thp: introduce deferred_split_huge_page()
[linux/fpc-iii.git] / mm / oom_kill.c
blobdc490c06941b2a6be5170c0d9ca73418b7fe8619
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/oom.h>
42 int sysctl_panic_on_oom;
43 int sysctl_oom_kill_allocating_task;
44 int sysctl_oom_dump_tasks = 1;
46 DEFINE_MUTEX(oom_lock);
48 #ifdef CONFIG_NUMA
49 /**
50 * has_intersects_mems_allowed() - check task eligiblity for kill
51 * @start: task struct of which task to consider
52 * @mask: nodemask passed to page allocator for mempolicy ooms
54 * Task eligibility is determined by whether or not a candidate task, @tsk,
55 * shares the same mempolicy nodes as current if it is bound by such a policy
56 * and whether or not it has the same set of allowed cpuset nodes.
58 static bool has_intersects_mems_allowed(struct task_struct *start,
59 const nodemask_t *mask)
61 struct task_struct *tsk;
62 bool ret = false;
64 rcu_read_lock();
65 for_each_thread(start, tsk) {
66 if (mask) {
68 * If this is a mempolicy constrained oom, tsk's
69 * cpuset is irrelevant. Only return true if its
70 * mempolicy intersects current, otherwise it may be
71 * needlessly killed.
73 ret = mempolicy_nodemask_intersects(tsk, mask);
74 } else {
76 * This is not a mempolicy constrained oom, so only
77 * check the mems of tsk's cpuset.
79 ret = cpuset_mems_allowed_intersects(current, tsk);
81 if (ret)
82 break;
84 rcu_read_unlock();
86 return ret;
88 #else
89 static bool has_intersects_mems_allowed(struct task_struct *tsk,
90 const nodemask_t *mask)
92 return true;
94 #endif /* CONFIG_NUMA */
97 * The process p may have detached its own ->mm while exiting or through
98 * use_mm(), but one or more of its subthreads may still have a valid
99 * pointer. Return p, or any of its subthreads with a valid ->mm, with
100 * task_lock() held.
102 struct task_struct *find_lock_task_mm(struct task_struct *p)
104 struct task_struct *t;
106 rcu_read_lock();
108 for_each_thread(p, t) {
109 task_lock(t);
110 if (likely(t->mm))
111 goto found;
112 task_unlock(t);
114 t = NULL;
115 found:
116 rcu_read_unlock();
118 return t;
122 * order == -1 means the oom kill is required by sysrq, otherwise only
123 * for display purposes.
125 static inline bool is_sysrq_oom(struct oom_control *oc)
127 return oc->order == -1;
130 /* return true if the task is not adequate as candidate victim task. */
131 static bool oom_unkillable_task(struct task_struct *p,
132 struct mem_cgroup *memcg, const nodemask_t *nodemask)
134 if (is_global_init(p))
135 return true;
136 if (p->flags & PF_KTHREAD)
137 return true;
139 /* When mem_cgroup_out_of_memory() and p is not member of the group */
140 if (memcg && !task_in_mem_cgroup(p, memcg))
141 return true;
143 /* p may not have freeable memory in nodemask */
144 if (!has_intersects_mems_allowed(p, nodemask))
145 return true;
147 return false;
151 * oom_badness - heuristic function to determine which candidate task to kill
152 * @p: task struct of which task we should calculate
153 * @totalpages: total present RAM allowed for page allocation
155 * The heuristic for determining which task to kill is made to be as simple and
156 * predictable as possible. The goal is to return the highest value for the
157 * task consuming the most memory to avoid subsequent oom failures.
159 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
160 const nodemask_t *nodemask, unsigned long totalpages)
162 long points;
163 long adj;
165 if (oom_unkillable_task(p, memcg, nodemask))
166 return 0;
168 p = find_lock_task_mm(p);
169 if (!p)
170 return 0;
172 adj = (long)p->signal->oom_score_adj;
173 if (adj == OOM_SCORE_ADJ_MIN) {
174 task_unlock(p);
175 return 0;
179 * The baseline for the badness score is the proportion of RAM that each
180 * task's rss, pagetable and swap space use.
182 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
183 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
184 task_unlock(p);
187 * Root processes get 3% bonus, just like the __vm_enough_memory()
188 * implementation used by LSMs.
190 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
191 points -= (points * 3) / 100;
193 /* Normalize to oom_score_adj units */
194 adj *= totalpages / 1000;
195 points += adj;
198 * Never return 0 for an eligible task regardless of the root bonus and
199 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
201 return points > 0 ? points : 1;
205 * Determine the type of allocation constraint.
207 #ifdef CONFIG_NUMA
208 static enum oom_constraint constrained_alloc(struct oom_control *oc,
209 unsigned long *totalpages)
211 struct zone *zone;
212 struct zoneref *z;
213 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
214 bool cpuset_limited = false;
215 int nid;
217 /* Default to all available memory */
218 *totalpages = totalram_pages + total_swap_pages;
220 if (!oc->zonelist)
221 return CONSTRAINT_NONE;
223 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
224 * to kill current.We have to random task kill in this case.
225 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
227 if (oc->gfp_mask & __GFP_THISNODE)
228 return CONSTRAINT_NONE;
231 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
232 * the page allocator means a mempolicy is in effect. Cpuset policy
233 * is enforced in get_page_from_freelist().
235 if (oc->nodemask &&
236 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
237 *totalpages = total_swap_pages;
238 for_each_node_mask(nid, *oc->nodemask)
239 *totalpages += node_spanned_pages(nid);
240 return CONSTRAINT_MEMORY_POLICY;
243 /* Check this allocation failure is caused by cpuset's wall function */
244 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
245 high_zoneidx, oc->nodemask)
246 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
247 cpuset_limited = true;
249 if (cpuset_limited) {
250 *totalpages = total_swap_pages;
251 for_each_node_mask(nid, cpuset_current_mems_allowed)
252 *totalpages += node_spanned_pages(nid);
253 return CONSTRAINT_CPUSET;
255 return CONSTRAINT_NONE;
257 #else
258 static enum oom_constraint constrained_alloc(struct oom_control *oc,
259 unsigned long *totalpages)
261 *totalpages = totalram_pages + total_swap_pages;
262 return CONSTRAINT_NONE;
264 #endif
266 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
267 struct task_struct *task, unsigned long totalpages)
269 if (oom_unkillable_task(task, NULL, oc->nodemask))
270 return OOM_SCAN_CONTINUE;
273 * This task already has access to memory reserves and is being killed.
274 * Don't allow any other task to have access to the reserves.
276 if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
277 if (!is_sysrq_oom(oc))
278 return OOM_SCAN_ABORT;
280 if (!task->mm)
281 return OOM_SCAN_CONTINUE;
284 * If task is allocating a lot of memory and has been marked to be
285 * killed first if it triggers an oom, then select it.
287 if (oom_task_origin(task))
288 return OOM_SCAN_SELECT;
290 if (task_will_free_mem(task) && !is_sysrq_oom(oc))
291 return OOM_SCAN_ABORT;
293 return OOM_SCAN_OK;
297 * Simple selection loop. We chose the process with the highest
298 * number of 'points'. Returns -1 on scan abort.
300 static struct task_struct *select_bad_process(struct oom_control *oc,
301 unsigned int *ppoints, unsigned long totalpages)
303 struct task_struct *g, *p;
304 struct task_struct *chosen = NULL;
305 unsigned long chosen_points = 0;
307 rcu_read_lock();
308 for_each_process_thread(g, p) {
309 unsigned int points;
311 switch (oom_scan_process_thread(oc, p, totalpages)) {
312 case OOM_SCAN_SELECT:
313 chosen = p;
314 chosen_points = ULONG_MAX;
315 /* fall through */
316 case OOM_SCAN_CONTINUE:
317 continue;
318 case OOM_SCAN_ABORT:
319 rcu_read_unlock();
320 return (struct task_struct *)(-1UL);
321 case OOM_SCAN_OK:
322 break;
324 points = oom_badness(p, NULL, oc->nodemask, totalpages);
325 if (!points || points < chosen_points)
326 continue;
327 /* Prefer thread group leaders for display purposes */
328 if (points == chosen_points && thread_group_leader(chosen))
329 continue;
331 chosen = p;
332 chosen_points = points;
334 if (chosen)
335 get_task_struct(chosen);
336 rcu_read_unlock();
338 *ppoints = chosen_points * 1000 / totalpages;
339 return chosen;
343 * dump_tasks - dump current memory state of all system tasks
344 * @memcg: current's memory controller, if constrained
345 * @nodemask: nodemask passed to page allocator for mempolicy ooms
347 * Dumps the current memory state of all eligible tasks. Tasks not in the same
348 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
349 * are not shown.
350 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
351 * swapents, oom_score_adj value, and name.
353 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
355 struct task_struct *p;
356 struct task_struct *task;
358 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
359 rcu_read_lock();
360 for_each_process(p) {
361 if (oom_unkillable_task(p, memcg, nodemask))
362 continue;
364 task = find_lock_task_mm(p);
365 if (!task) {
367 * This is a kthread or all of p's threads have already
368 * detached their mm's. There's no need to report
369 * them; they can't be oom killed anyway.
371 continue;
374 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
375 task->pid, from_kuid(&init_user_ns, task_uid(task)),
376 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
377 atomic_long_read(&task->mm->nr_ptes),
378 mm_nr_pmds(task->mm),
379 get_mm_counter(task->mm, MM_SWAPENTS),
380 task->signal->oom_score_adj, task->comm);
381 task_unlock(task);
383 rcu_read_unlock();
386 static void dump_header(struct oom_control *oc, struct task_struct *p,
387 struct mem_cgroup *memcg)
389 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
390 "oom_score_adj=%hd\n",
391 current->comm, oc->gfp_mask, oc->order,
392 current->signal->oom_score_adj);
393 cpuset_print_current_mems_allowed();
394 dump_stack();
395 if (memcg)
396 mem_cgroup_print_oom_info(memcg, p);
397 else
398 show_mem(SHOW_MEM_FILTER_NODES);
399 if (sysctl_oom_dump_tasks)
400 dump_tasks(memcg, oc->nodemask);
404 * Number of OOM victims in flight
406 static atomic_t oom_victims = ATOMIC_INIT(0);
407 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
409 bool oom_killer_disabled __read_mostly;
412 * mark_oom_victim - mark the given task as OOM victim
413 * @tsk: task to mark
415 * Has to be called with oom_lock held and never after
416 * oom has been disabled already.
418 void mark_oom_victim(struct task_struct *tsk)
420 WARN_ON(oom_killer_disabled);
421 /* OOM killer might race with memcg OOM */
422 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
423 return;
425 * Make sure that the task is woken up from uninterruptible sleep
426 * if it is frozen because OOM killer wouldn't be able to free
427 * any memory and livelock. freezing_slow_path will tell the freezer
428 * that TIF_MEMDIE tasks should be ignored.
430 __thaw_task(tsk);
431 atomic_inc(&oom_victims);
435 * exit_oom_victim - note the exit of an OOM victim
437 void exit_oom_victim(void)
439 clear_thread_flag(TIF_MEMDIE);
441 if (!atomic_dec_return(&oom_victims))
442 wake_up_all(&oom_victims_wait);
446 * oom_killer_disable - disable OOM killer
448 * Forces all page allocations to fail rather than trigger OOM killer.
449 * Will block and wait until all OOM victims are killed.
451 * The function cannot be called when there are runnable user tasks because
452 * the userspace would see unexpected allocation failures as a result. Any
453 * new usage of this function should be consulted with MM people.
455 * Returns true if successful and false if the OOM killer cannot be
456 * disabled.
458 bool oom_killer_disable(void)
461 * Make sure to not race with an ongoing OOM killer
462 * and that the current is not the victim.
464 mutex_lock(&oom_lock);
465 if (test_thread_flag(TIF_MEMDIE)) {
466 mutex_unlock(&oom_lock);
467 return false;
470 oom_killer_disabled = true;
471 mutex_unlock(&oom_lock);
473 wait_event(oom_victims_wait, !atomic_read(&oom_victims));
475 return true;
479 * oom_killer_enable - enable OOM killer
481 void oom_killer_enable(void)
483 oom_killer_disabled = false;
487 * task->mm can be NULL if the task is the exited group leader. So to
488 * determine whether the task is using a particular mm, we examine all the
489 * task's threads: if one of those is using this mm then this task was also
490 * using it.
492 static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
494 struct task_struct *t;
496 for_each_thread(p, t) {
497 struct mm_struct *t_mm = READ_ONCE(t->mm);
498 if (t_mm)
499 return t_mm == mm;
501 return false;
504 #define K(x) ((x) << (PAGE_SHIFT-10))
506 * Must be called while holding a reference to p, which will be released upon
507 * returning.
509 void oom_kill_process(struct oom_control *oc, struct task_struct *p,
510 unsigned int points, unsigned long totalpages,
511 struct mem_cgroup *memcg, const char *message)
513 struct task_struct *victim = p;
514 struct task_struct *child;
515 struct task_struct *t;
516 struct mm_struct *mm;
517 unsigned int victim_points = 0;
518 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
519 DEFAULT_RATELIMIT_BURST);
522 * If the task is already exiting, don't alarm the sysadmin or kill
523 * its children or threads, just set TIF_MEMDIE so it can die quickly
525 task_lock(p);
526 if (p->mm && task_will_free_mem(p)) {
527 mark_oom_victim(p);
528 task_unlock(p);
529 put_task_struct(p);
530 return;
532 task_unlock(p);
534 if (__ratelimit(&oom_rs))
535 dump_header(oc, p, memcg);
537 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
538 message, task_pid_nr(p), p->comm, points);
541 * If any of p's children has a different mm and is eligible for kill,
542 * the one with the highest oom_badness() score is sacrificed for its
543 * parent. This attempts to lose the minimal amount of work done while
544 * still freeing memory.
546 read_lock(&tasklist_lock);
547 for_each_thread(p, t) {
548 list_for_each_entry(child, &t->children, sibling) {
549 unsigned int child_points;
551 if (process_shares_mm(child, p->mm))
552 continue;
554 * oom_badness() returns 0 if the thread is unkillable
556 child_points = oom_badness(child, memcg, oc->nodemask,
557 totalpages);
558 if (child_points > victim_points) {
559 put_task_struct(victim);
560 victim = child;
561 victim_points = child_points;
562 get_task_struct(victim);
566 read_unlock(&tasklist_lock);
568 p = find_lock_task_mm(victim);
569 if (!p) {
570 put_task_struct(victim);
571 return;
572 } else if (victim != p) {
573 get_task_struct(p);
574 put_task_struct(victim);
575 victim = p;
578 /* Get a reference to safely compare mm after task_unlock(victim) */
579 mm = victim->mm;
580 atomic_inc(&mm->mm_count);
582 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
583 * the OOM victim from depleting the memory reserves from the user
584 * space under its control.
586 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
587 mark_oom_victim(victim);
588 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
589 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
590 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
591 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
592 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
593 task_unlock(victim);
596 * Kill all user processes sharing victim->mm in other thread groups, if
597 * any. They don't get access to memory reserves, though, to avoid
598 * depletion of all memory. This prevents mm->mmap_sem livelock when an
599 * oom killed thread cannot exit because it requires the semaphore and
600 * its contended by another thread trying to allocate memory itself.
601 * That thread will now get access to memory reserves since it has a
602 * pending fatal signal.
604 rcu_read_lock();
605 for_each_process(p) {
606 if (!process_shares_mm(p, mm))
607 continue;
608 if (same_thread_group(p, victim))
609 continue;
610 if (unlikely(p->flags & PF_KTHREAD))
611 continue;
612 if (is_global_init(p))
613 continue;
614 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
615 continue;
617 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
619 rcu_read_unlock();
621 mmdrop(mm);
622 put_task_struct(victim);
624 #undef K
627 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
629 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
630 struct mem_cgroup *memcg)
632 if (likely(!sysctl_panic_on_oom))
633 return;
634 if (sysctl_panic_on_oom != 2) {
636 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
637 * does not panic for cpuset, mempolicy, or memcg allocation
638 * failures.
640 if (constraint != CONSTRAINT_NONE)
641 return;
643 /* Do not panic for oom kills triggered by sysrq */
644 if (is_sysrq_oom(oc))
645 return;
646 dump_header(oc, NULL, memcg);
647 panic("Out of memory: %s panic_on_oom is enabled\n",
648 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
651 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
653 int register_oom_notifier(struct notifier_block *nb)
655 return blocking_notifier_chain_register(&oom_notify_list, nb);
657 EXPORT_SYMBOL_GPL(register_oom_notifier);
659 int unregister_oom_notifier(struct notifier_block *nb)
661 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
663 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
666 * out_of_memory - kill the "best" process when we run out of memory
667 * @oc: pointer to struct oom_control
669 * If we run out of memory, we have the choice between either
670 * killing a random task (bad), letting the system crash (worse)
671 * OR try to be smart about which process to kill. Note that we
672 * don't have to be perfect here, we just have to be good.
674 bool out_of_memory(struct oom_control *oc)
676 struct task_struct *p;
677 unsigned long totalpages;
678 unsigned long freed = 0;
679 unsigned int uninitialized_var(points);
680 enum oom_constraint constraint = CONSTRAINT_NONE;
682 if (oom_killer_disabled)
683 return false;
685 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
686 if (freed > 0)
687 /* Got some memory back in the last second. */
688 return true;
691 * If current has a pending SIGKILL or is exiting, then automatically
692 * select it. The goal is to allow it to allocate so that it may
693 * quickly exit and free its memory.
695 * But don't select if current has already released its mm and cleared
696 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
698 if (current->mm &&
699 (fatal_signal_pending(current) || task_will_free_mem(current))) {
700 mark_oom_victim(current);
701 return true;
705 * Check if there were limitations on the allocation (only relevant for
706 * NUMA) that may require different handling.
708 constraint = constrained_alloc(oc, &totalpages);
709 if (constraint != CONSTRAINT_MEMORY_POLICY)
710 oc->nodemask = NULL;
711 check_panic_on_oom(oc, constraint, NULL);
713 if (sysctl_oom_kill_allocating_task && current->mm &&
714 !oom_unkillable_task(current, NULL, oc->nodemask) &&
715 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
716 get_task_struct(current);
717 oom_kill_process(oc, current, 0, totalpages, NULL,
718 "Out of memory (oom_kill_allocating_task)");
719 return true;
722 p = select_bad_process(oc, &points, totalpages);
723 /* Found nothing?!?! Either we hang forever, or we panic. */
724 if (!p && !is_sysrq_oom(oc)) {
725 dump_header(oc, NULL, NULL);
726 panic("Out of memory and no killable processes...\n");
728 if (p && p != (void *)-1UL) {
729 oom_kill_process(oc, p, points, totalpages, NULL,
730 "Out of memory");
732 * Give the killed process a good chance to exit before trying
733 * to allocate memory again.
735 schedule_timeout_killable(1);
737 return true;
741 * The pagefault handler calls here because it is out of memory, so kill a
742 * memory-hogging task. If any populated zone has ZONE_OOM_LOCKED set, a
743 * parallel oom killing is already in progress so do nothing.
745 void pagefault_out_of_memory(void)
747 struct oom_control oc = {
748 .zonelist = NULL,
749 .nodemask = NULL,
750 .gfp_mask = 0,
751 .order = 0,
754 if (mem_cgroup_oom_synchronize(true))
755 return;
757 if (!mutex_trylock(&oom_lock))
758 return;
760 if (!out_of_memory(&oc)) {
762 * There shouldn't be any user tasks runnable while the
763 * OOM killer is disabled, so the current task has to
764 * be a racing OOM victim for which oom_killer_disable()
765 * is waiting for.
767 WARN_ON(test_thread_flag(TIF_MEMDIE));
770 mutex_unlock(&oom_lock);