2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
42 static struct vfsmount
*shm_mnt
;
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_mutex making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
101 struct shmem_falloc
{
102 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
103 pgoff_t start
; /* start of range currently being fallocated */
104 pgoff_t next
; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
110 static unsigned long shmem_default_max_blocks(void)
112 return totalram_pages
/ 2;
115 static unsigned long shmem_default_max_inodes(void)
117 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
121 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
122 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
123 struct shmem_inode_info
*info
, pgoff_t index
);
124 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
125 struct page
**pagep
, enum sgp_type sgp
,
126 gfp_t gfp
, struct vm_area_struct
*vma
,
127 struct vm_fault
*vmf
, vm_fault_t
*fault_type
);
129 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
130 struct page
**pagep
, enum sgp_type sgp
)
132 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
133 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
136 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
138 return sb
->s_fs_info
;
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
147 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
149 return (flags
& VM_NORESERVE
) ?
150 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
153 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
155 if (!(flags
& VM_NORESERVE
))
156 vm_unacct_memory(VM_ACCT(size
));
159 static inline int shmem_reacct_size(unsigned long flags
,
160 loff_t oldsize
, loff_t newsize
)
162 if (!(flags
& VM_NORESERVE
)) {
163 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
164 return security_vm_enough_memory_mm(current
->mm
,
165 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
166 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
167 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
173 * ... whereas tmpfs objects are accounted incrementally as
174 * pages are allocated, in order to allow large sparse files.
175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
178 static inline int shmem_acct_block(unsigned long flags
, long pages
)
180 if (!(flags
& VM_NORESERVE
))
183 return security_vm_enough_memory_mm(current
->mm
,
184 pages
* VM_ACCT(PAGE_SIZE
));
187 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
189 if (flags
& VM_NORESERVE
)
190 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
193 static inline bool shmem_inode_acct_block(struct inode
*inode
, long pages
)
195 struct shmem_inode_info
*info
= SHMEM_I(inode
);
196 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
198 if (shmem_acct_block(info
->flags
, pages
))
201 if (sbinfo
->max_blocks
) {
202 if (percpu_counter_compare(&sbinfo
->used_blocks
,
203 sbinfo
->max_blocks
- pages
) > 0)
205 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
211 shmem_unacct_blocks(info
->flags
, pages
);
215 static inline void shmem_inode_unacct_blocks(struct inode
*inode
, long pages
)
217 struct shmem_inode_info
*info
= SHMEM_I(inode
);
218 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
220 if (sbinfo
->max_blocks
)
221 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
222 shmem_unacct_blocks(info
->flags
, pages
);
225 static const struct super_operations shmem_ops
;
226 static const struct address_space_operations shmem_aops
;
227 static const struct file_operations shmem_file_operations
;
228 static const struct inode_operations shmem_inode_operations
;
229 static const struct inode_operations shmem_dir_inode_operations
;
230 static const struct inode_operations shmem_special_inode_operations
;
231 static const struct vm_operations_struct shmem_vm_ops
;
232 static struct file_system_type shmem_fs_type
;
234 bool vma_is_shmem(struct vm_area_struct
*vma
)
236 return vma
->vm_ops
== &shmem_vm_ops
;
239 static LIST_HEAD(shmem_swaplist
);
240 static DEFINE_MUTEX(shmem_swaplist_mutex
);
242 static int shmem_reserve_inode(struct super_block
*sb
)
244 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
245 if (sbinfo
->max_inodes
) {
246 spin_lock(&sbinfo
->stat_lock
);
247 if (!sbinfo
->free_inodes
) {
248 spin_unlock(&sbinfo
->stat_lock
);
251 sbinfo
->free_inodes
--;
252 spin_unlock(&sbinfo
->stat_lock
);
257 static void shmem_free_inode(struct super_block
*sb
)
259 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
260 if (sbinfo
->max_inodes
) {
261 spin_lock(&sbinfo
->stat_lock
);
262 sbinfo
->free_inodes
++;
263 spin_unlock(&sbinfo
->stat_lock
);
268 * shmem_recalc_inode - recalculate the block usage of an inode
269 * @inode: inode to recalc
271 * We have to calculate the free blocks since the mm can drop
272 * undirtied hole pages behind our back.
274 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 * It has to be called with the spinlock held.
279 static void shmem_recalc_inode(struct inode
*inode
)
281 struct shmem_inode_info
*info
= SHMEM_I(inode
);
284 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
286 info
->alloced
-= freed
;
287 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
288 shmem_inode_unacct_blocks(inode
, freed
);
292 bool shmem_charge(struct inode
*inode
, long pages
)
294 struct shmem_inode_info
*info
= SHMEM_I(inode
);
297 if (!shmem_inode_acct_block(inode
, pages
))
300 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
301 inode
->i_mapping
->nrpages
+= pages
;
303 spin_lock_irqsave(&info
->lock
, flags
);
304 info
->alloced
+= pages
;
305 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
306 shmem_recalc_inode(inode
);
307 spin_unlock_irqrestore(&info
->lock
, flags
);
312 void shmem_uncharge(struct inode
*inode
, long pages
)
314 struct shmem_inode_info
*info
= SHMEM_I(inode
);
317 /* nrpages adjustment done by __delete_from_page_cache() or caller */
319 spin_lock_irqsave(&info
->lock
, flags
);
320 info
->alloced
-= pages
;
321 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
322 shmem_recalc_inode(inode
);
323 spin_unlock_irqrestore(&info
->lock
, flags
);
325 shmem_inode_unacct_blocks(inode
, pages
);
329 * Replace item expected in radix tree by a new item, while holding tree lock.
331 static int shmem_radix_tree_replace(struct address_space
*mapping
,
332 pgoff_t index
, void *expected
, void *replacement
)
334 struct radix_tree_node
*node
;
338 VM_BUG_ON(!expected
);
339 VM_BUG_ON(!replacement
);
340 item
= __radix_tree_lookup(&mapping
->i_pages
, index
, &node
, &pslot
);
343 if (item
!= expected
)
345 __radix_tree_replace(&mapping
->i_pages
, node
, pslot
,
351 * Sometimes, before we decide whether to proceed or to fail, we must check
352 * that an entry was not already brought back from swap by a racing thread.
354 * Checking page is not enough: by the time a SwapCache page is locked, it
355 * might be reused, and again be SwapCache, using the same swap as before.
357 static bool shmem_confirm_swap(struct address_space
*mapping
,
358 pgoff_t index
, swp_entry_t swap
)
363 item
= radix_tree_lookup(&mapping
->i_pages
, index
);
365 return item
== swp_to_radix_entry(swap
);
369 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
372 * disables huge pages for the mount;
374 * enables huge pages for the mount;
375 * SHMEM_HUGE_WITHIN_SIZE:
376 * only allocate huge pages if the page will be fully within i_size,
377 * also respect fadvise()/madvise() hints;
379 * only allocate huge pages if requested with fadvise()/madvise();
382 #define SHMEM_HUGE_NEVER 0
383 #define SHMEM_HUGE_ALWAYS 1
384 #define SHMEM_HUGE_WITHIN_SIZE 2
385 #define SHMEM_HUGE_ADVISE 3
389 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
392 * disables huge on shm_mnt and all mounts, for emergency use;
394 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
397 #define SHMEM_HUGE_DENY (-1)
398 #define SHMEM_HUGE_FORCE (-2)
400 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
401 /* ifdef here to avoid bloating shmem.o when not necessary */
403 static int shmem_huge __read_mostly
;
405 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
406 static int shmem_parse_huge(const char *str
)
408 if (!strcmp(str
, "never"))
409 return SHMEM_HUGE_NEVER
;
410 if (!strcmp(str
, "always"))
411 return SHMEM_HUGE_ALWAYS
;
412 if (!strcmp(str
, "within_size"))
413 return SHMEM_HUGE_WITHIN_SIZE
;
414 if (!strcmp(str
, "advise"))
415 return SHMEM_HUGE_ADVISE
;
416 if (!strcmp(str
, "deny"))
417 return SHMEM_HUGE_DENY
;
418 if (!strcmp(str
, "force"))
419 return SHMEM_HUGE_FORCE
;
423 static const char *shmem_format_huge(int huge
)
426 case SHMEM_HUGE_NEVER
:
428 case SHMEM_HUGE_ALWAYS
:
430 case SHMEM_HUGE_WITHIN_SIZE
:
431 return "within_size";
432 case SHMEM_HUGE_ADVISE
:
434 case SHMEM_HUGE_DENY
:
436 case SHMEM_HUGE_FORCE
:
445 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
446 struct shrink_control
*sc
, unsigned long nr_to_split
)
448 LIST_HEAD(list
), *pos
, *next
;
449 LIST_HEAD(to_remove
);
451 struct shmem_inode_info
*info
;
453 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
454 int removed
= 0, split
= 0;
456 if (list_empty(&sbinfo
->shrinklist
))
459 spin_lock(&sbinfo
->shrinklist_lock
);
460 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
461 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
464 inode
= igrab(&info
->vfs_inode
);
466 /* inode is about to be evicted */
468 list_del_init(&info
->shrinklist
);
473 /* Check if there's anything to gain */
474 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
475 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
476 list_move(&info
->shrinklist
, &to_remove
);
481 list_move(&info
->shrinklist
, &list
);
486 spin_unlock(&sbinfo
->shrinklist_lock
);
488 list_for_each_safe(pos
, next
, &to_remove
) {
489 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
490 inode
= &info
->vfs_inode
;
491 list_del_init(&info
->shrinklist
);
495 list_for_each_safe(pos
, next
, &list
) {
498 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
499 inode
= &info
->vfs_inode
;
501 if (nr_to_split
&& split
>= nr_to_split
)
504 page
= find_get_page(inode
->i_mapping
,
505 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
509 /* No huge page at the end of the file: nothing to split */
510 if (!PageTransHuge(page
)) {
516 * Leave the inode on the list if we failed to lock
517 * the page at this time.
519 * Waiting for the lock may lead to deadlock in the
522 if (!trylock_page(page
)) {
527 ret
= split_huge_page(page
);
531 /* If split failed leave the inode on the list */
537 list_del_init(&info
->shrinklist
);
543 spin_lock(&sbinfo
->shrinklist_lock
);
544 list_splice_tail(&list
, &sbinfo
->shrinklist
);
545 sbinfo
->shrinklist_len
-= removed
;
546 spin_unlock(&sbinfo
->shrinklist_lock
);
551 static long shmem_unused_huge_scan(struct super_block
*sb
,
552 struct shrink_control
*sc
)
554 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
556 if (!READ_ONCE(sbinfo
->shrinklist_len
))
559 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
562 static long shmem_unused_huge_count(struct super_block
*sb
,
563 struct shrink_control
*sc
)
565 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
566 return READ_ONCE(sbinfo
->shrinklist_len
);
568 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
570 #define shmem_huge SHMEM_HUGE_DENY
572 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
573 struct shrink_control
*sc
, unsigned long nr_to_split
)
577 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
579 static inline bool is_huge_enabled(struct shmem_sb_info
*sbinfo
)
581 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
582 (shmem_huge
== SHMEM_HUGE_FORCE
|| sbinfo
->huge
) &&
583 shmem_huge
!= SHMEM_HUGE_DENY
)
589 * Like add_to_page_cache_locked, but error if expected item has gone.
591 static int shmem_add_to_page_cache(struct page
*page
,
592 struct address_space
*mapping
,
593 pgoff_t index
, void *expected
)
595 int error
, nr
= hpage_nr_pages(page
);
597 VM_BUG_ON_PAGE(PageTail(page
), page
);
598 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
599 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
600 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
601 VM_BUG_ON(expected
&& PageTransHuge(page
));
603 page_ref_add(page
, nr
);
604 page
->mapping
= mapping
;
607 xa_lock_irq(&mapping
->i_pages
);
608 if (PageTransHuge(page
)) {
609 void __rcu
**results
;
614 if (radix_tree_gang_lookup_slot(&mapping
->i_pages
,
615 &results
, &idx
, index
, 1) &&
616 idx
< index
+ HPAGE_PMD_NR
) {
621 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
622 error
= radix_tree_insert(&mapping
->i_pages
,
623 index
+ i
, page
+ i
);
626 count_vm_event(THP_FILE_ALLOC
);
628 } else if (!expected
) {
629 error
= radix_tree_insert(&mapping
->i_pages
, index
, page
);
631 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
636 mapping
->nrpages
+= nr
;
637 if (PageTransHuge(page
))
638 __inc_node_page_state(page
, NR_SHMEM_THPS
);
639 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
640 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
641 xa_unlock_irq(&mapping
->i_pages
);
643 page
->mapping
= NULL
;
644 xa_unlock_irq(&mapping
->i_pages
);
645 page_ref_sub(page
, nr
);
651 * Like delete_from_page_cache, but substitutes swap for page.
653 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
655 struct address_space
*mapping
= page
->mapping
;
658 VM_BUG_ON_PAGE(PageCompound(page
), page
);
660 xa_lock_irq(&mapping
->i_pages
);
661 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
662 page
->mapping
= NULL
;
664 __dec_node_page_state(page
, NR_FILE_PAGES
);
665 __dec_node_page_state(page
, NR_SHMEM
);
666 xa_unlock_irq(&mapping
->i_pages
);
672 * Remove swap entry from radix tree, free the swap and its page cache.
674 static int shmem_free_swap(struct address_space
*mapping
,
675 pgoff_t index
, void *radswap
)
679 xa_lock_irq(&mapping
->i_pages
);
680 old
= radix_tree_delete_item(&mapping
->i_pages
, index
, radswap
);
681 xa_unlock_irq(&mapping
->i_pages
);
684 free_swap_and_cache(radix_to_swp_entry(radswap
));
689 * Determine (in bytes) how many of the shmem object's pages mapped by the
690 * given offsets are swapped out.
692 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
693 * as long as the inode doesn't go away and racy results are not a problem.
695 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
696 pgoff_t start
, pgoff_t end
)
698 struct radix_tree_iter iter
;
701 unsigned long swapped
= 0;
705 radix_tree_for_each_slot(slot
, &mapping
->i_pages
, &iter
, start
) {
706 if (iter
.index
>= end
)
709 page
= radix_tree_deref_slot(slot
);
711 if (radix_tree_deref_retry(page
)) {
712 slot
= radix_tree_iter_retry(&iter
);
716 if (radix_tree_exceptional_entry(page
))
719 if (need_resched()) {
720 slot
= radix_tree_iter_resume(slot
, &iter
);
727 return swapped
<< PAGE_SHIFT
;
731 * Determine (in bytes) how many of the shmem object's pages mapped by the
732 * given vma is swapped out.
734 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
735 * as long as the inode doesn't go away and racy results are not a problem.
737 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
739 struct inode
*inode
= file_inode(vma
->vm_file
);
740 struct shmem_inode_info
*info
= SHMEM_I(inode
);
741 struct address_space
*mapping
= inode
->i_mapping
;
742 unsigned long swapped
;
744 /* Be careful as we don't hold info->lock */
745 swapped
= READ_ONCE(info
->swapped
);
748 * The easier cases are when the shmem object has nothing in swap, or
749 * the vma maps it whole. Then we can simply use the stats that we
755 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
756 return swapped
<< PAGE_SHIFT
;
758 /* Here comes the more involved part */
759 return shmem_partial_swap_usage(mapping
,
760 linear_page_index(vma
, vma
->vm_start
),
761 linear_page_index(vma
, vma
->vm_end
));
765 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
767 void shmem_unlock_mapping(struct address_space
*mapping
)
770 pgoff_t indices
[PAGEVEC_SIZE
];
775 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
777 while (!mapping_unevictable(mapping
)) {
779 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
780 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
782 pvec
.nr
= find_get_entries(mapping
, index
,
783 PAGEVEC_SIZE
, pvec
.pages
, indices
);
786 index
= indices
[pvec
.nr
- 1] + 1;
787 pagevec_remove_exceptionals(&pvec
);
788 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
789 pagevec_release(&pvec
);
795 * Remove range of pages and swap entries from radix tree, and free them.
796 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
798 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
801 struct address_space
*mapping
= inode
->i_mapping
;
802 struct shmem_inode_info
*info
= SHMEM_I(inode
);
803 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
804 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
805 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
806 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
808 pgoff_t indices
[PAGEVEC_SIZE
];
809 long nr_swaps_freed
= 0;
814 end
= -1; /* unsigned, so actually very big */
818 while (index
< end
) {
819 pvec
.nr
= find_get_entries(mapping
, index
,
820 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
821 pvec
.pages
, indices
);
824 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
825 struct page
*page
= pvec
.pages
[i
];
831 if (radix_tree_exceptional_entry(page
)) {
834 nr_swaps_freed
+= !shmem_free_swap(mapping
,
839 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
841 if (!trylock_page(page
))
844 if (PageTransTail(page
)) {
845 /* Middle of THP: zero out the page */
846 clear_highpage(page
);
849 } else if (PageTransHuge(page
)) {
850 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
852 * Range ends in the middle of THP:
855 clear_highpage(page
);
859 index
+= HPAGE_PMD_NR
- 1;
860 i
+= HPAGE_PMD_NR
- 1;
863 if (!unfalloc
|| !PageUptodate(page
)) {
864 VM_BUG_ON_PAGE(PageTail(page
), page
);
865 if (page_mapping(page
) == mapping
) {
866 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
867 truncate_inode_page(mapping
, page
);
872 pagevec_remove_exceptionals(&pvec
);
873 pagevec_release(&pvec
);
879 struct page
*page
= NULL
;
880 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
882 unsigned int top
= PAGE_SIZE
;
887 zero_user_segment(page
, partial_start
, top
);
888 set_page_dirty(page
);
894 struct page
*page
= NULL
;
895 shmem_getpage(inode
, end
, &page
, SGP_READ
);
897 zero_user_segment(page
, 0, partial_end
);
898 set_page_dirty(page
);
907 while (index
< end
) {
910 pvec
.nr
= find_get_entries(mapping
, index
,
911 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
912 pvec
.pages
, indices
);
914 /* If all gone or hole-punch or unfalloc, we're done */
915 if (index
== start
|| end
!= -1)
917 /* But if truncating, restart to make sure all gone */
921 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
922 struct page
*page
= pvec
.pages
[i
];
928 if (radix_tree_exceptional_entry(page
)) {
931 if (shmem_free_swap(mapping
, index
, page
)) {
932 /* Swap was replaced by page: retry */
942 if (PageTransTail(page
)) {
943 /* Middle of THP: zero out the page */
944 clear_highpage(page
);
947 * Partial thp truncate due 'start' in middle
948 * of THP: don't need to look on these pages
949 * again on !pvec.nr restart.
951 if (index
!= round_down(end
, HPAGE_PMD_NR
))
954 } else if (PageTransHuge(page
)) {
955 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
957 * Range ends in the middle of THP:
960 clear_highpage(page
);
964 index
+= HPAGE_PMD_NR
- 1;
965 i
+= HPAGE_PMD_NR
- 1;
968 if (!unfalloc
|| !PageUptodate(page
)) {
969 VM_BUG_ON_PAGE(PageTail(page
), page
);
970 if (page_mapping(page
) == mapping
) {
971 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
972 truncate_inode_page(mapping
, page
);
974 /* Page was replaced by swap: retry */
982 pagevec_remove_exceptionals(&pvec
);
983 pagevec_release(&pvec
);
987 spin_lock_irq(&info
->lock
);
988 info
->swapped
-= nr_swaps_freed
;
989 shmem_recalc_inode(inode
);
990 spin_unlock_irq(&info
->lock
);
993 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
995 shmem_undo_range(inode
, lstart
, lend
, false);
996 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
998 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
1000 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
1001 u32 request_mask
, unsigned int query_flags
)
1003 struct inode
*inode
= path
->dentry
->d_inode
;
1004 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1005 struct shmem_sb_info
*sb_info
= SHMEM_SB(inode
->i_sb
);
1007 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
1008 spin_lock_irq(&info
->lock
);
1009 shmem_recalc_inode(inode
);
1010 spin_unlock_irq(&info
->lock
);
1012 generic_fillattr(inode
, stat
);
1014 if (is_huge_enabled(sb_info
))
1015 stat
->blksize
= HPAGE_PMD_SIZE
;
1020 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1022 struct inode
*inode
= d_inode(dentry
);
1023 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1024 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1027 error
= setattr_prepare(dentry
, attr
);
1031 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
1032 loff_t oldsize
= inode
->i_size
;
1033 loff_t newsize
= attr
->ia_size
;
1035 /* protected by i_mutex */
1036 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
1037 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
1040 if (newsize
!= oldsize
) {
1041 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1045 i_size_write(inode
, newsize
);
1046 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1048 if (newsize
<= oldsize
) {
1049 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1050 if (oldsize
> holebegin
)
1051 unmap_mapping_range(inode
->i_mapping
,
1054 shmem_truncate_range(inode
,
1055 newsize
, (loff_t
)-1);
1056 /* unmap again to remove racily COWed private pages */
1057 if (oldsize
> holebegin
)
1058 unmap_mapping_range(inode
->i_mapping
,
1062 * Part of the huge page can be beyond i_size: subject
1063 * to shrink under memory pressure.
1065 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1066 spin_lock(&sbinfo
->shrinklist_lock
);
1068 * _careful to defend against unlocked access to
1069 * ->shrink_list in shmem_unused_huge_shrink()
1071 if (list_empty_careful(&info
->shrinklist
)) {
1072 list_add_tail(&info
->shrinklist
,
1073 &sbinfo
->shrinklist
);
1074 sbinfo
->shrinklist_len
++;
1076 spin_unlock(&sbinfo
->shrinklist_lock
);
1081 setattr_copy(inode
, attr
);
1082 if (attr
->ia_valid
& ATTR_MODE
)
1083 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1087 static void shmem_evict_inode(struct inode
*inode
)
1089 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1090 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1092 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1093 shmem_unacct_size(info
->flags
, inode
->i_size
);
1095 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1096 if (!list_empty(&info
->shrinklist
)) {
1097 spin_lock(&sbinfo
->shrinklist_lock
);
1098 if (!list_empty(&info
->shrinklist
)) {
1099 list_del_init(&info
->shrinklist
);
1100 sbinfo
->shrinklist_len
--;
1102 spin_unlock(&sbinfo
->shrinklist_lock
);
1104 if (!list_empty(&info
->swaplist
)) {
1105 mutex_lock(&shmem_swaplist_mutex
);
1106 list_del_init(&info
->swaplist
);
1107 mutex_unlock(&shmem_swaplist_mutex
);
1111 simple_xattrs_free(&info
->xattrs
);
1112 WARN_ON(inode
->i_blocks
);
1113 shmem_free_inode(inode
->i_sb
);
1117 static unsigned long find_swap_entry(struct radix_tree_root
*root
, void *item
)
1119 struct radix_tree_iter iter
;
1121 unsigned long found
= -1;
1122 unsigned int checked
= 0;
1125 radix_tree_for_each_slot(slot
, root
, &iter
, 0) {
1126 void *entry
= radix_tree_deref_slot(slot
);
1128 if (radix_tree_deref_retry(entry
)) {
1129 slot
= radix_tree_iter_retry(&iter
);
1132 if (entry
== item
) {
1137 if ((checked
% 4096) != 0)
1139 slot
= radix_tree_iter_resume(slot
, &iter
);
1148 * If swap found in inode, free it and move page from swapcache to filecache.
1150 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1151 swp_entry_t swap
, struct page
**pagep
)
1153 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1159 radswap
= swp_to_radix_entry(swap
);
1160 index
= find_swap_entry(&mapping
->i_pages
, radswap
);
1162 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1165 * Move _head_ to start search for next from here.
1166 * But be careful: shmem_evict_inode checks list_empty without taking
1167 * mutex, and there's an instant in list_move_tail when info->swaplist
1168 * would appear empty, if it were the only one on shmem_swaplist.
1170 if (shmem_swaplist
.next
!= &info
->swaplist
)
1171 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1173 gfp
= mapping_gfp_mask(mapping
);
1174 if (shmem_should_replace_page(*pagep
, gfp
)) {
1175 mutex_unlock(&shmem_swaplist_mutex
);
1176 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1177 mutex_lock(&shmem_swaplist_mutex
);
1179 * We needed to drop mutex to make that restrictive page
1180 * allocation, but the inode might have been freed while we
1181 * dropped it: although a racing shmem_evict_inode() cannot
1182 * complete without emptying the radix_tree, our page lock
1183 * on this swapcache page is not enough to prevent that -
1184 * free_swap_and_cache() of our swap entry will only
1185 * trylock_page(), removing swap from radix_tree whatever.
1187 * We must not proceed to shmem_add_to_page_cache() if the
1188 * inode has been freed, but of course we cannot rely on
1189 * inode or mapping or info to check that. However, we can
1190 * safely check if our swap entry is still in use (and here
1191 * it can't have got reused for another page): if it's still
1192 * in use, then the inode cannot have been freed yet, and we
1193 * can safely proceed (if it's no longer in use, that tells
1194 * nothing about the inode, but we don't need to unuse swap).
1196 if (!page_swapcount(*pagep
))
1201 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1202 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1203 * beneath us (pagelock doesn't help until the page is in pagecache).
1206 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1208 if (error
!= -ENOMEM
) {
1210 * Truncation and eviction use free_swap_and_cache(), which
1211 * only does trylock page: if we raced, best clean up here.
1213 delete_from_swap_cache(*pagep
);
1214 set_page_dirty(*pagep
);
1216 spin_lock_irq(&info
->lock
);
1218 spin_unlock_irq(&info
->lock
);
1226 * Search through swapped inodes to find and replace swap by page.
1228 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1230 struct list_head
*this, *next
;
1231 struct shmem_inode_info
*info
;
1232 struct mem_cgroup
*memcg
;
1236 * There's a faint possibility that swap page was replaced before
1237 * caller locked it: caller will come back later with the right page.
1239 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1243 * Charge page using GFP_KERNEL while we can wait, before taking
1244 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1245 * Charged back to the user (not to caller) when swap account is used.
1247 error
= mem_cgroup_try_charge_delay(page
, current
->mm
, GFP_KERNEL
,
1251 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1254 mutex_lock(&shmem_swaplist_mutex
);
1255 list_for_each_safe(this, next
, &shmem_swaplist
) {
1256 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1258 error
= shmem_unuse_inode(info
, swap
, &page
);
1260 list_del_init(&info
->swaplist
);
1262 if (error
!= -EAGAIN
)
1264 /* found nothing in this: move on to search the next */
1266 mutex_unlock(&shmem_swaplist_mutex
);
1269 if (error
!= -ENOMEM
)
1271 mem_cgroup_cancel_charge(page
, memcg
, false);
1273 mem_cgroup_commit_charge(page
, memcg
, true, false);
1281 * Move the page from the page cache to the swap cache.
1283 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1285 struct shmem_inode_info
*info
;
1286 struct address_space
*mapping
;
1287 struct inode
*inode
;
1291 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1292 BUG_ON(!PageLocked(page
));
1293 mapping
= page
->mapping
;
1294 index
= page
->index
;
1295 inode
= mapping
->host
;
1296 info
= SHMEM_I(inode
);
1297 if (info
->flags
& VM_LOCKED
)
1299 if (!total_swap_pages
)
1303 * Our capabilities prevent regular writeback or sync from ever calling
1304 * shmem_writepage; but a stacking filesystem might use ->writepage of
1305 * its underlying filesystem, in which case tmpfs should write out to
1306 * swap only in response to memory pressure, and not for the writeback
1309 if (!wbc
->for_reclaim
) {
1310 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1315 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1316 * value into swapfile.c, the only way we can correctly account for a
1317 * fallocated page arriving here is now to initialize it and write it.
1319 * That's okay for a page already fallocated earlier, but if we have
1320 * not yet completed the fallocation, then (a) we want to keep track
1321 * of this page in case we have to undo it, and (b) it may not be a
1322 * good idea to continue anyway, once we're pushing into swap. So
1323 * reactivate the page, and let shmem_fallocate() quit when too many.
1325 if (!PageUptodate(page
)) {
1326 if (inode
->i_private
) {
1327 struct shmem_falloc
*shmem_falloc
;
1328 spin_lock(&inode
->i_lock
);
1329 shmem_falloc
= inode
->i_private
;
1331 !shmem_falloc
->waitq
&&
1332 index
>= shmem_falloc
->start
&&
1333 index
< shmem_falloc
->next
)
1334 shmem_falloc
->nr_unswapped
++;
1336 shmem_falloc
= NULL
;
1337 spin_unlock(&inode
->i_lock
);
1341 clear_highpage(page
);
1342 flush_dcache_page(page
);
1343 SetPageUptodate(page
);
1346 swap
= get_swap_page(page
);
1351 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1352 * if it's not already there. Do it now before the page is
1353 * moved to swap cache, when its pagelock no longer protects
1354 * the inode from eviction. But don't unlock the mutex until
1355 * we've incremented swapped, because shmem_unuse_inode() will
1356 * prune a !swapped inode from the swaplist under this mutex.
1358 mutex_lock(&shmem_swaplist_mutex
);
1359 if (list_empty(&info
->swaplist
))
1360 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1362 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1363 spin_lock_irq(&info
->lock
);
1364 shmem_recalc_inode(inode
);
1366 spin_unlock_irq(&info
->lock
);
1368 swap_shmem_alloc(swap
);
1369 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1371 mutex_unlock(&shmem_swaplist_mutex
);
1372 BUG_ON(page_mapped(page
));
1373 swap_writepage(page
, wbc
);
1377 mutex_unlock(&shmem_swaplist_mutex
);
1378 put_swap_page(page
, swap
);
1380 set_page_dirty(page
);
1381 if (wbc
->for_reclaim
)
1382 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1387 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1388 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1392 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1393 return; /* show nothing */
1395 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1397 seq_printf(seq
, ",mpol=%s", buffer
);
1400 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1402 struct mempolicy
*mpol
= NULL
;
1404 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1405 mpol
= sbinfo
->mpol
;
1407 spin_unlock(&sbinfo
->stat_lock
);
1411 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1412 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1415 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1419 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1421 #define vm_policy vm_private_data
1424 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1425 struct shmem_inode_info
*info
, pgoff_t index
)
1427 /* Create a pseudo vma that just contains the policy */
1428 vma_init(vma
, NULL
);
1429 /* Bias interleave by inode number to distribute better across nodes */
1430 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1431 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1434 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1436 /* Drop reference taken by mpol_shared_policy_lookup() */
1437 mpol_cond_put(vma
->vm_policy
);
1440 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1441 struct shmem_inode_info
*info
, pgoff_t index
)
1443 struct vm_area_struct pvma
;
1445 struct vm_fault vmf
;
1447 shmem_pseudo_vma_init(&pvma
, info
, index
);
1450 page
= swap_cluster_readahead(swap
, gfp
, &vmf
);
1451 shmem_pseudo_vma_destroy(&pvma
);
1456 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1457 struct shmem_inode_info
*info
, pgoff_t index
)
1459 struct vm_area_struct pvma
;
1460 struct inode
*inode
= &info
->vfs_inode
;
1461 struct address_space
*mapping
= inode
->i_mapping
;
1462 pgoff_t idx
, hindex
;
1463 void __rcu
**results
;
1466 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1469 hindex
= round_down(index
, HPAGE_PMD_NR
);
1471 if (radix_tree_gang_lookup_slot(&mapping
->i_pages
, &results
, &idx
,
1472 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1478 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1479 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1480 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1481 shmem_pseudo_vma_destroy(&pvma
);
1483 prep_transhuge_page(page
);
1487 static struct page
*shmem_alloc_page(gfp_t gfp
,
1488 struct shmem_inode_info
*info
, pgoff_t index
)
1490 struct vm_area_struct pvma
;
1493 shmem_pseudo_vma_init(&pvma
, info
, index
);
1494 page
= alloc_page_vma(gfp
, &pvma
, 0);
1495 shmem_pseudo_vma_destroy(&pvma
);
1500 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1501 struct inode
*inode
,
1502 pgoff_t index
, bool huge
)
1504 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1509 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1511 nr
= huge
? HPAGE_PMD_NR
: 1;
1513 if (!shmem_inode_acct_block(inode
, nr
))
1517 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1519 page
= shmem_alloc_page(gfp
, info
, index
);
1521 __SetPageLocked(page
);
1522 __SetPageSwapBacked(page
);
1527 shmem_inode_unacct_blocks(inode
, nr
);
1529 return ERR_PTR(err
);
1533 * When a page is moved from swapcache to shmem filecache (either by the
1534 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1535 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1536 * ignorance of the mapping it belongs to. If that mapping has special
1537 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1538 * we may need to copy to a suitable page before moving to filecache.
1540 * In a future release, this may well be extended to respect cpuset and
1541 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1542 * but for now it is a simple matter of zone.
1544 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1546 return page_zonenum(page
) > gfp_zone(gfp
);
1549 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1550 struct shmem_inode_info
*info
, pgoff_t index
)
1552 struct page
*oldpage
, *newpage
;
1553 struct address_space
*swap_mapping
;
1559 entry
.val
= page_private(oldpage
);
1560 swap_index
= swp_offset(entry
);
1561 swap_mapping
= page_mapping(oldpage
);
1564 * We have arrived here because our zones are constrained, so don't
1565 * limit chance of success by further cpuset and node constraints.
1567 gfp
&= ~GFP_CONSTRAINT_MASK
;
1568 newpage
= shmem_alloc_page(gfp
, info
, index
);
1573 copy_highpage(newpage
, oldpage
);
1574 flush_dcache_page(newpage
);
1576 __SetPageLocked(newpage
);
1577 __SetPageSwapBacked(newpage
);
1578 SetPageUptodate(newpage
);
1579 set_page_private(newpage
, entry
.val
);
1580 SetPageSwapCache(newpage
);
1583 * Our caller will very soon move newpage out of swapcache, but it's
1584 * a nice clean interface for us to replace oldpage by newpage there.
1586 xa_lock_irq(&swap_mapping
->i_pages
);
1587 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1590 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1591 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1593 xa_unlock_irq(&swap_mapping
->i_pages
);
1595 if (unlikely(error
)) {
1597 * Is this possible? I think not, now that our callers check
1598 * both PageSwapCache and page_private after getting page lock;
1599 * but be defensive. Reverse old to newpage for clear and free.
1603 mem_cgroup_migrate(oldpage
, newpage
);
1604 lru_cache_add_anon(newpage
);
1608 ClearPageSwapCache(oldpage
);
1609 set_page_private(oldpage
, 0);
1611 unlock_page(oldpage
);
1618 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1620 * If we allocate a new one we do not mark it dirty. That's up to the
1621 * vm. If we swap it in we mark it dirty since we also free the swap
1622 * entry since a page cannot live in both the swap and page cache.
1624 * fault_mm and fault_type are only supplied by shmem_fault:
1625 * otherwise they are NULL.
1627 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1628 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1629 struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
1630 vm_fault_t
*fault_type
)
1632 struct address_space
*mapping
= inode
->i_mapping
;
1633 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1634 struct shmem_sb_info
*sbinfo
;
1635 struct mm_struct
*charge_mm
;
1636 struct mem_cgroup
*memcg
;
1639 enum sgp_type sgp_huge
= sgp
;
1640 pgoff_t hindex
= index
;
1645 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1647 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1651 page
= find_lock_entry(mapping
, index
);
1652 if (radix_tree_exceptional_entry(page
)) {
1653 swap
= radix_to_swp_entry(page
);
1657 if (sgp
<= SGP_CACHE
&&
1658 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1663 if (page
&& sgp
== SGP_WRITE
)
1664 mark_page_accessed(page
);
1666 /* fallocated page? */
1667 if (page
&& !PageUptodate(page
)) {
1668 if (sgp
!= SGP_READ
)
1674 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1680 * Fast cache lookup did not find it:
1681 * bring it back from swap or allocate.
1683 sbinfo
= SHMEM_SB(inode
->i_sb
);
1684 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1687 /* Look it up and read it in.. */
1688 page
= lookup_swap_cache(swap
, NULL
, 0);
1690 /* Or update major stats only when swapin succeeds?? */
1692 *fault_type
|= VM_FAULT_MAJOR
;
1693 count_vm_event(PGMAJFAULT
);
1694 count_memcg_event_mm(charge_mm
, PGMAJFAULT
);
1696 /* Here we actually start the io */
1697 page
= shmem_swapin(swap
, gfp
, info
, index
);
1704 /* We have to do this with page locked to prevent races */
1706 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1707 !shmem_confirm_swap(mapping
, index
, swap
)) {
1708 error
= -EEXIST
; /* try again */
1711 if (!PageUptodate(page
)) {
1715 wait_on_page_writeback(page
);
1717 if (shmem_should_replace_page(page
, gfp
)) {
1718 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1723 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1726 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1727 swp_to_radix_entry(swap
));
1729 * We already confirmed swap under page lock, and make
1730 * no memory allocation here, so usually no possibility
1731 * of error; but free_swap_and_cache() only trylocks a
1732 * page, so it is just possible that the entry has been
1733 * truncated or holepunched since swap was confirmed.
1734 * shmem_undo_range() will have done some of the
1735 * unaccounting, now delete_from_swap_cache() will do
1737 * Reset swap.val? No, leave it so "failed" goes back to
1738 * "repeat": reading a hole and writing should succeed.
1741 mem_cgroup_cancel_charge(page
, memcg
, false);
1742 delete_from_swap_cache(page
);
1748 mem_cgroup_commit_charge(page
, memcg
, true, false);
1750 spin_lock_irq(&info
->lock
);
1752 shmem_recalc_inode(inode
);
1753 spin_unlock_irq(&info
->lock
);
1755 if (sgp
== SGP_WRITE
)
1756 mark_page_accessed(page
);
1758 delete_from_swap_cache(page
);
1759 set_page_dirty(page
);
1763 if (vma
&& userfaultfd_missing(vma
)) {
1764 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1768 /* shmem_symlink() */
1769 if (mapping
->a_ops
!= &shmem_aops
)
1771 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1773 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1775 switch (sbinfo
->huge
) {
1778 case SHMEM_HUGE_NEVER
:
1780 case SHMEM_HUGE_WITHIN_SIZE
:
1781 off
= round_up(index
, HPAGE_PMD_NR
);
1782 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1783 if (i_size
>= HPAGE_PMD_SIZE
&&
1784 i_size
>> PAGE_SHIFT
>= off
)
1787 case SHMEM_HUGE_ADVISE
:
1788 if (sgp_huge
== SGP_HUGE
)
1790 /* TODO: implement fadvise() hints */
1795 page
= shmem_alloc_and_acct_page(gfp
, inode
, index
, true);
1797 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, inode
,
1802 error
= PTR_ERR(page
);
1804 if (error
!= -ENOSPC
)
1807 * Try to reclaim some spece by splitting a huge page
1808 * beyond i_size on the filesystem.
1812 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1813 if (ret
== SHRINK_STOP
)
1821 if (PageTransHuge(page
))
1822 hindex
= round_down(index
, HPAGE_PMD_NR
);
1826 if (sgp
== SGP_WRITE
)
1827 __SetPageReferenced(page
);
1829 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1830 PageTransHuge(page
));
1833 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1834 compound_order(page
));
1836 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1838 radix_tree_preload_end();
1841 mem_cgroup_cancel_charge(page
, memcg
,
1842 PageTransHuge(page
));
1845 mem_cgroup_commit_charge(page
, memcg
, false,
1846 PageTransHuge(page
));
1847 lru_cache_add_anon(page
);
1849 spin_lock_irq(&info
->lock
);
1850 info
->alloced
+= 1 << compound_order(page
);
1851 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1852 shmem_recalc_inode(inode
);
1853 spin_unlock_irq(&info
->lock
);
1856 if (PageTransHuge(page
) &&
1857 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1858 hindex
+ HPAGE_PMD_NR
- 1) {
1860 * Part of the huge page is beyond i_size: subject
1861 * to shrink under memory pressure.
1863 spin_lock(&sbinfo
->shrinklist_lock
);
1865 * _careful to defend against unlocked access to
1866 * ->shrink_list in shmem_unused_huge_shrink()
1868 if (list_empty_careful(&info
->shrinklist
)) {
1869 list_add_tail(&info
->shrinklist
,
1870 &sbinfo
->shrinklist
);
1871 sbinfo
->shrinklist_len
++;
1873 spin_unlock(&sbinfo
->shrinklist_lock
);
1877 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1879 if (sgp
== SGP_FALLOC
)
1883 * Let SGP_WRITE caller clear ends if write does not fill page;
1884 * but SGP_FALLOC on a page fallocated earlier must initialize
1885 * it now, lest undo on failure cancel our earlier guarantee.
1887 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1888 struct page
*head
= compound_head(page
);
1891 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1892 clear_highpage(head
+ i
);
1893 flush_dcache_page(head
+ i
);
1895 SetPageUptodate(head
);
1899 /* Perhaps the file has been truncated since we checked */
1900 if (sgp
<= SGP_CACHE
&&
1901 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1903 ClearPageDirty(page
);
1904 delete_from_page_cache(page
);
1905 spin_lock_irq(&info
->lock
);
1906 shmem_recalc_inode(inode
);
1907 spin_unlock_irq(&info
->lock
);
1912 *pagep
= page
+ index
- hindex
;
1919 shmem_inode_unacct_blocks(inode
, 1 << compound_order(page
));
1921 if (PageTransHuge(page
)) {
1927 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1934 if (error
== -ENOSPC
&& !once
++) {
1935 spin_lock_irq(&info
->lock
);
1936 shmem_recalc_inode(inode
);
1937 spin_unlock_irq(&info
->lock
);
1940 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1946 * This is like autoremove_wake_function, but it removes the wait queue
1947 * entry unconditionally - even if something else had already woken the
1950 static int synchronous_wake_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1952 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1953 list_del_init(&wait
->entry
);
1957 static vm_fault_t
shmem_fault(struct vm_fault
*vmf
)
1959 struct vm_area_struct
*vma
= vmf
->vma
;
1960 struct inode
*inode
= file_inode(vma
->vm_file
);
1961 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1964 vm_fault_t ret
= VM_FAULT_LOCKED
;
1967 * Trinity finds that probing a hole which tmpfs is punching can
1968 * prevent the hole-punch from ever completing: which in turn
1969 * locks writers out with its hold on i_mutex. So refrain from
1970 * faulting pages into the hole while it's being punched. Although
1971 * shmem_undo_range() does remove the additions, it may be unable to
1972 * keep up, as each new page needs its own unmap_mapping_range() call,
1973 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1975 * It does not matter if we sometimes reach this check just before the
1976 * hole-punch begins, so that one fault then races with the punch:
1977 * we just need to make racing faults a rare case.
1979 * The implementation below would be much simpler if we just used a
1980 * standard mutex or completion: but we cannot take i_mutex in fault,
1981 * and bloating every shmem inode for this unlikely case would be sad.
1983 if (unlikely(inode
->i_private
)) {
1984 struct shmem_falloc
*shmem_falloc
;
1986 spin_lock(&inode
->i_lock
);
1987 shmem_falloc
= inode
->i_private
;
1989 shmem_falloc
->waitq
&&
1990 vmf
->pgoff
>= shmem_falloc
->start
&&
1991 vmf
->pgoff
< shmem_falloc
->next
) {
1992 wait_queue_head_t
*shmem_falloc_waitq
;
1993 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1995 ret
= VM_FAULT_NOPAGE
;
1996 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1997 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1998 /* It's polite to up mmap_sem if we can */
1999 up_read(&vma
->vm_mm
->mmap_sem
);
2000 ret
= VM_FAULT_RETRY
;
2003 shmem_falloc_waitq
= shmem_falloc
->waitq
;
2004 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
2005 TASK_UNINTERRUPTIBLE
);
2006 spin_unlock(&inode
->i_lock
);
2010 * shmem_falloc_waitq points into the shmem_fallocate()
2011 * stack of the hole-punching task: shmem_falloc_waitq
2012 * is usually invalid by the time we reach here, but
2013 * finish_wait() does not dereference it in that case;
2014 * though i_lock needed lest racing with wake_up_all().
2016 spin_lock(&inode
->i_lock
);
2017 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
2018 spin_unlock(&inode
->i_lock
);
2021 spin_unlock(&inode
->i_lock
);
2026 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
2027 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
2029 else if (vma
->vm_flags
& VM_HUGEPAGE
)
2032 err
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
2033 gfp
, vma
, vmf
, &ret
);
2035 return vmf_error(err
);
2039 unsigned long shmem_get_unmapped_area(struct file
*file
,
2040 unsigned long uaddr
, unsigned long len
,
2041 unsigned long pgoff
, unsigned long flags
)
2043 unsigned long (*get_area
)(struct file
*,
2044 unsigned long, unsigned long, unsigned long, unsigned long);
2046 unsigned long offset
;
2047 unsigned long inflated_len
;
2048 unsigned long inflated_addr
;
2049 unsigned long inflated_offset
;
2051 if (len
> TASK_SIZE
)
2054 get_area
= current
->mm
->get_unmapped_area
;
2055 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2057 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2059 if (IS_ERR_VALUE(addr
))
2061 if (addr
& ~PAGE_MASK
)
2063 if (addr
> TASK_SIZE
- len
)
2066 if (shmem_huge
== SHMEM_HUGE_DENY
)
2068 if (len
< HPAGE_PMD_SIZE
)
2070 if (flags
& MAP_FIXED
)
2073 * Our priority is to support MAP_SHARED mapped hugely;
2074 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2075 * But if caller specified an address hint, respect that as before.
2080 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2081 struct super_block
*sb
;
2084 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2085 sb
= file_inode(file
)->i_sb
;
2088 * Called directly from mm/mmap.c, or drivers/char/mem.c
2089 * for "/dev/zero", to create a shared anonymous object.
2091 if (IS_ERR(shm_mnt
))
2093 sb
= shm_mnt
->mnt_sb
;
2095 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2099 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2100 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2102 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2105 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2106 if (inflated_len
> TASK_SIZE
)
2108 if (inflated_len
< len
)
2111 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2112 if (IS_ERR_VALUE(inflated_addr
))
2114 if (inflated_addr
& ~PAGE_MASK
)
2117 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2118 inflated_addr
+= offset
- inflated_offset
;
2119 if (inflated_offset
> offset
)
2120 inflated_addr
+= HPAGE_PMD_SIZE
;
2122 if (inflated_addr
> TASK_SIZE
- len
)
2124 return inflated_addr
;
2128 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2130 struct inode
*inode
= file_inode(vma
->vm_file
);
2131 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2134 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2137 struct inode
*inode
= file_inode(vma
->vm_file
);
2140 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2141 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2145 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2147 struct inode
*inode
= file_inode(file
);
2148 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2149 int retval
= -ENOMEM
;
2151 spin_lock_irq(&info
->lock
);
2152 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2153 if (!user_shm_lock(inode
->i_size
, user
))
2155 info
->flags
|= VM_LOCKED
;
2156 mapping_set_unevictable(file
->f_mapping
);
2158 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2159 user_shm_unlock(inode
->i_size
, user
);
2160 info
->flags
&= ~VM_LOCKED
;
2161 mapping_clear_unevictable(file
->f_mapping
);
2166 spin_unlock_irq(&info
->lock
);
2170 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2172 file_accessed(file
);
2173 vma
->vm_ops
= &shmem_vm_ops
;
2174 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2175 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2176 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2177 khugepaged_enter(vma
, vma
->vm_flags
);
2182 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2183 umode_t mode
, dev_t dev
, unsigned long flags
)
2185 struct inode
*inode
;
2186 struct shmem_inode_info
*info
;
2187 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2189 if (shmem_reserve_inode(sb
))
2192 inode
= new_inode(sb
);
2194 inode
->i_ino
= get_next_ino();
2195 inode_init_owner(inode
, dir
, mode
);
2196 inode
->i_blocks
= 0;
2197 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2198 inode
->i_generation
= prandom_u32();
2199 info
= SHMEM_I(inode
);
2200 memset(info
, 0, (char *)inode
- (char *)info
);
2201 spin_lock_init(&info
->lock
);
2202 info
->seals
= F_SEAL_SEAL
;
2203 info
->flags
= flags
& VM_NORESERVE
;
2204 INIT_LIST_HEAD(&info
->shrinklist
);
2205 INIT_LIST_HEAD(&info
->swaplist
);
2206 simple_xattrs_init(&info
->xattrs
);
2207 cache_no_acl(inode
);
2209 switch (mode
& S_IFMT
) {
2211 inode
->i_op
= &shmem_special_inode_operations
;
2212 init_special_inode(inode
, mode
, dev
);
2215 inode
->i_mapping
->a_ops
= &shmem_aops
;
2216 inode
->i_op
= &shmem_inode_operations
;
2217 inode
->i_fop
= &shmem_file_operations
;
2218 mpol_shared_policy_init(&info
->policy
,
2219 shmem_get_sbmpol(sbinfo
));
2223 /* Some things misbehave if size == 0 on a directory */
2224 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2225 inode
->i_op
= &shmem_dir_inode_operations
;
2226 inode
->i_fop
= &simple_dir_operations
;
2230 * Must not load anything in the rbtree,
2231 * mpol_free_shared_policy will not be called.
2233 mpol_shared_policy_init(&info
->policy
, NULL
);
2237 lockdep_annotate_inode_mutex_key(inode
);
2239 shmem_free_inode(sb
);
2243 bool shmem_mapping(struct address_space
*mapping
)
2245 return mapping
->a_ops
== &shmem_aops
;
2248 static int shmem_mfill_atomic_pte(struct mm_struct
*dst_mm
,
2250 struct vm_area_struct
*dst_vma
,
2251 unsigned long dst_addr
,
2252 unsigned long src_addr
,
2254 struct page
**pagep
)
2256 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2257 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2258 struct address_space
*mapping
= inode
->i_mapping
;
2259 gfp_t gfp
= mapping_gfp_mask(mapping
);
2260 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2261 struct mem_cgroup
*memcg
;
2265 pte_t _dst_pte
, *dst_pte
;
2267 pgoff_t offset
, max_off
;
2270 if (!shmem_inode_acct_block(inode
, 1))
2274 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2276 goto out_unacct_blocks
;
2278 if (!zeropage
) { /* mcopy_atomic */
2279 page_kaddr
= kmap_atomic(page
);
2280 ret
= copy_from_user(page_kaddr
,
2281 (const void __user
*)src_addr
,
2283 kunmap_atomic(page_kaddr
);
2285 /* fallback to copy_from_user outside mmap_sem */
2286 if (unlikely(ret
)) {
2288 shmem_inode_unacct_blocks(inode
, 1);
2289 /* don't free the page */
2292 } else { /* mfill_zeropage_atomic */
2293 clear_highpage(page
);
2300 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2301 __SetPageLocked(page
);
2302 __SetPageSwapBacked(page
);
2303 __SetPageUptodate(page
);
2306 offset
= linear_page_index(dst_vma
, dst_addr
);
2307 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2308 if (unlikely(offset
>= max_off
))
2311 ret
= mem_cgroup_try_charge_delay(page
, dst_mm
, gfp
, &memcg
, false);
2315 ret
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
2317 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
);
2318 radix_tree_preload_end();
2321 goto out_release_uncharge
;
2323 mem_cgroup_commit_charge(page
, memcg
, false, false);
2325 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2326 if (dst_vma
->vm_flags
& VM_WRITE
)
2327 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2330 * We don't set the pte dirty if the vma has no
2331 * VM_WRITE permission, so mark the page dirty or it
2332 * could be freed from under us. We could do it
2333 * unconditionally before unlock_page(), but doing it
2334 * only if VM_WRITE is not set is faster.
2336 set_page_dirty(page
);
2339 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2342 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2343 if (unlikely(offset
>= max_off
))
2344 goto out_release_uncharge_unlock
;
2347 if (!pte_none(*dst_pte
))
2348 goto out_release_uncharge_unlock
;
2350 lru_cache_add_anon(page
);
2352 spin_lock(&info
->lock
);
2354 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2355 shmem_recalc_inode(inode
);
2356 spin_unlock(&info
->lock
);
2358 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2359 page_add_file_rmap(page
, false);
2360 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2362 /* No need to invalidate - it was non-present before */
2363 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2364 pte_unmap_unlock(dst_pte
, ptl
);
2369 out_release_uncharge_unlock
:
2370 pte_unmap_unlock(dst_pte
, ptl
);
2371 ClearPageDirty(page
);
2372 delete_from_page_cache(page
);
2373 out_release_uncharge
:
2374 mem_cgroup_cancel_charge(page
, memcg
, false);
2379 shmem_inode_unacct_blocks(inode
, 1);
2383 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2385 struct vm_area_struct
*dst_vma
,
2386 unsigned long dst_addr
,
2387 unsigned long src_addr
,
2388 struct page
**pagep
)
2390 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2391 dst_addr
, src_addr
, false, pagep
);
2394 int shmem_mfill_zeropage_pte(struct mm_struct
*dst_mm
,
2396 struct vm_area_struct
*dst_vma
,
2397 unsigned long dst_addr
)
2399 struct page
*page
= NULL
;
2401 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2402 dst_addr
, 0, true, &page
);
2406 static const struct inode_operations shmem_symlink_inode_operations
;
2407 static const struct inode_operations shmem_short_symlink_operations
;
2409 #ifdef CONFIG_TMPFS_XATTR
2410 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2412 #define shmem_initxattrs NULL
2416 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2417 loff_t pos
, unsigned len
, unsigned flags
,
2418 struct page
**pagep
, void **fsdata
)
2420 struct inode
*inode
= mapping
->host
;
2421 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2422 pgoff_t index
= pos
>> PAGE_SHIFT
;
2424 /* i_mutex is held by caller */
2425 if (unlikely(info
->seals
& (F_SEAL_WRITE
| F_SEAL_GROW
))) {
2426 if (info
->seals
& F_SEAL_WRITE
)
2428 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2432 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2436 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2437 loff_t pos
, unsigned len
, unsigned copied
,
2438 struct page
*page
, void *fsdata
)
2440 struct inode
*inode
= mapping
->host
;
2442 if (pos
+ copied
> inode
->i_size
)
2443 i_size_write(inode
, pos
+ copied
);
2445 if (!PageUptodate(page
)) {
2446 struct page
*head
= compound_head(page
);
2447 if (PageTransCompound(page
)) {
2450 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2451 if (head
+ i
== page
)
2453 clear_highpage(head
+ i
);
2454 flush_dcache_page(head
+ i
);
2457 if (copied
< PAGE_SIZE
) {
2458 unsigned from
= pos
& (PAGE_SIZE
- 1);
2459 zero_user_segments(page
, 0, from
,
2460 from
+ copied
, PAGE_SIZE
);
2462 SetPageUptodate(head
);
2464 set_page_dirty(page
);
2471 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2473 struct file
*file
= iocb
->ki_filp
;
2474 struct inode
*inode
= file_inode(file
);
2475 struct address_space
*mapping
= inode
->i_mapping
;
2477 unsigned long offset
;
2478 enum sgp_type sgp
= SGP_READ
;
2481 loff_t
*ppos
= &iocb
->ki_pos
;
2484 * Might this read be for a stacking filesystem? Then when reading
2485 * holes of a sparse file, we actually need to allocate those pages,
2486 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2488 if (!iter_is_iovec(to
))
2491 index
= *ppos
>> PAGE_SHIFT
;
2492 offset
= *ppos
& ~PAGE_MASK
;
2495 struct page
*page
= NULL
;
2497 unsigned long nr
, ret
;
2498 loff_t i_size
= i_size_read(inode
);
2500 end_index
= i_size
>> PAGE_SHIFT
;
2501 if (index
> end_index
)
2503 if (index
== end_index
) {
2504 nr
= i_size
& ~PAGE_MASK
;
2509 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2511 if (error
== -EINVAL
)
2516 if (sgp
== SGP_CACHE
)
2517 set_page_dirty(page
);
2522 * We must evaluate after, since reads (unlike writes)
2523 * are called without i_mutex protection against truncate
2526 i_size
= i_size_read(inode
);
2527 end_index
= i_size
>> PAGE_SHIFT
;
2528 if (index
== end_index
) {
2529 nr
= i_size
& ~PAGE_MASK
;
2540 * If users can be writing to this page using arbitrary
2541 * virtual addresses, take care about potential aliasing
2542 * before reading the page on the kernel side.
2544 if (mapping_writably_mapped(mapping
))
2545 flush_dcache_page(page
);
2547 * Mark the page accessed if we read the beginning.
2550 mark_page_accessed(page
);
2552 page
= ZERO_PAGE(0);
2557 * Ok, we have the page, and it's up-to-date, so
2558 * now we can copy it to user space...
2560 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2563 index
+= offset
>> PAGE_SHIFT
;
2564 offset
&= ~PAGE_MASK
;
2567 if (!iov_iter_count(to
))
2576 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2577 file_accessed(file
);
2578 return retval
? retval
: error
;
2582 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2584 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2585 pgoff_t index
, pgoff_t end
, int whence
)
2588 struct pagevec pvec
;
2589 pgoff_t indices
[PAGEVEC_SIZE
];
2593 pagevec_init(&pvec
);
2594 pvec
.nr
= 1; /* start small: we may be there already */
2596 pvec
.nr
= find_get_entries(mapping
, index
,
2597 pvec
.nr
, pvec
.pages
, indices
);
2599 if (whence
== SEEK_DATA
)
2603 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2604 if (index
< indices
[i
]) {
2605 if (whence
== SEEK_HOLE
) {
2611 page
= pvec
.pages
[i
];
2612 if (page
&& !radix_tree_exceptional_entry(page
)) {
2613 if (!PageUptodate(page
))
2617 (page
&& whence
== SEEK_DATA
) ||
2618 (!page
&& whence
== SEEK_HOLE
)) {
2623 pagevec_remove_exceptionals(&pvec
);
2624 pagevec_release(&pvec
);
2625 pvec
.nr
= PAGEVEC_SIZE
;
2631 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2633 struct address_space
*mapping
= file
->f_mapping
;
2634 struct inode
*inode
= mapping
->host
;
2638 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2639 return generic_file_llseek_size(file
, offset
, whence
,
2640 MAX_LFS_FILESIZE
, i_size_read(inode
));
2642 /* We're holding i_mutex so we can access i_size directly */
2644 if (offset
< 0 || offset
>= inode
->i_size
)
2647 start
= offset
>> PAGE_SHIFT
;
2648 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2649 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2650 new_offset
<<= PAGE_SHIFT
;
2651 if (new_offset
> offset
) {
2652 if (new_offset
< inode
->i_size
)
2653 offset
= new_offset
;
2654 else if (whence
== SEEK_DATA
)
2657 offset
= inode
->i_size
;
2662 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2663 inode_unlock(inode
);
2667 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2670 struct inode
*inode
= file_inode(file
);
2671 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2672 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2673 struct shmem_falloc shmem_falloc
;
2674 pgoff_t start
, index
, end
;
2677 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2682 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2683 struct address_space
*mapping
= file
->f_mapping
;
2684 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2685 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2686 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2688 /* protected by i_mutex */
2689 if (info
->seals
& F_SEAL_WRITE
) {
2694 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2695 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2696 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2697 spin_lock(&inode
->i_lock
);
2698 inode
->i_private
= &shmem_falloc
;
2699 spin_unlock(&inode
->i_lock
);
2701 if ((u64
)unmap_end
> (u64
)unmap_start
)
2702 unmap_mapping_range(mapping
, unmap_start
,
2703 1 + unmap_end
- unmap_start
, 0);
2704 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2705 /* No need to unmap again: hole-punching leaves COWed pages */
2707 spin_lock(&inode
->i_lock
);
2708 inode
->i_private
= NULL
;
2709 wake_up_all(&shmem_falloc_waitq
);
2710 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.head
));
2711 spin_unlock(&inode
->i_lock
);
2716 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2717 error
= inode_newsize_ok(inode
, offset
+ len
);
2721 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2726 start
= offset
>> PAGE_SHIFT
;
2727 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2728 /* Try to avoid a swapstorm if len is impossible to satisfy */
2729 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2734 shmem_falloc
.waitq
= NULL
;
2735 shmem_falloc
.start
= start
;
2736 shmem_falloc
.next
= start
;
2737 shmem_falloc
.nr_falloced
= 0;
2738 shmem_falloc
.nr_unswapped
= 0;
2739 spin_lock(&inode
->i_lock
);
2740 inode
->i_private
= &shmem_falloc
;
2741 spin_unlock(&inode
->i_lock
);
2743 for (index
= start
; index
< end
; index
++) {
2747 * Good, the fallocate(2) manpage permits EINTR: we may have
2748 * been interrupted because we are using up too much memory.
2750 if (signal_pending(current
))
2752 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2755 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2757 /* Remove the !PageUptodate pages we added */
2758 if (index
> start
) {
2759 shmem_undo_range(inode
,
2760 (loff_t
)start
<< PAGE_SHIFT
,
2761 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2767 * Inform shmem_writepage() how far we have reached.
2768 * No need for lock or barrier: we have the page lock.
2770 shmem_falloc
.next
++;
2771 if (!PageUptodate(page
))
2772 shmem_falloc
.nr_falloced
++;
2775 * If !PageUptodate, leave it that way so that freeable pages
2776 * can be recognized if we need to rollback on error later.
2777 * But set_page_dirty so that memory pressure will swap rather
2778 * than free the pages we are allocating (and SGP_CACHE pages
2779 * might still be clean: we now need to mark those dirty too).
2781 set_page_dirty(page
);
2787 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2788 i_size_write(inode
, offset
+ len
);
2789 inode
->i_ctime
= current_time(inode
);
2791 spin_lock(&inode
->i_lock
);
2792 inode
->i_private
= NULL
;
2793 spin_unlock(&inode
->i_lock
);
2795 inode_unlock(inode
);
2799 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2801 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2803 buf
->f_type
= TMPFS_MAGIC
;
2804 buf
->f_bsize
= PAGE_SIZE
;
2805 buf
->f_namelen
= NAME_MAX
;
2806 if (sbinfo
->max_blocks
) {
2807 buf
->f_blocks
= sbinfo
->max_blocks
;
2809 buf
->f_bfree
= sbinfo
->max_blocks
-
2810 percpu_counter_sum(&sbinfo
->used_blocks
);
2812 if (sbinfo
->max_inodes
) {
2813 buf
->f_files
= sbinfo
->max_inodes
;
2814 buf
->f_ffree
= sbinfo
->free_inodes
;
2816 /* else leave those fields 0 like simple_statfs */
2821 * File creation. Allocate an inode, and we're done..
2824 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2826 struct inode
*inode
;
2827 int error
= -ENOSPC
;
2829 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2831 error
= simple_acl_create(dir
, inode
);
2834 error
= security_inode_init_security(inode
, dir
,
2836 shmem_initxattrs
, NULL
);
2837 if (error
&& error
!= -EOPNOTSUPP
)
2841 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2842 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2843 d_instantiate(dentry
, inode
);
2844 dget(dentry
); /* Extra count - pin the dentry in core */
2853 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2855 struct inode
*inode
;
2856 int error
= -ENOSPC
;
2858 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2860 error
= security_inode_init_security(inode
, dir
,
2862 shmem_initxattrs
, NULL
);
2863 if (error
&& error
!= -EOPNOTSUPP
)
2865 error
= simple_acl_create(dir
, inode
);
2868 d_tmpfile(dentry
, inode
);
2876 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2880 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2886 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2889 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2895 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2897 struct inode
*inode
= d_inode(old_dentry
);
2901 * No ordinary (disk based) filesystem counts links as inodes;
2902 * but each new link needs a new dentry, pinning lowmem, and
2903 * tmpfs dentries cannot be pruned until they are unlinked.
2905 ret
= shmem_reserve_inode(inode
->i_sb
);
2909 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2910 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2912 ihold(inode
); /* New dentry reference */
2913 dget(dentry
); /* Extra pinning count for the created dentry */
2914 d_instantiate(dentry
, inode
);
2919 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2921 struct inode
*inode
= d_inode(dentry
);
2923 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2924 shmem_free_inode(inode
->i_sb
);
2926 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2927 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2929 dput(dentry
); /* Undo the count from "create" - this does all the work */
2933 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2935 if (!simple_empty(dentry
))
2938 drop_nlink(d_inode(dentry
));
2940 return shmem_unlink(dir
, dentry
);
2943 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2945 bool old_is_dir
= d_is_dir(old_dentry
);
2946 bool new_is_dir
= d_is_dir(new_dentry
);
2948 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2950 drop_nlink(old_dir
);
2953 drop_nlink(new_dir
);
2957 old_dir
->i_ctime
= old_dir
->i_mtime
=
2958 new_dir
->i_ctime
= new_dir
->i_mtime
=
2959 d_inode(old_dentry
)->i_ctime
=
2960 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
2965 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2967 struct dentry
*whiteout
;
2970 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2974 error
= shmem_mknod(old_dir
, whiteout
,
2975 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2981 * Cheat and hash the whiteout while the old dentry is still in
2982 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2984 * d_lookup() will consistently find one of them at this point,
2985 * not sure which one, but that isn't even important.
2992 * The VFS layer already does all the dentry stuff for rename,
2993 * we just have to decrement the usage count for the target if
2994 * it exists so that the VFS layer correctly free's it when it
2997 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
2999 struct inode
*inode
= d_inode(old_dentry
);
3000 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
3002 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
3005 if (flags
& RENAME_EXCHANGE
)
3006 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3008 if (!simple_empty(new_dentry
))
3011 if (flags
& RENAME_WHITEOUT
) {
3014 error
= shmem_whiteout(old_dir
, old_dentry
);
3019 if (d_really_is_positive(new_dentry
)) {
3020 (void) shmem_unlink(new_dir
, new_dentry
);
3021 if (they_are_dirs
) {
3022 drop_nlink(d_inode(new_dentry
));
3023 drop_nlink(old_dir
);
3025 } else if (they_are_dirs
) {
3026 drop_nlink(old_dir
);
3030 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3031 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3032 old_dir
->i_ctime
= old_dir
->i_mtime
=
3033 new_dir
->i_ctime
= new_dir
->i_mtime
=
3034 inode
->i_ctime
= current_time(old_dir
);
3038 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3042 struct inode
*inode
;
3045 len
= strlen(symname
) + 1;
3046 if (len
> PAGE_SIZE
)
3047 return -ENAMETOOLONG
;
3049 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
| 0777, 0,
3054 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3055 shmem_initxattrs
, NULL
);
3057 if (error
!= -EOPNOTSUPP
) {
3064 inode
->i_size
= len
-1;
3065 if (len
<= SHORT_SYMLINK_LEN
) {
3066 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3067 if (!inode
->i_link
) {
3071 inode
->i_op
= &shmem_short_symlink_operations
;
3073 inode_nohighmem(inode
);
3074 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3079 inode
->i_mapping
->a_ops
= &shmem_aops
;
3080 inode
->i_op
= &shmem_symlink_inode_operations
;
3081 memcpy(page_address(page
), symname
, len
);
3082 SetPageUptodate(page
);
3083 set_page_dirty(page
);
3087 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3088 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3089 d_instantiate(dentry
, inode
);
3094 static void shmem_put_link(void *arg
)
3096 mark_page_accessed(arg
);
3100 static const char *shmem_get_link(struct dentry
*dentry
,
3101 struct inode
*inode
,
3102 struct delayed_call
*done
)
3104 struct page
*page
= NULL
;
3107 page
= find_get_page(inode
->i_mapping
, 0);
3109 return ERR_PTR(-ECHILD
);
3110 if (!PageUptodate(page
)) {
3112 return ERR_PTR(-ECHILD
);
3115 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3117 return ERR_PTR(error
);
3120 set_delayed_call(done
, shmem_put_link
, page
);
3121 return page_address(page
);
3124 #ifdef CONFIG_TMPFS_XATTR
3126 * Superblocks without xattr inode operations may get some security.* xattr
3127 * support from the LSM "for free". As soon as we have any other xattrs
3128 * like ACLs, we also need to implement the security.* handlers at
3129 * filesystem level, though.
3133 * Callback for security_inode_init_security() for acquiring xattrs.
3135 static int shmem_initxattrs(struct inode
*inode
,
3136 const struct xattr
*xattr_array
,
3139 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3140 const struct xattr
*xattr
;
3141 struct simple_xattr
*new_xattr
;
3144 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3145 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3149 len
= strlen(xattr
->name
) + 1;
3150 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3152 if (!new_xattr
->name
) {
3157 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3158 XATTR_SECURITY_PREFIX_LEN
);
3159 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3162 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3168 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3169 struct dentry
*unused
, struct inode
*inode
,
3170 const char *name
, void *buffer
, size_t size
)
3172 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3174 name
= xattr_full_name(handler
, name
);
3175 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3178 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3179 struct dentry
*unused
, struct inode
*inode
,
3180 const char *name
, const void *value
,
3181 size_t size
, int flags
)
3183 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3185 name
= xattr_full_name(handler
, name
);
3186 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3189 static const struct xattr_handler shmem_security_xattr_handler
= {
3190 .prefix
= XATTR_SECURITY_PREFIX
,
3191 .get
= shmem_xattr_handler_get
,
3192 .set
= shmem_xattr_handler_set
,
3195 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3196 .prefix
= XATTR_TRUSTED_PREFIX
,
3197 .get
= shmem_xattr_handler_get
,
3198 .set
= shmem_xattr_handler_set
,
3201 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3202 #ifdef CONFIG_TMPFS_POSIX_ACL
3203 &posix_acl_access_xattr_handler
,
3204 &posix_acl_default_xattr_handler
,
3206 &shmem_security_xattr_handler
,
3207 &shmem_trusted_xattr_handler
,
3211 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3213 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3214 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3216 #endif /* CONFIG_TMPFS_XATTR */
3218 static const struct inode_operations shmem_short_symlink_operations
= {
3219 .get_link
= simple_get_link
,
3220 #ifdef CONFIG_TMPFS_XATTR
3221 .listxattr
= shmem_listxattr
,
3225 static const struct inode_operations shmem_symlink_inode_operations
= {
3226 .get_link
= shmem_get_link
,
3227 #ifdef CONFIG_TMPFS_XATTR
3228 .listxattr
= shmem_listxattr
,
3232 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3234 return ERR_PTR(-ESTALE
);
3237 static int shmem_match(struct inode
*ino
, void *vfh
)
3241 inum
= (inum
<< 32) | fh
[1];
3242 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3245 /* Find any alias of inode, but prefer a hashed alias */
3246 static struct dentry
*shmem_find_alias(struct inode
*inode
)
3248 struct dentry
*alias
= d_find_alias(inode
);
3250 return alias
?: d_find_any_alias(inode
);
3254 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3255 struct fid
*fid
, int fh_len
, int fh_type
)
3257 struct inode
*inode
;
3258 struct dentry
*dentry
= NULL
;
3265 inum
= (inum
<< 32) | fid
->raw
[1];
3267 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3268 shmem_match
, fid
->raw
);
3270 dentry
= shmem_find_alias(inode
);
3277 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3278 struct inode
*parent
)
3282 return FILEID_INVALID
;
3285 if (inode_unhashed(inode
)) {
3286 /* Unfortunately insert_inode_hash is not idempotent,
3287 * so as we hash inodes here rather than at creation
3288 * time, we need a lock to ensure we only try
3291 static DEFINE_SPINLOCK(lock
);
3293 if (inode_unhashed(inode
))
3294 __insert_inode_hash(inode
,
3295 inode
->i_ino
+ inode
->i_generation
);
3299 fh
[0] = inode
->i_generation
;
3300 fh
[1] = inode
->i_ino
;
3301 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3307 static const struct export_operations shmem_export_ops
= {
3308 .get_parent
= shmem_get_parent
,
3309 .encode_fh
= shmem_encode_fh
,
3310 .fh_to_dentry
= shmem_fh_to_dentry
,
3313 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3316 char *this_char
, *value
, *rest
;
3317 struct mempolicy
*mpol
= NULL
;
3321 while (options
!= NULL
) {
3322 this_char
= options
;
3325 * NUL-terminate this option: unfortunately,
3326 * mount options form a comma-separated list,
3327 * but mpol's nodelist may also contain commas.
3329 options
= strchr(options
, ',');
3330 if (options
== NULL
)
3333 if (!isdigit(*options
)) {
3340 if ((value
= strchr(this_char
,'=')) != NULL
) {
3343 pr_err("tmpfs: No value for mount option '%s'\n",
3348 if (!strcmp(this_char
,"size")) {
3349 unsigned long long size
;
3350 size
= memparse(value
,&rest
);
3352 size
<<= PAGE_SHIFT
;
3353 size
*= totalram_pages
;
3359 sbinfo
->max_blocks
=
3360 DIV_ROUND_UP(size
, PAGE_SIZE
);
3361 } else if (!strcmp(this_char
,"nr_blocks")) {
3362 sbinfo
->max_blocks
= memparse(value
, &rest
);
3365 } else if (!strcmp(this_char
,"nr_inodes")) {
3366 sbinfo
->max_inodes
= memparse(value
, &rest
);
3369 } else if (!strcmp(this_char
,"mode")) {
3372 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3375 } else if (!strcmp(this_char
,"uid")) {
3378 uid
= simple_strtoul(value
, &rest
, 0);
3381 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3382 if (!uid_valid(sbinfo
->uid
))
3384 } else if (!strcmp(this_char
,"gid")) {
3387 gid
= simple_strtoul(value
, &rest
, 0);
3390 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3391 if (!gid_valid(sbinfo
->gid
))
3393 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3394 } else if (!strcmp(this_char
, "huge")) {
3396 huge
= shmem_parse_huge(value
);
3399 if (!has_transparent_hugepage() &&
3400 huge
!= SHMEM_HUGE_NEVER
)
3402 sbinfo
->huge
= huge
;
3405 } else if (!strcmp(this_char
,"mpol")) {
3408 if (mpol_parse_str(value
, &mpol
))
3412 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3416 sbinfo
->mpol
= mpol
;
3420 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3428 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3430 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3431 struct shmem_sb_info config
= *sbinfo
;
3432 unsigned long inodes
;
3433 int error
= -EINVAL
;
3436 if (shmem_parse_options(data
, &config
, true))
3439 spin_lock(&sbinfo
->stat_lock
);
3440 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3441 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3443 if (config
.max_inodes
< inodes
)
3446 * Those tests disallow limited->unlimited while any are in use;
3447 * but we must separately disallow unlimited->limited, because
3448 * in that case we have no record of how much is already in use.
3450 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3452 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3456 sbinfo
->huge
= config
.huge
;
3457 sbinfo
->max_blocks
= config
.max_blocks
;
3458 sbinfo
->max_inodes
= config
.max_inodes
;
3459 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3462 * Preserve previous mempolicy unless mpol remount option was specified.
3465 mpol_put(sbinfo
->mpol
);
3466 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3469 spin_unlock(&sbinfo
->stat_lock
);
3473 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3475 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3477 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3478 seq_printf(seq
, ",size=%luk",
3479 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3480 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3481 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3482 if (sbinfo
->mode
!= (0777 | S_ISVTX
))
3483 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3484 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3485 seq_printf(seq
, ",uid=%u",
3486 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3487 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3488 seq_printf(seq
, ",gid=%u",
3489 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3490 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3491 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3493 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3495 shmem_show_mpol(seq
, sbinfo
->mpol
);
3499 #endif /* CONFIG_TMPFS */
3501 static void shmem_put_super(struct super_block
*sb
)
3503 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3505 percpu_counter_destroy(&sbinfo
->used_blocks
);
3506 mpol_put(sbinfo
->mpol
);
3508 sb
->s_fs_info
= NULL
;
3511 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3513 struct inode
*inode
;
3514 struct shmem_sb_info
*sbinfo
;
3517 /* Round up to L1_CACHE_BYTES to resist false sharing */
3518 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3519 L1_CACHE_BYTES
), GFP_KERNEL
);
3523 sbinfo
->mode
= 0777 | S_ISVTX
;
3524 sbinfo
->uid
= current_fsuid();
3525 sbinfo
->gid
= current_fsgid();
3526 sb
->s_fs_info
= sbinfo
;
3530 * Per default we only allow half of the physical ram per
3531 * tmpfs instance, limiting inodes to one per page of lowmem;
3532 * but the internal instance is left unlimited.
3534 if (!(sb
->s_flags
& SB_KERNMOUNT
)) {
3535 sbinfo
->max_blocks
= shmem_default_max_blocks();
3536 sbinfo
->max_inodes
= shmem_default_max_inodes();
3537 if (shmem_parse_options(data
, sbinfo
, false)) {
3542 sb
->s_flags
|= SB_NOUSER
;
3544 sb
->s_export_op
= &shmem_export_ops
;
3545 sb
->s_flags
|= SB_NOSEC
;
3547 sb
->s_flags
|= SB_NOUSER
;
3550 spin_lock_init(&sbinfo
->stat_lock
);
3551 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3553 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3554 spin_lock_init(&sbinfo
->shrinklist_lock
);
3555 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3557 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3558 sb
->s_blocksize
= PAGE_SIZE
;
3559 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3560 sb
->s_magic
= TMPFS_MAGIC
;
3561 sb
->s_op
= &shmem_ops
;
3562 sb
->s_time_gran
= 1;
3563 #ifdef CONFIG_TMPFS_XATTR
3564 sb
->s_xattr
= shmem_xattr_handlers
;
3566 #ifdef CONFIG_TMPFS_POSIX_ACL
3567 sb
->s_flags
|= SB_POSIXACL
;
3569 uuid_gen(&sb
->s_uuid
);
3571 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3574 inode
->i_uid
= sbinfo
->uid
;
3575 inode
->i_gid
= sbinfo
->gid
;
3576 sb
->s_root
= d_make_root(inode
);
3582 shmem_put_super(sb
);
3586 static struct kmem_cache
*shmem_inode_cachep
;
3588 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3590 struct shmem_inode_info
*info
;
3591 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3594 return &info
->vfs_inode
;
3597 static void shmem_destroy_callback(struct rcu_head
*head
)
3599 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3600 if (S_ISLNK(inode
->i_mode
))
3601 kfree(inode
->i_link
);
3602 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3605 static void shmem_destroy_inode(struct inode
*inode
)
3607 if (S_ISREG(inode
->i_mode
))
3608 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3609 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3612 static void shmem_init_inode(void *foo
)
3614 struct shmem_inode_info
*info
= foo
;
3615 inode_init_once(&info
->vfs_inode
);
3618 static void shmem_init_inodecache(void)
3620 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3621 sizeof(struct shmem_inode_info
),
3622 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3625 static void shmem_destroy_inodecache(void)
3627 kmem_cache_destroy(shmem_inode_cachep
);
3630 static const struct address_space_operations shmem_aops
= {
3631 .writepage
= shmem_writepage
,
3632 .set_page_dirty
= __set_page_dirty_no_writeback
,
3634 .write_begin
= shmem_write_begin
,
3635 .write_end
= shmem_write_end
,
3637 #ifdef CONFIG_MIGRATION
3638 .migratepage
= migrate_page
,
3640 .error_remove_page
= generic_error_remove_page
,
3643 static const struct file_operations shmem_file_operations
= {
3645 .get_unmapped_area
= shmem_get_unmapped_area
,
3647 .llseek
= shmem_file_llseek
,
3648 .read_iter
= shmem_file_read_iter
,
3649 .write_iter
= generic_file_write_iter
,
3650 .fsync
= noop_fsync
,
3651 .splice_read
= generic_file_splice_read
,
3652 .splice_write
= iter_file_splice_write
,
3653 .fallocate
= shmem_fallocate
,
3657 static const struct inode_operations shmem_inode_operations
= {
3658 .getattr
= shmem_getattr
,
3659 .setattr
= shmem_setattr
,
3660 #ifdef CONFIG_TMPFS_XATTR
3661 .listxattr
= shmem_listxattr
,
3662 .set_acl
= simple_set_acl
,
3666 static const struct inode_operations shmem_dir_inode_operations
= {
3668 .create
= shmem_create
,
3669 .lookup
= simple_lookup
,
3671 .unlink
= shmem_unlink
,
3672 .symlink
= shmem_symlink
,
3673 .mkdir
= shmem_mkdir
,
3674 .rmdir
= shmem_rmdir
,
3675 .mknod
= shmem_mknod
,
3676 .rename
= shmem_rename2
,
3677 .tmpfile
= shmem_tmpfile
,
3679 #ifdef CONFIG_TMPFS_XATTR
3680 .listxattr
= shmem_listxattr
,
3682 #ifdef CONFIG_TMPFS_POSIX_ACL
3683 .setattr
= shmem_setattr
,
3684 .set_acl
= simple_set_acl
,
3688 static const struct inode_operations shmem_special_inode_operations
= {
3689 #ifdef CONFIG_TMPFS_XATTR
3690 .listxattr
= shmem_listxattr
,
3692 #ifdef CONFIG_TMPFS_POSIX_ACL
3693 .setattr
= shmem_setattr
,
3694 .set_acl
= simple_set_acl
,
3698 static const struct super_operations shmem_ops
= {
3699 .alloc_inode
= shmem_alloc_inode
,
3700 .destroy_inode
= shmem_destroy_inode
,
3702 .statfs
= shmem_statfs
,
3703 .remount_fs
= shmem_remount_fs
,
3704 .show_options
= shmem_show_options
,
3706 .evict_inode
= shmem_evict_inode
,
3707 .drop_inode
= generic_delete_inode
,
3708 .put_super
= shmem_put_super
,
3709 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3710 .nr_cached_objects
= shmem_unused_huge_count
,
3711 .free_cached_objects
= shmem_unused_huge_scan
,
3715 static const struct vm_operations_struct shmem_vm_ops
= {
3716 .fault
= shmem_fault
,
3717 .map_pages
= filemap_map_pages
,
3719 .set_policy
= shmem_set_policy
,
3720 .get_policy
= shmem_get_policy
,
3724 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3725 int flags
, const char *dev_name
, void *data
)
3727 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3730 static struct file_system_type shmem_fs_type
= {
3731 .owner
= THIS_MODULE
,
3733 .mount
= shmem_mount
,
3734 .kill_sb
= kill_litter_super
,
3735 .fs_flags
= FS_USERNS_MOUNT
,
3738 int __init
shmem_init(void)
3742 /* If rootfs called this, don't re-init */
3743 if (shmem_inode_cachep
)
3746 shmem_init_inodecache();
3748 error
= register_filesystem(&shmem_fs_type
);
3750 pr_err("Could not register tmpfs\n");
3754 shm_mnt
= kern_mount(&shmem_fs_type
);
3755 if (IS_ERR(shm_mnt
)) {
3756 error
= PTR_ERR(shm_mnt
);
3757 pr_err("Could not kern_mount tmpfs\n");
3761 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3762 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
3763 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3765 shmem_huge
= 0; /* just in case it was patched */
3770 unregister_filesystem(&shmem_fs_type
);
3772 shmem_destroy_inodecache();
3773 shm_mnt
= ERR_PTR(error
);
3777 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3778 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3779 struct kobj_attribute
*attr
, char *buf
)
3783 SHMEM_HUGE_WITHIN_SIZE
,
3791 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3792 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3794 count
+= sprintf(buf
+ count
, fmt
,
3795 shmem_format_huge(values
[i
]));
3797 buf
[count
- 1] = '\n';
3801 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3802 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3807 if (count
+ 1 > sizeof(tmp
))
3809 memcpy(tmp
, buf
, count
);
3811 if (count
&& tmp
[count
- 1] == '\n')
3812 tmp
[count
- 1] = '\0';
3814 huge
= shmem_parse_huge(tmp
);
3815 if (huge
== -EINVAL
)
3817 if (!has_transparent_hugepage() &&
3818 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3822 if (shmem_huge
> SHMEM_HUGE_DENY
)
3823 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3827 struct kobj_attribute shmem_enabled_attr
=
3828 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3829 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3831 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3832 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3834 struct inode
*inode
= file_inode(vma
->vm_file
);
3835 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3839 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3841 if (shmem_huge
== SHMEM_HUGE_DENY
)
3843 switch (sbinfo
->huge
) {
3844 case SHMEM_HUGE_NEVER
:
3846 case SHMEM_HUGE_ALWAYS
:
3848 case SHMEM_HUGE_WITHIN_SIZE
:
3849 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3850 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3851 if (i_size
>= HPAGE_PMD_SIZE
&&
3852 i_size
>> PAGE_SHIFT
>= off
)
3855 case SHMEM_HUGE_ADVISE
:
3856 /* TODO: implement fadvise() hints */
3857 return (vma
->vm_flags
& VM_HUGEPAGE
);
3863 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3865 #else /* !CONFIG_SHMEM */
3868 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3870 * This is intended for small system where the benefits of the full
3871 * shmem code (swap-backed and resource-limited) are outweighed by
3872 * their complexity. On systems without swap this code should be
3873 * effectively equivalent, but much lighter weight.
3876 static struct file_system_type shmem_fs_type
= {
3878 .mount
= ramfs_mount
,
3879 .kill_sb
= kill_litter_super
,
3880 .fs_flags
= FS_USERNS_MOUNT
,
3883 int __init
shmem_init(void)
3885 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3887 shm_mnt
= kern_mount(&shmem_fs_type
);
3888 BUG_ON(IS_ERR(shm_mnt
));
3893 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3898 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3903 void shmem_unlock_mapping(struct address_space
*mapping
)
3908 unsigned long shmem_get_unmapped_area(struct file
*file
,
3909 unsigned long addr
, unsigned long len
,
3910 unsigned long pgoff
, unsigned long flags
)
3912 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
3916 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3918 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3920 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3922 #define shmem_vm_ops generic_file_vm_ops
3923 #define shmem_file_operations ramfs_file_operations
3924 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3925 #define shmem_acct_size(flags, size) 0
3926 #define shmem_unacct_size(flags, size) do {} while (0)
3928 #endif /* CONFIG_SHMEM */
3932 static struct file
*__shmem_file_setup(struct vfsmount
*mnt
, const char *name
, loff_t size
,
3933 unsigned long flags
, unsigned int i_flags
)
3935 struct inode
*inode
;
3939 return ERR_CAST(mnt
);
3941 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3942 return ERR_PTR(-EINVAL
);
3944 if (shmem_acct_size(flags
, size
))
3945 return ERR_PTR(-ENOMEM
);
3947 inode
= shmem_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0,
3949 if (unlikely(!inode
)) {
3950 shmem_unacct_size(flags
, size
);
3951 return ERR_PTR(-ENOSPC
);
3953 inode
->i_flags
|= i_flags
;
3954 inode
->i_size
= size
;
3955 clear_nlink(inode
); /* It is unlinked */
3956 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
3958 res
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
3959 &shmem_file_operations
);
3966 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3967 * kernel internal. There will be NO LSM permission checks against the
3968 * underlying inode. So users of this interface must do LSM checks at a
3969 * higher layer. The users are the big_key and shm implementations. LSM
3970 * checks are provided at the key or shm level rather than the inode.
3971 * @name: name for dentry (to be seen in /proc/<pid>/maps
3972 * @size: size to be set for the file
3973 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3975 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3977 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, S_PRIVATE
);
3981 * shmem_file_setup - get an unlinked file living in tmpfs
3982 * @name: name for dentry (to be seen in /proc/<pid>/maps
3983 * @size: size to be set for the file
3984 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3986 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3988 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, 0);
3990 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3993 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3994 * @mnt: the tmpfs mount where the file will be created
3995 * @name: name for dentry (to be seen in /proc/<pid>/maps
3996 * @size: size to be set for the file
3997 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3999 struct file
*shmem_file_setup_with_mnt(struct vfsmount
*mnt
, const char *name
,
4000 loff_t size
, unsigned long flags
)
4002 return __shmem_file_setup(mnt
, name
, size
, flags
, 0);
4004 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt
);
4007 * shmem_zero_setup - setup a shared anonymous mapping
4008 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4010 int shmem_zero_setup(struct vm_area_struct
*vma
)
4013 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4016 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4017 * between XFS directory reading and selinux: since this file is only
4018 * accessible to the user through its mapping, use S_PRIVATE flag to
4019 * bypass file security, in the same way as shmem_kernel_file_setup().
4021 file
= shmem_kernel_file_setup("dev/zero", size
, vma
->vm_flags
);
4023 return PTR_ERR(file
);
4027 vma
->vm_file
= file
;
4028 vma
->vm_ops
= &shmem_vm_ops
;
4030 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4031 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4032 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4033 khugepaged_enter(vma
, vma
->vm_flags
);
4040 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4041 * @mapping: the page's address_space
4042 * @index: the page index
4043 * @gfp: the page allocator flags to use if allocating
4045 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4046 * with any new page allocations done using the specified allocation flags.
4047 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4048 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4049 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4051 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4052 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4054 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4055 pgoff_t index
, gfp_t gfp
)
4058 struct inode
*inode
= mapping
->host
;
4062 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4063 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4064 gfp
, NULL
, NULL
, NULL
);
4066 page
= ERR_PTR(error
);
4072 * The tiny !SHMEM case uses ramfs without swap
4074 return read_cache_page_gfp(mapping
, index
, gfp
);
4077 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);