Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[linux/fpc-iii.git] / fs / buffer.c
blob5715dac7821fe1c49a1c1ecd8f6b12192f3f1d1c
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 enum rw_hint hint, struct writeback_control *wbc);
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
58 bh->b_end_io = handler;
59 bh->b_private = private;
61 EXPORT_SYMBOL(init_buffer);
63 inline void touch_buffer(struct buffer_head *bh)
65 trace_block_touch_buffer(bh);
66 mark_page_accessed(bh->b_page);
68 EXPORT_SYMBOL(touch_buffer);
70 void __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
74 EXPORT_SYMBOL(__lock_buffer);
76 void unlock_buffer(struct buffer_head *bh)
78 clear_bit_unlock(BH_Lock, &bh->b_state);
79 smp_mb__after_atomic();
80 wake_up_bit(&bh->b_state, BH_Lock);
82 EXPORT_SYMBOL(unlock_buffer);
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
89 void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
96 BUG_ON(!PageLocked(page));
98 if (!page_has_buffers(page))
99 return;
101 if (PageWriteback(page))
102 *writeback = true;
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
110 if (buffer_dirty(bh))
111 *dirty = true;
113 bh = bh->b_this_page;
114 } while (bh != head);
116 EXPORT_SYMBOL(buffer_check_dirty_writeback);
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
123 void __wait_on_buffer(struct buffer_head * bh)
125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
127 EXPORT_SYMBOL(__wait_on_buffer);
129 static void
130 __clear_page_buffers(struct page *page)
132 ClearPagePrivate(page);
133 set_page_private(page, 0);
134 put_page(page);
137 static void buffer_io_error(struct buffer_head *bh, char *msg)
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
158 /* This happens, due to failed read-ahead attempts. */
159 clear_buffer_uptodate(bh);
161 unlock_buffer(bh);
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
170 __end_buffer_read_notouch(bh, uptodate);
171 put_bh(bh);
173 EXPORT_SYMBOL(end_buffer_read_sync);
175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
180 buffer_io_error(bh, ", lost sync page write");
181 mark_buffer_write_io_error(bh);
182 clear_buffer_uptodate(bh);
184 unlock_buffer(bh);
185 put_bh(bh);
187 EXPORT_SYMBOL(end_buffer_write_sync);
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
200 static struct buffer_head *
201 __find_get_block_slow(struct block_device *bdev, sector_t block)
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
214 if (!page)
215 goto out;
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
219 goto out_unlock;
220 head = page_buffers(page);
221 bh = head;
222 do {
223 if (!buffer_mapped(bh))
224 all_mapped = 0;
225 else if (bh->b_blocknr == block) {
226 ret = bh;
227 get_bh(bh);
228 goto out_unlock;
230 bh = bh->b_this_page;
231 } while (bh != head);
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
238 if (all_mapped) {
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh->b_state, bh->b_size);
245 printk("device %pg blocksize: %d\n", bdev,
246 1 << bd_inode->i_blkbits);
248 out_unlock:
249 spin_unlock(&bd_mapping->private_lock);
250 put_page(page);
251 out:
252 return ret;
256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
258 static void free_more_memory(void)
260 struct zoneref *z;
261 int nid;
263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
264 yield();
266 for_each_online_node(nid) {
268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 gfp_zone(GFP_NOFS), NULL);
270 if (z->zone)
271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
272 GFP_NOFS, NULL);
277 * I/O completion handler for block_read_full_page() - pages
278 * which come unlocked at the end of I/O.
280 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
282 unsigned long flags;
283 struct buffer_head *first;
284 struct buffer_head *tmp;
285 struct page *page;
286 int page_uptodate = 1;
288 BUG_ON(!buffer_async_read(bh));
290 page = bh->b_page;
291 if (uptodate) {
292 set_buffer_uptodate(bh);
293 } else {
294 clear_buffer_uptodate(bh);
295 buffer_io_error(bh, ", async page read");
296 SetPageError(page);
300 * Be _very_ careful from here on. Bad things can happen if
301 * two buffer heads end IO at almost the same time and both
302 * decide that the page is now completely done.
304 first = page_buffers(page);
305 local_irq_save(flags);
306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
307 clear_buffer_async_read(bh);
308 unlock_buffer(bh);
309 tmp = bh;
310 do {
311 if (!buffer_uptodate(tmp))
312 page_uptodate = 0;
313 if (buffer_async_read(tmp)) {
314 BUG_ON(!buffer_locked(tmp));
315 goto still_busy;
317 tmp = tmp->b_this_page;
318 } while (tmp != bh);
319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 local_irq_restore(flags);
323 * If none of the buffers had errors and they are all
324 * uptodate then we can set the page uptodate.
326 if (page_uptodate && !PageError(page))
327 SetPageUptodate(page);
328 unlock_page(page);
329 return;
331 still_busy:
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
334 return;
338 * Completion handler for block_write_full_page() - pages which are unlocked
339 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 unsigned long flags;
344 struct buffer_head *first;
345 struct buffer_head *tmp;
346 struct page *page;
348 BUG_ON(!buffer_async_write(bh));
350 page = bh->b_page;
351 if (uptodate) {
352 set_buffer_uptodate(bh);
353 } else {
354 buffer_io_error(bh, ", lost async page write");
355 mark_buffer_write_io_error(bh);
356 clear_buffer_uptodate(bh);
357 SetPageError(page);
360 first = page_buffers(page);
361 local_irq_save(flags);
362 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
372 tmp = tmp->b_this_page;
374 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375 local_irq_restore(flags);
376 end_page_writeback(page);
377 return;
379 still_busy:
380 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381 local_irq_restore(flags);
382 return;
384 EXPORT_SYMBOL(end_buffer_async_write);
387 * If a page's buffers are under async readin (end_buffer_async_read
388 * completion) then there is a possibility that another thread of
389 * control could lock one of the buffers after it has completed
390 * but while some of the other buffers have not completed. This
391 * locked buffer would confuse end_buffer_async_read() into not unlocking
392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
393 * that this buffer is not under async I/O.
395 * The page comes unlocked when it has no locked buffer_async buffers
396 * left.
398 * PageLocked prevents anyone starting new async I/O reads any of
399 * the buffers.
401 * PageWriteback is used to prevent simultaneous writeout of the same
402 * page.
404 * PageLocked prevents anyone from starting writeback of a page which is
405 * under read I/O (PageWriteback is only ever set against a locked page).
407 static void mark_buffer_async_read(struct buffer_head *bh)
409 bh->b_end_io = end_buffer_async_read;
410 set_buffer_async_read(bh);
413 static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 bh_end_io_t *handler)
416 bh->b_end_io = handler;
417 set_buffer_async_write(bh);
420 void mark_buffer_async_write(struct buffer_head *bh)
422 mark_buffer_async_write_endio(bh, end_buffer_async_write);
424 EXPORT_SYMBOL(mark_buffer_async_write);
428 * fs/buffer.c contains helper functions for buffer-backed address space's
429 * fsync functions. A common requirement for buffer-based filesystems is
430 * that certain data from the backing blockdev needs to be written out for
431 * a successful fsync(). For example, ext2 indirect blocks need to be
432 * written back and waited upon before fsync() returns.
434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436 * management of a list of dependent buffers at ->i_mapping->private_list.
438 * Locking is a little subtle: try_to_free_buffers() will remove buffers
439 * from their controlling inode's queue when they are being freed. But
440 * try_to_free_buffers() will be operating against the *blockdev* mapping
441 * at the time, not against the S_ISREG file which depends on those buffers.
442 * So the locking for private_list is via the private_lock in the address_space
443 * which backs the buffers. Which is different from the address_space
444 * against which the buffers are listed. So for a particular address_space,
445 * mapping->private_lock does *not* protect mapping->private_list! In fact,
446 * mapping->private_list will always be protected by the backing blockdev's
447 * ->private_lock.
449 * Which introduces a requirement: all buffers on an address_space's
450 * ->private_list must be from the same address_space: the blockdev's.
452 * address_spaces which do not place buffers at ->private_list via these
453 * utility functions are free to use private_lock and private_list for
454 * whatever they want. The only requirement is that list_empty(private_list)
455 * be true at clear_inode() time.
457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
458 * filesystems should do that. invalidate_inode_buffers() should just go
459 * BUG_ON(!list_empty).
461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
462 * take an address_space, not an inode. And it should be called
463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464 * queued up.
466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467 * list if it is already on a list. Because if the buffer is on a list,
468 * it *must* already be on the right one. If not, the filesystem is being
469 * silly. This will save a ton of locking. But first we have to ensure
470 * that buffers are taken *off* the old inode's list when they are freed
471 * (presumably in truncate). That requires careful auditing of all
472 * filesystems (do it inside bforget()). It could also be done by bringing
473 * b_inode back.
477 * The buffer's backing address_space's private_lock must be held
479 static void __remove_assoc_queue(struct buffer_head *bh)
481 list_del_init(&bh->b_assoc_buffers);
482 WARN_ON(!bh->b_assoc_map);
483 bh->b_assoc_map = NULL;
486 int inode_has_buffers(struct inode *inode)
488 return !list_empty(&inode->i_data.private_list);
492 * osync is designed to support O_SYNC io. It waits synchronously for
493 * all already-submitted IO to complete, but does not queue any new
494 * writes to the disk.
496 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
497 * you dirty the buffers, and then use osync_inode_buffers to wait for
498 * completion. Any other dirty buffers which are not yet queued for
499 * write will not be flushed to disk by the osync.
501 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
503 struct buffer_head *bh;
504 struct list_head *p;
505 int err = 0;
507 spin_lock(lock);
508 repeat:
509 list_for_each_prev(p, list) {
510 bh = BH_ENTRY(p);
511 if (buffer_locked(bh)) {
512 get_bh(bh);
513 spin_unlock(lock);
514 wait_on_buffer(bh);
515 if (!buffer_uptodate(bh))
516 err = -EIO;
517 brelse(bh);
518 spin_lock(lock);
519 goto repeat;
522 spin_unlock(lock);
523 return err;
526 static void do_thaw_one(struct super_block *sb, void *unused)
528 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
529 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
532 static void do_thaw_all(struct work_struct *work)
534 iterate_supers(do_thaw_one, NULL);
535 kfree(work);
536 printk(KERN_WARNING "Emergency Thaw complete\n");
540 * emergency_thaw_all -- forcibly thaw every frozen filesystem
542 * Used for emergency unfreeze of all filesystems via SysRq
544 void emergency_thaw_all(void)
546 struct work_struct *work;
548 work = kmalloc(sizeof(*work), GFP_ATOMIC);
549 if (work) {
550 INIT_WORK(work, do_thaw_all);
551 schedule_work(work);
556 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
557 * @mapping: the mapping which wants those buffers written
559 * Starts I/O against the buffers at mapping->private_list, and waits upon
560 * that I/O.
562 * Basically, this is a convenience function for fsync().
563 * @mapping is a file or directory which needs those buffers to be written for
564 * a successful fsync().
566 int sync_mapping_buffers(struct address_space *mapping)
568 struct address_space *buffer_mapping = mapping->private_data;
570 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
571 return 0;
573 return fsync_buffers_list(&buffer_mapping->private_lock,
574 &mapping->private_list);
576 EXPORT_SYMBOL(sync_mapping_buffers);
579 * Called when we've recently written block `bblock', and it is known that
580 * `bblock' was for a buffer_boundary() buffer. This means that the block at
581 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
582 * dirty, schedule it for IO. So that indirects merge nicely with their data.
584 void write_boundary_block(struct block_device *bdev,
585 sector_t bblock, unsigned blocksize)
587 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
588 if (bh) {
589 if (buffer_dirty(bh))
590 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
591 put_bh(bh);
595 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
597 struct address_space *mapping = inode->i_mapping;
598 struct address_space *buffer_mapping = bh->b_page->mapping;
600 mark_buffer_dirty(bh);
601 if (!mapping->private_data) {
602 mapping->private_data = buffer_mapping;
603 } else {
604 BUG_ON(mapping->private_data != buffer_mapping);
606 if (!bh->b_assoc_map) {
607 spin_lock(&buffer_mapping->private_lock);
608 list_move_tail(&bh->b_assoc_buffers,
609 &mapping->private_list);
610 bh->b_assoc_map = mapping;
611 spin_unlock(&buffer_mapping->private_lock);
614 EXPORT_SYMBOL(mark_buffer_dirty_inode);
617 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
618 * dirty.
620 * If warn is true, then emit a warning if the page is not uptodate and has
621 * not been truncated.
623 * The caller must hold lock_page_memcg().
625 static void __set_page_dirty(struct page *page, struct address_space *mapping,
626 int warn)
628 unsigned long flags;
630 spin_lock_irqsave(&mapping->tree_lock, flags);
631 if (page->mapping) { /* Race with truncate? */
632 WARN_ON_ONCE(warn && !PageUptodate(page));
633 account_page_dirtied(page, mapping);
634 radix_tree_tag_set(&mapping->page_tree,
635 page_index(page), PAGECACHE_TAG_DIRTY);
637 spin_unlock_irqrestore(&mapping->tree_lock, flags);
641 * Add a page to the dirty page list.
643 * It is a sad fact of life that this function is called from several places
644 * deeply under spinlocking. It may not sleep.
646 * If the page has buffers, the uptodate buffers are set dirty, to preserve
647 * dirty-state coherency between the page and the buffers. It the page does
648 * not have buffers then when they are later attached they will all be set
649 * dirty.
651 * The buffers are dirtied before the page is dirtied. There's a small race
652 * window in which a writepage caller may see the page cleanness but not the
653 * buffer dirtiness. That's fine. If this code were to set the page dirty
654 * before the buffers, a concurrent writepage caller could clear the page dirty
655 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
656 * page on the dirty page list.
658 * We use private_lock to lock against try_to_free_buffers while using the
659 * page's buffer list. Also use this to protect against clean buffers being
660 * added to the page after it was set dirty.
662 * FIXME: may need to call ->reservepage here as well. That's rather up to the
663 * address_space though.
665 int __set_page_dirty_buffers(struct page *page)
667 int newly_dirty;
668 struct address_space *mapping = page_mapping(page);
670 if (unlikely(!mapping))
671 return !TestSetPageDirty(page);
673 spin_lock(&mapping->private_lock);
674 if (page_has_buffers(page)) {
675 struct buffer_head *head = page_buffers(page);
676 struct buffer_head *bh = head;
678 do {
679 set_buffer_dirty(bh);
680 bh = bh->b_this_page;
681 } while (bh != head);
684 * Lock out page->mem_cgroup migration to keep PageDirty
685 * synchronized with per-memcg dirty page counters.
687 lock_page_memcg(page);
688 newly_dirty = !TestSetPageDirty(page);
689 spin_unlock(&mapping->private_lock);
691 if (newly_dirty)
692 __set_page_dirty(page, mapping, 1);
694 unlock_page_memcg(page);
696 if (newly_dirty)
697 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
699 return newly_dirty;
701 EXPORT_SYMBOL(__set_page_dirty_buffers);
704 * Write out and wait upon a list of buffers.
706 * We have conflicting pressures: we want to make sure that all
707 * initially dirty buffers get waited on, but that any subsequently
708 * dirtied buffers don't. After all, we don't want fsync to last
709 * forever if somebody is actively writing to the file.
711 * Do this in two main stages: first we copy dirty buffers to a
712 * temporary inode list, queueing the writes as we go. Then we clean
713 * up, waiting for those writes to complete.
715 * During this second stage, any subsequent updates to the file may end
716 * up refiling the buffer on the original inode's dirty list again, so
717 * there is a chance we will end up with a buffer queued for write but
718 * not yet completed on that list. So, as a final cleanup we go through
719 * the osync code to catch these locked, dirty buffers without requeuing
720 * any newly dirty buffers for write.
722 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
724 struct buffer_head *bh;
725 struct list_head tmp;
726 struct address_space *mapping;
727 int err = 0, err2;
728 struct blk_plug plug;
730 INIT_LIST_HEAD(&tmp);
731 blk_start_plug(&plug);
733 spin_lock(lock);
734 while (!list_empty(list)) {
735 bh = BH_ENTRY(list->next);
736 mapping = bh->b_assoc_map;
737 __remove_assoc_queue(bh);
738 /* Avoid race with mark_buffer_dirty_inode() which does
739 * a lockless check and we rely on seeing the dirty bit */
740 smp_mb();
741 if (buffer_dirty(bh) || buffer_locked(bh)) {
742 list_add(&bh->b_assoc_buffers, &tmp);
743 bh->b_assoc_map = mapping;
744 if (buffer_dirty(bh)) {
745 get_bh(bh);
746 spin_unlock(lock);
748 * Ensure any pending I/O completes so that
749 * write_dirty_buffer() actually writes the
750 * current contents - it is a noop if I/O is
751 * still in flight on potentially older
752 * contents.
754 write_dirty_buffer(bh, REQ_SYNC);
757 * Kick off IO for the previous mapping. Note
758 * that we will not run the very last mapping,
759 * wait_on_buffer() will do that for us
760 * through sync_buffer().
762 brelse(bh);
763 spin_lock(lock);
768 spin_unlock(lock);
769 blk_finish_plug(&plug);
770 spin_lock(lock);
772 while (!list_empty(&tmp)) {
773 bh = BH_ENTRY(tmp.prev);
774 get_bh(bh);
775 mapping = bh->b_assoc_map;
776 __remove_assoc_queue(bh);
777 /* Avoid race with mark_buffer_dirty_inode() which does
778 * a lockless check and we rely on seeing the dirty bit */
779 smp_mb();
780 if (buffer_dirty(bh)) {
781 list_add(&bh->b_assoc_buffers,
782 &mapping->private_list);
783 bh->b_assoc_map = mapping;
785 spin_unlock(lock);
786 wait_on_buffer(bh);
787 if (!buffer_uptodate(bh))
788 err = -EIO;
789 brelse(bh);
790 spin_lock(lock);
793 spin_unlock(lock);
794 err2 = osync_buffers_list(lock, list);
795 if (err)
796 return err;
797 else
798 return err2;
802 * Invalidate any and all dirty buffers on a given inode. We are
803 * probably unmounting the fs, but that doesn't mean we have already
804 * done a sync(). Just drop the buffers from the inode list.
806 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
807 * assumes that all the buffers are against the blockdev. Not true
808 * for reiserfs.
810 void invalidate_inode_buffers(struct inode *inode)
812 if (inode_has_buffers(inode)) {
813 struct address_space *mapping = &inode->i_data;
814 struct list_head *list = &mapping->private_list;
815 struct address_space *buffer_mapping = mapping->private_data;
817 spin_lock(&buffer_mapping->private_lock);
818 while (!list_empty(list))
819 __remove_assoc_queue(BH_ENTRY(list->next));
820 spin_unlock(&buffer_mapping->private_lock);
823 EXPORT_SYMBOL(invalidate_inode_buffers);
826 * Remove any clean buffers from the inode's buffer list. This is called
827 * when we're trying to free the inode itself. Those buffers can pin it.
829 * Returns true if all buffers were removed.
831 int remove_inode_buffers(struct inode *inode)
833 int ret = 1;
835 if (inode_has_buffers(inode)) {
836 struct address_space *mapping = &inode->i_data;
837 struct list_head *list = &mapping->private_list;
838 struct address_space *buffer_mapping = mapping->private_data;
840 spin_lock(&buffer_mapping->private_lock);
841 while (!list_empty(list)) {
842 struct buffer_head *bh = BH_ENTRY(list->next);
843 if (buffer_dirty(bh)) {
844 ret = 0;
845 break;
847 __remove_assoc_queue(bh);
849 spin_unlock(&buffer_mapping->private_lock);
851 return ret;
855 * Create the appropriate buffers when given a page for data area and
856 * the size of each buffer.. Use the bh->b_this_page linked list to
857 * follow the buffers created. Return NULL if unable to create more
858 * buffers.
860 * The retry flag is used to differentiate async IO (paging, swapping)
861 * which may not fail from ordinary buffer allocations.
863 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
864 int retry)
866 struct buffer_head *bh, *head;
867 long offset;
869 try_again:
870 head = NULL;
871 offset = PAGE_SIZE;
872 while ((offset -= size) >= 0) {
873 bh = alloc_buffer_head(GFP_NOFS);
874 if (!bh)
875 goto no_grow;
877 bh->b_this_page = head;
878 bh->b_blocknr = -1;
879 head = bh;
881 bh->b_size = size;
883 /* Link the buffer to its page */
884 set_bh_page(bh, page, offset);
886 return head;
888 * In case anything failed, we just free everything we got.
890 no_grow:
891 if (head) {
892 do {
893 bh = head;
894 head = head->b_this_page;
895 free_buffer_head(bh);
896 } while (head);
900 * Return failure for non-async IO requests. Async IO requests
901 * are not allowed to fail, so we have to wait until buffer heads
902 * become available. But we don't want tasks sleeping with
903 * partially complete buffers, so all were released above.
905 if (!retry)
906 return NULL;
908 /* We're _really_ low on memory. Now we just
909 * wait for old buffer heads to become free due to
910 * finishing IO. Since this is an async request and
911 * the reserve list is empty, we're sure there are
912 * async buffer heads in use.
914 free_more_memory();
915 goto try_again;
917 EXPORT_SYMBOL_GPL(alloc_page_buffers);
919 static inline void
920 link_dev_buffers(struct page *page, struct buffer_head *head)
922 struct buffer_head *bh, *tail;
924 bh = head;
925 do {
926 tail = bh;
927 bh = bh->b_this_page;
928 } while (bh);
929 tail->b_this_page = head;
930 attach_page_buffers(page, head);
933 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
935 sector_t retval = ~((sector_t)0);
936 loff_t sz = i_size_read(bdev->bd_inode);
938 if (sz) {
939 unsigned int sizebits = blksize_bits(size);
940 retval = (sz >> sizebits);
942 return retval;
946 * Initialise the state of a blockdev page's buffers.
948 static sector_t
949 init_page_buffers(struct page *page, struct block_device *bdev,
950 sector_t block, int size)
952 struct buffer_head *head = page_buffers(page);
953 struct buffer_head *bh = head;
954 int uptodate = PageUptodate(page);
955 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
957 do {
958 if (!buffer_mapped(bh)) {
959 init_buffer(bh, NULL, NULL);
960 bh->b_bdev = bdev;
961 bh->b_blocknr = block;
962 if (uptodate)
963 set_buffer_uptodate(bh);
964 if (block < end_block)
965 set_buffer_mapped(bh);
967 block++;
968 bh = bh->b_this_page;
969 } while (bh != head);
972 * Caller needs to validate requested block against end of device.
974 return end_block;
978 * Create the page-cache page that contains the requested block.
980 * This is used purely for blockdev mappings.
982 static int
983 grow_dev_page(struct block_device *bdev, sector_t block,
984 pgoff_t index, int size, int sizebits, gfp_t gfp)
986 struct inode *inode = bdev->bd_inode;
987 struct page *page;
988 struct buffer_head *bh;
989 sector_t end_block;
990 int ret = 0; /* Will call free_more_memory() */
991 gfp_t gfp_mask;
993 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
996 * XXX: __getblk_slow() can not really deal with failure and
997 * will endlessly loop on improvised global reclaim. Prefer
998 * looping in the allocator rather than here, at least that
999 * code knows what it's doing.
1001 gfp_mask |= __GFP_NOFAIL;
1003 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1004 if (!page)
1005 return ret;
1007 BUG_ON(!PageLocked(page));
1009 if (page_has_buffers(page)) {
1010 bh = page_buffers(page);
1011 if (bh->b_size == size) {
1012 end_block = init_page_buffers(page, bdev,
1013 (sector_t)index << sizebits,
1014 size);
1015 goto done;
1017 if (!try_to_free_buffers(page))
1018 goto failed;
1022 * Allocate some buffers for this page
1024 bh = alloc_page_buffers(page, size, 0);
1025 if (!bh)
1026 goto failed;
1029 * Link the page to the buffers and initialise them. Take the
1030 * lock to be atomic wrt __find_get_block(), which does not
1031 * run under the page lock.
1033 spin_lock(&inode->i_mapping->private_lock);
1034 link_dev_buffers(page, bh);
1035 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1036 size);
1037 spin_unlock(&inode->i_mapping->private_lock);
1038 done:
1039 ret = (block < end_block) ? 1 : -ENXIO;
1040 failed:
1041 unlock_page(page);
1042 put_page(page);
1043 return ret;
1047 * Create buffers for the specified block device block's page. If
1048 * that page was dirty, the buffers are set dirty also.
1050 static int
1051 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1053 pgoff_t index;
1054 int sizebits;
1056 sizebits = -1;
1057 do {
1058 sizebits++;
1059 } while ((size << sizebits) < PAGE_SIZE);
1061 index = block >> sizebits;
1064 * Check for a block which wants to lie outside our maximum possible
1065 * pagecache index. (this comparison is done using sector_t types).
1067 if (unlikely(index != block >> sizebits)) {
1068 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1069 "device %pg\n",
1070 __func__, (unsigned long long)block,
1071 bdev);
1072 return -EIO;
1075 /* Create a page with the proper size buffers.. */
1076 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1079 static struct buffer_head *
1080 __getblk_slow(struct block_device *bdev, sector_t block,
1081 unsigned size, gfp_t gfp)
1083 /* Size must be multiple of hard sectorsize */
1084 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1085 (size < 512 || size > PAGE_SIZE))) {
1086 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1087 size);
1088 printk(KERN_ERR "logical block size: %d\n",
1089 bdev_logical_block_size(bdev));
1091 dump_stack();
1092 return NULL;
1095 for (;;) {
1096 struct buffer_head *bh;
1097 int ret;
1099 bh = __find_get_block(bdev, block, size);
1100 if (bh)
1101 return bh;
1103 ret = grow_buffers(bdev, block, size, gfp);
1104 if (ret < 0)
1105 return NULL;
1106 if (ret == 0)
1107 free_more_memory();
1112 * The relationship between dirty buffers and dirty pages:
1114 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1115 * the page is tagged dirty in its radix tree.
1117 * At all times, the dirtiness of the buffers represents the dirtiness of
1118 * subsections of the page. If the page has buffers, the page dirty bit is
1119 * merely a hint about the true dirty state.
1121 * When a page is set dirty in its entirety, all its buffers are marked dirty
1122 * (if the page has buffers).
1124 * When a buffer is marked dirty, its page is dirtied, but the page's other
1125 * buffers are not.
1127 * Also. When blockdev buffers are explicitly read with bread(), they
1128 * individually become uptodate. But their backing page remains not
1129 * uptodate - even if all of its buffers are uptodate. A subsequent
1130 * block_read_full_page() against that page will discover all the uptodate
1131 * buffers, will set the page uptodate and will perform no I/O.
1135 * mark_buffer_dirty - mark a buffer_head as needing writeout
1136 * @bh: the buffer_head to mark dirty
1138 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1139 * backing page dirty, then tag the page as dirty in its address_space's radix
1140 * tree and then attach the address_space's inode to its superblock's dirty
1141 * inode list.
1143 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1144 * mapping->tree_lock and mapping->host->i_lock.
1146 void mark_buffer_dirty(struct buffer_head *bh)
1148 WARN_ON_ONCE(!buffer_uptodate(bh));
1150 trace_block_dirty_buffer(bh);
1153 * Very *carefully* optimize the it-is-already-dirty case.
1155 * Don't let the final "is it dirty" escape to before we
1156 * perhaps modified the buffer.
1158 if (buffer_dirty(bh)) {
1159 smp_mb();
1160 if (buffer_dirty(bh))
1161 return;
1164 if (!test_set_buffer_dirty(bh)) {
1165 struct page *page = bh->b_page;
1166 struct address_space *mapping = NULL;
1168 lock_page_memcg(page);
1169 if (!TestSetPageDirty(page)) {
1170 mapping = page_mapping(page);
1171 if (mapping)
1172 __set_page_dirty(page, mapping, 0);
1174 unlock_page_memcg(page);
1175 if (mapping)
1176 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1179 EXPORT_SYMBOL(mark_buffer_dirty);
1181 void mark_buffer_write_io_error(struct buffer_head *bh)
1183 set_buffer_write_io_error(bh);
1184 /* FIXME: do we need to set this in both places? */
1185 if (bh->b_page && bh->b_page->mapping)
1186 mapping_set_error(bh->b_page->mapping, -EIO);
1187 if (bh->b_assoc_map)
1188 mapping_set_error(bh->b_assoc_map, -EIO);
1190 EXPORT_SYMBOL(mark_buffer_write_io_error);
1193 * Decrement a buffer_head's reference count. If all buffers against a page
1194 * have zero reference count, are clean and unlocked, and if the page is clean
1195 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1196 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1197 * a page but it ends up not being freed, and buffers may later be reattached).
1199 void __brelse(struct buffer_head * buf)
1201 if (atomic_read(&buf->b_count)) {
1202 put_bh(buf);
1203 return;
1205 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1207 EXPORT_SYMBOL(__brelse);
1210 * bforget() is like brelse(), except it discards any
1211 * potentially dirty data.
1213 void __bforget(struct buffer_head *bh)
1215 clear_buffer_dirty(bh);
1216 if (bh->b_assoc_map) {
1217 struct address_space *buffer_mapping = bh->b_page->mapping;
1219 spin_lock(&buffer_mapping->private_lock);
1220 list_del_init(&bh->b_assoc_buffers);
1221 bh->b_assoc_map = NULL;
1222 spin_unlock(&buffer_mapping->private_lock);
1224 __brelse(bh);
1226 EXPORT_SYMBOL(__bforget);
1228 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1230 lock_buffer(bh);
1231 if (buffer_uptodate(bh)) {
1232 unlock_buffer(bh);
1233 return bh;
1234 } else {
1235 get_bh(bh);
1236 bh->b_end_io = end_buffer_read_sync;
1237 submit_bh(REQ_OP_READ, 0, bh);
1238 wait_on_buffer(bh);
1239 if (buffer_uptodate(bh))
1240 return bh;
1242 brelse(bh);
1243 return NULL;
1247 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1248 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1249 * refcount elevated by one when they're in an LRU. A buffer can only appear
1250 * once in a particular CPU's LRU. A single buffer can be present in multiple
1251 * CPU's LRUs at the same time.
1253 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1254 * sb_find_get_block().
1256 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1257 * a local interrupt disable for that.
1260 #define BH_LRU_SIZE 16
1262 struct bh_lru {
1263 struct buffer_head *bhs[BH_LRU_SIZE];
1266 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1268 #ifdef CONFIG_SMP
1269 #define bh_lru_lock() local_irq_disable()
1270 #define bh_lru_unlock() local_irq_enable()
1271 #else
1272 #define bh_lru_lock() preempt_disable()
1273 #define bh_lru_unlock() preempt_enable()
1274 #endif
1276 static inline void check_irqs_on(void)
1278 #ifdef irqs_disabled
1279 BUG_ON(irqs_disabled());
1280 #endif
1284 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1285 * inserted at the front, and the buffer_head at the back if any is evicted.
1286 * Or, if already in the LRU it is moved to the front.
1288 static void bh_lru_install(struct buffer_head *bh)
1290 struct buffer_head *evictee = bh;
1291 struct bh_lru *b;
1292 int i;
1294 check_irqs_on();
1295 bh_lru_lock();
1297 b = this_cpu_ptr(&bh_lrus);
1298 for (i = 0; i < BH_LRU_SIZE; i++) {
1299 swap(evictee, b->bhs[i]);
1300 if (evictee == bh) {
1301 bh_lru_unlock();
1302 return;
1306 get_bh(bh);
1307 bh_lru_unlock();
1308 brelse(evictee);
1312 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1314 static struct buffer_head *
1315 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1317 struct buffer_head *ret = NULL;
1318 unsigned int i;
1320 check_irqs_on();
1321 bh_lru_lock();
1322 for (i = 0; i < BH_LRU_SIZE; i++) {
1323 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1325 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1326 bh->b_size == size) {
1327 if (i) {
1328 while (i) {
1329 __this_cpu_write(bh_lrus.bhs[i],
1330 __this_cpu_read(bh_lrus.bhs[i - 1]));
1331 i--;
1333 __this_cpu_write(bh_lrus.bhs[0], bh);
1335 get_bh(bh);
1336 ret = bh;
1337 break;
1340 bh_lru_unlock();
1341 return ret;
1345 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1346 * it in the LRU and mark it as accessed. If it is not present then return
1347 * NULL
1349 struct buffer_head *
1350 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1352 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1354 if (bh == NULL) {
1355 /* __find_get_block_slow will mark the page accessed */
1356 bh = __find_get_block_slow(bdev, block);
1357 if (bh)
1358 bh_lru_install(bh);
1359 } else
1360 touch_buffer(bh);
1362 return bh;
1364 EXPORT_SYMBOL(__find_get_block);
1367 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1368 * which corresponds to the passed block_device, block and size. The
1369 * returned buffer has its reference count incremented.
1371 * __getblk_gfp() will lock up the machine if grow_dev_page's
1372 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1374 struct buffer_head *
1375 __getblk_gfp(struct block_device *bdev, sector_t block,
1376 unsigned size, gfp_t gfp)
1378 struct buffer_head *bh = __find_get_block(bdev, block, size);
1380 might_sleep();
1381 if (bh == NULL)
1382 bh = __getblk_slow(bdev, block, size, gfp);
1383 return bh;
1385 EXPORT_SYMBOL(__getblk_gfp);
1388 * Do async read-ahead on a buffer..
1390 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392 struct buffer_head *bh = __getblk(bdev, block, size);
1393 if (likely(bh)) {
1394 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1395 brelse(bh);
1398 EXPORT_SYMBOL(__breadahead);
1401 * __bread_gfp() - reads a specified block and returns the bh
1402 * @bdev: the block_device to read from
1403 * @block: number of block
1404 * @size: size (in bytes) to read
1405 * @gfp: page allocation flag
1407 * Reads a specified block, and returns buffer head that contains it.
1408 * The page cache can be allocated from non-movable area
1409 * not to prevent page migration if you set gfp to zero.
1410 * It returns NULL if the block was unreadable.
1412 struct buffer_head *
1413 __bread_gfp(struct block_device *bdev, sector_t block,
1414 unsigned size, gfp_t gfp)
1416 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1418 if (likely(bh) && !buffer_uptodate(bh))
1419 bh = __bread_slow(bh);
1420 return bh;
1422 EXPORT_SYMBOL(__bread_gfp);
1425 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1426 * This doesn't race because it runs in each cpu either in irq
1427 * or with preempt disabled.
1429 static void invalidate_bh_lru(void *arg)
1431 struct bh_lru *b = &get_cpu_var(bh_lrus);
1432 int i;
1434 for (i = 0; i < BH_LRU_SIZE; i++) {
1435 brelse(b->bhs[i]);
1436 b->bhs[i] = NULL;
1438 put_cpu_var(bh_lrus);
1441 static bool has_bh_in_lru(int cpu, void *dummy)
1443 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1444 int i;
1446 for (i = 0; i < BH_LRU_SIZE; i++) {
1447 if (b->bhs[i])
1448 return 1;
1451 return 0;
1454 void invalidate_bh_lrus(void)
1456 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1458 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1460 void set_bh_page(struct buffer_head *bh,
1461 struct page *page, unsigned long offset)
1463 bh->b_page = page;
1464 BUG_ON(offset >= PAGE_SIZE);
1465 if (PageHighMem(page))
1467 * This catches illegal uses and preserves the offset:
1469 bh->b_data = (char *)(0 + offset);
1470 else
1471 bh->b_data = page_address(page) + offset;
1473 EXPORT_SYMBOL(set_bh_page);
1476 * Called when truncating a buffer on a page completely.
1479 /* Bits that are cleared during an invalidate */
1480 #define BUFFER_FLAGS_DISCARD \
1481 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1482 1 << BH_Delay | 1 << BH_Unwritten)
1484 static void discard_buffer(struct buffer_head * bh)
1486 unsigned long b_state, b_state_old;
1488 lock_buffer(bh);
1489 clear_buffer_dirty(bh);
1490 bh->b_bdev = NULL;
1491 b_state = bh->b_state;
1492 for (;;) {
1493 b_state_old = cmpxchg(&bh->b_state, b_state,
1494 (b_state & ~BUFFER_FLAGS_DISCARD));
1495 if (b_state_old == b_state)
1496 break;
1497 b_state = b_state_old;
1499 unlock_buffer(bh);
1503 * block_invalidatepage - invalidate part or all of a buffer-backed page
1505 * @page: the page which is affected
1506 * @offset: start of the range to invalidate
1507 * @length: length of the range to invalidate
1509 * block_invalidatepage() is called when all or part of the page has become
1510 * invalidated by a truncate operation.
1512 * block_invalidatepage() does not have to release all buffers, but it must
1513 * ensure that no dirty buffer is left outside @offset and that no I/O
1514 * is underway against any of the blocks which are outside the truncation
1515 * point. Because the caller is about to free (and possibly reuse) those
1516 * blocks on-disk.
1518 void block_invalidatepage(struct page *page, unsigned int offset,
1519 unsigned int length)
1521 struct buffer_head *head, *bh, *next;
1522 unsigned int curr_off = 0;
1523 unsigned int stop = length + offset;
1525 BUG_ON(!PageLocked(page));
1526 if (!page_has_buffers(page))
1527 goto out;
1530 * Check for overflow
1532 BUG_ON(stop > PAGE_SIZE || stop < length);
1534 head = page_buffers(page);
1535 bh = head;
1536 do {
1537 unsigned int next_off = curr_off + bh->b_size;
1538 next = bh->b_this_page;
1541 * Are we still fully in range ?
1543 if (next_off > stop)
1544 goto out;
1547 * is this block fully invalidated?
1549 if (offset <= curr_off)
1550 discard_buffer(bh);
1551 curr_off = next_off;
1552 bh = next;
1553 } while (bh != head);
1556 * We release buffers only if the entire page is being invalidated.
1557 * The get_block cached value has been unconditionally invalidated,
1558 * so real IO is not possible anymore.
1560 if (offset == 0)
1561 try_to_release_page(page, 0);
1562 out:
1563 return;
1565 EXPORT_SYMBOL(block_invalidatepage);
1569 * We attach and possibly dirty the buffers atomically wrt
1570 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1571 * is already excluded via the page lock.
1573 void create_empty_buffers(struct page *page,
1574 unsigned long blocksize, unsigned long b_state)
1576 struct buffer_head *bh, *head, *tail;
1578 head = alloc_page_buffers(page, blocksize, 1);
1579 bh = head;
1580 do {
1581 bh->b_state |= b_state;
1582 tail = bh;
1583 bh = bh->b_this_page;
1584 } while (bh);
1585 tail->b_this_page = head;
1587 spin_lock(&page->mapping->private_lock);
1588 if (PageUptodate(page) || PageDirty(page)) {
1589 bh = head;
1590 do {
1591 if (PageDirty(page))
1592 set_buffer_dirty(bh);
1593 if (PageUptodate(page))
1594 set_buffer_uptodate(bh);
1595 bh = bh->b_this_page;
1596 } while (bh != head);
1598 attach_page_buffers(page, head);
1599 spin_unlock(&page->mapping->private_lock);
1601 EXPORT_SYMBOL(create_empty_buffers);
1604 * clean_bdev_aliases: clean a range of buffers in block device
1605 * @bdev: Block device to clean buffers in
1606 * @block: Start of a range of blocks to clean
1607 * @len: Number of blocks to clean
1609 * We are taking a range of blocks for data and we don't want writeback of any
1610 * buffer-cache aliases starting from return from this function and until the
1611 * moment when something will explicitly mark the buffer dirty (hopefully that
1612 * will not happen until we will free that block ;-) We don't even need to mark
1613 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1614 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1615 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1616 * would confuse anyone who might pick it with bread() afterwards...
1618 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1619 * writeout I/O going on against recently-freed buffers. We don't wait on that
1620 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1621 * need to. That happens here.
1623 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1625 struct inode *bd_inode = bdev->bd_inode;
1626 struct address_space *bd_mapping = bd_inode->i_mapping;
1627 struct pagevec pvec;
1628 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1629 pgoff_t end;
1630 int i;
1631 struct buffer_head *bh;
1632 struct buffer_head *head;
1634 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1635 pagevec_init(&pvec, 0);
1636 while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1637 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1638 for (i = 0; i < pagevec_count(&pvec); i++) {
1639 struct page *page = pvec.pages[i];
1641 index = page->index;
1642 if (index > end)
1643 break;
1644 if (!page_has_buffers(page))
1645 continue;
1647 * We use page lock instead of bd_mapping->private_lock
1648 * to pin buffers here since we can afford to sleep and
1649 * it scales better than a global spinlock lock.
1651 lock_page(page);
1652 /* Recheck when the page is locked which pins bhs */
1653 if (!page_has_buffers(page))
1654 goto unlock_page;
1655 head = page_buffers(page);
1656 bh = head;
1657 do {
1658 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1659 goto next;
1660 if (bh->b_blocknr >= block + len)
1661 break;
1662 clear_buffer_dirty(bh);
1663 wait_on_buffer(bh);
1664 clear_buffer_req(bh);
1665 next:
1666 bh = bh->b_this_page;
1667 } while (bh != head);
1668 unlock_page:
1669 unlock_page(page);
1671 pagevec_release(&pvec);
1672 cond_resched();
1673 index++;
1676 EXPORT_SYMBOL(clean_bdev_aliases);
1679 * Size is a power-of-two in the range 512..PAGE_SIZE,
1680 * and the case we care about most is PAGE_SIZE.
1682 * So this *could* possibly be written with those
1683 * constraints in mind (relevant mostly if some
1684 * architecture has a slow bit-scan instruction)
1686 static inline int block_size_bits(unsigned int blocksize)
1688 return ilog2(blocksize);
1691 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1693 BUG_ON(!PageLocked(page));
1695 if (!page_has_buffers(page))
1696 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1697 return page_buffers(page);
1701 * NOTE! All mapped/uptodate combinations are valid:
1703 * Mapped Uptodate Meaning
1705 * No No "unknown" - must do get_block()
1706 * No Yes "hole" - zero-filled
1707 * Yes No "allocated" - allocated on disk, not read in
1708 * Yes Yes "valid" - allocated and up-to-date in memory.
1710 * "Dirty" is valid only with the last case (mapped+uptodate).
1714 * While block_write_full_page is writing back the dirty buffers under
1715 * the page lock, whoever dirtied the buffers may decide to clean them
1716 * again at any time. We handle that by only looking at the buffer
1717 * state inside lock_buffer().
1719 * If block_write_full_page() is called for regular writeback
1720 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1721 * locked buffer. This only can happen if someone has written the buffer
1722 * directly, with submit_bh(). At the address_space level PageWriteback
1723 * prevents this contention from occurring.
1725 * If block_write_full_page() is called with wbc->sync_mode ==
1726 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1727 * causes the writes to be flagged as synchronous writes.
1729 int __block_write_full_page(struct inode *inode, struct page *page,
1730 get_block_t *get_block, struct writeback_control *wbc,
1731 bh_end_io_t *handler)
1733 int err;
1734 sector_t block;
1735 sector_t last_block;
1736 struct buffer_head *bh, *head;
1737 unsigned int blocksize, bbits;
1738 int nr_underway = 0;
1739 int write_flags = wbc_to_write_flags(wbc);
1741 head = create_page_buffers(page, inode,
1742 (1 << BH_Dirty)|(1 << BH_Uptodate));
1745 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1746 * here, and the (potentially unmapped) buffers may become dirty at
1747 * any time. If a buffer becomes dirty here after we've inspected it
1748 * then we just miss that fact, and the page stays dirty.
1750 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1751 * handle that here by just cleaning them.
1754 bh = head;
1755 blocksize = bh->b_size;
1756 bbits = block_size_bits(blocksize);
1758 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1759 last_block = (i_size_read(inode) - 1) >> bbits;
1762 * Get all the dirty buffers mapped to disk addresses and
1763 * handle any aliases from the underlying blockdev's mapping.
1765 do {
1766 if (block > last_block) {
1768 * mapped buffers outside i_size will occur, because
1769 * this page can be outside i_size when there is a
1770 * truncate in progress.
1773 * The buffer was zeroed by block_write_full_page()
1775 clear_buffer_dirty(bh);
1776 set_buffer_uptodate(bh);
1777 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1778 buffer_dirty(bh)) {
1779 WARN_ON(bh->b_size != blocksize);
1780 err = get_block(inode, block, bh, 1);
1781 if (err)
1782 goto recover;
1783 clear_buffer_delay(bh);
1784 if (buffer_new(bh)) {
1785 /* blockdev mappings never come here */
1786 clear_buffer_new(bh);
1787 clean_bdev_bh_alias(bh);
1790 bh = bh->b_this_page;
1791 block++;
1792 } while (bh != head);
1794 do {
1795 if (!buffer_mapped(bh))
1796 continue;
1798 * If it's a fully non-blocking write attempt and we cannot
1799 * lock the buffer then redirty the page. Note that this can
1800 * potentially cause a busy-wait loop from writeback threads
1801 * and kswapd activity, but those code paths have their own
1802 * higher-level throttling.
1804 if (wbc->sync_mode != WB_SYNC_NONE) {
1805 lock_buffer(bh);
1806 } else if (!trylock_buffer(bh)) {
1807 redirty_page_for_writepage(wbc, page);
1808 continue;
1810 if (test_clear_buffer_dirty(bh)) {
1811 mark_buffer_async_write_endio(bh, handler);
1812 } else {
1813 unlock_buffer(bh);
1815 } while ((bh = bh->b_this_page) != head);
1818 * The page and its buffers are protected by PageWriteback(), so we can
1819 * drop the bh refcounts early.
1821 BUG_ON(PageWriteback(page));
1822 set_page_writeback(page);
1824 do {
1825 struct buffer_head *next = bh->b_this_page;
1826 if (buffer_async_write(bh)) {
1827 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1828 inode->i_write_hint, wbc);
1829 nr_underway++;
1831 bh = next;
1832 } while (bh != head);
1833 unlock_page(page);
1835 err = 0;
1836 done:
1837 if (nr_underway == 0) {
1839 * The page was marked dirty, but the buffers were
1840 * clean. Someone wrote them back by hand with
1841 * ll_rw_block/submit_bh. A rare case.
1843 end_page_writeback(page);
1846 * The page and buffer_heads can be released at any time from
1847 * here on.
1850 return err;
1852 recover:
1854 * ENOSPC, or some other error. We may already have added some
1855 * blocks to the file, so we need to write these out to avoid
1856 * exposing stale data.
1857 * The page is currently locked and not marked for writeback
1859 bh = head;
1860 /* Recovery: lock and submit the mapped buffers */
1861 do {
1862 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1863 !buffer_delay(bh)) {
1864 lock_buffer(bh);
1865 mark_buffer_async_write_endio(bh, handler);
1866 } else {
1868 * The buffer may have been set dirty during
1869 * attachment to a dirty page.
1871 clear_buffer_dirty(bh);
1873 } while ((bh = bh->b_this_page) != head);
1874 SetPageError(page);
1875 BUG_ON(PageWriteback(page));
1876 mapping_set_error(page->mapping, err);
1877 set_page_writeback(page);
1878 do {
1879 struct buffer_head *next = bh->b_this_page;
1880 if (buffer_async_write(bh)) {
1881 clear_buffer_dirty(bh);
1882 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1883 inode->i_write_hint, wbc);
1884 nr_underway++;
1886 bh = next;
1887 } while (bh != head);
1888 unlock_page(page);
1889 goto done;
1891 EXPORT_SYMBOL(__block_write_full_page);
1894 * If a page has any new buffers, zero them out here, and mark them uptodate
1895 * and dirty so they'll be written out (in order to prevent uninitialised
1896 * block data from leaking). And clear the new bit.
1898 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1900 unsigned int block_start, block_end;
1901 struct buffer_head *head, *bh;
1903 BUG_ON(!PageLocked(page));
1904 if (!page_has_buffers(page))
1905 return;
1907 bh = head = page_buffers(page);
1908 block_start = 0;
1909 do {
1910 block_end = block_start + bh->b_size;
1912 if (buffer_new(bh)) {
1913 if (block_end > from && block_start < to) {
1914 if (!PageUptodate(page)) {
1915 unsigned start, size;
1917 start = max(from, block_start);
1918 size = min(to, block_end) - start;
1920 zero_user(page, start, size);
1921 set_buffer_uptodate(bh);
1924 clear_buffer_new(bh);
1925 mark_buffer_dirty(bh);
1929 block_start = block_end;
1930 bh = bh->b_this_page;
1931 } while (bh != head);
1933 EXPORT_SYMBOL(page_zero_new_buffers);
1935 static void
1936 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1937 struct iomap *iomap)
1939 loff_t offset = block << inode->i_blkbits;
1941 bh->b_bdev = iomap->bdev;
1944 * Block points to offset in file we need to map, iomap contains
1945 * the offset at which the map starts. If the map ends before the
1946 * current block, then do not map the buffer and let the caller
1947 * handle it.
1949 BUG_ON(offset >= iomap->offset + iomap->length);
1951 switch (iomap->type) {
1952 case IOMAP_HOLE:
1954 * If the buffer is not up to date or beyond the current EOF,
1955 * we need to mark it as new to ensure sub-block zeroing is
1956 * executed if necessary.
1958 if (!buffer_uptodate(bh) ||
1959 (offset >= i_size_read(inode)))
1960 set_buffer_new(bh);
1961 break;
1962 case IOMAP_DELALLOC:
1963 if (!buffer_uptodate(bh) ||
1964 (offset >= i_size_read(inode)))
1965 set_buffer_new(bh);
1966 set_buffer_uptodate(bh);
1967 set_buffer_mapped(bh);
1968 set_buffer_delay(bh);
1969 break;
1970 case IOMAP_UNWRITTEN:
1972 * For unwritten regions, we always need to ensure that
1973 * sub-block writes cause the regions in the block we are not
1974 * writing to are zeroed. Set the buffer as new to ensure this.
1976 set_buffer_new(bh);
1977 set_buffer_unwritten(bh);
1978 /* FALLTHRU */
1979 case IOMAP_MAPPED:
1980 if (offset >= i_size_read(inode))
1981 set_buffer_new(bh);
1982 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1983 ((offset - iomap->offset) >> inode->i_blkbits);
1984 set_buffer_mapped(bh);
1985 break;
1989 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1990 get_block_t *get_block, struct iomap *iomap)
1992 unsigned from = pos & (PAGE_SIZE - 1);
1993 unsigned to = from + len;
1994 struct inode *inode = page->mapping->host;
1995 unsigned block_start, block_end;
1996 sector_t block;
1997 int err = 0;
1998 unsigned blocksize, bbits;
1999 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2001 BUG_ON(!PageLocked(page));
2002 BUG_ON(from > PAGE_SIZE);
2003 BUG_ON(to > PAGE_SIZE);
2004 BUG_ON(from > to);
2006 head = create_page_buffers(page, inode, 0);
2007 blocksize = head->b_size;
2008 bbits = block_size_bits(blocksize);
2010 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2012 for(bh = head, block_start = 0; bh != head || !block_start;
2013 block++, block_start=block_end, bh = bh->b_this_page) {
2014 block_end = block_start + blocksize;
2015 if (block_end <= from || block_start >= to) {
2016 if (PageUptodate(page)) {
2017 if (!buffer_uptodate(bh))
2018 set_buffer_uptodate(bh);
2020 continue;
2022 if (buffer_new(bh))
2023 clear_buffer_new(bh);
2024 if (!buffer_mapped(bh)) {
2025 WARN_ON(bh->b_size != blocksize);
2026 if (get_block) {
2027 err = get_block(inode, block, bh, 1);
2028 if (err)
2029 break;
2030 } else {
2031 iomap_to_bh(inode, block, bh, iomap);
2034 if (buffer_new(bh)) {
2035 clean_bdev_bh_alias(bh);
2036 if (PageUptodate(page)) {
2037 clear_buffer_new(bh);
2038 set_buffer_uptodate(bh);
2039 mark_buffer_dirty(bh);
2040 continue;
2042 if (block_end > to || block_start < from)
2043 zero_user_segments(page,
2044 to, block_end,
2045 block_start, from);
2046 continue;
2049 if (PageUptodate(page)) {
2050 if (!buffer_uptodate(bh))
2051 set_buffer_uptodate(bh);
2052 continue;
2054 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2055 !buffer_unwritten(bh) &&
2056 (block_start < from || block_end > to)) {
2057 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058 *wait_bh++=bh;
2062 * If we issued read requests - let them complete.
2064 while(wait_bh > wait) {
2065 wait_on_buffer(*--wait_bh);
2066 if (!buffer_uptodate(*wait_bh))
2067 err = -EIO;
2069 if (unlikely(err))
2070 page_zero_new_buffers(page, from, to);
2071 return err;
2074 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2075 get_block_t *get_block)
2077 return __block_write_begin_int(page, pos, len, get_block, NULL);
2079 EXPORT_SYMBOL(__block_write_begin);
2081 static int __block_commit_write(struct inode *inode, struct page *page,
2082 unsigned from, unsigned to)
2084 unsigned block_start, block_end;
2085 int partial = 0;
2086 unsigned blocksize;
2087 struct buffer_head *bh, *head;
2089 bh = head = page_buffers(page);
2090 blocksize = bh->b_size;
2092 block_start = 0;
2093 do {
2094 block_end = block_start + blocksize;
2095 if (block_end <= from || block_start >= to) {
2096 if (!buffer_uptodate(bh))
2097 partial = 1;
2098 } else {
2099 set_buffer_uptodate(bh);
2100 mark_buffer_dirty(bh);
2102 clear_buffer_new(bh);
2104 block_start = block_end;
2105 bh = bh->b_this_page;
2106 } while (bh != head);
2109 * If this is a partial write which happened to make all buffers
2110 * uptodate then we can optimize away a bogus readpage() for
2111 * the next read(). Here we 'discover' whether the page went
2112 * uptodate as a result of this (potentially partial) write.
2114 if (!partial)
2115 SetPageUptodate(page);
2116 return 0;
2120 * block_write_begin takes care of the basic task of block allocation and
2121 * bringing partial write blocks uptodate first.
2123 * The filesystem needs to handle block truncation upon failure.
2125 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2126 unsigned flags, struct page **pagep, get_block_t *get_block)
2128 pgoff_t index = pos >> PAGE_SHIFT;
2129 struct page *page;
2130 int status;
2132 page = grab_cache_page_write_begin(mapping, index, flags);
2133 if (!page)
2134 return -ENOMEM;
2136 status = __block_write_begin(page, pos, len, get_block);
2137 if (unlikely(status)) {
2138 unlock_page(page);
2139 put_page(page);
2140 page = NULL;
2143 *pagep = page;
2144 return status;
2146 EXPORT_SYMBOL(block_write_begin);
2148 int block_write_end(struct file *file, struct address_space *mapping,
2149 loff_t pos, unsigned len, unsigned copied,
2150 struct page *page, void *fsdata)
2152 struct inode *inode = mapping->host;
2153 unsigned start;
2155 start = pos & (PAGE_SIZE - 1);
2157 if (unlikely(copied < len)) {
2159 * The buffers that were written will now be uptodate, so we
2160 * don't have to worry about a readpage reading them and
2161 * overwriting a partial write. However if we have encountered
2162 * a short write and only partially written into a buffer, it
2163 * will not be marked uptodate, so a readpage might come in and
2164 * destroy our partial write.
2166 * Do the simplest thing, and just treat any short write to a
2167 * non uptodate page as a zero-length write, and force the
2168 * caller to redo the whole thing.
2170 if (!PageUptodate(page))
2171 copied = 0;
2173 page_zero_new_buffers(page, start+copied, start+len);
2175 flush_dcache_page(page);
2177 /* This could be a short (even 0-length) commit */
2178 __block_commit_write(inode, page, start, start+copied);
2180 return copied;
2182 EXPORT_SYMBOL(block_write_end);
2184 int generic_write_end(struct file *file, struct address_space *mapping,
2185 loff_t pos, unsigned len, unsigned copied,
2186 struct page *page, void *fsdata)
2188 struct inode *inode = mapping->host;
2189 loff_t old_size = inode->i_size;
2190 int i_size_changed = 0;
2192 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2195 * No need to use i_size_read() here, the i_size
2196 * cannot change under us because we hold i_mutex.
2198 * But it's important to update i_size while still holding page lock:
2199 * page writeout could otherwise come in and zero beyond i_size.
2201 if (pos+copied > inode->i_size) {
2202 i_size_write(inode, pos+copied);
2203 i_size_changed = 1;
2206 unlock_page(page);
2207 put_page(page);
2209 if (old_size < pos)
2210 pagecache_isize_extended(inode, old_size, pos);
2212 * Don't mark the inode dirty under page lock. First, it unnecessarily
2213 * makes the holding time of page lock longer. Second, it forces lock
2214 * ordering of page lock and transaction start for journaling
2215 * filesystems.
2217 if (i_size_changed)
2218 mark_inode_dirty(inode);
2220 return copied;
2222 EXPORT_SYMBOL(generic_write_end);
2225 * block_is_partially_uptodate checks whether buffers within a page are
2226 * uptodate or not.
2228 * Returns true if all buffers which correspond to a file portion
2229 * we want to read are uptodate.
2231 int block_is_partially_uptodate(struct page *page, unsigned long from,
2232 unsigned long count)
2234 unsigned block_start, block_end, blocksize;
2235 unsigned to;
2236 struct buffer_head *bh, *head;
2237 int ret = 1;
2239 if (!page_has_buffers(page))
2240 return 0;
2242 head = page_buffers(page);
2243 blocksize = head->b_size;
2244 to = min_t(unsigned, PAGE_SIZE - from, count);
2245 to = from + to;
2246 if (from < blocksize && to > PAGE_SIZE - blocksize)
2247 return 0;
2249 bh = head;
2250 block_start = 0;
2251 do {
2252 block_end = block_start + blocksize;
2253 if (block_end > from && block_start < to) {
2254 if (!buffer_uptodate(bh)) {
2255 ret = 0;
2256 break;
2258 if (block_end >= to)
2259 break;
2261 block_start = block_end;
2262 bh = bh->b_this_page;
2263 } while (bh != head);
2265 return ret;
2267 EXPORT_SYMBOL(block_is_partially_uptodate);
2270 * Generic "read page" function for block devices that have the normal
2271 * get_block functionality. This is most of the block device filesystems.
2272 * Reads the page asynchronously --- the unlock_buffer() and
2273 * set/clear_buffer_uptodate() functions propagate buffer state into the
2274 * page struct once IO has completed.
2276 int block_read_full_page(struct page *page, get_block_t *get_block)
2278 struct inode *inode = page->mapping->host;
2279 sector_t iblock, lblock;
2280 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2281 unsigned int blocksize, bbits;
2282 int nr, i;
2283 int fully_mapped = 1;
2285 head = create_page_buffers(page, inode, 0);
2286 blocksize = head->b_size;
2287 bbits = block_size_bits(blocksize);
2289 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2290 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2291 bh = head;
2292 nr = 0;
2293 i = 0;
2295 do {
2296 if (buffer_uptodate(bh))
2297 continue;
2299 if (!buffer_mapped(bh)) {
2300 int err = 0;
2302 fully_mapped = 0;
2303 if (iblock < lblock) {
2304 WARN_ON(bh->b_size != blocksize);
2305 err = get_block(inode, iblock, bh, 0);
2306 if (err)
2307 SetPageError(page);
2309 if (!buffer_mapped(bh)) {
2310 zero_user(page, i * blocksize, blocksize);
2311 if (!err)
2312 set_buffer_uptodate(bh);
2313 continue;
2316 * get_block() might have updated the buffer
2317 * synchronously
2319 if (buffer_uptodate(bh))
2320 continue;
2322 arr[nr++] = bh;
2323 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2325 if (fully_mapped)
2326 SetPageMappedToDisk(page);
2328 if (!nr) {
2330 * All buffers are uptodate - we can set the page uptodate
2331 * as well. But not if get_block() returned an error.
2333 if (!PageError(page))
2334 SetPageUptodate(page);
2335 unlock_page(page);
2336 return 0;
2339 /* Stage two: lock the buffers */
2340 for (i = 0; i < nr; i++) {
2341 bh = arr[i];
2342 lock_buffer(bh);
2343 mark_buffer_async_read(bh);
2347 * Stage 3: start the IO. Check for uptodateness
2348 * inside the buffer lock in case another process reading
2349 * the underlying blockdev brought it uptodate (the sct fix).
2351 for (i = 0; i < nr; i++) {
2352 bh = arr[i];
2353 if (buffer_uptodate(bh))
2354 end_buffer_async_read(bh, 1);
2355 else
2356 submit_bh(REQ_OP_READ, 0, bh);
2358 return 0;
2360 EXPORT_SYMBOL(block_read_full_page);
2362 /* utility function for filesystems that need to do work on expanding
2363 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2364 * deal with the hole.
2366 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2368 struct address_space *mapping = inode->i_mapping;
2369 struct page *page;
2370 void *fsdata;
2371 int err;
2373 err = inode_newsize_ok(inode, size);
2374 if (err)
2375 goto out;
2377 err = pagecache_write_begin(NULL, mapping, size, 0,
2378 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2379 if (err)
2380 goto out;
2382 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2383 BUG_ON(err > 0);
2385 out:
2386 return err;
2388 EXPORT_SYMBOL(generic_cont_expand_simple);
2390 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2391 loff_t pos, loff_t *bytes)
2393 struct inode *inode = mapping->host;
2394 unsigned int blocksize = i_blocksize(inode);
2395 struct page *page;
2396 void *fsdata;
2397 pgoff_t index, curidx;
2398 loff_t curpos;
2399 unsigned zerofrom, offset, len;
2400 int err = 0;
2402 index = pos >> PAGE_SHIFT;
2403 offset = pos & ~PAGE_MASK;
2405 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2406 zerofrom = curpos & ~PAGE_MASK;
2407 if (zerofrom & (blocksize-1)) {
2408 *bytes |= (blocksize-1);
2409 (*bytes)++;
2411 len = PAGE_SIZE - zerofrom;
2413 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2414 &page, &fsdata);
2415 if (err)
2416 goto out;
2417 zero_user(page, zerofrom, len);
2418 err = pagecache_write_end(file, mapping, curpos, len, len,
2419 page, fsdata);
2420 if (err < 0)
2421 goto out;
2422 BUG_ON(err != len);
2423 err = 0;
2425 balance_dirty_pages_ratelimited(mapping);
2427 if (unlikely(fatal_signal_pending(current))) {
2428 err = -EINTR;
2429 goto out;
2433 /* page covers the boundary, find the boundary offset */
2434 if (index == curidx) {
2435 zerofrom = curpos & ~PAGE_MASK;
2436 /* if we will expand the thing last block will be filled */
2437 if (offset <= zerofrom) {
2438 goto out;
2440 if (zerofrom & (blocksize-1)) {
2441 *bytes |= (blocksize-1);
2442 (*bytes)++;
2444 len = offset - zerofrom;
2446 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2447 &page, &fsdata);
2448 if (err)
2449 goto out;
2450 zero_user(page, zerofrom, len);
2451 err = pagecache_write_end(file, mapping, curpos, len, len,
2452 page, fsdata);
2453 if (err < 0)
2454 goto out;
2455 BUG_ON(err != len);
2456 err = 0;
2458 out:
2459 return err;
2463 * For moronic filesystems that do not allow holes in file.
2464 * We may have to extend the file.
2466 int cont_write_begin(struct file *file, struct address_space *mapping,
2467 loff_t pos, unsigned len, unsigned flags,
2468 struct page **pagep, void **fsdata,
2469 get_block_t *get_block, loff_t *bytes)
2471 struct inode *inode = mapping->host;
2472 unsigned int blocksize = i_blocksize(inode);
2473 unsigned int zerofrom;
2474 int err;
2476 err = cont_expand_zero(file, mapping, pos, bytes);
2477 if (err)
2478 return err;
2480 zerofrom = *bytes & ~PAGE_MASK;
2481 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2482 *bytes |= (blocksize-1);
2483 (*bytes)++;
2486 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2488 EXPORT_SYMBOL(cont_write_begin);
2490 int block_commit_write(struct page *page, unsigned from, unsigned to)
2492 struct inode *inode = page->mapping->host;
2493 __block_commit_write(inode,page,from,to);
2494 return 0;
2496 EXPORT_SYMBOL(block_commit_write);
2499 * block_page_mkwrite() is not allowed to change the file size as it gets
2500 * called from a page fault handler when a page is first dirtied. Hence we must
2501 * be careful to check for EOF conditions here. We set the page up correctly
2502 * for a written page which means we get ENOSPC checking when writing into
2503 * holes and correct delalloc and unwritten extent mapping on filesystems that
2504 * support these features.
2506 * We are not allowed to take the i_mutex here so we have to play games to
2507 * protect against truncate races as the page could now be beyond EOF. Because
2508 * truncate writes the inode size before removing pages, once we have the
2509 * page lock we can determine safely if the page is beyond EOF. If it is not
2510 * beyond EOF, then the page is guaranteed safe against truncation until we
2511 * unlock the page.
2513 * Direct callers of this function should protect against filesystem freezing
2514 * using sb_start_pagefault() - sb_end_pagefault() functions.
2516 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2517 get_block_t get_block)
2519 struct page *page = vmf->page;
2520 struct inode *inode = file_inode(vma->vm_file);
2521 unsigned long end;
2522 loff_t size;
2523 int ret;
2525 lock_page(page);
2526 size = i_size_read(inode);
2527 if ((page->mapping != inode->i_mapping) ||
2528 (page_offset(page) > size)) {
2529 /* We overload EFAULT to mean page got truncated */
2530 ret = -EFAULT;
2531 goto out_unlock;
2534 /* page is wholly or partially inside EOF */
2535 if (((page->index + 1) << PAGE_SHIFT) > size)
2536 end = size & ~PAGE_MASK;
2537 else
2538 end = PAGE_SIZE;
2540 ret = __block_write_begin(page, 0, end, get_block);
2541 if (!ret)
2542 ret = block_commit_write(page, 0, end);
2544 if (unlikely(ret < 0))
2545 goto out_unlock;
2546 set_page_dirty(page);
2547 wait_for_stable_page(page);
2548 return 0;
2549 out_unlock:
2550 unlock_page(page);
2551 return ret;
2553 EXPORT_SYMBOL(block_page_mkwrite);
2556 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2557 * immediately, while under the page lock. So it needs a special end_io
2558 * handler which does not touch the bh after unlocking it.
2560 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2562 __end_buffer_read_notouch(bh, uptodate);
2566 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2567 * the page (converting it to circular linked list and taking care of page
2568 * dirty races).
2570 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2572 struct buffer_head *bh;
2574 BUG_ON(!PageLocked(page));
2576 spin_lock(&page->mapping->private_lock);
2577 bh = head;
2578 do {
2579 if (PageDirty(page))
2580 set_buffer_dirty(bh);
2581 if (!bh->b_this_page)
2582 bh->b_this_page = head;
2583 bh = bh->b_this_page;
2584 } while (bh != head);
2585 attach_page_buffers(page, head);
2586 spin_unlock(&page->mapping->private_lock);
2590 * On entry, the page is fully not uptodate.
2591 * On exit the page is fully uptodate in the areas outside (from,to)
2592 * The filesystem needs to handle block truncation upon failure.
2594 int nobh_write_begin(struct address_space *mapping,
2595 loff_t pos, unsigned len, unsigned flags,
2596 struct page **pagep, void **fsdata,
2597 get_block_t *get_block)
2599 struct inode *inode = mapping->host;
2600 const unsigned blkbits = inode->i_blkbits;
2601 const unsigned blocksize = 1 << blkbits;
2602 struct buffer_head *head, *bh;
2603 struct page *page;
2604 pgoff_t index;
2605 unsigned from, to;
2606 unsigned block_in_page;
2607 unsigned block_start, block_end;
2608 sector_t block_in_file;
2609 int nr_reads = 0;
2610 int ret = 0;
2611 int is_mapped_to_disk = 1;
2613 index = pos >> PAGE_SHIFT;
2614 from = pos & (PAGE_SIZE - 1);
2615 to = from + len;
2617 page = grab_cache_page_write_begin(mapping, index, flags);
2618 if (!page)
2619 return -ENOMEM;
2620 *pagep = page;
2621 *fsdata = NULL;
2623 if (page_has_buffers(page)) {
2624 ret = __block_write_begin(page, pos, len, get_block);
2625 if (unlikely(ret))
2626 goto out_release;
2627 return ret;
2630 if (PageMappedToDisk(page))
2631 return 0;
2634 * Allocate buffers so that we can keep track of state, and potentially
2635 * attach them to the page if an error occurs. In the common case of
2636 * no error, they will just be freed again without ever being attached
2637 * to the page (which is all OK, because we're under the page lock).
2639 * Be careful: the buffer linked list is a NULL terminated one, rather
2640 * than the circular one we're used to.
2642 head = alloc_page_buffers(page, blocksize, 0);
2643 if (!head) {
2644 ret = -ENOMEM;
2645 goto out_release;
2648 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2651 * We loop across all blocks in the page, whether or not they are
2652 * part of the affected region. This is so we can discover if the
2653 * page is fully mapped-to-disk.
2655 for (block_start = 0, block_in_page = 0, bh = head;
2656 block_start < PAGE_SIZE;
2657 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2658 int create;
2660 block_end = block_start + blocksize;
2661 bh->b_state = 0;
2662 create = 1;
2663 if (block_start >= to)
2664 create = 0;
2665 ret = get_block(inode, block_in_file + block_in_page,
2666 bh, create);
2667 if (ret)
2668 goto failed;
2669 if (!buffer_mapped(bh))
2670 is_mapped_to_disk = 0;
2671 if (buffer_new(bh))
2672 clean_bdev_bh_alias(bh);
2673 if (PageUptodate(page)) {
2674 set_buffer_uptodate(bh);
2675 continue;
2677 if (buffer_new(bh) || !buffer_mapped(bh)) {
2678 zero_user_segments(page, block_start, from,
2679 to, block_end);
2680 continue;
2682 if (buffer_uptodate(bh))
2683 continue; /* reiserfs does this */
2684 if (block_start < from || block_end > to) {
2685 lock_buffer(bh);
2686 bh->b_end_io = end_buffer_read_nobh;
2687 submit_bh(REQ_OP_READ, 0, bh);
2688 nr_reads++;
2692 if (nr_reads) {
2694 * The page is locked, so these buffers are protected from
2695 * any VM or truncate activity. Hence we don't need to care
2696 * for the buffer_head refcounts.
2698 for (bh = head; bh; bh = bh->b_this_page) {
2699 wait_on_buffer(bh);
2700 if (!buffer_uptodate(bh))
2701 ret = -EIO;
2703 if (ret)
2704 goto failed;
2707 if (is_mapped_to_disk)
2708 SetPageMappedToDisk(page);
2710 *fsdata = head; /* to be released by nobh_write_end */
2712 return 0;
2714 failed:
2715 BUG_ON(!ret);
2717 * Error recovery is a bit difficult. We need to zero out blocks that
2718 * were newly allocated, and dirty them to ensure they get written out.
2719 * Buffers need to be attached to the page at this point, otherwise
2720 * the handling of potential IO errors during writeout would be hard
2721 * (could try doing synchronous writeout, but what if that fails too?)
2723 attach_nobh_buffers(page, head);
2724 page_zero_new_buffers(page, from, to);
2726 out_release:
2727 unlock_page(page);
2728 put_page(page);
2729 *pagep = NULL;
2731 return ret;
2733 EXPORT_SYMBOL(nobh_write_begin);
2735 int nobh_write_end(struct file *file, struct address_space *mapping,
2736 loff_t pos, unsigned len, unsigned copied,
2737 struct page *page, void *fsdata)
2739 struct inode *inode = page->mapping->host;
2740 struct buffer_head *head = fsdata;
2741 struct buffer_head *bh;
2742 BUG_ON(fsdata != NULL && page_has_buffers(page));
2744 if (unlikely(copied < len) && head)
2745 attach_nobh_buffers(page, head);
2746 if (page_has_buffers(page))
2747 return generic_write_end(file, mapping, pos, len,
2748 copied, page, fsdata);
2750 SetPageUptodate(page);
2751 set_page_dirty(page);
2752 if (pos+copied > inode->i_size) {
2753 i_size_write(inode, pos+copied);
2754 mark_inode_dirty(inode);
2757 unlock_page(page);
2758 put_page(page);
2760 while (head) {
2761 bh = head;
2762 head = head->b_this_page;
2763 free_buffer_head(bh);
2766 return copied;
2768 EXPORT_SYMBOL(nobh_write_end);
2771 * nobh_writepage() - based on block_full_write_page() except
2772 * that it tries to operate without attaching bufferheads to
2773 * the page.
2775 int nobh_writepage(struct page *page, get_block_t *get_block,
2776 struct writeback_control *wbc)
2778 struct inode * const inode = page->mapping->host;
2779 loff_t i_size = i_size_read(inode);
2780 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2781 unsigned offset;
2782 int ret;
2784 /* Is the page fully inside i_size? */
2785 if (page->index < end_index)
2786 goto out;
2788 /* Is the page fully outside i_size? (truncate in progress) */
2789 offset = i_size & (PAGE_SIZE-1);
2790 if (page->index >= end_index+1 || !offset) {
2792 * The page may have dirty, unmapped buffers. For example,
2793 * they may have been added in ext3_writepage(). Make them
2794 * freeable here, so the page does not leak.
2796 #if 0
2797 /* Not really sure about this - do we need this ? */
2798 if (page->mapping->a_ops->invalidatepage)
2799 page->mapping->a_ops->invalidatepage(page, offset);
2800 #endif
2801 unlock_page(page);
2802 return 0; /* don't care */
2806 * The page straddles i_size. It must be zeroed out on each and every
2807 * writepage invocation because it may be mmapped. "A file is mapped
2808 * in multiples of the page size. For a file that is not a multiple of
2809 * the page size, the remaining memory is zeroed when mapped, and
2810 * writes to that region are not written out to the file."
2812 zero_user_segment(page, offset, PAGE_SIZE);
2813 out:
2814 ret = mpage_writepage(page, get_block, wbc);
2815 if (ret == -EAGAIN)
2816 ret = __block_write_full_page(inode, page, get_block, wbc,
2817 end_buffer_async_write);
2818 return ret;
2820 EXPORT_SYMBOL(nobh_writepage);
2822 int nobh_truncate_page(struct address_space *mapping,
2823 loff_t from, get_block_t *get_block)
2825 pgoff_t index = from >> PAGE_SHIFT;
2826 unsigned offset = from & (PAGE_SIZE-1);
2827 unsigned blocksize;
2828 sector_t iblock;
2829 unsigned length, pos;
2830 struct inode *inode = mapping->host;
2831 struct page *page;
2832 struct buffer_head map_bh;
2833 int err;
2835 blocksize = i_blocksize(inode);
2836 length = offset & (blocksize - 1);
2838 /* Block boundary? Nothing to do */
2839 if (!length)
2840 return 0;
2842 length = blocksize - length;
2843 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2845 page = grab_cache_page(mapping, index);
2846 err = -ENOMEM;
2847 if (!page)
2848 goto out;
2850 if (page_has_buffers(page)) {
2851 has_buffers:
2852 unlock_page(page);
2853 put_page(page);
2854 return block_truncate_page(mapping, from, get_block);
2857 /* Find the buffer that contains "offset" */
2858 pos = blocksize;
2859 while (offset >= pos) {
2860 iblock++;
2861 pos += blocksize;
2864 map_bh.b_size = blocksize;
2865 map_bh.b_state = 0;
2866 err = get_block(inode, iblock, &map_bh, 0);
2867 if (err)
2868 goto unlock;
2869 /* unmapped? It's a hole - nothing to do */
2870 if (!buffer_mapped(&map_bh))
2871 goto unlock;
2873 /* Ok, it's mapped. Make sure it's up-to-date */
2874 if (!PageUptodate(page)) {
2875 err = mapping->a_ops->readpage(NULL, page);
2876 if (err) {
2877 put_page(page);
2878 goto out;
2880 lock_page(page);
2881 if (!PageUptodate(page)) {
2882 err = -EIO;
2883 goto unlock;
2885 if (page_has_buffers(page))
2886 goto has_buffers;
2888 zero_user(page, offset, length);
2889 set_page_dirty(page);
2890 err = 0;
2892 unlock:
2893 unlock_page(page);
2894 put_page(page);
2895 out:
2896 return err;
2898 EXPORT_SYMBOL(nobh_truncate_page);
2900 int block_truncate_page(struct address_space *mapping,
2901 loff_t from, get_block_t *get_block)
2903 pgoff_t index = from >> PAGE_SHIFT;
2904 unsigned offset = from & (PAGE_SIZE-1);
2905 unsigned blocksize;
2906 sector_t iblock;
2907 unsigned length, pos;
2908 struct inode *inode = mapping->host;
2909 struct page *page;
2910 struct buffer_head *bh;
2911 int err;
2913 blocksize = i_blocksize(inode);
2914 length = offset & (blocksize - 1);
2916 /* Block boundary? Nothing to do */
2917 if (!length)
2918 return 0;
2920 length = blocksize - length;
2921 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2923 page = grab_cache_page(mapping, index);
2924 err = -ENOMEM;
2925 if (!page)
2926 goto out;
2928 if (!page_has_buffers(page))
2929 create_empty_buffers(page, blocksize, 0);
2931 /* Find the buffer that contains "offset" */
2932 bh = page_buffers(page);
2933 pos = blocksize;
2934 while (offset >= pos) {
2935 bh = bh->b_this_page;
2936 iblock++;
2937 pos += blocksize;
2940 err = 0;
2941 if (!buffer_mapped(bh)) {
2942 WARN_ON(bh->b_size != blocksize);
2943 err = get_block(inode, iblock, bh, 0);
2944 if (err)
2945 goto unlock;
2946 /* unmapped? It's a hole - nothing to do */
2947 if (!buffer_mapped(bh))
2948 goto unlock;
2951 /* Ok, it's mapped. Make sure it's up-to-date */
2952 if (PageUptodate(page))
2953 set_buffer_uptodate(bh);
2955 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2956 err = -EIO;
2957 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2958 wait_on_buffer(bh);
2959 /* Uhhuh. Read error. Complain and punt. */
2960 if (!buffer_uptodate(bh))
2961 goto unlock;
2964 zero_user(page, offset, length);
2965 mark_buffer_dirty(bh);
2966 err = 0;
2968 unlock:
2969 unlock_page(page);
2970 put_page(page);
2971 out:
2972 return err;
2974 EXPORT_SYMBOL(block_truncate_page);
2977 * The generic ->writepage function for buffer-backed address_spaces
2979 int block_write_full_page(struct page *page, get_block_t *get_block,
2980 struct writeback_control *wbc)
2982 struct inode * const inode = page->mapping->host;
2983 loff_t i_size = i_size_read(inode);
2984 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2985 unsigned offset;
2987 /* Is the page fully inside i_size? */
2988 if (page->index < end_index)
2989 return __block_write_full_page(inode, page, get_block, wbc,
2990 end_buffer_async_write);
2992 /* Is the page fully outside i_size? (truncate in progress) */
2993 offset = i_size & (PAGE_SIZE-1);
2994 if (page->index >= end_index+1 || !offset) {
2996 * The page may have dirty, unmapped buffers. For example,
2997 * they may have been added in ext3_writepage(). Make them
2998 * freeable here, so the page does not leak.
3000 do_invalidatepage(page, 0, PAGE_SIZE);
3001 unlock_page(page);
3002 return 0; /* don't care */
3006 * The page straddles i_size. It must be zeroed out on each and every
3007 * writepage invocation because it may be mmapped. "A file is mapped
3008 * in multiples of the page size. For a file that is not a multiple of
3009 * the page size, the remaining memory is zeroed when mapped, and
3010 * writes to that region are not written out to the file."
3012 zero_user_segment(page, offset, PAGE_SIZE);
3013 return __block_write_full_page(inode, page, get_block, wbc,
3014 end_buffer_async_write);
3016 EXPORT_SYMBOL(block_write_full_page);
3018 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3019 get_block_t *get_block)
3021 struct inode *inode = mapping->host;
3022 struct buffer_head tmp = {
3023 .b_size = i_blocksize(inode),
3026 get_block(inode, block, &tmp, 0);
3027 return tmp.b_blocknr;
3029 EXPORT_SYMBOL(generic_block_bmap);
3031 static void end_bio_bh_io_sync(struct bio *bio)
3033 struct buffer_head *bh = bio->bi_private;
3035 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3036 set_bit(BH_Quiet, &bh->b_state);
3038 bh->b_end_io(bh, !bio->bi_status);
3039 bio_put(bio);
3043 * This allows us to do IO even on the odd last sectors
3044 * of a device, even if the block size is some multiple
3045 * of the physical sector size.
3047 * We'll just truncate the bio to the size of the device,
3048 * and clear the end of the buffer head manually.
3050 * Truly out-of-range accesses will turn into actual IO
3051 * errors, this only handles the "we need to be able to
3052 * do IO at the final sector" case.
3054 void guard_bio_eod(int op, struct bio *bio)
3056 sector_t maxsector;
3057 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3058 unsigned truncated_bytes;
3060 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3061 if (!maxsector)
3062 return;
3065 * If the *whole* IO is past the end of the device,
3066 * let it through, and the IO layer will turn it into
3067 * an EIO.
3069 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3070 return;
3072 maxsector -= bio->bi_iter.bi_sector;
3073 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3074 return;
3076 /* Uhhuh. We've got a bio that straddles the device size! */
3077 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3079 /* Truncate the bio.. */
3080 bio->bi_iter.bi_size -= truncated_bytes;
3081 bvec->bv_len -= truncated_bytes;
3083 /* ..and clear the end of the buffer for reads */
3084 if (op == REQ_OP_READ) {
3085 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3086 truncated_bytes);
3090 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3091 enum rw_hint write_hint, struct writeback_control *wbc)
3093 struct bio *bio;
3095 BUG_ON(!buffer_locked(bh));
3096 BUG_ON(!buffer_mapped(bh));
3097 BUG_ON(!bh->b_end_io);
3098 BUG_ON(buffer_delay(bh));
3099 BUG_ON(buffer_unwritten(bh));
3102 * Only clear out a write error when rewriting
3104 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3105 clear_buffer_write_io_error(bh);
3108 * from here on down, it's all bio -- do the initial mapping,
3109 * submit_bio -> generic_make_request may further map this bio around
3111 bio = bio_alloc(GFP_NOIO, 1);
3113 if (wbc) {
3114 wbc_init_bio(wbc, bio);
3115 wbc_account_io(wbc, bh->b_page, bh->b_size);
3118 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3119 bio->bi_bdev = bh->b_bdev;
3120 bio->bi_write_hint = write_hint;
3122 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3123 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3125 bio->bi_end_io = end_bio_bh_io_sync;
3126 bio->bi_private = bh;
3128 /* Take care of bh's that straddle the end of the device */
3129 guard_bio_eod(op, bio);
3131 if (buffer_meta(bh))
3132 op_flags |= REQ_META;
3133 if (buffer_prio(bh))
3134 op_flags |= REQ_PRIO;
3135 bio_set_op_attrs(bio, op, op_flags);
3137 submit_bio(bio);
3138 return 0;
3141 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3143 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3145 EXPORT_SYMBOL(submit_bh);
3148 * ll_rw_block: low-level access to block devices (DEPRECATED)
3149 * @op: whether to %READ or %WRITE
3150 * @op_flags: req_flag_bits
3151 * @nr: number of &struct buffer_heads in the array
3152 * @bhs: array of pointers to &struct buffer_head
3154 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3155 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3156 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3157 * %REQ_RAHEAD.
3159 * This function drops any buffer that it cannot get a lock on (with the
3160 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3161 * request, and any buffer that appears to be up-to-date when doing read
3162 * request. Further it marks as clean buffers that are processed for
3163 * writing (the buffer cache won't assume that they are actually clean
3164 * until the buffer gets unlocked).
3166 * ll_rw_block sets b_end_io to simple completion handler that marks
3167 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3168 * any waiters.
3170 * All of the buffers must be for the same device, and must also be a
3171 * multiple of the current approved size for the device.
3173 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3175 int i;
3177 for (i = 0; i < nr; i++) {
3178 struct buffer_head *bh = bhs[i];
3180 if (!trylock_buffer(bh))
3181 continue;
3182 if (op == WRITE) {
3183 if (test_clear_buffer_dirty(bh)) {
3184 bh->b_end_io = end_buffer_write_sync;
3185 get_bh(bh);
3186 submit_bh(op, op_flags, bh);
3187 continue;
3189 } else {
3190 if (!buffer_uptodate(bh)) {
3191 bh->b_end_io = end_buffer_read_sync;
3192 get_bh(bh);
3193 submit_bh(op, op_flags, bh);
3194 continue;
3197 unlock_buffer(bh);
3200 EXPORT_SYMBOL(ll_rw_block);
3202 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3204 lock_buffer(bh);
3205 if (!test_clear_buffer_dirty(bh)) {
3206 unlock_buffer(bh);
3207 return;
3209 bh->b_end_io = end_buffer_write_sync;
3210 get_bh(bh);
3211 submit_bh(REQ_OP_WRITE, op_flags, bh);
3213 EXPORT_SYMBOL(write_dirty_buffer);
3216 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3217 * and then start new I/O and then wait upon it. The caller must have a ref on
3218 * the buffer_head.
3220 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3222 int ret = 0;
3224 WARN_ON(atomic_read(&bh->b_count) < 1);
3225 lock_buffer(bh);
3226 if (test_clear_buffer_dirty(bh)) {
3227 get_bh(bh);
3228 bh->b_end_io = end_buffer_write_sync;
3229 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3230 wait_on_buffer(bh);
3231 if (!ret && !buffer_uptodate(bh))
3232 ret = -EIO;
3233 } else {
3234 unlock_buffer(bh);
3236 return ret;
3238 EXPORT_SYMBOL(__sync_dirty_buffer);
3240 int sync_dirty_buffer(struct buffer_head *bh)
3242 return __sync_dirty_buffer(bh, REQ_SYNC);
3244 EXPORT_SYMBOL(sync_dirty_buffer);
3247 * try_to_free_buffers() checks if all the buffers on this particular page
3248 * are unused, and releases them if so.
3250 * Exclusion against try_to_free_buffers may be obtained by either
3251 * locking the page or by holding its mapping's private_lock.
3253 * If the page is dirty but all the buffers are clean then we need to
3254 * be sure to mark the page clean as well. This is because the page
3255 * may be against a block device, and a later reattachment of buffers
3256 * to a dirty page will set *all* buffers dirty. Which would corrupt
3257 * filesystem data on the same device.
3259 * The same applies to regular filesystem pages: if all the buffers are
3260 * clean then we set the page clean and proceed. To do that, we require
3261 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3262 * private_lock.
3264 * try_to_free_buffers() is non-blocking.
3266 static inline int buffer_busy(struct buffer_head *bh)
3268 return atomic_read(&bh->b_count) |
3269 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3272 static int
3273 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3275 struct buffer_head *head = page_buffers(page);
3276 struct buffer_head *bh;
3278 bh = head;
3279 do {
3280 if (buffer_busy(bh))
3281 goto failed;
3282 bh = bh->b_this_page;
3283 } while (bh != head);
3285 do {
3286 struct buffer_head *next = bh->b_this_page;
3288 if (bh->b_assoc_map)
3289 __remove_assoc_queue(bh);
3290 bh = next;
3291 } while (bh != head);
3292 *buffers_to_free = head;
3293 __clear_page_buffers(page);
3294 return 1;
3295 failed:
3296 return 0;
3299 int try_to_free_buffers(struct page *page)
3301 struct address_space * const mapping = page->mapping;
3302 struct buffer_head *buffers_to_free = NULL;
3303 int ret = 0;
3305 BUG_ON(!PageLocked(page));
3306 if (PageWriteback(page))
3307 return 0;
3309 if (mapping == NULL) { /* can this still happen? */
3310 ret = drop_buffers(page, &buffers_to_free);
3311 goto out;
3314 spin_lock(&mapping->private_lock);
3315 ret = drop_buffers(page, &buffers_to_free);
3318 * If the filesystem writes its buffers by hand (eg ext3)
3319 * then we can have clean buffers against a dirty page. We
3320 * clean the page here; otherwise the VM will never notice
3321 * that the filesystem did any IO at all.
3323 * Also, during truncate, discard_buffer will have marked all
3324 * the page's buffers clean. We discover that here and clean
3325 * the page also.
3327 * private_lock must be held over this entire operation in order
3328 * to synchronise against __set_page_dirty_buffers and prevent the
3329 * dirty bit from being lost.
3331 if (ret)
3332 cancel_dirty_page(page);
3333 spin_unlock(&mapping->private_lock);
3334 out:
3335 if (buffers_to_free) {
3336 struct buffer_head *bh = buffers_to_free;
3338 do {
3339 struct buffer_head *next = bh->b_this_page;
3340 free_buffer_head(bh);
3341 bh = next;
3342 } while (bh != buffers_to_free);
3344 return ret;
3346 EXPORT_SYMBOL(try_to_free_buffers);
3349 * There are no bdflush tunables left. But distributions are
3350 * still running obsolete flush daemons, so we terminate them here.
3352 * Use of bdflush() is deprecated and will be removed in a future kernel.
3353 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3355 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3357 static int msg_count;
3359 if (!capable(CAP_SYS_ADMIN))
3360 return -EPERM;
3362 if (msg_count < 5) {
3363 msg_count++;
3364 printk(KERN_INFO
3365 "warning: process `%s' used the obsolete bdflush"
3366 " system call\n", current->comm);
3367 printk(KERN_INFO "Fix your initscripts?\n");
3370 if (func == 1)
3371 do_exit(0);
3372 return 0;
3376 * Buffer-head allocation
3378 static struct kmem_cache *bh_cachep __read_mostly;
3381 * Once the number of bh's in the machine exceeds this level, we start
3382 * stripping them in writeback.
3384 static unsigned long max_buffer_heads;
3386 int buffer_heads_over_limit;
3388 struct bh_accounting {
3389 int nr; /* Number of live bh's */
3390 int ratelimit; /* Limit cacheline bouncing */
3393 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3395 static void recalc_bh_state(void)
3397 int i;
3398 int tot = 0;
3400 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3401 return;
3402 __this_cpu_write(bh_accounting.ratelimit, 0);
3403 for_each_online_cpu(i)
3404 tot += per_cpu(bh_accounting, i).nr;
3405 buffer_heads_over_limit = (tot > max_buffer_heads);
3408 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3410 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3411 if (ret) {
3412 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3413 preempt_disable();
3414 __this_cpu_inc(bh_accounting.nr);
3415 recalc_bh_state();
3416 preempt_enable();
3418 return ret;
3420 EXPORT_SYMBOL(alloc_buffer_head);
3422 void free_buffer_head(struct buffer_head *bh)
3424 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3425 kmem_cache_free(bh_cachep, bh);
3426 preempt_disable();
3427 __this_cpu_dec(bh_accounting.nr);
3428 recalc_bh_state();
3429 preempt_enable();
3431 EXPORT_SYMBOL(free_buffer_head);
3433 static int buffer_exit_cpu_dead(unsigned int cpu)
3435 int i;
3436 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3438 for (i = 0; i < BH_LRU_SIZE; i++) {
3439 brelse(b->bhs[i]);
3440 b->bhs[i] = NULL;
3442 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3443 per_cpu(bh_accounting, cpu).nr = 0;
3444 return 0;
3448 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3449 * @bh: struct buffer_head
3451 * Return true if the buffer is up-to-date and false,
3452 * with the buffer locked, if not.
3454 int bh_uptodate_or_lock(struct buffer_head *bh)
3456 if (!buffer_uptodate(bh)) {
3457 lock_buffer(bh);
3458 if (!buffer_uptodate(bh))
3459 return 0;
3460 unlock_buffer(bh);
3462 return 1;
3464 EXPORT_SYMBOL(bh_uptodate_or_lock);
3467 * bh_submit_read - Submit a locked buffer for reading
3468 * @bh: struct buffer_head
3470 * Returns zero on success and -EIO on error.
3472 int bh_submit_read(struct buffer_head *bh)
3474 BUG_ON(!buffer_locked(bh));
3476 if (buffer_uptodate(bh)) {
3477 unlock_buffer(bh);
3478 return 0;
3481 get_bh(bh);
3482 bh->b_end_io = end_buffer_read_sync;
3483 submit_bh(REQ_OP_READ, 0, bh);
3484 wait_on_buffer(bh);
3485 if (buffer_uptodate(bh))
3486 return 0;
3487 return -EIO;
3489 EXPORT_SYMBOL(bh_submit_read);
3492 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3494 * Returns the offset within the file on success, and -ENOENT otherwise.
3496 static loff_t
3497 page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3499 loff_t offset = page_offset(page);
3500 struct buffer_head *bh, *head;
3501 bool seek_data = whence == SEEK_DATA;
3503 if (lastoff < offset)
3504 lastoff = offset;
3506 bh = head = page_buffers(page);
3507 do {
3508 offset += bh->b_size;
3509 if (lastoff >= offset)
3510 continue;
3513 * Unwritten extents that have data in the page cache covering
3514 * them can be identified by the BH_Unwritten state flag.
3515 * Pages with multiple buffers might have a mix of holes, data
3516 * and unwritten extents - any buffer with valid data in it
3517 * should have BH_Uptodate flag set on it.
3520 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3521 return lastoff;
3523 lastoff = offset;
3524 } while ((bh = bh->b_this_page) != head);
3525 return -ENOENT;
3529 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3531 * Within unwritten extents, the page cache determines which parts are holes
3532 * and which are data: unwritten and uptodate buffer heads count as data;
3533 * everything else counts as a hole.
3535 * Returns the resulting offset on successs, and -ENOENT otherwise.
3537 loff_t
3538 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3539 int whence)
3541 pgoff_t index = offset >> PAGE_SHIFT;
3542 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3543 loff_t lastoff = offset;
3544 struct pagevec pvec;
3546 if (length <= 0)
3547 return -ENOENT;
3549 pagevec_init(&pvec, 0);
3551 do {
3552 unsigned want, nr_pages, i;
3554 want = min_t(unsigned, end - index, PAGEVEC_SIZE);
3555 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, want);
3556 if (nr_pages == 0)
3557 break;
3559 for (i = 0; i < nr_pages; i++) {
3560 struct page *page = pvec.pages[i];
3563 * At this point, the page may be truncated or
3564 * invalidated (changing page->mapping to NULL), or
3565 * even swizzled back from swapper_space to tmpfs file
3566 * mapping. However, page->index will not change
3567 * because we have a reference on the page.
3569 * If current page offset is beyond where we've ended,
3570 * we've found a hole.
3572 if (whence == SEEK_HOLE &&
3573 lastoff < page_offset(page))
3574 goto check_range;
3576 /* Searching done if the page index is out of range. */
3577 if (page->index >= end)
3578 goto not_found;
3580 lock_page(page);
3581 if (likely(page->mapping == inode->i_mapping) &&
3582 page_has_buffers(page)) {
3583 lastoff = page_seek_hole_data(page, lastoff, whence);
3584 if (lastoff >= 0) {
3585 unlock_page(page);
3586 goto check_range;
3589 unlock_page(page);
3590 lastoff = page_offset(page) + PAGE_SIZE;
3593 /* Searching done if fewer pages returned than wanted. */
3594 if (nr_pages < want)
3595 break;
3597 index = pvec.pages[i - 1]->index + 1;
3598 pagevec_release(&pvec);
3599 } while (index < end);
3601 /* When no page at lastoff and we are not done, we found a hole. */
3602 if (whence != SEEK_HOLE)
3603 goto not_found;
3605 check_range:
3606 if (lastoff < offset + length)
3607 goto out;
3608 not_found:
3609 lastoff = -ENOENT;
3610 out:
3611 pagevec_release(&pvec);
3612 return lastoff;
3615 void __init buffer_init(void)
3617 unsigned long nrpages;
3618 int ret;
3620 bh_cachep = kmem_cache_create("buffer_head",
3621 sizeof(struct buffer_head), 0,
3622 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3623 SLAB_MEM_SPREAD),
3624 NULL);
3627 * Limit the bh occupancy to 10% of ZONE_NORMAL
3629 nrpages = (nr_free_buffer_pages() * 10) / 100;
3630 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3631 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3632 NULL, buffer_exit_cpu_dead);
3633 WARN_ON(ret < 0);