4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
31 #include "vmci_handle_array.h"
32 #include "vmci_queue_pair.h"
33 #include "vmci_datagram.h"
34 #include "vmci_resource.h"
35 #include "vmci_context.h"
36 #include "vmci_driver.h"
37 #include "vmci_event.h"
38 #include "vmci_route.h"
41 * In the following, we will distinguish between two kinds of VMX processes -
42 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
43 * VMCI page files in the VMX and supporting VM to VM communication and the
44 * newer ones that use the guest memory directly. We will in the following
45 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
48 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
49 * removed for readability) - see below for more details on the transtions:
51 * -------------- NEW -------------
54 * CREATED_NO_MEM <-----------------> CREATED_MEM
56 * | o-----------------------o |
59 * ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61 * | o----------------------o |
64 * SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
67 * -------------> gone <-------------
69 * In more detail. When a VMCI queue pair is first created, it will be in the
70 * VMCIQPB_NEW state. It will then move into one of the following states:
72 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74 * - the created was performed by a host endpoint, in which case there is
75 * no backing memory yet.
77 * - the create was initiated by an old-style VMX, that uses
78 * vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
79 * a later point in time. This state can be distinguished from the one
80 * above by the context ID of the creator. A host side is not allowed to
81 * attach until the page store has been set.
83 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
84 * is created by a VMX using the queue pair device backend that
85 * sets the UVAs of the queue pair immediately and stores the
86 * information for later attachers. At this point, it is ready for
87 * the host side to attach to it.
89 * Once the queue pair is in one of the created states (with the exception of
90 * the case mentioned for older VMX'en above), it is possible to attach to the
91 * queue pair. Again we have two new states possible:
93 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
96 * - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
97 * pair, and attaches to a queue pair previously created by the host side.
99 * - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
100 * already created by a guest.
102 * - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
103 * vmci_qp_broker_set_page_store (see below).
105 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
106 * VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
107 * bring the queue pair into this state. Once vmci_qp_broker_set_page_store
108 * is called to register the user memory, the VMCIQPB_ATTACH_MEM state
111 * From the attached queue pair, the queue pair can enter the shutdown states
112 * when either side of the queue pair detaches. If the guest side detaches
113 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
114 * the content of the queue pair will no longer be available. If the host
115 * side detaches first, the queue pair will either enter the
116 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
117 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
118 * (e.g., the host detaches while a guest is stunned).
120 * New-style VMX'en will also unmap guest memory, if the guest is
121 * quiesced, e.g., during a snapshot operation. In that case, the guest
122 * memory will no longer be available, and the queue pair will transition from
123 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
124 * in which case the queue pair will transition from the *_NO_MEM state at that
125 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
126 * since the peer may have either attached or detached in the meantime. The
127 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
128 * *_MEM state, and vice versa.
132 * VMCIMemcpy{To,From}QueueFunc() prototypes. Functions of these
133 * types are passed around to enqueue and dequeue routines. Note that
134 * often the functions passed are simply wrappers around memcpy
137 * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
138 * there's an unused last parameter for the hosted side. In
139 * ESX, that parameter holds a buffer type.
141 typedef int vmci_memcpy_to_queue_func(struct vmci_queue
*queue
,
142 u64 queue_offset
, const void *src
,
143 size_t src_offset
, size_t size
);
144 typedef int vmci_memcpy_from_queue_func(void *dest
, size_t dest_offset
,
145 const struct vmci_queue
*queue
,
146 u64 queue_offset
, size_t size
);
148 /* The Kernel specific component of the struct vmci_queue structure. */
149 struct vmci_queue_kern_if
{
150 struct mutex __mutex
; /* Protects the queue. */
151 struct mutex
*mutex
; /* Shared by producer and consumer queues. */
152 size_t num_pages
; /* Number of pages incl. header. */
153 bool host
; /* Host or guest? */
158 } g
; /* Used by the guest. */
161 struct page
**header_page
;
162 } h
; /* Used by the host. */
167 * This structure is opaque to the clients.
170 struct vmci_handle handle
;
171 struct vmci_queue
*produce_q
;
172 struct vmci_queue
*consume_q
;
179 unsigned int blocked
;
180 unsigned int generation
;
181 wait_queue_head_t event
;
184 enum qp_broker_state
{
186 VMCIQPB_CREATED_NO_MEM
,
188 VMCIQPB_ATTACHED_NO_MEM
,
189 VMCIQPB_ATTACHED_MEM
,
190 VMCIQPB_SHUTDOWN_NO_MEM
,
191 VMCIQPB_SHUTDOWN_MEM
,
195 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
196 _qpb->state == VMCIQPB_ATTACHED_MEM || \
197 _qpb->state == VMCIQPB_SHUTDOWN_MEM)
200 * In the queue pair broker, we always use the guest point of view for
201 * the produce and consume queue values and references, e.g., the
202 * produce queue size stored is the guests produce queue size. The
203 * host endpoint will need to swap these around. The only exception is
204 * the local queue pairs on the host, in which case the host endpoint
205 * that creates the queue pair will have the right orientation, and
206 * the attaching host endpoint will need to swap.
209 struct list_head list_item
;
210 struct vmci_handle handle
;
218 struct qp_broker_entry
{
219 struct vmci_resource resource
;
223 enum qp_broker_state state
;
224 bool require_trusted_attach
;
225 bool created_by_trusted
;
226 bool vmci_page_files
; /* Created by VMX using VMCI page files */
227 struct vmci_queue
*produce_q
;
228 struct vmci_queue
*consume_q
;
229 struct vmci_queue_header saved_produce_q
;
230 struct vmci_queue_header saved_consume_q
;
231 vmci_event_release_cb wakeup_cb
;
233 void *local_mem
; /* Kernel memory for local queue pair */
236 struct qp_guest_endpoint
{
237 struct vmci_resource resource
;
242 struct ppn_set ppn_set
;
246 struct list_head head
;
247 struct mutex mutex
; /* Protect queue list. */
250 static struct qp_list qp_broker_list
= {
251 .head
= LIST_HEAD_INIT(qp_broker_list
.head
),
252 .mutex
= __MUTEX_INITIALIZER(qp_broker_list
.mutex
),
255 static struct qp_list qp_guest_endpoints
= {
256 .head
= LIST_HEAD_INIT(qp_guest_endpoints
.head
),
257 .mutex
= __MUTEX_INITIALIZER(qp_guest_endpoints
.mutex
),
260 #define INVALID_VMCI_GUEST_MEM_ID 0
261 #define QPE_NUM_PAGES(_QPE) ((u32) \
262 (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
263 DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
267 * Frees kernel VA space for a given queue and its queue header, and
268 * frees physical data pages.
270 static void qp_free_queue(void *q
, u64 size
)
272 struct vmci_queue
*queue
= q
;
277 /* Given size does not include header, so add in a page here. */
278 for (i
= 0; i
< DIV_ROUND_UP(size
, PAGE_SIZE
) + 1; i
++) {
279 dma_free_coherent(&vmci_pdev
->dev
, PAGE_SIZE
,
280 queue
->kernel_if
->u
.g
.vas
[i
],
281 queue
->kernel_if
->u
.g
.pas
[i
]);
289 * Allocates kernel queue pages of specified size with IOMMU mappings,
290 * plus space for the queue structure/kernel interface and the queue
293 static void *qp_alloc_queue(u64 size
, u32 flags
)
296 struct vmci_queue
*queue
;
297 const size_t num_pages
= DIV_ROUND_UP(size
, PAGE_SIZE
) + 1;
298 const size_t pas_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.g
.pas
);
299 const size_t vas_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.g
.vas
);
300 const size_t queue_size
=
301 sizeof(*queue
) + sizeof(*queue
->kernel_if
) +
304 queue
= vmalloc(queue_size
);
308 queue
->q_header
= NULL
;
309 queue
->saved_header
= NULL
;
310 queue
->kernel_if
= (struct vmci_queue_kern_if
*)(queue
+ 1);
311 queue
->kernel_if
->mutex
= NULL
;
312 queue
->kernel_if
->num_pages
= num_pages
;
313 queue
->kernel_if
->u
.g
.pas
= (dma_addr_t
*)(queue
->kernel_if
+ 1);
314 queue
->kernel_if
->u
.g
.vas
=
315 (void **)((u8
*)queue
->kernel_if
->u
.g
.pas
+ pas_size
);
316 queue
->kernel_if
->host
= false;
318 for (i
= 0; i
< num_pages
; i
++) {
319 queue
->kernel_if
->u
.g
.vas
[i
] =
320 dma_alloc_coherent(&vmci_pdev
->dev
, PAGE_SIZE
,
321 &queue
->kernel_if
->u
.g
.pas
[i
],
323 if (!queue
->kernel_if
->u
.g
.vas
[i
]) {
324 /* Size excl. the header. */
325 qp_free_queue(queue
, i
* PAGE_SIZE
);
330 /* Queue header is the first page. */
331 queue
->q_header
= queue
->kernel_if
->u
.g
.vas
[0];
337 * Copies from a given buffer or iovector to a VMCI Queue. Uses
338 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
339 * by traversing the offset -> page translation structure for the queue.
340 * Assumes that offset + size does not wrap around in the queue.
342 static int __qp_memcpy_to_queue(struct vmci_queue
*queue
,
348 struct vmci_queue_kern_if
*kernel_if
= queue
->kernel_if
;
349 size_t bytes_copied
= 0;
351 while (bytes_copied
< size
) {
352 const u64 page_index
=
353 (queue_offset
+ bytes_copied
) / PAGE_SIZE
;
354 const size_t page_offset
=
355 (queue_offset
+ bytes_copied
) & (PAGE_SIZE
- 1);
360 va
= kmap(kernel_if
->u
.h
.page
[page_index
]);
362 va
= kernel_if
->u
.g
.vas
[page_index
+ 1];
365 if (size
- bytes_copied
> PAGE_SIZE
- page_offset
)
366 /* Enough payload to fill up from this page. */
367 to_copy
= PAGE_SIZE
- page_offset
;
369 to_copy
= size
- bytes_copied
;
372 struct iovec
*iov
= (struct iovec
*)src
;
375 /* The iovec will track bytes_copied internally. */
376 err
= memcpy_fromiovec((u8
*)va
+ page_offset
,
380 kunmap(kernel_if
->u
.h
.page
[page_index
]);
381 return VMCI_ERROR_INVALID_ARGS
;
384 memcpy((u8
*)va
+ page_offset
,
385 (u8
*)src
+ bytes_copied
, to_copy
);
388 bytes_copied
+= to_copy
;
390 kunmap(kernel_if
->u
.h
.page
[page_index
]);
397 * Copies to a given buffer or iovector from a VMCI Queue. Uses
398 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
399 * by traversing the offset -> page translation structure for the queue.
400 * Assumes that offset + size does not wrap around in the queue.
402 static int __qp_memcpy_from_queue(void *dest
,
403 const struct vmci_queue
*queue
,
408 struct vmci_queue_kern_if
*kernel_if
= queue
->kernel_if
;
409 size_t bytes_copied
= 0;
411 while (bytes_copied
< size
) {
412 const u64 page_index
=
413 (queue_offset
+ bytes_copied
) / PAGE_SIZE
;
414 const size_t page_offset
=
415 (queue_offset
+ bytes_copied
) & (PAGE_SIZE
- 1);
420 va
= kmap(kernel_if
->u
.h
.page
[page_index
]);
422 va
= kernel_if
->u
.g
.vas
[page_index
+ 1];
425 if (size
- bytes_copied
> PAGE_SIZE
- page_offset
)
426 /* Enough payload to fill up this page. */
427 to_copy
= PAGE_SIZE
- page_offset
;
429 to_copy
= size
- bytes_copied
;
432 struct iovec
*iov
= (struct iovec
*)dest
;
435 /* The iovec will track bytes_copied internally. */
436 err
= memcpy_toiovec(iov
, (u8
*)va
+ page_offset
,
440 kunmap(kernel_if
->u
.h
.page
[page_index
]);
441 return VMCI_ERROR_INVALID_ARGS
;
444 memcpy((u8
*)dest
+ bytes_copied
,
445 (u8
*)va
+ page_offset
, to_copy
);
448 bytes_copied
+= to_copy
;
450 kunmap(kernel_if
->u
.h
.page
[page_index
]);
457 * Allocates two list of PPNs --- one for the pages in the produce queue,
458 * and the other for the pages in the consume queue. Intializes the list
459 * of PPNs with the page frame numbers of the KVA for the two queues (and
460 * the queue headers).
462 static int qp_alloc_ppn_set(void *prod_q
,
463 u64 num_produce_pages
,
465 u64 num_consume_pages
, struct ppn_set
*ppn_set
)
469 struct vmci_queue
*produce_q
= prod_q
;
470 struct vmci_queue
*consume_q
= cons_q
;
473 if (!produce_q
|| !num_produce_pages
|| !consume_q
||
474 !num_consume_pages
|| !ppn_set
)
475 return VMCI_ERROR_INVALID_ARGS
;
477 if (ppn_set
->initialized
)
478 return VMCI_ERROR_ALREADY_EXISTS
;
481 kmalloc(num_produce_pages
* sizeof(*produce_ppns
), GFP_KERNEL
);
483 return VMCI_ERROR_NO_MEM
;
486 kmalloc(num_consume_pages
* sizeof(*consume_ppns
), GFP_KERNEL
);
489 return VMCI_ERROR_NO_MEM
;
492 for (i
= 0; i
< num_produce_pages
; i
++) {
496 produce_q
->kernel_if
->u
.g
.pas
[i
] >> PAGE_SHIFT
;
497 pfn
= produce_ppns
[i
];
499 /* Fail allocation if PFN isn't supported by hypervisor. */
500 if (sizeof(pfn
) > sizeof(*produce_ppns
)
501 && pfn
!= produce_ppns
[i
])
505 for (i
= 0; i
< num_consume_pages
; i
++) {
509 consume_q
->kernel_if
->u
.g
.pas
[i
] >> PAGE_SHIFT
;
510 pfn
= consume_ppns
[i
];
512 /* Fail allocation if PFN isn't supported by hypervisor. */
513 if (sizeof(pfn
) > sizeof(*consume_ppns
)
514 && pfn
!= consume_ppns
[i
])
518 ppn_set
->num_produce_pages
= num_produce_pages
;
519 ppn_set
->num_consume_pages
= num_consume_pages
;
520 ppn_set
->produce_ppns
= produce_ppns
;
521 ppn_set
->consume_ppns
= consume_ppns
;
522 ppn_set
->initialized
= true;
528 return VMCI_ERROR_INVALID_ARGS
;
532 * Frees the two list of PPNs for a queue pair.
534 static void qp_free_ppn_set(struct ppn_set
*ppn_set
)
536 if (ppn_set
->initialized
) {
537 /* Do not call these functions on NULL inputs. */
538 kfree(ppn_set
->produce_ppns
);
539 kfree(ppn_set
->consume_ppns
);
541 memset(ppn_set
, 0, sizeof(*ppn_set
));
545 * Populates the list of PPNs in the hypercall structure with the PPNS
546 * of the produce queue and the consume queue.
548 static int qp_populate_ppn_set(u8
*call_buf
, const struct ppn_set
*ppn_set
)
550 memcpy(call_buf
, ppn_set
->produce_ppns
,
551 ppn_set
->num_produce_pages
* sizeof(*ppn_set
->produce_ppns
));
553 ppn_set
->num_produce_pages
* sizeof(*ppn_set
->produce_ppns
),
554 ppn_set
->consume_ppns
,
555 ppn_set
->num_consume_pages
* sizeof(*ppn_set
->consume_ppns
));
560 static int qp_memcpy_to_queue(struct vmci_queue
*queue
,
562 const void *src
, size_t src_offset
, size_t size
)
564 return __qp_memcpy_to_queue(queue
, queue_offset
,
565 (u8
*)src
+ src_offset
, size
, false);
568 static int qp_memcpy_from_queue(void *dest
,
570 const struct vmci_queue
*queue
,
571 u64 queue_offset
, size_t size
)
573 return __qp_memcpy_from_queue((u8
*)dest
+ dest_offset
,
574 queue
, queue_offset
, size
, false);
578 * Copies from a given iovec from a VMCI Queue.
580 static int qp_memcpy_to_queue_iov(struct vmci_queue
*queue
,
583 size_t src_offset
, size_t size
)
587 * We ignore src_offset because src is really a struct iovec * and will
588 * maintain offset internally.
590 return __qp_memcpy_to_queue(queue
, queue_offset
, src
, size
, true);
594 * Copies to a given iovec from a VMCI Queue.
596 static int qp_memcpy_from_queue_iov(void *dest
,
598 const struct vmci_queue
*queue
,
599 u64 queue_offset
, size_t size
)
602 * We ignore dest_offset because dest is really a struct iovec * and
603 * will maintain offset internally.
605 return __qp_memcpy_from_queue(dest
, queue
, queue_offset
, size
, true);
609 * Allocates kernel VA space of specified size plus space for the queue
610 * and kernel interface. This is different from the guest queue allocator,
611 * because we do not allocate our own queue header/data pages here but
612 * share those of the guest.
614 static struct vmci_queue
*qp_host_alloc_queue(u64 size
)
616 struct vmci_queue
*queue
;
617 const size_t num_pages
= DIV_ROUND_UP(size
, PAGE_SIZE
) + 1;
618 const size_t queue_size
= sizeof(*queue
) + sizeof(*(queue
->kernel_if
));
619 const size_t queue_page_size
=
620 num_pages
* sizeof(*queue
->kernel_if
->u
.h
.page
);
622 queue
= kzalloc(queue_size
+ queue_page_size
, GFP_KERNEL
);
624 queue
->q_header
= NULL
;
625 queue
->saved_header
= NULL
;
626 queue
->kernel_if
= (struct vmci_queue_kern_if
*)(queue
+ 1);
627 queue
->kernel_if
->host
= true;
628 queue
->kernel_if
->mutex
= NULL
;
629 queue
->kernel_if
->num_pages
= num_pages
;
630 queue
->kernel_if
->u
.h
.header_page
=
631 (struct page
**)((u8
*)queue
+ queue_size
);
632 queue
->kernel_if
->u
.h
.page
=
633 &queue
->kernel_if
->u
.h
.header_page
[1];
640 * Frees kernel memory for a given queue (header plus translation
643 static void qp_host_free_queue(struct vmci_queue
*queue
, u64 queue_size
)
649 * Initialize the mutex for the pair of queues. This mutex is used to
650 * protect the q_header and the buffer from changing out from under any
651 * users of either queue. Of course, it's only any good if the mutexes
652 * are actually acquired. Queue structure must lie on non-paged memory
653 * or we cannot guarantee access to the mutex.
655 static void qp_init_queue_mutex(struct vmci_queue
*produce_q
,
656 struct vmci_queue
*consume_q
)
659 * Only the host queue has shared state - the guest queues do not
660 * need to synchronize access using a queue mutex.
663 if (produce_q
->kernel_if
->host
) {
664 produce_q
->kernel_if
->mutex
= &produce_q
->kernel_if
->__mutex
;
665 consume_q
->kernel_if
->mutex
= &produce_q
->kernel_if
->__mutex
;
666 mutex_init(produce_q
->kernel_if
->mutex
);
671 * Cleans up the mutex for the pair of queues.
673 static void qp_cleanup_queue_mutex(struct vmci_queue
*produce_q
,
674 struct vmci_queue
*consume_q
)
676 if (produce_q
->kernel_if
->host
) {
677 produce_q
->kernel_if
->mutex
= NULL
;
678 consume_q
->kernel_if
->mutex
= NULL
;
683 * Acquire the mutex for the queue. Note that the produce_q and
684 * the consume_q share a mutex. So, only one of the two need to
685 * be passed in to this routine. Either will work just fine.
687 static void qp_acquire_queue_mutex(struct vmci_queue
*queue
)
689 if (queue
->kernel_if
->host
)
690 mutex_lock(queue
->kernel_if
->mutex
);
694 * Release the mutex for the queue. Note that the produce_q and
695 * the consume_q share a mutex. So, only one of the two need to
696 * be passed in to this routine. Either will work just fine.
698 static void qp_release_queue_mutex(struct vmci_queue
*queue
)
700 if (queue
->kernel_if
->host
)
701 mutex_unlock(queue
->kernel_if
->mutex
);
705 * Helper function to release pages in the PageStoreAttachInfo
706 * previously obtained using get_user_pages.
708 static void qp_release_pages(struct page
**pages
,
709 u64 num_pages
, bool dirty
)
713 for (i
= 0; i
< num_pages
; i
++) {
715 set_page_dirty(pages
[i
]);
717 page_cache_release(pages
[i
]);
723 * Lock the user pages referenced by the {produce,consume}Buffer
724 * struct into memory and populate the {produce,consume}Pages
725 * arrays in the attach structure with them.
727 static int qp_host_get_user_memory(u64 produce_uva
,
729 struct vmci_queue
*produce_q
,
730 struct vmci_queue
*consume_q
)
733 int err
= VMCI_SUCCESS
;
735 retval
= get_user_pages_fast((uintptr_t) produce_uva
,
736 produce_q
->kernel_if
->num_pages
, 1,
737 produce_q
->kernel_if
->u
.h
.header_page
);
738 if (retval
< produce_q
->kernel_if
->num_pages
) {
739 pr_warn("get_user_pages(produce) failed (retval=%d)", retval
);
740 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
742 err
= VMCI_ERROR_NO_MEM
;
746 retval
= get_user_pages_fast((uintptr_t) consume_uva
,
747 consume_q
->kernel_if
->num_pages
, 1,
748 consume_q
->kernel_if
->u
.h
.header_page
);
749 if (retval
< consume_q
->kernel_if
->num_pages
) {
750 pr_warn("get_user_pages(consume) failed (retval=%d)", retval
);
751 qp_release_pages(consume_q
->kernel_if
->u
.h
.header_page
,
753 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
754 produce_q
->kernel_if
->num_pages
, false);
755 err
= VMCI_ERROR_NO_MEM
;
763 * Registers the specification of the user pages used for backing a queue
764 * pair. Enough information to map in pages is stored in the OS specific
765 * part of the struct vmci_queue structure.
767 static int qp_host_register_user_memory(struct vmci_qp_page_store
*page_store
,
768 struct vmci_queue
*produce_q
,
769 struct vmci_queue
*consume_q
)
775 * The new style and the old style mapping only differs in
776 * that we either get a single or two UVAs, so we split the
777 * single UVA range at the appropriate spot.
779 produce_uva
= page_store
->pages
;
780 consume_uva
= page_store
->pages
+
781 produce_q
->kernel_if
->num_pages
* PAGE_SIZE
;
782 return qp_host_get_user_memory(produce_uva
, consume_uva
, produce_q
,
787 * Releases and removes the references to user pages stored in the attach
788 * struct. Pages are released from the page cache and may become
791 static void qp_host_unregister_user_memory(struct vmci_queue
*produce_q
,
792 struct vmci_queue
*consume_q
)
794 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
795 produce_q
->kernel_if
->num_pages
, true);
796 memset(produce_q
->kernel_if
->u
.h
.header_page
, 0,
797 sizeof(*produce_q
->kernel_if
->u
.h
.header_page
) *
798 produce_q
->kernel_if
->num_pages
);
799 qp_release_pages(consume_q
->kernel_if
->u
.h
.header_page
,
800 consume_q
->kernel_if
->num_pages
, true);
801 memset(consume_q
->kernel_if
->u
.h
.header_page
, 0,
802 sizeof(*consume_q
->kernel_if
->u
.h
.header_page
) *
803 consume_q
->kernel_if
->num_pages
);
807 * Once qp_host_register_user_memory has been performed on a
808 * queue, the queue pair headers can be mapped into the
809 * kernel. Once mapped, they must be unmapped with
810 * qp_host_unmap_queues prior to calling
811 * qp_host_unregister_user_memory.
814 static int qp_host_map_queues(struct vmci_queue
*produce_q
,
815 struct vmci_queue
*consume_q
)
819 if (!produce_q
->q_header
|| !consume_q
->q_header
) {
820 struct page
*headers
[2];
822 if (produce_q
->q_header
!= consume_q
->q_header
)
823 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
825 if (produce_q
->kernel_if
->u
.h
.header_page
== NULL
||
826 *produce_q
->kernel_if
->u
.h
.header_page
== NULL
)
827 return VMCI_ERROR_UNAVAILABLE
;
829 headers
[0] = *produce_q
->kernel_if
->u
.h
.header_page
;
830 headers
[1] = *consume_q
->kernel_if
->u
.h
.header_page
;
832 produce_q
->q_header
= vmap(headers
, 2, VM_MAP
, PAGE_KERNEL
);
833 if (produce_q
->q_header
!= NULL
) {
834 consume_q
->q_header
=
835 (struct vmci_queue_header
*)((u8
*)
836 produce_q
->q_header
+
838 result
= VMCI_SUCCESS
;
840 pr_warn("vmap failed\n");
841 result
= VMCI_ERROR_NO_MEM
;
844 result
= VMCI_SUCCESS
;
851 * Unmaps previously mapped queue pair headers from the kernel.
852 * Pages are unpinned.
854 static int qp_host_unmap_queues(u32 gid
,
855 struct vmci_queue
*produce_q
,
856 struct vmci_queue
*consume_q
)
858 if (produce_q
->q_header
) {
859 if (produce_q
->q_header
< consume_q
->q_header
)
860 vunmap(produce_q
->q_header
);
862 vunmap(consume_q
->q_header
);
864 produce_q
->q_header
= NULL
;
865 consume_q
->q_header
= NULL
;
872 * Finds the entry in the list corresponding to a given handle. Assumes
873 * that the list is locked.
875 static struct qp_entry
*qp_list_find(struct qp_list
*qp_list
,
876 struct vmci_handle handle
)
878 struct qp_entry
*entry
;
880 if (vmci_handle_is_invalid(handle
))
883 list_for_each_entry(entry
, &qp_list
->head
, list_item
) {
884 if (vmci_handle_is_equal(entry
->handle
, handle
))
892 * Finds the entry in the list corresponding to a given handle.
894 static struct qp_guest_endpoint
*
895 qp_guest_handle_to_entry(struct vmci_handle handle
)
897 struct qp_guest_endpoint
*entry
;
898 struct qp_entry
*qp
= qp_list_find(&qp_guest_endpoints
, handle
);
900 entry
= qp
? container_of(
901 qp
, struct qp_guest_endpoint
, qp
) : NULL
;
906 * Finds the entry in the list corresponding to a given handle.
908 static struct qp_broker_entry
*
909 qp_broker_handle_to_entry(struct vmci_handle handle
)
911 struct qp_broker_entry
*entry
;
912 struct qp_entry
*qp
= qp_list_find(&qp_broker_list
, handle
);
914 entry
= qp
? container_of(
915 qp
, struct qp_broker_entry
, qp
) : NULL
;
920 * Dispatches a queue pair event message directly into the local event
923 static int qp_notify_peer_local(bool attach
, struct vmci_handle handle
)
925 u32 context_id
= vmci_get_context_id();
926 struct vmci_event_qp ev
;
928 ev
.msg
.hdr
.dst
= vmci_make_handle(context_id
, VMCI_EVENT_HANDLER
);
929 ev
.msg
.hdr
.src
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
930 VMCI_CONTEXT_RESOURCE_ID
);
931 ev
.msg
.hdr
.payload_size
= sizeof(ev
) - sizeof(ev
.msg
.hdr
);
932 ev
.msg
.event_data
.event
=
933 attach
? VMCI_EVENT_QP_PEER_ATTACH
: VMCI_EVENT_QP_PEER_DETACH
;
934 ev
.payload
.peer_id
= context_id
;
935 ev
.payload
.handle
= handle
;
937 return vmci_event_dispatch(&ev
.msg
.hdr
);
941 * Allocates and initializes a qp_guest_endpoint structure.
942 * Allocates a queue_pair rid (and handle) iff the given entry has
943 * an invalid handle. 0 through VMCI_RESERVED_RESOURCE_ID_MAX
944 * are reserved handles. Assumes that the QP list mutex is held
947 static struct qp_guest_endpoint
*
948 qp_guest_endpoint_create(struct vmci_handle handle
,
957 struct qp_guest_endpoint
*entry
;
958 /* One page each for the queue headers. */
959 const u64 num_ppns
= DIV_ROUND_UP(produce_size
, PAGE_SIZE
) +
960 DIV_ROUND_UP(consume_size
, PAGE_SIZE
) + 2;
962 if (vmci_handle_is_invalid(handle
)) {
963 u32 context_id
= vmci_get_context_id();
965 handle
= vmci_make_handle(context_id
, VMCI_INVALID_ID
);
968 entry
= kzalloc(sizeof(*entry
), GFP_KERNEL
);
970 entry
->qp
.peer
= peer
;
971 entry
->qp
.flags
= flags
;
972 entry
->qp
.produce_size
= produce_size
;
973 entry
->qp
.consume_size
= consume_size
;
974 entry
->qp
.ref_count
= 0;
975 entry
->num_ppns
= num_ppns
;
976 entry
->produce_q
= produce_q
;
977 entry
->consume_q
= consume_q
;
978 INIT_LIST_HEAD(&entry
->qp
.list_item
);
980 /* Add resource obj */
981 result
= vmci_resource_add(&entry
->resource
,
982 VMCI_RESOURCE_TYPE_QPAIR_GUEST
,
984 entry
->qp
.handle
= vmci_resource_handle(&entry
->resource
);
985 if ((result
!= VMCI_SUCCESS
) ||
986 qp_list_find(&qp_guest_endpoints
, entry
->qp
.handle
)) {
987 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
988 handle
.context
, handle
.resource
, result
);
997 * Frees a qp_guest_endpoint structure.
999 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint
*entry
)
1001 qp_free_ppn_set(&entry
->ppn_set
);
1002 qp_cleanup_queue_mutex(entry
->produce_q
, entry
->consume_q
);
1003 qp_free_queue(entry
->produce_q
, entry
->qp
.produce_size
);
1004 qp_free_queue(entry
->consume_q
, entry
->qp
.consume_size
);
1005 /* Unlink from resource hash table and free callback */
1006 vmci_resource_remove(&entry
->resource
);
1012 * Helper to make a queue_pairAlloc hypercall when the driver is
1013 * supporting a guest device.
1015 static int qp_alloc_hypercall(const struct qp_guest_endpoint
*entry
)
1017 struct vmci_qp_alloc_msg
*alloc_msg
;
1021 if (!entry
|| entry
->num_ppns
<= 2)
1022 return VMCI_ERROR_INVALID_ARGS
;
1024 msg_size
= sizeof(*alloc_msg
) +
1025 (size_t) entry
->num_ppns
* sizeof(u32
);
1026 alloc_msg
= kmalloc(msg_size
, GFP_KERNEL
);
1028 return VMCI_ERROR_NO_MEM
;
1030 alloc_msg
->hdr
.dst
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
1031 VMCI_QUEUEPAIR_ALLOC
);
1032 alloc_msg
->hdr
.src
= VMCI_ANON_SRC_HANDLE
;
1033 alloc_msg
->hdr
.payload_size
= msg_size
- VMCI_DG_HEADERSIZE
;
1034 alloc_msg
->handle
= entry
->qp
.handle
;
1035 alloc_msg
->peer
= entry
->qp
.peer
;
1036 alloc_msg
->flags
= entry
->qp
.flags
;
1037 alloc_msg
->produce_size
= entry
->qp
.produce_size
;
1038 alloc_msg
->consume_size
= entry
->qp
.consume_size
;
1039 alloc_msg
->num_ppns
= entry
->num_ppns
;
1041 result
= qp_populate_ppn_set((u8
*)alloc_msg
+ sizeof(*alloc_msg
),
1043 if (result
== VMCI_SUCCESS
)
1044 result
= vmci_send_datagram(&alloc_msg
->hdr
);
1052 * Helper to make a queue_pairDetach hypercall when the driver is
1053 * supporting a guest device.
1055 static int qp_detatch_hypercall(struct vmci_handle handle
)
1057 struct vmci_qp_detach_msg detach_msg
;
1059 detach_msg
.hdr
.dst
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
1060 VMCI_QUEUEPAIR_DETACH
);
1061 detach_msg
.hdr
.src
= VMCI_ANON_SRC_HANDLE
;
1062 detach_msg
.hdr
.payload_size
= sizeof(handle
);
1063 detach_msg
.handle
= handle
;
1065 return vmci_send_datagram(&detach_msg
.hdr
);
1069 * Adds the given entry to the list. Assumes that the list is locked.
1071 static void qp_list_add_entry(struct qp_list
*qp_list
, struct qp_entry
*entry
)
1074 list_add(&entry
->list_item
, &qp_list
->head
);
1078 * Removes the given entry from the list. Assumes that the list is locked.
1080 static void qp_list_remove_entry(struct qp_list
*qp_list
,
1081 struct qp_entry
*entry
)
1084 list_del(&entry
->list_item
);
1088 * Helper for VMCI queue_pair detach interface. Frees the physical
1089 * pages for the queue pair.
1091 static int qp_detatch_guest_work(struct vmci_handle handle
)
1094 struct qp_guest_endpoint
*entry
;
1095 u32 ref_count
= ~0; /* To avoid compiler warning below */
1097 mutex_lock(&qp_guest_endpoints
.mutex
);
1099 entry
= qp_guest_handle_to_entry(handle
);
1101 mutex_unlock(&qp_guest_endpoints
.mutex
);
1102 return VMCI_ERROR_NOT_FOUND
;
1105 if (entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1106 result
= VMCI_SUCCESS
;
1108 if (entry
->qp
.ref_count
> 1) {
1109 result
= qp_notify_peer_local(false, handle
);
1111 * We can fail to notify a local queuepair
1112 * because we can't allocate. We still want
1113 * to release the entry if that happens, so
1114 * don't bail out yet.
1118 result
= qp_detatch_hypercall(handle
);
1119 if (result
< VMCI_SUCCESS
) {
1121 * We failed to notify a non-local queuepair.
1122 * That other queuepair might still be
1123 * accessing the shared memory, so don't
1124 * release the entry yet. It will get cleaned
1125 * up by VMCIqueue_pair_Exit() if necessary
1126 * (assuming we are going away, otherwise why
1130 mutex_unlock(&qp_guest_endpoints
.mutex
);
1136 * If we get here then we either failed to notify a local queuepair, or
1137 * we succeeded in all cases. Release the entry if required.
1140 entry
->qp
.ref_count
--;
1141 if (entry
->qp
.ref_count
== 0)
1142 qp_list_remove_entry(&qp_guest_endpoints
, &entry
->qp
);
1144 /* If we didn't remove the entry, this could change once we unlock. */
1146 ref_count
= entry
->qp
.ref_count
;
1148 mutex_unlock(&qp_guest_endpoints
.mutex
);
1151 qp_guest_endpoint_destroy(entry
);
1157 * This functions handles the actual allocation of a VMCI queue
1158 * pair guest endpoint. Allocates physical pages for the queue
1159 * pair. It makes OS dependent calls through generic wrappers.
1161 static int qp_alloc_guest_work(struct vmci_handle
*handle
,
1162 struct vmci_queue
**produce_q
,
1164 struct vmci_queue
**consume_q
,
1170 const u64 num_produce_pages
=
1171 DIV_ROUND_UP(produce_size
, PAGE_SIZE
) + 1;
1172 const u64 num_consume_pages
=
1173 DIV_ROUND_UP(consume_size
, PAGE_SIZE
) + 1;
1174 void *my_produce_q
= NULL
;
1175 void *my_consume_q
= NULL
;
1177 struct qp_guest_endpoint
*queue_pair_entry
= NULL
;
1179 if (priv_flags
!= VMCI_NO_PRIVILEGE_FLAGS
)
1180 return VMCI_ERROR_NO_ACCESS
;
1182 mutex_lock(&qp_guest_endpoints
.mutex
);
1184 queue_pair_entry
= qp_guest_handle_to_entry(*handle
);
1185 if (queue_pair_entry
) {
1186 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1187 /* Local attach case. */
1188 if (queue_pair_entry
->qp
.ref_count
> 1) {
1189 pr_devel("Error attempting to attach more than once\n");
1190 result
= VMCI_ERROR_UNAVAILABLE
;
1191 goto error_keep_entry
;
1194 if (queue_pair_entry
->qp
.produce_size
!= consume_size
||
1195 queue_pair_entry
->qp
.consume_size
!=
1197 queue_pair_entry
->qp
.flags
!=
1198 (flags
& ~VMCI_QPFLAG_ATTACH_ONLY
)) {
1199 pr_devel("Error mismatched queue pair in local attach\n");
1200 result
= VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1201 goto error_keep_entry
;
1205 * Do a local attach. We swap the consume and
1206 * produce queues for the attacher and deliver
1209 result
= qp_notify_peer_local(true, *handle
);
1210 if (result
< VMCI_SUCCESS
)
1211 goto error_keep_entry
;
1213 my_produce_q
= queue_pair_entry
->consume_q
;
1214 my_consume_q
= queue_pair_entry
->produce_q
;
1218 result
= VMCI_ERROR_ALREADY_EXISTS
;
1219 goto error_keep_entry
;
1222 my_produce_q
= qp_alloc_queue(produce_size
, flags
);
1223 if (!my_produce_q
) {
1224 pr_warn("Error allocating pages for produce queue\n");
1225 result
= VMCI_ERROR_NO_MEM
;
1229 my_consume_q
= qp_alloc_queue(consume_size
, flags
);
1230 if (!my_consume_q
) {
1231 pr_warn("Error allocating pages for consume queue\n");
1232 result
= VMCI_ERROR_NO_MEM
;
1236 queue_pair_entry
= qp_guest_endpoint_create(*handle
, peer
, flags
,
1237 produce_size
, consume_size
,
1238 my_produce_q
, my_consume_q
);
1239 if (!queue_pair_entry
) {
1240 pr_warn("Error allocating memory in %s\n", __func__
);
1241 result
= VMCI_ERROR_NO_MEM
;
1245 result
= qp_alloc_ppn_set(my_produce_q
, num_produce_pages
, my_consume_q
,
1247 &queue_pair_entry
->ppn_set
);
1248 if (result
< VMCI_SUCCESS
) {
1249 pr_warn("qp_alloc_ppn_set failed\n");
1254 * It's only necessary to notify the host if this queue pair will be
1255 * attached to from another context.
1257 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1258 /* Local create case. */
1259 u32 context_id
= vmci_get_context_id();
1262 * Enforce similar checks on local queue pairs as we
1263 * do for regular ones. The handle's context must
1264 * match the creator or attacher context id (here they
1265 * are both the current context id) and the
1266 * attach-only flag cannot exist during create. We
1267 * also ensure specified peer is this context or an
1270 if (queue_pair_entry
->qp
.handle
.context
!= context_id
||
1271 (queue_pair_entry
->qp
.peer
!= VMCI_INVALID_ID
&&
1272 queue_pair_entry
->qp
.peer
!= context_id
)) {
1273 result
= VMCI_ERROR_NO_ACCESS
;
1277 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_ATTACH_ONLY
) {
1278 result
= VMCI_ERROR_NOT_FOUND
;
1282 result
= qp_alloc_hypercall(queue_pair_entry
);
1283 if (result
< VMCI_SUCCESS
) {
1284 pr_warn("qp_alloc_hypercall result = %d\n", result
);
1289 qp_init_queue_mutex((struct vmci_queue
*)my_produce_q
,
1290 (struct vmci_queue
*)my_consume_q
);
1292 qp_list_add_entry(&qp_guest_endpoints
, &queue_pair_entry
->qp
);
1295 queue_pair_entry
->qp
.ref_count
++;
1296 *handle
= queue_pair_entry
->qp
.handle
;
1297 *produce_q
= (struct vmci_queue
*)my_produce_q
;
1298 *consume_q
= (struct vmci_queue
*)my_consume_q
;
1301 * We should initialize the queue pair header pages on a local
1302 * queue pair create. For non-local queue pairs, the
1303 * hypervisor initializes the header pages in the create step.
1305 if ((queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) &&
1306 queue_pair_entry
->qp
.ref_count
== 1) {
1307 vmci_q_header_init((*produce_q
)->q_header
, *handle
);
1308 vmci_q_header_init((*consume_q
)->q_header
, *handle
);
1311 mutex_unlock(&qp_guest_endpoints
.mutex
);
1313 return VMCI_SUCCESS
;
1316 mutex_unlock(&qp_guest_endpoints
.mutex
);
1317 if (queue_pair_entry
) {
1318 /* The queues will be freed inside the destroy routine. */
1319 qp_guest_endpoint_destroy(queue_pair_entry
);
1321 qp_free_queue(my_produce_q
, produce_size
);
1322 qp_free_queue(my_consume_q
, consume_size
);
1327 /* This path should only be used when an existing entry was found. */
1328 mutex_unlock(&qp_guest_endpoints
.mutex
);
1333 * The first endpoint issuing a queue pair allocation will create the state
1334 * of the queue pair in the queue pair broker.
1336 * If the creator is a guest, it will associate a VMX virtual address range
1337 * with the queue pair as specified by the page_store. For compatibility with
1338 * older VMX'en, that would use a separate step to set the VMX virtual
1339 * address range, the virtual address range can be registered later using
1340 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1343 * If the creator is the host, a page_store of NULL should be used as well,
1344 * since the host is not able to supply a page store for the queue pair.
1346 * For older VMX and host callers, the queue pair will be created in the
1347 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1348 * created in VMCOQPB_CREATED_MEM state.
1350 static int qp_broker_create(struct vmci_handle handle
,
1356 struct vmci_qp_page_store
*page_store
,
1357 struct vmci_ctx
*context
,
1358 vmci_event_release_cb wakeup_cb
,
1359 void *client_data
, struct qp_broker_entry
**ent
)
1361 struct qp_broker_entry
*entry
= NULL
;
1362 const u32 context_id
= vmci_ctx_get_id(context
);
1363 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1365 u64 guest_produce_size
;
1366 u64 guest_consume_size
;
1368 /* Do not create if the caller asked not to. */
1369 if (flags
& VMCI_QPFLAG_ATTACH_ONLY
)
1370 return VMCI_ERROR_NOT_FOUND
;
1373 * Creator's context ID should match handle's context ID or the creator
1374 * must allow the context in handle's context ID as the "peer".
1376 if (handle
.context
!= context_id
&& handle
.context
!= peer
)
1377 return VMCI_ERROR_NO_ACCESS
;
1379 if (VMCI_CONTEXT_IS_VM(context_id
) && VMCI_CONTEXT_IS_VM(peer
))
1380 return VMCI_ERROR_DST_UNREACHABLE
;
1383 * Creator's context ID for local queue pairs should match the
1384 * peer, if a peer is specified.
1386 if (is_local
&& peer
!= VMCI_INVALID_ID
&& context_id
!= peer
)
1387 return VMCI_ERROR_NO_ACCESS
;
1389 entry
= kzalloc(sizeof(*entry
), GFP_ATOMIC
);
1391 return VMCI_ERROR_NO_MEM
;
1393 if (vmci_ctx_get_id(context
) == VMCI_HOST_CONTEXT_ID
&& !is_local
) {
1395 * The queue pair broker entry stores values from the guest
1396 * point of view, so a creating host side endpoint should swap
1397 * produce and consume values -- unless it is a local queue
1398 * pair, in which case no swapping is necessary, since the local
1399 * attacher will swap queues.
1402 guest_produce_size
= consume_size
;
1403 guest_consume_size
= produce_size
;
1405 guest_produce_size
= produce_size
;
1406 guest_consume_size
= consume_size
;
1409 entry
->qp
.handle
= handle
;
1410 entry
->qp
.peer
= peer
;
1411 entry
->qp
.flags
= flags
;
1412 entry
->qp
.produce_size
= guest_produce_size
;
1413 entry
->qp
.consume_size
= guest_consume_size
;
1414 entry
->qp
.ref_count
= 1;
1415 entry
->create_id
= context_id
;
1416 entry
->attach_id
= VMCI_INVALID_ID
;
1417 entry
->state
= VMCIQPB_NEW
;
1418 entry
->require_trusted_attach
=
1419 !!(context
->priv_flags
& VMCI_PRIVILEGE_FLAG_RESTRICTED
);
1420 entry
->created_by_trusted
=
1421 !!(priv_flags
& VMCI_PRIVILEGE_FLAG_TRUSTED
);
1422 entry
->vmci_page_files
= false;
1423 entry
->wakeup_cb
= wakeup_cb
;
1424 entry
->client_data
= client_data
;
1425 entry
->produce_q
= qp_host_alloc_queue(guest_produce_size
);
1426 if (entry
->produce_q
== NULL
) {
1427 result
= VMCI_ERROR_NO_MEM
;
1430 entry
->consume_q
= qp_host_alloc_queue(guest_consume_size
);
1431 if (entry
->consume_q
== NULL
) {
1432 result
= VMCI_ERROR_NO_MEM
;
1436 qp_init_queue_mutex(entry
->produce_q
, entry
->consume_q
);
1438 INIT_LIST_HEAD(&entry
->qp
.list_item
);
1443 entry
->local_mem
= kcalloc(QPE_NUM_PAGES(entry
->qp
),
1444 PAGE_SIZE
, GFP_KERNEL
);
1445 if (entry
->local_mem
== NULL
) {
1446 result
= VMCI_ERROR_NO_MEM
;
1449 entry
->state
= VMCIQPB_CREATED_MEM
;
1450 entry
->produce_q
->q_header
= entry
->local_mem
;
1451 tmp
= (u8
*)entry
->local_mem
+ PAGE_SIZE
*
1452 (DIV_ROUND_UP(entry
->qp
.produce_size
, PAGE_SIZE
) + 1);
1453 entry
->consume_q
->q_header
= (struct vmci_queue_header
*)tmp
;
1454 } else if (page_store
) {
1456 * The VMX already initialized the queue pair headers, so no
1457 * need for the kernel side to do that.
1459 result
= qp_host_register_user_memory(page_store
,
1462 if (result
< VMCI_SUCCESS
)
1465 entry
->state
= VMCIQPB_CREATED_MEM
;
1468 * A create without a page_store may be either a host
1469 * side create (in which case we are waiting for the
1470 * guest side to supply the memory) or an old style
1471 * queue pair create (in which case we will expect a
1472 * set page store call as the next step).
1474 entry
->state
= VMCIQPB_CREATED_NO_MEM
;
1477 qp_list_add_entry(&qp_broker_list
, &entry
->qp
);
1481 /* Add to resource obj */
1482 result
= vmci_resource_add(&entry
->resource
,
1483 VMCI_RESOURCE_TYPE_QPAIR_HOST
,
1485 if (result
!= VMCI_SUCCESS
) {
1486 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1487 handle
.context
, handle
.resource
, result
);
1491 entry
->qp
.handle
= vmci_resource_handle(&entry
->resource
);
1493 vmci_q_header_init(entry
->produce_q
->q_header
,
1495 vmci_q_header_init(entry
->consume_q
->q_header
,
1499 vmci_ctx_qp_create(context
, entry
->qp
.handle
);
1501 return VMCI_SUCCESS
;
1504 if (entry
!= NULL
) {
1505 qp_host_free_queue(entry
->produce_q
, guest_produce_size
);
1506 qp_host_free_queue(entry
->consume_q
, guest_consume_size
);
1514 * Enqueues an event datagram to notify the peer VM attached to
1515 * the given queue pair handle about attach/detach event by the
1516 * given VM. Returns Payload size of datagram enqueued on
1517 * success, error code otherwise.
1519 static int qp_notify_peer(bool attach
,
1520 struct vmci_handle handle
,
1525 struct vmci_event_qp ev
;
1527 if (vmci_handle_is_invalid(handle
) || my_id
== VMCI_INVALID_ID
||
1528 peer_id
== VMCI_INVALID_ID
)
1529 return VMCI_ERROR_INVALID_ARGS
;
1532 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1533 * number of pending events from the hypervisor to a given VM
1534 * otherwise a rogue VM could do an arbitrary number of attach
1535 * and detach operations causing memory pressure in the host
1539 ev
.msg
.hdr
.dst
= vmci_make_handle(peer_id
, VMCI_EVENT_HANDLER
);
1540 ev
.msg
.hdr
.src
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
1541 VMCI_CONTEXT_RESOURCE_ID
);
1542 ev
.msg
.hdr
.payload_size
= sizeof(ev
) - sizeof(ev
.msg
.hdr
);
1543 ev
.msg
.event_data
.event
= attach
?
1544 VMCI_EVENT_QP_PEER_ATTACH
: VMCI_EVENT_QP_PEER_DETACH
;
1545 ev
.payload
.handle
= handle
;
1546 ev
.payload
.peer_id
= my_id
;
1548 rv
= vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID
,
1549 &ev
.msg
.hdr
, false);
1550 if (rv
< VMCI_SUCCESS
)
1551 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1552 attach
? "ATTACH" : "DETACH", peer_id
);
1558 * The second endpoint issuing a queue pair allocation will attach to
1559 * the queue pair registered with the queue pair broker.
1561 * If the attacher is a guest, it will associate a VMX virtual address
1562 * range with the queue pair as specified by the page_store. At this
1563 * point, the already attach host endpoint may start using the queue
1564 * pair, and an attach event is sent to it. For compatibility with
1565 * older VMX'en, that used a separate step to set the VMX virtual
1566 * address range, the virtual address range can be registered later
1567 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1568 * NULL should be used, and the attach event will be generated once
1569 * the actual page store has been set.
1571 * If the attacher is the host, a page_store of NULL should be used as
1572 * well, since the page store information is already set by the guest.
1574 * For new VMX and host callers, the queue pair will be moved to the
1575 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1576 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1578 static int qp_broker_attach(struct qp_broker_entry
*entry
,
1584 struct vmci_qp_page_store
*page_store
,
1585 struct vmci_ctx
*context
,
1586 vmci_event_release_cb wakeup_cb
,
1588 struct qp_broker_entry
**ent
)
1590 const u32 context_id
= vmci_ctx_get_id(context
);
1591 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1594 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
&&
1595 entry
->state
!= VMCIQPB_CREATED_MEM
)
1596 return VMCI_ERROR_UNAVAILABLE
;
1599 if (!(entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) ||
1600 context_id
!= entry
->create_id
) {
1601 return VMCI_ERROR_INVALID_ARGS
;
1603 } else if (context_id
== entry
->create_id
||
1604 context_id
== entry
->attach_id
) {
1605 return VMCI_ERROR_ALREADY_EXISTS
;
1608 if (VMCI_CONTEXT_IS_VM(context_id
) &&
1609 VMCI_CONTEXT_IS_VM(entry
->create_id
))
1610 return VMCI_ERROR_DST_UNREACHABLE
;
1613 * If we are attaching from a restricted context then the queuepair
1614 * must have been created by a trusted endpoint.
1616 if ((context
->priv_flags
& VMCI_PRIVILEGE_FLAG_RESTRICTED
) &&
1617 !entry
->created_by_trusted
)
1618 return VMCI_ERROR_NO_ACCESS
;
1621 * If we are attaching to a queuepair that was created by a restricted
1622 * context then we must be trusted.
1624 if (entry
->require_trusted_attach
&&
1625 (!(priv_flags
& VMCI_PRIVILEGE_FLAG_TRUSTED
)))
1626 return VMCI_ERROR_NO_ACCESS
;
1629 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1630 * control check is not performed.
1632 if (entry
->qp
.peer
!= VMCI_INVALID_ID
&& entry
->qp
.peer
!= context_id
)
1633 return VMCI_ERROR_NO_ACCESS
;
1635 if (entry
->create_id
== VMCI_HOST_CONTEXT_ID
) {
1637 * Do not attach if the caller doesn't support Host Queue Pairs
1638 * and a host created this queue pair.
1641 if (!vmci_ctx_supports_host_qp(context
))
1642 return VMCI_ERROR_INVALID_RESOURCE
;
1644 } else if (context_id
== VMCI_HOST_CONTEXT_ID
) {
1645 struct vmci_ctx
*create_context
;
1646 bool supports_host_qp
;
1649 * Do not attach a host to a user created queue pair if that
1650 * user doesn't support host queue pair end points.
1653 create_context
= vmci_ctx_get(entry
->create_id
);
1654 supports_host_qp
= vmci_ctx_supports_host_qp(create_context
);
1655 vmci_ctx_put(create_context
);
1657 if (!supports_host_qp
)
1658 return VMCI_ERROR_INVALID_RESOURCE
;
1661 if ((entry
->qp
.flags
& ~VMCI_QP_ASYMM
) != (flags
& ~VMCI_QP_ASYMM_PEER
))
1662 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1664 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
1666 * The queue pair broker entry stores values from the guest
1667 * point of view, so an attaching guest should match the values
1668 * stored in the entry.
1671 if (entry
->qp
.produce_size
!= produce_size
||
1672 entry
->qp
.consume_size
!= consume_size
) {
1673 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1675 } else if (entry
->qp
.produce_size
!= consume_size
||
1676 entry
->qp
.consume_size
!= produce_size
) {
1677 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1680 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
1682 * If a guest attached to a queue pair, it will supply
1683 * the backing memory. If this is a pre NOVMVM vmx,
1684 * the backing memory will be supplied by calling
1685 * vmci_qp_broker_set_page_store() following the
1686 * return of the vmci_qp_broker_alloc() call. If it is
1687 * a vmx of version NOVMVM or later, the page store
1688 * must be supplied as part of the
1689 * vmci_qp_broker_alloc call. Under all circumstances
1690 * must the initially created queue pair not have any
1691 * memory associated with it already.
1694 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
)
1695 return VMCI_ERROR_INVALID_ARGS
;
1697 if (page_store
!= NULL
) {
1699 * Patch up host state to point to guest
1700 * supplied memory. The VMX already
1701 * initialized the queue pair headers, so no
1702 * need for the kernel side to do that.
1705 result
= qp_host_register_user_memory(page_store
,
1708 if (result
< VMCI_SUCCESS
)
1711 entry
->state
= VMCIQPB_ATTACHED_MEM
;
1713 entry
->state
= VMCIQPB_ATTACHED_NO_MEM
;
1715 } else if (entry
->state
== VMCIQPB_CREATED_NO_MEM
) {
1717 * The host side is attempting to attach to a queue
1718 * pair that doesn't have any memory associated with
1719 * it. This must be a pre NOVMVM vmx that hasn't set
1720 * the page store information yet, or a quiesced VM.
1723 return VMCI_ERROR_UNAVAILABLE
;
1725 /* The host side has successfully attached to a queue pair. */
1726 entry
->state
= VMCIQPB_ATTACHED_MEM
;
1729 if (entry
->state
== VMCIQPB_ATTACHED_MEM
) {
1731 qp_notify_peer(true, entry
->qp
.handle
, context_id
,
1733 if (result
< VMCI_SUCCESS
)
1734 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1735 entry
->create_id
, entry
->qp
.handle
.context
,
1736 entry
->qp
.handle
.resource
);
1739 entry
->attach_id
= context_id
;
1740 entry
->qp
.ref_count
++;
1742 entry
->wakeup_cb
= wakeup_cb
;
1743 entry
->client_data
= client_data
;
1747 * When attaching to local queue pairs, the context already has
1748 * an entry tracking the queue pair, so don't add another one.
1751 vmci_ctx_qp_create(context
, entry
->qp
.handle
);
1756 return VMCI_SUCCESS
;
1760 * queue_pair_Alloc for use when setting up queue pair endpoints
1763 static int qp_broker_alloc(struct vmci_handle handle
,
1769 struct vmci_qp_page_store
*page_store
,
1770 struct vmci_ctx
*context
,
1771 vmci_event_release_cb wakeup_cb
,
1773 struct qp_broker_entry
**ent
,
1776 const u32 context_id
= vmci_ctx_get_id(context
);
1778 struct qp_broker_entry
*entry
= NULL
;
1779 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1782 if (vmci_handle_is_invalid(handle
) ||
1783 (flags
& ~VMCI_QP_ALL_FLAGS
) || is_local
||
1784 !(produce_size
|| consume_size
) ||
1785 !context
|| context_id
== VMCI_INVALID_ID
||
1786 handle
.context
== VMCI_INVALID_ID
) {
1787 return VMCI_ERROR_INVALID_ARGS
;
1790 if (page_store
&& !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store
))
1791 return VMCI_ERROR_INVALID_ARGS
;
1794 * In the initial argument check, we ensure that non-vmkernel hosts
1795 * are not allowed to create local queue pairs.
1798 mutex_lock(&qp_broker_list
.mutex
);
1800 if (!is_local
&& vmci_ctx_qp_exists(context
, handle
)) {
1801 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1802 context_id
, handle
.context
, handle
.resource
);
1803 mutex_unlock(&qp_broker_list
.mutex
);
1804 return VMCI_ERROR_ALREADY_EXISTS
;
1807 if (handle
.resource
!= VMCI_INVALID_ID
)
1808 entry
= qp_broker_handle_to_entry(handle
);
1813 qp_broker_create(handle
, peer
, flags
, priv_flags
,
1814 produce_size
, consume_size
, page_store
,
1815 context
, wakeup_cb
, client_data
, ent
);
1819 qp_broker_attach(entry
, peer
, flags
, priv_flags
,
1820 produce_size
, consume_size
, page_store
,
1821 context
, wakeup_cb
, client_data
, ent
);
1824 mutex_unlock(&qp_broker_list
.mutex
);
1827 *swap
= (context_id
== VMCI_HOST_CONTEXT_ID
) &&
1828 !(create
&& is_local
);
1834 * This function implements the kernel API for allocating a queue
1837 static int qp_alloc_host_work(struct vmci_handle
*handle
,
1838 struct vmci_queue
**produce_q
,
1840 struct vmci_queue
**consume_q
,
1845 vmci_event_release_cb wakeup_cb
,
1848 struct vmci_handle new_handle
;
1849 struct vmci_ctx
*context
;
1850 struct qp_broker_entry
*entry
;
1854 if (vmci_handle_is_invalid(*handle
)) {
1855 new_handle
= vmci_make_handle(
1856 VMCI_HOST_CONTEXT_ID
, VMCI_INVALID_ID
);
1858 new_handle
= *handle
;
1860 context
= vmci_ctx_get(VMCI_HOST_CONTEXT_ID
);
1863 qp_broker_alloc(new_handle
, peer
, flags
, priv_flags
,
1864 produce_size
, consume_size
, NULL
, context
,
1865 wakeup_cb
, client_data
, &entry
, &swap
);
1866 if (result
== VMCI_SUCCESS
) {
1869 * If this is a local queue pair, the attacher
1870 * will swap around produce and consume
1874 *produce_q
= entry
->consume_q
;
1875 *consume_q
= entry
->produce_q
;
1877 *produce_q
= entry
->produce_q
;
1878 *consume_q
= entry
->consume_q
;
1881 *handle
= vmci_resource_handle(&entry
->resource
);
1883 *handle
= VMCI_INVALID_HANDLE
;
1884 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1887 vmci_ctx_put(context
);
1892 * Allocates a VMCI queue_pair. Only checks validity of input
1893 * arguments. The real work is done in the host or guest
1894 * specific function.
1896 int vmci_qp_alloc(struct vmci_handle
*handle
,
1897 struct vmci_queue
**produce_q
,
1899 struct vmci_queue
**consume_q
,
1904 bool guest_endpoint
,
1905 vmci_event_release_cb wakeup_cb
,
1908 if (!handle
|| !produce_q
|| !consume_q
||
1909 (!produce_size
&& !consume_size
) || (flags
& ~VMCI_QP_ALL_FLAGS
))
1910 return VMCI_ERROR_INVALID_ARGS
;
1912 if (guest_endpoint
) {
1913 return qp_alloc_guest_work(handle
, produce_q
,
1914 produce_size
, consume_q
,
1918 return qp_alloc_host_work(handle
, produce_q
,
1919 produce_size
, consume_q
,
1920 consume_size
, peer
, flags
,
1921 priv_flags
, wakeup_cb
, client_data
);
1926 * This function implements the host kernel API for detaching from
1929 static int qp_detatch_host_work(struct vmci_handle handle
)
1932 struct vmci_ctx
*context
;
1934 context
= vmci_ctx_get(VMCI_HOST_CONTEXT_ID
);
1936 result
= vmci_qp_broker_detach(handle
, context
);
1938 vmci_ctx_put(context
);
1943 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1944 * Real work is done in the host or guest specific function.
1946 static int qp_detatch(struct vmci_handle handle
, bool guest_endpoint
)
1948 if (vmci_handle_is_invalid(handle
))
1949 return VMCI_ERROR_INVALID_ARGS
;
1952 return qp_detatch_guest_work(handle
);
1954 return qp_detatch_host_work(handle
);
1958 * Returns the entry from the head of the list. Assumes that the list is
1961 static struct qp_entry
*qp_list_get_head(struct qp_list
*qp_list
)
1963 if (!list_empty(&qp_list
->head
)) {
1964 struct qp_entry
*entry
=
1965 list_first_entry(&qp_list
->head
, struct qp_entry
,
1973 void vmci_qp_broker_exit(void)
1975 struct qp_entry
*entry
;
1976 struct qp_broker_entry
*be
;
1978 mutex_lock(&qp_broker_list
.mutex
);
1980 while ((entry
= qp_list_get_head(&qp_broker_list
))) {
1981 be
= (struct qp_broker_entry
*)entry
;
1983 qp_list_remove_entry(&qp_broker_list
, entry
);
1987 mutex_unlock(&qp_broker_list
.mutex
);
1991 * Requests that a queue pair be allocated with the VMCI queue
1992 * pair broker. Allocates a queue pair entry if one does not
1993 * exist. Attaches to one if it exists, and retrieves the page
1994 * files backing that queue_pair. Assumes that the queue pair
1995 * broker lock is held.
1997 int vmci_qp_broker_alloc(struct vmci_handle handle
,
2003 struct vmci_qp_page_store
*page_store
,
2004 struct vmci_ctx
*context
)
2006 return qp_broker_alloc(handle
, peer
, flags
, priv_flags
,
2007 produce_size
, consume_size
,
2008 page_store
, context
, NULL
, NULL
, NULL
, NULL
);
2012 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2013 * step to add the UVAs of the VMX mapping of the queue pair. This function
2014 * provides backwards compatibility with such VMX'en, and takes care of
2015 * registering the page store for a queue pair previously allocated by the
2016 * VMX during create or attach. This function will move the queue pair state
2017 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2018 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2019 * attached state with memory, the queue pair is ready to be used by the
2020 * host peer, and an attached event will be generated.
2022 * Assumes that the queue pair broker lock is held.
2024 * This function is only used by the hosted platform, since there is no
2025 * issue with backwards compatibility for vmkernel.
2027 int vmci_qp_broker_set_page_store(struct vmci_handle handle
,
2030 struct vmci_ctx
*context
)
2032 struct qp_broker_entry
*entry
;
2034 const u32 context_id
= vmci_ctx_get_id(context
);
2036 if (vmci_handle_is_invalid(handle
) || !context
||
2037 context_id
== VMCI_INVALID_ID
)
2038 return VMCI_ERROR_INVALID_ARGS
;
2041 * We only support guest to host queue pairs, so the VMX must
2042 * supply UVAs for the mapped page files.
2045 if (produce_uva
== 0 || consume_uva
== 0)
2046 return VMCI_ERROR_INVALID_ARGS
;
2048 mutex_lock(&qp_broker_list
.mutex
);
2050 if (!vmci_ctx_qp_exists(context
, handle
)) {
2051 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2052 context_id
, handle
.context
, handle
.resource
);
2053 result
= VMCI_ERROR_NOT_FOUND
;
2057 entry
= qp_broker_handle_to_entry(handle
);
2059 result
= VMCI_ERROR_NOT_FOUND
;
2064 * If I'm the owner then I can set the page store.
2066 * Or, if a host created the queue_pair and I'm the attached peer
2067 * then I can set the page store.
2069 if (entry
->create_id
!= context_id
&&
2070 (entry
->create_id
!= VMCI_HOST_CONTEXT_ID
||
2071 entry
->attach_id
!= context_id
)) {
2072 result
= VMCI_ERROR_QUEUEPAIR_NOTOWNER
;
2076 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
&&
2077 entry
->state
!= VMCIQPB_ATTACHED_NO_MEM
) {
2078 result
= VMCI_ERROR_UNAVAILABLE
;
2082 result
= qp_host_get_user_memory(produce_uva
, consume_uva
,
2083 entry
->produce_q
, entry
->consume_q
);
2084 if (result
< VMCI_SUCCESS
)
2087 result
= qp_host_map_queues(entry
->produce_q
, entry
->consume_q
);
2088 if (result
< VMCI_SUCCESS
) {
2089 qp_host_unregister_user_memory(entry
->produce_q
,
2094 if (entry
->state
== VMCIQPB_CREATED_NO_MEM
)
2095 entry
->state
= VMCIQPB_CREATED_MEM
;
2097 entry
->state
= VMCIQPB_ATTACHED_MEM
;
2099 entry
->vmci_page_files
= true;
2101 if (entry
->state
== VMCIQPB_ATTACHED_MEM
) {
2103 qp_notify_peer(true, handle
, context_id
, entry
->create_id
);
2104 if (result
< VMCI_SUCCESS
) {
2105 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2106 entry
->create_id
, entry
->qp
.handle
.context
,
2107 entry
->qp
.handle
.resource
);
2111 result
= VMCI_SUCCESS
;
2113 mutex_unlock(&qp_broker_list
.mutex
);
2118 * Resets saved queue headers for the given QP broker
2119 * entry. Should be used when guest memory becomes available
2120 * again, or the guest detaches.
2122 static void qp_reset_saved_headers(struct qp_broker_entry
*entry
)
2124 entry
->produce_q
->saved_header
= NULL
;
2125 entry
->consume_q
->saved_header
= NULL
;
2129 * The main entry point for detaching from a queue pair registered with the
2130 * queue pair broker. If more than one endpoint is attached to the queue
2131 * pair, the first endpoint will mainly decrement a reference count and
2132 * generate a notification to its peer. The last endpoint will clean up
2133 * the queue pair state registered with the broker.
2135 * When a guest endpoint detaches, it will unmap and unregister the guest
2136 * memory backing the queue pair. If the host is still attached, it will
2137 * no longer be able to access the queue pair content.
2139 * If the queue pair is already in a state where there is no memory
2140 * registered for the queue pair (any *_NO_MEM state), it will transition to
2141 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2142 * endpoint is the first of two endpoints to detach. If the host endpoint is
2143 * the first out of two to detach, the queue pair will move to the
2144 * VMCIQPB_SHUTDOWN_MEM state.
2146 int vmci_qp_broker_detach(struct vmci_handle handle
, struct vmci_ctx
*context
)
2148 struct qp_broker_entry
*entry
;
2149 const u32 context_id
= vmci_ctx_get_id(context
);
2151 bool is_local
= false;
2154 if (vmci_handle_is_invalid(handle
) || !context
||
2155 context_id
== VMCI_INVALID_ID
) {
2156 return VMCI_ERROR_INVALID_ARGS
;
2159 mutex_lock(&qp_broker_list
.mutex
);
2161 if (!vmci_ctx_qp_exists(context
, handle
)) {
2162 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2163 context_id
, handle
.context
, handle
.resource
);
2164 result
= VMCI_ERROR_NOT_FOUND
;
2168 entry
= qp_broker_handle_to_entry(handle
);
2170 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2171 context_id
, handle
.context
, handle
.resource
);
2172 result
= VMCI_ERROR_NOT_FOUND
;
2176 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2177 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2181 if (context_id
== entry
->create_id
) {
2182 peer_id
= entry
->attach_id
;
2183 entry
->create_id
= VMCI_INVALID_ID
;
2185 peer_id
= entry
->create_id
;
2186 entry
->attach_id
= VMCI_INVALID_ID
;
2188 entry
->qp
.ref_count
--;
2190 is_local
= entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
;
2192 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
2193 bool headers_mapped
;
2196 * Pre NOVMVM vmx'en may detach from a queue pair
2197 * before setting the page store, and in that case
2198 * there is no user memory to detach from. Also, more
2199 * recent VMX'en may detach from a queue pair in the
2203 qp_acquire_queue_mutex(entry
->produce_q
);
2204 headers_mapped
= entry
->produce_q
->q_header
||
2205 entry
->consume_q
->q_header
;
2206 if (QPBROKERSTATE_HAS_MEM(entry
)) {
2208 qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID
,
2211 if (result
< VMCI_SUCCESS
)
2212 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2213 handle
.context
, handle
.resource
,
2216 if (entry
->vmci_page_files
)
2217 qp_host_unregister_user_memory(entry
->produce_q
,
2221 qp_host_unregister_user_memory(entry
->produce_q
,
2227 if (!headers_mapped
)
2228 qp_reset_saved_headers(entry
);
2230 qp_release_queue_mutex(entry
->produce_q
);
2232 if (!headers_mapped
&& entry
->wakeup_cb
)
2233 entry
->wakeup_cb(entry
->client_data
);
2236 if (entry
->wakeup_cb
) {
2237 entry
->wakeup_cb
= NULL
;
2238 entry
->client_data
= NULL
;
2242 if (entry
->qp
.ref_count
== 0) {
2243 qp_list_remove_entry(&qp_broker_list
, &entry
->qp
);
2246 kfree(entry
->local_mem
);
2248 qp_cleanup_queue_mutex(entry
->produce_q
, entry
->consume_q
);
2249 qp_host_free_queue(entry
->produce_q
, entry
->qp
.produce_size
);
2250 qp_host_free_queue(entry
->consume_q
, entry
->qp
.consume_size
);
2251 /* Unlink from resource hash table and free callback */
2252 vmci_resource_remove(&entry
->resource
);
2256 vmci_ctx_qp_destroy(context
, handle
);
2258 qp_notify_peer(false, handle
, context_id
, peer_id
);
2259 if (context_id
== VMCI_HOST_CONTEXT_ID
&&
2260 QPBROKERSTATE_HAS_MEM(entry
)) {
2261 entry
->state
= VMCIQPB_SHUTDOWN_MEM
;
2263 entry
->state
= VMCIQPB_SHUTDOWN_NO_MEM
;
2267 vmci_ctx_qp_destroy(context
, handle
);
2270 result
= VMCI_SUCCESS
;
2272 mutex_unlock(&qp_broker_list
.mutex
);
2277 * Establishes the necessary mappings for a queue pair given a
2278 * reference to the queue pair guest memory. This is usually
2279 * called when a guest is unquiesced and the VMX is allowed to
2280 * map guest memory once again.
2282 int vmci_qp_broker_map(struct vmci_handle handle
,
2283 struct vmci_ctx
*context
,
2286 struct qp_broker_entry
*entry
;
2287 const u32 context_id
= vmci_ctx_get_id(context
);
2288 bool is_local
= false;
2291 if (vmci_handle_is_invalid(handle
) || !context
||
2292 context_id
== VMCI_INVALID_ID
)
2293 return VMCI_ERROR_INVALID_ARGS
;
2295 mutex_lock(&qp_broker_list
.mutex
);
2297 if (!vmci_ctx_qp_exists(context
, handle
)) {
2298 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2299 context_id
, handle
.context
, handle
.resource
);
2300 result
= VMCI_ERROR_NOT_FOUND
;
2304 entry
= qp_broker_handle_to_entry(handle
);
2306 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2307 context_id
, handle
.context
, handle
.resource
);
2308 result
= VMCI_ERROR_NOT_FOUND
;
2312 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2313 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2317 is_local
= entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
;
2318 result
= VMCI_SUCCESS
;
2320 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
2321 struct vmci_qp_page_store page_store
;
2323 page_store
.pages
= guest_mem
;
2324 page_store
.len
= QPE_NUM_PAGES(entry
->qp
);
2326 qp_acquire_queue_mutex(entry
->produce_q
);
2327 qp_reset_saved_headers(entry
);
2329 qp_host_register_user_memory(&page_store
,
2332 qp_release_queue_mutex(entry
->produce_q
);
2333 if (result
== VMCI_SUCCESS
) {
2334 /* Move state from *_NO_MEM to *_MEM */
2338 if (entry
->wakeup_cb
)
2339 entry
->wakeup_cb(entry
->client_data
);
2344 mutex_unlock(&qp_broker_list
.mutex
);
2349 * Saves a snapshot of the queue headers for the given QP broker
2350 * entry. Should be used when guest memory is unmapped.
2352 * VMCI_SUCCESS on success, appropriate error code if guest memory
2353 * can't be accessed..
2355 static int qp_save_headers(struct qp_broker_entry
*entry
)
2359 if (entry
->produce_q
->saved_header
!= NULL
&&
2360 entry
->consume_q
->saved_header
!= NULL
) {
2362 * If the headers have already been saved, we don't need to do
2363 * it again, and we don't want to map in the headers
2367 return VMCI_SUCCESS
;
2370 if (NULL
== entry
->produce_q
->q_header
||
2371 NULL
== entry
->consume_q
->q_header
) {
2372 result
= qp_host_map_queues(entry
->produce_q
, entry
->consume_q
);
2373 if (result
< VMCI_SUCCESS
)
2377 memcpy(&entry
->saved_produce_q
, entry
->produce_q
->q_header
,
2378 sizeof(entry
->saved_produce_q
));
2379 entry
->produce_q
->saved_header
= &entry
->saved_produce_q
;
2380 memcpy(&entry
->saved_consume_q
, entry
->consume_q
->q_header
,
2381 sizeof(entry
->saved_consume_q
));
2382 entry
->consume_q
->saved_header
= &entry
->saved_consume_q
;
2384 return VMCI_SUCCESS
;
2388 * Removes all references to the guest memory of a given queue pair, and
2389 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2390 * called when a VM is being quiesced where access to guest memory should
2393 int vmci_qp_broker_unmap(struct vmci_handle handle
,
2394 struct vmci_ctx
*context
,
2397 struct qp_broker_entry
*entry
;
2398 const u32 context_id
= vmci_ctx_get_id(context
);
2399 bool is_local
= false;
2402 if (vmci_handle_is_invalid(handle
) || !context
||
2403 context_id
== VMCI_INVALID_ID
)
2404 return VMCI_ERROR_INVALID_ARGS
;
2406 mutex_lock(&qp_broker_list
.mutex
);
2408 if (!vmci_ctx_qp_exists(context
, handle
)) {
2409 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2410 context_id
, handle
.context
, handle
.resource
);
2411 result
= VMCI_ERROR_NOT_FOUND
;
2415 entry
= qp_broker_handle_to_entry(handle
);
2417 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2418 context_id
, handle
.context
, handle
.resource
);
2419 result
= VMCI_ERROR_NOT_FOUND
;
2423 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2424 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2428 is_local
= entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
;
2430 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
2431 qp_acquire_queue_mutex(entry
->produce_q
);
2432 result
= qp_save_headers(entry
);
2433 if (result
< VMCI_SUCCESS
)
2434 pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2435 handle
.context
, handle
.resource
, result
);
2437 qp_host_unmap_queues(gid
, entry
->produce_q
, entry
->consume_q
);
2440 * On hosted, when we unmap queue pairs, the VMX will also
2441 * unmap the guest memory, so we invalidate the previously
2442 * registered memory. If the queue pair is mapped again at a
2443 * later point in time, we will need to reregister the user
2444 * memory with a possibly new user VA.
2446 qp_host_unregister_user_memory(entry
->produce_q
,
2450 * Move state from *_MEM to *_NO_MEM.
2454 qp_release_queue_mutex(entry
->produce_q
);
2457 result
= VMCI_SUCCESS
;
2460 mutex_unlock(&qp_broker_list
.mutex
);
2465 * Destroys all guest queue pair endpoints. If active guest queue
2466 * pairs still exist, hypercalls to attempt detach from these
2467 * queue pairs will be made. Any failure to detach is silently
2470 void vmci_qp_guest_endpoints_exit(void)
2472 struct qp_entry
*entry
;
2473 struct qp_guest_endpoint
*ep
;
2475 mutex_lock(&qp_guest_endpoints
.mutex
);
2477 while ((entry
= qp_list_get_head(&qp_guest_endpoints
))) {
2478 ep
= (struct qp_guest_endpoint
*)entry
;
2480 /* Don't make a hypercall for local queue_pairs. */
2481 if (!(entry
->flags
& VMCI_QPFLAG_LOCAL
))
2482 qp_detatch_hypercall(entry
->handle
);
2484 /* We cannot fail the exit, so let's reset ref_count. */
2485 entry
->ref_count
= 0;
2486 qp_list_remove_entry(&qp_guest_endpoints
, entry
);
2488 qp_guest_endpoint_destroy(ep
);
2491 mutex_unlock(&qp_guest_endpoints
.mutex
);
2495 * Helper routine that will lock the queue pair before subsequent
2497 * Note: Non-blocking on the host side is currently only implemented in ESX.
2498 * Since non-blocking isn't yet implemented on the host personality we
2499 * have no reason to acquire a spin lock. So to avoid the use of an
2500 * unnecessary lock only acquire the mutex if we can block.
2502 static void qp_lock(const struct vmci_qp
*qpair
)
2504 qp_acquire_queue_mutex(qpair
->produce_q
);
2508 * Helper routine that unlocks the queue pair after calling
2511 static void qp_unlock(const struct vmci_qp
*qpair
)
2513 qp_release_queue_mutex(qpair
->produce_q
);
2517 * The queue headers may not be mapped at all times. If a queue is
2518 * currently not mapped, it will be attempted to do so.
2520 static int qp_map_queue_headers(struct vmci_queue
*produce_q
,
2521 struct vmci_queue
*consume_q
)
2525 if (NULL
== produce_q
->q_header
|| NULL
== consume_q
->q_header
) {
2526 result
= qp_host_map_queues(produce_q
, consume_q
);
2527 if (result
< VMCI_SUCCESS
)
2528 return (produce_q
->saved_header
&&
2529 consume_q
->saved_header
) ?
2530 VMCI_ERROR_QUEUEPAIR_NOT_READY
:
2531 VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2534 return VMCI_SUCCESS
;
2538 * Helper routine that will retrieve the produce and consume
2539 * headers of a given queue pair. If the guest memory of the
2540 * queue pair is currently not available, the saved queue headers
2541 * will be returned, if these are available.
2543 static int qp_get_queue_headers(const struct vmci_qp
*qpair
,
2544 struct vmci_queue_header
**produce_q_header
,
2545 struct vmci_queue_header
**consume_q_header
)
2549 result
= qp_map_queue_headers(qpair
->produce_q
, qpair
->consume_q
);
2550 if (result
== VMCI_SUCCESS
) {
2551 *produce_q_header
= qpair
->produce_q
->q_header
;
2552 *consume_q_header
= qpair
->consume_q
->q_header
;
2553 } else if (qpair
->produce_q
->saved_header
&&
2554 qpair
->consume_q
->saved_header
) {
2555 *produce_q_header
= qpair
->produce_q
->saved_header
;
2556 *consume_q_header
= qpair
->consume_q
->saved_header
;
2557 result
= VMCI_SUCCESS
;
2564 * Callback from VMCI queue pair broker indicating that a queue
2565 * pair that was previously not ready, now either is ready or
2568 static int qp_wakeup_cb(void *client_data
)
2570 struct vmci_qp
*qpair
= (struct vmci_qp
*)client_data
;
2573 while (qpair
->blocked
> 0) {
2575 qpair
->generation
++;
2576 wake_up(&qpair
->event
);
2580 return VMCI_SUCCESS
;
2584 * Makes the calling thread wait for the queue pair to become
2585 * ready for host side access. Returns true when thread is
2586 * woken up after queue pair state change, false otherwise.
2588 static bool qp_wait_for_ready_queue(struct vmci_qp
*qpair
)
2590 unsigned int generation
;
2593 generation
= qpair
->generation
;
2595 wait_event(qpair
->event
, generation
!= qpair
->generation
);
2602 * Enqueues a given buffer to the produce queue using the provided
2603 * function. As many bytes as possible (space available in the queue)
2604 * are enqueued. Assumes the queue->mutex has been acquired. Returns
2605 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2606 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2607 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2608 * an error occured when accessing the buffer,
2609 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2610 * available. Otherwise, the number of bytes written to the queue is
2611 * returned. Updates the tail pointer of the produce queue.
2613 static ssize_t
qp_enqueue_locked(struct vmci_queue
*produce_q
,
2614 struct vmci_queue
*consume_q
,
2615 const u64 produce_q_size
,
2618 vmci_memcpy_to_queue_func memcpy_to_queue
)
2625 result
= qp_map_queue_headers(produce_q
, consume_q
);
2626 if (unlikely(result
!= VMCI_SUCCESS
))
2629 free_space
= vmci_q_header_free_space(produce_q
->q_header
,
2630 consume_q
->q_header
,
2632 if (free_space
== 0)
2633 return VMCI_ERROR_QUEUEPAIR_NOSPACE
;
2635 if (free_space
< VMCI_SUCCESS
)
2636 return (ssize_t
) free_space
;
2638 written
= (size_t) (free_space
> buf_size
? buf_size
: free_space
);
2639 tail
= vmci_q_header_producer_tail(produce_q
->q_header
);
2640 if (likely(tail
+ written
< produce_q_size
)) {
2641 result
= memcpy_to_queue(produce_q
, tail
, buf
, 0, written
);
2643 /* Tail pointer wraps around. */
2645 const size_t tmp
= (size_t) (produce_q_size
- tail
);
2647 result
= memcpy_to_queue(produce_q
, tail
, buf
, 0, tmp
);
2648 if (result
>= VMCI_SUCCESS
)
2649 result
= memcpy_to_queue(produce_q
, 0, buf
, tmp
,
2653 if (result
< VMCI_SUCCESS
)
2656 vmci_q_header_add_producer_tail(produce_q
->q_header
, written
,
2662 * Dequeues data (if available) from the given consume queue. Writes data
2663 * to the user provided buffer using the provided function.
2664 * Assumes the queue->mutex has been acquired.
2666 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2667 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2668 * (as defined by the queue size).
2669 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2670 * Otherwise the number of bytes dequeued is returned.
2672 * Updates the head pointer of the consume queue.
2674 static ssize_t
qp_dequeue_locked(struct vmci_queue
*produce_q
,
2675 struct vmci_queue
*consume_q
,
2676 const u64 consume_q_size
,
2679 vmci_memcpy_from_queue_func memcpy_from_queue
,
2680 bool update_consumer
)
2687 result
= qp_map_queue_headers(produce_q
, consume_q
);
2688 if (unlikely(result
!= VMCI_SUCCESS
))
2691 buf_ready
= vmci_q_header_buf_ready(consume_q
->q_header
,
2692 produce_q
->q_header
,
2695 return VMCI_ERROR_QUEUEPAIR_NODATA
;
2697 if (buf_ready
< VMCI_SUCCESS
)
2698 return (ssize_t
) buf_ready
;
2700 read
= (size_t) (buf_ready
> buf_size
? buf_size
: buf_ready
);
2701 head
= vmci_q_header_consumer_head(produce_q
->q_header
);
2702 if (likely(head
+ read
< consume_q_size
)) {
2703 result
= memcpy_from_queue(buf
, 0, consume_q
, head
, read
);
2705 /* Head pointer wraps around. */
2707 const size_t tmp
= (size_t) (consume_q_size
- head
);
2709 result
= memcpy_from_queue(buf
, 0, consume_q
, head
, tmp
);
2710 if (result
>= VMCI_SUCCESS
)
2711 result
= memcpy_from_queue(buf
, tmp
, consume_q
, 0,
2716 if (result
< VMCI_SUCCESS
)
2719 if (update_consumer
)
2720 vmci_q_header_add_consumer_head(produce_q
->q_header
,
2721 read
, consume_q_size
);
2727 * vmci_qpair_alloc() - Allocates a queue pair.
2728 * @qpair: Pointer for the new vmci_qp struct.
2729 * @handle: Handle to track the resource.
2730 * @produce_qsize: Desired size of the producer queue.
2731 * @consume_qsize: Desired size of the consumer queue.
2732 * @peer: ContextID of the peer.
2733 * @flags: VMCI flags.
2734 * @priv_flags: VMCI priviledge flags.
2736 * This is the client interface for allocating the memory for a
2737 * vmci_qp structure and then attaching to the underlying
2738 * queue. If an error occurs allocating the memory for the
2739 * vmci_qp structure no attempt is made to attach. If an
2740 * error occurs attaching, then the structure is freed.
2742 int vmci_qpair_alloc(struct vmci_qp
**qpair
,
2743 struct vmci_handle
*handle
,
2750 struct vmci_qp
*my_qpair
;
2752 struct vmci_handle src
= VMCI_INVALID_HANDLE
;
2753 struct vmci_handle dst
= vmci_make_handle(peer
, VMCI_INVALID_ID
);
2754 enum vmci_route route
;
2755 vmci_event_release_cb wakeup_cb
;
2759 * Restrict the size of a queuepair. The device already
2760 * enforces a limit on the total amount of memory that can be
2761 * allocated to queuepairs for a guest. However, we try to
2762 * allocate this memory before we make the queuepair
2763 * allocation hypercall. On Linux, we allocate each page
2764 * separately, which means rather than fail, the guest will
2765 * thrash while it tries to allocate, and will become
2766 * increasingly unresponsive to the point where it appears to
2767 * be hung. So we place a limit on the size of an individual
2768 * queuepair here, and leave the device to enforce the
2769 * restriction on total queuepair memory. (Note that this
2770 * doesn't prevent all cases; a user with only this much
2771 * physical memory could still get into trouble.) The error
2772 * used by the device is NO_RESOURCES, so use that here too.
2775 if (produce_qsize
+ consume_qsize
< max(produce_qsize
, consume_qsize
) ||
2776 produce_qsize
+ consume_qsize
> VMCI_MAX_GUEST_QP_MEMORY
)
2777 return VMCI_ERROR_NO_RESOURCES
;
2779 retval
= vmci_route(&src
, &dst
, false, &route
);
2780 if (retval
< VMCI_SUCCESS
)
2781 route
= vmci_guest_code_active() ?
2782 VMCI_ROUTE_AS_GUEST
: VMCI_ROUTE_AS_HOST
;
2784 if (flags
& (VMCI_QPFLAG_NONBLOCK
| VMCI_QPFLAG_PINNED
)) {
2785 pr_devel("NONBLOCK OR PINNED set");
2786 return VMCI_ERROR_INVALID_ARGS
;
2789 my_qpair
= kzalloc(sizeof(*my_qpair
), GFP_KERNEL
);
2791 return VMCI_ERROR_NO_MEM
;
2793 my_qpair
->produce_q_size
= produce_qsize
;
2794 my_qpair
->consume_q_size
= consume_qsize
;
2795 my_qpair
->peer
= peer
;
2796 my_qpair
->flags
= flags
;
2797 my_qpair
->priv_flags
= priv_flags
;
2802 if (VMCI_ROUTE_AS_HOST
== route
) {
2803 my_qpair
->guest_endpoint
= false;
2804 if (!(flags
& VMCI_QPFLAG_LOCAL
)) {
2805 my_qpair
->blocked
= 0;
2806 my_qpair
->generation
= 0;
2807 init_waitqueue_head(&my_qpair
->event
);
2808 wakeup_cb
= qp_wakeup_cb
;
2809 client_data
= (void *)my_qpair
;
2812 my_qpair
->guest_endpoint
= true;
2815 retval
= vmci_qp_alloc(handle
,
2816 &my_qpair
->produce_q
,
2817 my_qpair
->produce_q_size
,
2818 &my_qpair
->consume_q
,
2819 my_qpair
->consume_q_size
,
2822 my_qpair
->priv_flags
,
2823 my_qpair
->guest_endpoint
,
2824 wakeup_cb
, client_data
);
2826 if (retval
< VMCI_SUCCESS
) {
2832 my_qpair
->handle
= *handle
;
2836 EXPORT_SYMBOL_GPL(vmci_qpair_alloc
);
2839 * vmci_qpair_detach() - Detatches the client from a queue pair.
2840 * @qpair: Reference of a pointer to the qpair struct.
2842 * This is the client interface for detaching from a VMCIQPair.
2843 * Note that this routine will free the memory allocated for the
2844 * vmci_qp structure too.
2846 int vmci_qpair_detach(struct vmci_qp
**qpair
)
2849 struct vmci_qp
*old_qpair
;
2851 if (!qpair
|| !(*qpair
))
2852 return VMCI_ERROR_INVALID_ARGS
;
2855 result
= qp_detatch(old_qpair
->handle
, old_qpair
->guest_endpoint
);
2858 * The guest can fail to detach for a number of reasons, and
2859 * if it does so, it will cleanup the entry (if there is one).
2860 * The host can fail too, but it won't cleanup the entry
2861 * immediately, it will do that later when the context is
2862 * freed. Either way, we need to release the qpair struct
2863 * here; there isn't much the caller can do, and we don't want
2867 memset(old_qpair
, 0, sizeof(*old_qpair
));
2868 old_qpair
->handle
= VMCI_INVALID_HANDLE
;
2869 old_qpair
->peer
= VMCI_INVALID_ID
;
2875 EXPORT_SYMBOL_GPL(vmci_qpair_detach
);
2878 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2879 * @qpair: Pointer to the queue pair struct.
2880 * @producer_tail: Reference used for storing producer tail index.
2881 * @consumer_head: Reference used for storing the consumer head index.
2883 * This is the client interface for getting the current indexes of the
2884 * QPair from the point of the view of the caller as the producer.
2886 int vmci_qpair_get_produce_indexes(const struct vmci_qp
*qpair
,
2890 struct vmci_queue_header
*produce_q_header
;
2891 struct vmci_queue_header
*consume_q_header
;
2895 return VMCI_ERROR_INVALID_ARGS
;
2899 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2900 if (result
== VMCI_SUCCESS
)
2901 vmci_q_header_get_pointers(produce_q_header
, consume_q_header
,
2902 producer_tail
, consumer_head
);
2905 if (result
== VMCI_SUCCESS
&&
2906 ((producer_tail
&& *producer_tail
>= qpair
->produce_q_size
) ||
2907 (consumer_head
&& *consumer_head
>= qpair
->produce_q_size
)))
2908 return VMCI_ERROR_INVALID_SIZE
;
2912 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes
);
2915 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2916 * @qpair: Pointer to the queue pair struct.
2917 * @consumer_tail: Reference used for storing consumer tail index.
2918 * @producer_head: Reference used for storing the producer head index.
2920 * This is the client interface for getting the current indexes of the
2921 * QPair from the point of the view of the caller as the consumer.
2923 int vmci_qpair_get_consume_indexes(const struct vmci_qp
*qpair
,
2927 struct vmci_queue_header
*produce_q_header
;
2928 struct vmci_queue_header
*consume_q_header
;
2932 return VMCI_ERROR_INVALID_ARGS
;
2936 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2937 if (result
== VMCI_SUCCESS
)
2938 vmci_q_header_get_pointers(consume_q_header
, produce_q_header
,
2939 consumer_tail
, producer_head
);
2942 if (result
== VMCI_SUCCESS
&&
2943 ((consumer_tail
&& *consumer_tail
>= qpair
->consume_q_size
) ||
2944 (producer_head
&& *producer_head
>= qpair
->consume_q_size
)))
2945 return VMCI_ERROR_INVALID_SIZE
;
2949 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes
);
2952 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2953 * @qpair: Pointer to the queue pair struct.
2955 * This is the client interface for getting the amount of free
2956 * space in the QPair from the point of the view of the caller as
2957 * the producer which is the common case. Returns < 0 if err, else
2958 * available bytes into which data can be enqueued if > 0.
2960 s64
vmci_qpair_produce_free_space(const struct vmci_qp
*qpair
)
2962 struct vmci_queue_header
*produce_q_header
;
2963 struct vmci_queue_header
*consume_q_header
;
2967 return VMCI_ERROR_INVALID_ARGS
;
2971 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2972 if (result
== VMCI_SUCCESS
)
2973 result
= vmci_q_header_free_space(produce_q_header
,
2975 qpair
->produce_q_size
);
2983 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space
);
2986 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2987 * @qpair: Pointer to the queue pair struct.
2989 * This is the client interface for getting the amount of free
2990 * space in the QPair from the point of the view of the caller as
2991 * the consumer which is not the common case. Returns < 0 if err, else
2992 * available bytes into which data can be enqueued if > 0.
2994 s64
vmci_qpair_consume_free_space(const struct vmci_qp
*qpair
)
2996 struct vmci_queue_header
*produce_q_header
;
2997 struct vmci_queue_header
*consume_q_header
;
3001 return VMCI_ERROR_INVALID_ARGS
;
3005 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
3006 if (result
== VMCI_SUCCESS
)
3007 result
= vmci_q_header_free_space(consume_q_header
,
3009 qpair
->consume_q_size
);
3017 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space
);
3020 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3022 * @qpair: Pointer to the queue pair struct.
3024 * This is the client interface for getting the amount of
3025 * enqueued data in the QPair from the point of the view of the
3026 * caller as the producer which is not the common case. Returns < 0 if err,
3027 * else available bytes that may be read.
3029 s64
vmci_qpair_produce_buf_ready(const struct vmci_qp
*qpair
)
3031 struct vmci_queue_header
*produce_q_header
;
3032 struct vmci_queue_header
*consume_q_header
;
3036 return VMCI_ERROR_INVALID_ARGS
;
3040 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
3041 if (result
== VMCI_SUCCESS
)
3042 result
= vmci_q_header_buf_ready(produce_q_header
,
3044 qpair
->produce_q_size
);
3052 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready
);
3055 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3057 * @qpair: Pointer to the queue pair struct.
3059 * This is the client interface for getting the amount of
3060 * enqueued data in the QPair from the point of the view of the
3061 * caller as the consumer which is the normal case. Returns < 0 if err,
3062 * else available bytes that may be read.
3064 s64
vmci_qpair_consume_buf_ready(const struct vmci_qp
*qpair
)
3066 struct vmci_queue_header
*produce_q_header
;
3067 struct vmci_queue_header
*consume_q_header
;
3071 return VMCI_ERROR_INVALID_ARGS
;
3075 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
3076 if (result
== VMCI_SUCCESS
)
3077 result
= vmci_q_header_buf_ready(consume_q_header
,
3079 qpair
->consume_q_size
);
3087 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready
);
3090 * vmci_qpair_enqueue() - Throw data on the queue.
3091 * @qpair: Pointer to the queue pair struct.
3092 * @buf: Pointer to buffer containing data
3093 * @buf_size: Length of buffer.
3094 * @buf_type: Buffer type (Unused).
3096 * This is the client interface for enqueueing data into the queue.
3097 * Returns number of bytes enqueued or < 0 on error.
3099 ssize_t
vmci_qpair_enqueue(struct vmci_qp
*qpair
,
3107 return VMCI_ERROR_INVALID_ARGS
;
3112 result
= qp_enqueue_locked(qpair
->produce_q
,
3114 qpair
->produce_q_size
,
3116 qp_memcpy_to_queue
);
3118 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3119 !qp_wait_for_ready_queue(qpair
))
3120 result
= VMCI_ERROR_WOULD_BLOCK
;
3122 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3128 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue
);
3131 * vmci_qpair_dequeue() - Get data from the queue.
3132 * @qpair: Pointer to the queue pair struct.
3133 * @buf: Pointer to buffer for the data
3134 * @buf_size: Length of buffer.
3135 * @buf_type: Buffer type (Unused).
3137 * This is the client interface for dequeueing data from the queue.
3138 * Returns number of bytes dequeued or < 0 on error.
3140 ssize_t
vmci_qpair_dequeue(struct vmci_qp
*qpair
,
3148 return VMCI_ERROR_INVALID_ARGS
;
3153 result
= qp_dequeue_locked(qpair
->produce_q
,
3155 qpair
->consume_q_size
,
3157 qp_memcpy_from_queue
, true);
3159 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3160 !qp_wait_for_ready_queue(qpair
))
3161 result
= VMCI_ERROR_WOULD_BLOCK
;
3163 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3169 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue
);
3172 * vmci_qpair_peek() - Peek at the data in the queue.
3173 * @qpair: Pointer to the queue pair struct.
3174 * @buf: Pointer to buffer for the data
3175 * @buf_size: Length of buffer.
3176 * @buf_type: Buffer type (Unused on Linux).
3178 * This is the client interface for peeking into a queue. (I.e.,
3179 * copy data from the queue without updating the head pointer.)
3180 * Returns number of bytes dequeued or < 0 on error.
3182 ssize_t
vmci_qpair_peek(struct vmci_qp
*qpair
,
3190 return VMCI_ERROR_INVALID_ARGS
;
3195 result
= qp_dequeue_locked(qpair
->produce_q
,
3197 qpair
->consume_q_size
,
3199 qp_memcpy_from_queue
, false);
3201 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3202 !qp_wait_for_ready_queue(qpair
))
3203 result
= VMCI_ERROR_WOULD_BLOCK
;
3205 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3211 EXPORT_SYMBOL_GPL(vmci_qpair_peek
);
3214 * vmci_qpair_enquev() - Throw data on the queue using iov.
3215 * @qpair: Pointer to the queue pair struct.
3216 * @iov: Pointer to buffer containing data
3217 * @iov_size: Length of buffer.
3218 * @buf_type: Buffer type (Unused).
3220 * This is the client interface for enqueueing data into the queue.
3221 * This function uses IO vectors to handle the work. Returns number
3222 * of bytes enqueued or < 0 on error.
3224 ssize_t
vmci_qpair_enquev(struct vmci_qp
*qpair
,
3232 return VMCI_ERROR_INVALID_ARGS
;
3237 result
= qp_enqueue_locked(qpair
->produce_q
,
3239 qpair
->produce_q_size
,
3241 qp_memcpy_to_queue_iov
);
3243 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3244 !qp_wait_for_ready_queue(qpair
))
3245 result
= VMCI_ERROR_WOULD_BLOCK
;
3247 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3253 EXPORT_SYMBOL_GPL(vmci_qpair_enquev
);
3256 * vmci_qpair_dequev() - Get data from the queue using iov.
3257 * @qpair: Pointer to the queue pair struct.
3258 * @iov: Pointer to buffer for the data
3259 * @iov_size: Length of buffer.
3260 * @buf_type: Buffer type (Unused).
3262 * This is the client interface for dequeueing data from the queue.
3263 * This function uses IO vectors to handle the work. Returns number
3264 * of bytes dequeued or < 0 on error.
3266 ssize_t
vmci_qpair_dequev(struct vmci_qp
*qpair
,
3274 return VMCI_ERROR_INVALID_ARGS
;
3279 result
= qp_dequeue_locked(qpair
->produce_q
,
3281 qpair
->consume_q_size
,
3283 qp_memcpy_from_queue_iov
,
3286 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3287 !qp_wait_for_ready_queue(qpair
))
3288 result
= VMCI_ERROR_WOULD_BLOCK
;
3290 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3296 EXPORT_SYMBOL_GPL(vmci_qpair_dequev
);
3299 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3300 * @qpair: Pointer to the queue pair struct.
3301 * @iov: Pointer to buffer for the data
3302 * @iov_size: Length of buffer.
3303 * @buf_type: Buffer type (Unused on Linux).
3305 * This is the client interface for peeking into a queue. (I.e.,
3306 * copy data from the queue without updating the head pointer.)
3307 * This function uses IO vectors to handle the work. Returns number
3308 * of bytes peeked or < 0 on error.
3310 ssize_t
vmci_qpair_peekv(struct vmci_qp
*qpair
,
3318 return VMCI_ERROR_INVALID_ARGS
;
3323 result
= qp_dequeue_locked(qpair
->produce_q
,
3325 qpair
->consume_q_size
,
3327 qp_memcpy_from_queue_iov
,
3330 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3331 !qp_wait_for_ready_queue(qpair
))
3332 result
= VMCI_ERROR_WOULD_BLOCK
;
3334 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3339 EXPORT_SYMBOL_GPL(vmci_qpair_peekv
);