single period per buffer, and
547 * we add bells and whistles as needed from there.
549 dma_addr
= runtime
->dma_addr
;
550 leo
= runtime
->buffer_size
- 1;
551 control
= leo
| SIS_PLAY_DMA_LOOP
| SIS_PLAY_DMA_INTR_AT_LEO
;
554 if (runtime
->period_size
== (runtime
->buffer_size
/ 2)) {
555 control
|= SIS_PLAY_DMA_INTR_AT_MLP
;
556 } else if (runtime
->period_size
!= runtime
->buffer_size
) {
557 voice
->flags
|= VOICE_SSO_TIMING
;
558 voice
->sso
= runtime
->period_size
- 1;
559 voice
->period_size
= runtime
->period_size
;
560 voice
->buffer_size
= runtime
->buffer_size
;
562 control
&= ~SIS_PLAY_DMA_INTR_AT_LEO
;
563 control
|= SIS_PLAY_DMA_INTR_AT_SSO
;
564 sso_eso
|= (runtime
->period_size
- 1) << 16;
567 delta
= sis_rate_to_delta(runtime
->rate
);
569 /* Ok, we're ready to go, set up the channel.
571 writel(format
, ctrl_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
572 writel(dma_addr
, ctrl_base
+ SIS_PLAY_DMA_BASE
);
573 writel(control
, ctrl_base
+ SIS_PLAY_DMA_CONTROL
);
574 writel(sso_eso
, ctrl_base
+ SIS_PLAY_DMA_SSO_ESO
);
576 for (reg
= 0; reg
< SIS_WAVE_SIZE
; reg
+= 4)
577 writel(0, wave_base
+ reg
);
579 writel(SIS_WAVE_GENERAL_WAVE_VOLUME
, wave_base
+ SIS_WAVE_GENERAL
);
580 writel(delta
<< 16, wave_base
+ SIS_WAVE_GENERAL_ARTICULATION
);
581 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE
|
582 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE
|
583 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE
,
584 wave_base
+ SIS_WAVE_CHANNEL_CONTROL
);
586 /* Force PCI writes to post. */
592 static int sis_pcm_trigger(struct snd_pcm_substream
*substream
, int cmd
)
594 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
595 unsigned long io
= sis
->ioport
;
596 struct snd_pcm_substream
*s
;
601 u32 play
[2] = { 0, 0 };
603 /* No locks needed, as the PCM core will hold the locks on the
604 * substreams, and the HW will only start/stop the indicated voices
605 * without changing the state of the others.
608 case SNDRV_PCM_TRIGGER_START
:
609 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE
:
610 case SNDRV_PCM_TRIGGER_RESUME
:
613 case SNDRV_PCM_TRIGGER_STOP
:
614 case SNDRV_PCM_TRIGGER_PAUSE_PUSH
:
615 case SNDRV_PCM_TRIGGER_SUSPEND
:
622 snd_pcm_group_for_each_entry(s
, substream
) {
623 /* Make sure it is for us... */
624 chip
= snd_pcm_substream_chip(s
);
628 voice
= s
->runtime
->private_data
;
629 if (voice
->flags
& VOICE_CAPTURE
) {
630 record
|= 1 << voice
->num
;
631 voice
= voice
->timing
;
634 /* voice could be NULL if this a recording stream, and it
635 * doesn't have an external timing channel.
638 play
[voice
->num
/ 32] |= 1 << (voice
->num
& 0x1f);
640 snd_pcm_trigger_done(s
, substream
);
645 outl(record
, io
+ SIS_RECORD_START_REG
);
647 outl(play
[0], io
+ SIS_PLAY_START_A_REG
);
649 outl(play
[1], io
+ SIS_PLAY_START_B_REG
);
652 outl(record
, io
+ SIS_RECORD_STOP_REG
);
654 outl(play
[0], io
+ SIS_PLAY_STOP_A_REG
);
656 outl(play
[1], io
+ SIS_PLAY_STOP_B_REG
);
661 static snd_pcm_uframes_t
sis_pcm_pointer(struct snd_pcm_substream
*substream
)
663 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
664 struct voice
*voice
= runtime
->private_data
;
667 cso
= readl(voice
->ctrl_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
672 static int sis_capture_open(struct snd_pcm_substream
*substream
)
674 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
675 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
676 struct voice
*voice
= &sis
->capture_voice
;
679 /* FIXME: The driver only supports recording from one channel
680 * at the moment, but it could support more.
682 spin_lock_irqsave(&sis
->voice_lock
, flags
);
683 if (voice
->flags
& VOICE_IN_USE
)
686 voice
->flags
|= VOICE_IN_USE
;
687 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
692 voice
->substream
= substream
;
693 runtime
->private_data
= voice
;
694 runtime
->hw
= sis_capture_hw_info
;
695 runtime
->hw
.rates
= sis
->ac97
[0]->rates
[AC97_RATES_ADC
];
696 snd_pcm_limit_hw_rates(runtime
);
697 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_PERIOD_SIZE
,
699 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
701 snd_pcm_set_sync(substream
);
705 static int sis_capture_hw_params(struct snd_pcm_substream
*substream
,
706 struct snd_pcm_hw_params
*hw_params
)
708 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
711 rc
= snd_ac97_set_rate(sis
->ac97
[0], AC97_PCM_LR_ADC_RATE
,
712 params_rate(hw_params
));
716 rc
= snd_pcm_lib_malloc_pages(substream
,
717 params_buffer_bytes(hw_params
));
721 rc
= sis_alloc_timing_voice(substream
, hw_params
);
727 static void sis_prepare_timing_voice(struct voice
*voice
,
728 struct snd_pcm_substream
*substream
)
730 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
731 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
732 struct voice
*timing
= voice
->timing
;
733 void __iomem
*play_base
= timing
->ctrl_base
;
734 void __iomem
*wave_base
= timing
->wave_base
;
735 u16 buffer_size
, period_size
;
736 u32 format
, control
, sso_eso
, delta
;
737 u32 vperiod
, sso
, reg
;
739 /* Set our initial buffer and period as large as we can given a
740 * single page of silence.
742 buffer_size
= 4096 / runtime
->channels
;
743 buffer_size
/= snd_pcm_format_size(runtime
->format
, 1);
744 period_size
= buffer_size
;
746 /* Initially, we want to interrupt just a bit behind the end of
747 * the period we're clocking out. 12 samples seems to give a good
750 * We want to spread our interrupts throughout the virtual period,
751 * so that we don't end up with two interrupts back to back at the
752 * end -- this helps minimize the effects of any jitter. Adjust our
753 * clocking period size so that the last period is at least a fourth
756 * This is all moot if we don't need to use virtual periods.
758 vperiod
= runtime
->period_size
+ 12;
759 if (vperiod
> period_size
) {
760 u16 tail
= vperiod
% period_size
;
761 u16 quarter_period
= period_size
/ 4;
763 if (tail
&& tail
< quarter_period
) {
764 u16 loops
= vperiod
/ period_size
;
766 tail
= quarter_period
- tail
;
772 sso
= period_size
- 1;
774 /* The initial period will fit inside the buffer, so we
775 * don't need to use virtual periods -- disable them.
777 period_size
= runtime
->period_size
;
782 /* The interrupt handler implements the timing synchronization, so
785 timing
->flags
|= VOICE_SYNC_TIMING
;
786 timing
->sync_base
= voice
->ctrl_base
;
787 timing
->sync_cso
= runtime
->period_size
;
788 timing
->sync_period_size
= runtime
->period_size
;
789 timing
->sync_buffer_size
= runtime
->buffer_size
;
790 timing
->period_size
= period_size
;
791 timing
->buffer_size
= buffer_size
;
793 timing
->vperiod
= vperiod
;
795 /* Using unsigned samples with the all-zero silence buffer
796 * forces the output to the lower rail, killing playback.
797 * So ignore unsigned vs signed -- it doesn't change the timing.
800 if (snd_pcm_format_width(runtime
->format
) == 8)
801 format
= SIS_CAPTURE_DMA_FORMAT_8BIT
;
802 if (runtime
->channels
== 1)
803 format
|= SIS_CAPTURE_DMA_FORMAT_MONO
;
805 control
= timing
->buffer_size
- 1;
806 control
|= SIS_PLAY_DMA_LOOP
| SIS_PLAY_DMA_INTR_AT_SSO
;
807 sso_eso
= timing
->buffer_size
- 1;
808 sso_eso
|= timing
->sso
<< 16;
810 delta
= sis_rate_to_delta(runtime
->rate
);
812 /* We've done the math, now configure the channel.
814 writel(format
, play_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
815 writel(sis
->silence_dma_addr
, play_base
+ SIS_PLAY_DMA_BASE
);
816 writel(control
, play_base
+ SIS_PLAY_DMA_CONTROL
);
817 writel(sso_eso
, play_base
+ SIS_PLAY_DMA_SSO_ESO
);
819 for (reg
= 0; reg
< SIS_WAVE_SIZE
; reg
+= 4)
820 writel(0, wave_base
+ reg
);
822 writel(SIS_WAVE_GENERAL_WAVE_VOLUME
, wave_base
+ SIS_WAVE_GENERAL
);
823 writel(delta
<< 16, wave_base
+ SIS_WAVE_GENERAL_ARTICULATION
);
824 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE
|
825 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE
|
826 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE
,
827 wave_base
+ SIS_WAVE_CHANNEL_CONTROL
);
830 static int sis_pcm_capture_prepare(struct snd_pcm_substream
*substream
)
832 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
833 struct voice
*voice
= runtime
->private_data
;
834 void __iomem
*rec_base
= voice
->ctrl_base
;
835 u32 format
, dma_addr
, control
;
838 /* We rely on the PCM core to ensure that the parameters for this
839 * substream do not change on us while we're programming the HW.
842 if (snd_pcm_format_width(runtime
->format
) == 8)
843 format
= SIS_CAPTURE_DMA_FORMAT_8BIT
;
844 if (!snd_pcm_format_signed(runtime
->format
))
845 format
|= SIS_CAPTURE_DMA_FORMAT_UNSIGNED
;
846 if (runtime
->channels
== 1)
847 format
|= SIS_CAPTURE_DMA_FORMAT_MONO
;
849 dma_addr
= runtime
->dma_addr
;
850 leo
= runtime
->buffer_size
- 1;
851 control
= leo
| SIS_CAPTURE_DMA_LOOP
;
853 /* If we've got more than two periods per buffer, then we have
854 * use a timing voice to clock out the periods. Otherwise, we can
855 * use the capture channel's interrupts.
858 sis_prepare_timing_voice(voice
, substream
);
860 control
|= SIS_CAPTURE_DMA_INTR_AT_LEO
;
861 if (runtime
->period_size
!= runtime
->buffer_size
)
862 control
|= SIS_CAPTURE_DMA_INTR_AT_MLP
;
865 writel(format
, rec_base
+ SIS_CAPTURE_DMA_FORMAT_CSO
);
866 writel(dma_addr
, rec_base
+ SIS_CAPTURE_DMA_BASE
);
867 writel(control
, rec_base
+ SIS_CAPTURE_DMA_CONTROL
);
869 /* Force the writes to post. */
875 static struct snd_pcm_ops sis_playback_ops
= {
876 .open
= sis_playback_open
,
877 .close
= sis_substream_close
,
878 .ioctl
= snd_pcm_lib_ioctl
,
879 .hw_params
= sis_playback_hw_params
,
880 .hw_free
= sis_hw_free
,
881 .prepare
= sis_pcm_playback_prepare
,
882 .trigger
= sis_pcm_trigger
,
883 .pointer
= sis_pcm_pointer
,
886 static struct snd_pcm_ops sis_capture_ops
= {
887 .open
= sis_capture_open
,
888 .close
= sis_substream_close
,
889 .ioctl
= snd_pcm_lib_ioctl
,
890 .hw_params
= sis_capture_hw_params
,
891 .hw_free
= sis_hw_free
,
892 .prepare
= sis_pcm_capture_prepare
,
893 .trigger
= sis_pcm_trigger
,
894 .pointer
= sis_pcm_pointer
,
897 static int sis_pcm_create(struct sis7019
*sis
)
902 /* We have 64 voices, and the driver currently records from
903 * only one channel, though that could change in the future.
905 rc
= snd_pcm_new(sis
->card
, "SiS7019", 0, 64, 1, &pcm
);
909 pcm
->private_data
= sis
;
910 strcpy(pcm
->name
, "SiS7019");
913 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &sis_playback_ops
);
914 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_CAPTURE
, &sis_capture_ops
);
916 /* Try to preallocate some memory, but it's not the end of the
917 * world if this fails.
919 snd_pcm_lib_preallocate_pages_for_all(pcm
, SNDRV_DMA_TYPE_DEV
,
920 snd_dma_pci_data(sis
->pci
), 64*1024, 128*1024);
925 static unsigned short sis_ac97_rw(struct sis7019
*sis
, int codec
, u32 cmd
)
927 unsigned long io
= sis
->ioport
;
928 unsigned short val
= 0xffff;
932 static const u16 codec_ready
[3] = {
933 SIS_AC97_STATUS_CODEC_READY
,
934 SIS_AC97_STATUS_CODEC2_READY
,
935 SIS_AC97_STATUS_CODEC3_READY
,
938 rdy
= codec_ready
[codec
];
941 /* Get the AC97 semaphore -- software first, so we don't spin
942 * pounding out IO reads on the hardware semaphore...
944 mutex_lock(&sis
->ac97_mutex
);
947 while ((inw(io
+ SIS_AC97_SEMA
) & SIS_AC97_SEMA_BUSY
) && --count
)
953 /* ... and wait for any outstanding commands to complete ...
957 status
= inw(io
+ SIS_AC97_STATUS
);
958 if ((status
& rdy
) && !(status
& SIS_AC97_STATUS_BUSY
))
967 /* ... before sending our command and waiting for it to finish ...
969 outl(cmd
, io
+ SIS_AC97_CMD
);
973 while ((inw(io
+ SIS_AC97_STATUS
) & SIS_AC97_STATUS_BUSY
) && --count
)
976 /* ... and reading the results (if any).
978 val
= inl(io
+ SIS_AC97_CMD
) >> 16;
981 outl(SIS_AC97_SEMA_RELEASE
, io
+ SIS_AC97_SEMA
);
983 mutex_unlock(&sis
->ac97_mutex
);
986 dev_err(&sis
->pci
->dev
, "ac97 codec %d timeout cmd 0x%08x\n",
993 static void sis_ac97_write(struct snd_ac97
*ac97
, unsigned short reg
,
996 static const u32 cmd
[3] = {
997 SIS_AC97_CMD_CODEC_WRITE
,
998 SIS_AC97_CMD_CODEC2_WRITE
,
999 SIS_AC97_CMD_CODEC3_WRITE
,
1001 sis_ac97_rw(ac97
->private_data
, ac97
->num
,
1002 (val
<< 16) | (reg
<< 8) | cmd
[ac97
->num
]);
1005 static unsigned short sis_ac97_read(struct snd_ac97
*ac97
, unsigned short reg
)
1007 static const u32 cmd
[3] = {
1008 SIS_AC97_CMD_CODEC_READ
,
1009 SIS_AC97_CMD_CODEC2_READ
,
1010 SIS_AC97_CMD_CODEC3_READ
,
1012 return sis_ac97_rw(ac97
->private_data
, ac97
->num
,
1013 (reg
<< 8) | cmd
[ac97
->num
]);
1016 static int sis_mixer_create(struct sis7019
*sis
)
1018 struct snd_ac97_bus
*bus
;
1019 struct snd_ac97_template ac97
;
1020 static struct snd_ac97_bus_ops ops
= {
1021 .write
= sis_ac97_write
,
1022 .read
= sis_ac97_read
,
1026 memset(&ac97
, 0, sizeof(ac97
));
1027 ac97
.private_data
= sis
;
1029 rc
= snd_ac97_bus(sis
->card
, 0, &ops
, NULL
, &bus
);
1030 if (!rc
&& sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1031 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[0]);
1033 if (!rc
&& (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
))
1034 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[1]);
1036 if (!rc
&& (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
))
1037 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[2]);
1039 /* If we return an error here, then snd_card_free() should
1040 * free up any ac97 codecs that got created, as well as the bus.
1045 static void sis_free_suspend(struct sis7019
*sis
)
1049 for (i
= 0; i
< SIS_SUSPEND_PAGES
; i
++)
1050 kfree(sis
->suspend_state
[i
]);
1053 static int sis_chip_free(struct sis7019
*sis
)
1055 /* Reset the chip, and disable all interrputs.
1057 outl(SIS_GCR_SOFTWARE_RESET
, sis
->ioport
+ SIS_GCR
);
1059 outl(0, sis
->ioport
+ SIS_GCR
);
1060 outl(0, sis
->ioport
+ SIS_GIER
);
1062 /* Now, free everything we allocated.
1065 free_irq(sis
->irq
, sis
);
1067 iounmap(sis
->ioaddr
);
1068 pci_release_regions(sis
->pci
);
1069 pci_disable_device(sis
->pci
);
1070 sis_free_suspend(sis
);
1074 static int sis_dev_free(struct snd_device
*dev
)
1076 struct sis7019
*sis
= dev
->device_data
;
1077 return sis_chip_free(sis
);
1080 static int sis_chip_init(struct sis7019
*sis
)
1082 unsigned long io
= sis
->ioport
;
1083 void __iomem
*ioaddr
= sis
->ioaddr
;
1084 unsigned long timeout
;
1089 /* Reset the audio controller
1091 outl(SIS_GCR_SOFTWARE_RESET
, io
+ SIS_GCR
);
1093 outl(0, io
+ SIS_GCR
);
1095 /* Get the AC-link semaphore, and reset the codecs
1098 while ((inw(io
+ SIS_AC97_SEMA
) & SIS_AC97_SEMA_BUSY
) && --count
)
1104 outl(SIS_AC97_CMD_CODEC_COLD_RESET
, io
+ SIS_AC97_CMD
);
1108 while ((inw(io
+ SIS_AC97_STATUS
) & SIS_AC97_STATUS_BUSY
) && --count
)
1111 /* Command complete, we can let go of the semaphore now.
1113 outl(SIS_AC97_SEMA_RELEASE
, io
+ SIS_AC97_SEMA
);
1117 /* Now that we've finished the reset, find out what's attached.
1118 * There are some codec/board combinations that take an extremely
1119 * long time to come up. 350+ ms has been observed in the field,
1120 * so we'll give them up to 500ms.
1122 sis
->codecs_present
= 0;
1123 timeout
= msecs_to_jiffies(500) + jiffies
;
1124 while (time_before_eq(jiffies
, timeout
)) {
1125 status
= inl(io
+ SIS_AC97_STATUS
);
1126 if (status
& SIS_AC97_STATUS_CODEC_READY
)
1127 sis
->codecs_present
|= SIS_PRIMARY_CODEC_PRESENT
;
1128 if (status
& SIS_AC97_STATUS_CODEC2_READY
)
1129 sis
->codecs_present
|= SIS_SECONDARY_CODEC_PRESENT
;
1130 if (status
& SIS_AC97_STATUS_CODEC3_READY
)
1131 sis
->codecs_present
|= SIS_TERTIARY_CODEC_PRESENT
;
1133 if (sis
->codecs_present
== codecs
)
1139 /* All done, check for errors.
1141 if (!sis
->codecs_present
) {
1142 dev_err(&sis
->pci
->dev
, "could not find any codecs\n");
1146 if (sis
->codecs_present
!= codecs
) {
1147 dev_warn(&sis
->pci
->dev
, "missing codecs, found %0x, expected %0x\n",
1148 sis
->codecs_present
, codecs
);
1151 /* Let the hardware know that the audio driver is alive,
1152 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1153 * record channels. We're going to want to use Variable Rate Audio
1154 * for recording, to avoid needlessly resampling from 48kHZ.
1156 outl(SIS_AC97_CONF_AUDIO_ALIVE
, io
+ SIS_AC97_CONF
);
1157 outl(SIS_AC97_CONF_AUDIO_ALIVE
| SIS_AC97_CONF_PCM_LR_ENABLE
|
1158 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE
|
1159 SIS_AC97_CONF_PCM_CAP_LR_ENABLE
|
1160 SIS_AC97_CONF_CODEC_VRA_ENABLE
, io
+ SIS_AC97_CONF
);
1162 /* All AC97 PCM slots should be sourced from sub-mixer 0.
1164 outl(0, io
+ SIS_AC97_PSR
);
1166 /* There is only one valid DMA setup for a PCI environment.
1168 outl(SIS_DMA_CSR_PCI_SETTINGS
, io
+ SIS_DMA_CSR
);
1170 /* Reset the synchronization groups for all of the channels
1171 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1172 * we'll need to change how we handle these. Until then, we just
1173 * assign sub-mixer 0 to all playback channels, and avoid any
1174 * attenuation on the audio.
1176 outl(0, io
+ SIS_PLAY_SYNC_GROUP_A
);
1177 outl(0, io
+ SIS_PLAY_SYNC_GROUP_B
);
1178 outl(0, io
+ SIS_PLAY_SYNC_GROUP_C
);
1179 outl(0, io
+ SIS_PLAY_SYNC_GROUP_D
);
1180 outl(0, io
+ SIS_MIXER_SYNC_GROUP
);
1182 for (i
= 0; i
< 64; i
++) {
1183 writel(i
, SIS_MIXER_START_ADDR(ioaddr
, i
));
1184 writel(SIS_MIXER_RIGHT_NO_ATTEN
| SIS_MIXER_LEFT_NO_ATTEN
|
1185 SIS_MIXER_DEST_0
, SIS_MIXER_ADDR(ioaddr
, i
));
1188 /* Don't attenuate any audio set for the wave amplifier.
1190 * FIXME: Maximum attenuation is set for the music amp, which will
1191 * need to change if we start using the synth engine.
1193 outl(0xffff0000, io
+ SIS_WEVCR
);
1195 /* Ensure that the wave engine is in normal operating mode.
1197 outl(0, io
+ SIS_WECCR
);
1199 /* Go ahead and enable the DMA interrupts. They won't go live
1200 * until we start a channel.
1202 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE
|
1203 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE
, io
+ SIS_GIER
);
1208 #ifdef CONFIG_PM_SLEEP
1209 static int sis_suspend(struct device
*dev
)
1211 struct snd_card
*card
= dev_get_drvdata(dev
);
1212 struct sis7019
*sis
= card
->private_data
;
1213 void __iomem
*ioaddr
= sis
->ioaddr
;
1216 snd_power_change_state(card
, SNDRV_CTL_POWER_D3hot
);
1217 snd_pcm_suspend_all(sis
->pcm
);
1218 if (sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1219 snd_ac97_suspend(sis
->ac97
[0]);
1220 if (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
)
1221 snd_ac97_suspend(sis
->ac97
[1]);
1222 if (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
)
1223 snd_ac97_suspend(sis
->ac97
[2]);
1225 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1227 if (sis
->irq
>= 0) {
1228 free_irq(sis
->irq
, sis
);
1232 /* Save the internal state away
1234 for (i
= 0; i
< 4; i
++) {
1235 memcpy_fromio(sis
->suspend_state
[i
], ioaddr
, 4096);
1242 static int sis_resume(struct device
*dev
)
1244 struct pci_dev
*pci
= to_pci_dev(dev
);
1245 struct snd_card
*card
= dev_get_drvdata(dev
);
1246 struct sis7019
*sis
= card
->private_data
;
1247 void __iomem
*ioaddr
= sis
->ioaddr
;
1250 if (sis_chip_init(sis
)) {
1251 dev_err(&pci
->dev
, "unable to re-init controller\n");
1255 if (request_irq(pci
->irq
, sis_interrupt
, IRQF_SHARED
,
1256 KBUILD_MODNAME
, sis
)) {
1257 dev_err(&pci
->dev
, "unable to regain IRQ %d\n", pci
->irq
);
1261 /* Restore saved state, then clear out the page we use for the
1264 for (i
= 0; i
< 4; i
++) {
1265 memcpy_toio(ioaddr
, sis
->suspend_state
[i
], 4096);
1269 memset(sis
->suspend_state
[0], 0, 4096);
1271 sis
->irq
= pci
->irq
;
1273 if (sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1274 snd_ac97_resume(sis
->ac97
[0]);
1275 if (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
)
1276 snd_ac97_resume(sis
->ac97
[1]);
1277 if (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
)
1278 snd_ac97_resume(sis
->ac97
[2]);
1280 snd_power_change_state(card
, SNDRV_CTL_POWER_D0
);
1284 snd_card_disconnect(card
);
1288 static SIMPLE_DEV_PM_OPS(sis_pm
, sis_suspend
, sis_resume
);
1289 #define SIS_PM_OPS &sis_pm
1291 #define SIS_PM_OPS NULL
1292 #endif /* CONFIG_PM_SLEEP */
1294 static int sis_alloc_suspend(struct sis7019
*sis
)
1298 /* We need 16K to store the internal wave engine state during a
1299 * suspend, but we don't need it to be contiguous, so play nice
1300 * with the memory system. We'll also use this area for a silence
1303 for (i
= 0; i
< SIS_SUSPEND_PAGES
; i
++) {
1304 sis
->suspend_state
[i
] = kmalloc(4096, GFP_KERNEL
);
1305 if (!sis
->suspend_state
[i
])
1308 memset(sis
->suspend_state
[0], 0, 4096);
1313 static int sis_chip_create(struct snd_card
*card
,
1314 struct pci_dev
*pci
)
1316 struct sis7019
*sis
= card
->private_data
;
1317 struct voice
*voice
;
1318 static struct snd_device_ops ops
= {
1319 .dev_free
= sis_dev_free
,
1324 rc
= pci_enable_device(pci
);
1328 rc
= pci_set_dma_mask(pci
, DMA_BIT_MASK(30));
1330 dev_err(&pci
->dev
, "architecture does not support 30-bit PCI busmaster DMA");
1331 goto error_out_enabled
;
1334 memset(sis
, 0, sizeof(*sis
));
1335 mutex_init(&sis
->ac97_mutex
);
1336 spin_lock_init(&sis
->voice_lock
);
1340 sis
->ioport
= pci_resource_start(pci
, 0);
1342 rc
= pci_request_regions(pci
, "SiS7019");
1344 dev_err(&pci
->dev
, "unable request regions\n");
1345 goto error_out_enabled
;
1349 sis
->ioaddr
= ioremap_nocache(pci_resource_start(pci
, 1), 0x4000);
1351 dev_err(&pci
->dev
, "unable to remap MMIO, aborting\n");
1352 goto error_out_cleanup
;
1355 rc
= sis_alloc_suspend(sis
);
1357 dev_err(&pci
->dev
, "unable to allocate state storage\n");
1358 goto error_out_cleanup
;
1361 rc
= sis_chip_init(sis
);
1363 goto error_out_cleanup
;
1365 rc
= request_irq(pci
->irq
, sis_interrupt
, IRQF_SHARED
, KBUILD_MODNAME
,
1368 dev_err(&pci
->dev
, "unable to allocate irq %d\n", sis
->irq
);
1369 goto error_out_cleanup
;
1372 sis
->irq
= pci
->irq
;
1373 pci_set_master(pci
);
1375 for (i
= 0; i
< 64; i
++) {
1376 voice
= &sis
->voices
[i
];
1378 voice
->ctrl_base
= SIS_PLAY_DMA_ADDR(sis
->ioaddr
, i
);
1379 voice
->wave_base
= SIS_WAVE_ADDR(sis
->ioaddr
, i
);
1382 voice
= &sis
->capture_voice
;
1383 voice
->flags
= VOICE_CAPTURE
;
1384 voice
->num
= SIS_CAPTURE_CHAN_AC97_PCM_IN
;
1385 voice
->ctrl_base
= SIS_CAPTURE_DMA_ADDR(sis
->ioaddr
, voice
->num
);
1387 rc
= snd_device_new(card
, SNDRV_DEV_LOWLEVEL
, sis
, &ops
);
1389 goto error_out_cleanup
;
1397 pci_disable_device(pci
);
1403 static int snd_sis7019_probe(struct pci_dev
*pci
,
1404 const struct pci_device_id
*pci_id
)
1406 struct snd_card
*card
;
1407 struct sis7019
*sis
;
1414 /* The user can specify which codecs should be present so that we
1415 * can wait for them to show up if they are slow to recover from
1416 * the AC97 cold reset. We default to a single codec, the primary.
1418 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1420 codecs
&= SIS_PRIMARY_CODEC_PRESENT
| SIS_SECONDARY_CODEC_PRESENT
|
1421 SIS_TERTIARY_CODEC_PRESENT
;
1423 codecs
= SIS_PRIMARY_CODEC_PRESENT
;
1425 rc
= snd_card_new(&pci
->dev
, index
, id
, THIS_MODULE
,
1426 sizeof(*sis
), &card
);
1430 strcpy(card
->driver
, "SiS7019");
1431 strcpy(card
->shortname
, "SiS7019");
1432 rc
= sis_chip_create(card
, pci
);
1434 goto card_error_out
;
1436 sis
= card
->private_data
;
1438 rc
= sis_mixer_create(sis
);
1440 goto card_error_out
;
1442 rc
= sis_pcm_create(sis
);
1444 goto card_error_out
;
1446 snprintf(card
->longname
, sizeof(card
->longname
),
1447 "%s Audio Accelerator with %s at 0x%lx, irq %d",
1448 card
->shortname
, snd_ac97_get_short_name(sis
->ac97
[0]),
1449 sis
->ioport
, sis
->irq
);
1451 rc
= snd_card_register(card
);
1453 goto card_error_out
;
1455 pci_set_drvdata(pci
, card
);
1459 snd_card_free(card
);
1465 static void snd_sis7019_remove(struct pci_dev
*pci
)
1467 snd_card_free(pci_get_drvdata(pci
));
1470 static struct pci_driver sis7019_driver
= {
1471 .name
= KBUILD_MODNAME
,
1472 .id_table
= snd_sis7019_ids
,
1473 .probe
= snd_sis7019_probe
,
1474 .remove
= snd_sis7019_remove
,
1480 module_pci_driver(sis7019_driver
);