2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
29 #include <asm/pgtable.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
38 int hugepages_treat_as_movable
;
40 int hugetlb_max_hstate __read_mostly
;
41 unsigned int default_hstate_idx
;
42 struct hstate hstates
[HUGE_MAX_HSTATE
];
44 __initdata
LIST_HEAD(huge_boot_pages
);
46 /* for command line parsing */
47 static struct hstate
* __initdata parsed_hstate
;
48 static unsigned long __initdata default_hstate_max_huge_pages
;
49 static unsigned long __initdata default_hstate_size
;
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
55 DEFINE_SPINLOCK(hugetlb_lock
);
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
61 static int num_fault_mutexes
;
62 static struct mutex
*htlb_fault_mutex_table ____cacheline_aligned_in_smp
;
64 /* Forward declaration */
65 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
67 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
69 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
71 spin_unlock(&spool
->lock
);
73 /* If no pages are used, and no other handles to the subpool
74 * remain, give up any reservations mased on minimum size and
77 if (spool
->min_hpages
!= -1)
78 hugetlb_acct_memory(spool
->hstate
,
84 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
87 struct hugepage_subpool
*spool
;
89 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
93 spin_lock_init(&spool
->lock
);
95 spool
->max_hpages
= max_hpages
;
97 spool
->min_hpages
= min_hpages
;
99 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
103 spool
->rsv_hpages
= min_hpages
;
108 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
110 spin_lock(&spool
->lock
);
111 BUG_ON(!spool
->count
);
113 unlock_or_release_subpool(spool
);
117 * Subpool accounting for allocating and reserving pages.
118 * Return -ENOMEM if there are not enough resources to satisfy the
119 * the request. Otherwise, return the number of pages by which the
120 * global pools must be adjusted (upward). The returned value may
121 * only be different than the passed value (delta) in the case where
122 * a subpool minimum size must be manitained.
124 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
132 spin_lock(&spool
->lock
);
134 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
135 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
136 spool
->used_hpages
+= delta
;
143 if (spool
->min_hpages
!= -1) { /* minimum size accounting */
144 if (delta
> spool
->rsv_hpages
) {
146 * Asking for more reserves than those already taken on
147 * behalf of subpool. Return difference.
149 ret
= delta
- spool
->rsv_hpages
;
150 spool
->rsv_hpages
= 0;
152 ret
= 0; /* reserves already accounted for */
153 spool
->rsv_hpages
-= delta
;
158 spin_unlock(&spool
->lock
);
163 * Subpool accounting for freeing and unreserving pages.
164 * Return the number of global page reservations that must be dropped.
165 * The return value may only be different than the passed value (delta)
166 * in the case where a subpool minimum size must be maintained.
168 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
176 spin_lock(&spool
->lock
);
178 if (spool
->max_hpages
!= -1) /* maximum size accounting */
179 spool
->used_hpages
-= delta
;
181 if (spool
->min_hpages
!= -1) { /* minimum size accounting */
182 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
185 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
187 spool
->rsv_hpages
+= delta
;
188 if (spool
->rsv_hpages
> spool
->min_hpages
)
189 spool
->rsv_hpages
= spool
->min_hpages
;
193 * If hugetlbfs_put_super couldn't free spool due to an outstanding
194 * quota reference, free it now.
196 unlock_or_release_subpool(spool
);
201 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
203 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
206 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
208 return subpool_inode(file_inode(vma
->vm_file
));
212 * Region tracking -- allows tracking of reservations and instantiated pages
213 * across the pages in a mapping.
215 * The region data structures are embedded into a resv_map and
216 * protected by a resv_map's lock
219 struct list_head link
;
224 static long region_add(struct resv_map
*resv
, long f
, long t
)
226 struct list_head
*head
= &resv
->regions
;
227 struct file_region
*rg
, *nrg
, *trg
;
229 spin_lock(&resv
->lock
);
230 /* Locate the region we are either in or before. */
231 list_for_each_entry(rg
, head
, link
)
235 /* Round our left edge to the current segment if it encloses us. */
239 /* Check for and consume any regions we now overlap with. */
241 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
242 if (&rg
->link
== head
)
247 /* If this area reaches higher then extend our area to
248 * include it completely. If this is not the first area
249 * which we intend to reuse, free it. */
259 spin_unlock(&resv
->lock
);
263 static long region_chg(struct resv_map
*resv
, long f
, long t
)
265 struct list_head
*head
= &resv
->regions
;
266 struct file_region
*rg
, *nrg
= NULL
;
270 spin_lock(&resv
->lock
);
271 /* Locate the region we are before or in. */
272 list_for_each_entry(rg
, head
, link
)
276 /* If we are below the current region then a new region is required.
277 * Subtle, allocate a new region at the position but make it zero
278 * size such that we can guarantee to record the reservation. */
279 if (&rg
->link
== head
|| t
< rg
->from
) {
281 spin_unlock(&resv
->lock
);
282 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
288 INIT_LIST_HEAD(&nrg
->link
);
292 list_add(&nrg
->link
, rg
->link
.prev
);
297 /* Round our left edge to the current segment if it encloses us. */
302 /* Check for and consume any regions we now overlap with. */
303 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
304 if (&rg
->link
== head
)
309 /* We overlap with this area, if it extends further than
310 * us then we must extend ourselves. Account for its
311 * existing reservation. */
316 chg
-= rg
->to
- rg
->from
;
320 spin_unlock(&resv
->lock
);
321 /* We already know we raced and no longer need the new region */
325 spin_unlock(&resv
->lock
);
329 static long region_truncate(struct resv_map
*resv
, long end
)
331 struct list_head
*head
= &resv
->regions
;
332 struct file_region
*rg
, *trg
;
335 spin_lock(&resv
->lock
);
336 /* Locate the region we are either in or before. */
337 list_for_each_entry(rg
, head
, link
)
340 if (&rg
->link
== head
)
343 /* If we are in the middle of a region then adjust it. */
344 if (end
> rg
->from
) {
347 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
350 /* Drop any remaining regions. */
351 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
352 if (&rg
->link
== head
)
354 chg
+= rg
->to
- rg
->from
;
360 spin_unlock(&resv
->lock
);
364 static long region_count(struct resv_map
*resv
, long f
, long t
)
366 struct list_head
*head
= &resv
->regions
;
367 struct file_region
*rg
;
370 spin_lock(&resv
->lock
);
371 /* Locate each segment we overlap with, and count that overlap. */
372 list_for_each_entry(rg
, head
, link
) {
381 seg_from
= max(rg
->from
, f
);
382 seg_to
= min(rg
->to
, t
);
384 chg
+= seg_to
- seg_from
;
386 spin_unlock(&resv
->lock
);
392 * Convert the address within this vma to the page offset within
393 * the mapping, in pagecache page units; huge pages here.
395 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
396 struct vm_area_struct
*vma
, unsigned long address
)
398 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
399 (vma
->vm_pgoff
>> huge_page_order(h
));
402 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
403 unsigned long address
)
405 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
409 * Return the size of the pages allocated when backing a VMA. In the majority
410 * cases this will be same size as used by the page table entries.
412 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
414 struct hstate
*hstate
;
416 if (!is_vm_hugetlb_page(vma
))
419 hstate
= hstate_vma(vma
);
421 return 1UL << huge_page_shift(hstate
);
423 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
426 * Return the page size being used by the MMU to back a VMA. In the majority
427 * of cases, the page size used by the kernel matches the MMU size. On
428 * architectures where it differs, an architecture-specific version of this
429 * function is required.
431 #ifndef vma_mmu_pagesize
432 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
434 return vma_kernel_pagesize(vma
);
439 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
440 * bits of the reservation map pointer, which are always clear due to
443 #define HPAGE_RESV_OWNER (1UL << 0)
444 #define HPAGE_RESV_UNMAPPED (1UL << 1)
445 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
448 * These helpers are used to track how many pages are reserved for
449 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
450 * is guaranteed to have their future faults succeed.
452 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
453 * the reserve counters are updated with the hugetlb_lock held. It is safe
454 * to reset the VMA at fork() time as it is not in use yet and there is no
455 * chance of the global counters getting corrupted as a result of the values.
457 * The private mapping reservation is represented in a subtly different
458 * manner to a shared mapping. A shared mapping has a region map associated
459 * with the underlying file, this region map represents the backing file
460 * pages which have ever had a reservation assigned which this persists even
461 * after the page is instantiated. A private mapping has a region map
462 * associated with the original mmap which is attached to all VMAs which
463 * reference it, this region map represents those offsets which have consumed
464 * reservation ie. where pages have been instantiated.
466 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
468 return (unsigned long)vma
->vm_private_data
;
471 static void set_vma_private_data(struct vm_area_struct
*vma
,
474 vma
->vm_private_data
= (void *)value
;
477 struct resv_map
*resv_map_alloc(void)
479 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
483 kref_init(&resv_map
->refs
);
484 spin_lock_init(&resv_map
->lock
);
485 INIT_LIST_HEAD(&resv_map
->regions
);
490 void resv_map_release(struct kref
*ref
)
492 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
494 /* Clear out any active regions before we release the map. */
495 region_truncate(resv_map
, 0);
499 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
501 return inode
->i_mapping
->private_data
;
504 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
506 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
507 if (vma
->vm_flags
& VM_MAYSHARE
) {
508 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
509 struct inode
*inode
= mapping
->host
;
511 return inode_resv_map(inode
);
514 return (struct resv_map
*)(get_vma_private_data(vma
) &
519 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
521 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
522 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
524 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
525 HPAGE_RESV_MASK
) | (unsigned long)map
);
528 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
530 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
531 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
533 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
536 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
538 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
540 return (get_vma_private_data(vma
) & flag
) != 0;
543 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
544 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
546 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
547 if (!(vma
->vm_flags
& VM_MAYSHARE
))
548 vma
->vm_private_data
= (void *)0;
551 /* Returns true if the VMA has associated reserve pages */
552 static int vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
554 if (vma
->vm_flags
& VM_NORESERVE
) {
556 * This address is already reserved by other process(chg == 0),
557 * so, we should decrement reserved count. Without decrementing,
558 * reserve count remains after releasing inode, because this
559 * allocated page will go into page cache and is regarded as
560 * coming from reserved pool in releasing step. Currently, we
561 * don't have any other solution to deal with this situation
562 * properly, so add work-around here.
564 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
570 /* Shared mappings always use reserves */
571 if (vma
->vm_flags
& VM_MAYSHARE
)
575 * Only the process that called mmap() has reserves for
578 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
584 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
586 int nid
= page_to_nid(page
);
587 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
588 h
->free_huge_pages
++;
589 h
->free_huge_pages_node
[nid
]++;
592 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
596 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
597 if (!is_migrate_isolate_page(page
))
600 * if 'non-isolated free hugepage' not found on the list,
601 * the allocation fails.
603 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
605 list_move(&page
->lru
, &h
->hugepage_activelist
);
606 set_page_refcounted(page
);
607 h
->free_huge_pages
--;
608 h
->free_huge_pages_node
[nid
]--;
612 /* Movability of hugepages depends on migration support. */
613 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
615 if (hugepages_treat_as_movable
|| hugepage_migration_supported(h
))
616 return GFP_HIGHUSER_MOVABLE
;
621 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
622 struct vm_area_struct
*vma
,
623 unsigned long address
, int avoid_reserve
,
626 struct page
*page
= NULL
;
627 struct mempolicy
*mpol
;
628 nodemask_t
*nodemask
;
629 struct zonelist
*zonelist
;
632 unsigned int cpuset_mems_cookie
;
635 * A child process with MAP_PRIVATE mappings created by their parent
636 * have no page reserves. This check ensures that reservations are
637 * not "stolen". The child may still get SIGKILLed
639 if (!vma_has_reserves(vma
, chg
) &&
640 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
643 /* If reserves cannot be used, ensure enough pages are in the pool */
644 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
648 cpuset_mems_cookie
= read_mems_allowed_begin();
649 zonelist
= huge_zonelist(vma
, address
,
650 htlb_alloc_mask(h
), &mpol
, &nodemask
);
652 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
653 MAX_NR_ZONES
- 1, nodemask
) {
654 if (cpuset_zone_allowed(zone
, htlb_alloc_mask(h
))) {
655 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
659 if (!vma_has_reserves(vma
, chg
))
662 SetPagePrivate(page
);
663 h
->resv_huge_pages
--;
670 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
679 * common helper functions for hstate_next_node_to_{alloc|free}.
680 * We may have allocated or freed a huge page based on a different
681 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
682 * be outside of *nodes_allowed. Ensure that we use an allowed
683 * node for alloc or free.
685 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
687 nid
= next_node(nid
, *nodes_allowed
);
688 if (nid
== MAX_NUMNODES
)
689 nid
= first_node(*nodes_allowed
);
690 VM_BUG_ON(nid
>= MAX_NUMNODES
);
695 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
697 if (!node_isset(nid
, *nodes_allowed
))
698 nid
= next_node_allowed(nid
, nodes_allowed
);
703 * returns the previously saved node ["this node"] from which to
704 * allocate a persistent huge page for the pool and advance the
705 * next node from which to allocate, handling wrap at end of node
708 static int hstate_next_node_to_alloc(struct hstate
*h
,
709 nodemask_t
*nodes_allowed
)
713 VM_BUG_ON(!nodes_allowed
);
715 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
716 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
722 * helper for free_pool_huge_page() - return the previously saved
723 * node ["this node"] from which to free a huge page. Advance the
724 * next node id whether or not we find a free huge page to free so
725 * that the next attempt to free addresses the next node.
727 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
731 VM_BUG_ON(!nodes_allowed
);
733 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
734 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
739 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
740 for (nr_nodes = nodes_weight(*mask); \
742 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
745 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
746 for (nr_nodes = nodes_weight(*mask); \
748 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
751 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
752 static void destroy_compound_gigantic_page(struct page
*page
,
756 int nr_pages
= 1 << order
;
757 struct page
*p
= page
+ 1;
759 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
761 set_page_refcounted(p
);
762 p
->first_page
= NULL
;
765 set_compound_order(page
, 0);
766 __ClearPageHead(page
);
769 static void free_gigantic_page(struct page
*page
, unsigned order
)
771 free_contig_range(page_to_pfn(page
), 1 << order
);
774 static int __alloc_gigantic_page(unsigned long start_pfn
,
775 unsigned long nr_pages
)
777 unsigned long end_pfn
= start_pfn
+ nr_pages
;
778 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
781 static bool pfn_range_valid_gigantic(unsigned long start_pfn
,
782 unsigned long nr_pages
)
784 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
787 for (i
= start_pfn
; i
< end_pfn
; i
++) {
791 page
= pfn_to_page(i
);
793 if (PageReserved(page
))
796 if (page_count(page
) > 0)
806 static bool zone_spans_last_pfn(const struct zone
*zone
,
807 unsigned long start_pfn
, unsigned long nr_pages
)
809 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
810 return zone_spans_pfn(zone
, last_pfn
);
813 static struct page
*alloc_gigantic_page(int nid
, unsigned order
)
815 unsigned long nr_pages
= 1 << order
;
816 unsigned long ret
, pfn
, flags
;
819 z
= NODE_DATA(nid
)->node_zones
;
820 for (; z
- NODE_DATA(nid
)->node_zones
< MAX_NR_ZONES
; z
++) {
821 spin_lock_irqsave(&z
->lock
, flags
);
823 pfn
= ALIGN(z
->zone_start_pfn
, nr_pages
);
824 while (zone_spans_last_pfn(z
, pfn
, nr_pages
)) {
825 if (pfn_range_valid_gigantic(pfn
, nr_pages
)) {
827 * We release the zone lock here because
828 * alloc_contig_range() will also lock the zone
829 * at some point. If there's an allocation
830 * spinning on this lock, it may win the race
831 * and cause alloc_contig_range() to fail...
833 spin_unlock_irqrestore(&z
->lock
, flags
);
834 ret
= __alloc_gigantic_page(pfn
, nr_pages
);
836 return pfn_to_page(pfn
);
837 spin_lock_irqsave(&z
->lock
, flags
);
842 spin_unlock_irqrestore(&z
->lock
, flags
);
848 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
849 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
);
851 static struct page
*alloc_fresh_gigantic_page_node(struct hstate
*h
, int nid
)
855 page
= alloc_gigantic_page(nid
, huge_page_order(h
));
857 prep_compound_gigantic_page(page
, huge_page_order(h
));
858 prep_new_huge_page(h
, page
, nid
);
864 static int alloc_fresh_gigantic_page(struct hstate
*h
,
865 nodemask_t
*nodes_allowed
)
867 struct page
*page
= NULL
;
870 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
871 page
= alloc_fresh_gigantic_page_node(h
, node
);
879 static inline bool gigantic_page_supported(void) { return true; }
881 static inline bool gigantic_page_supported(void) { return false; }
882 static inline void free_gigantic_page(struct page
*page
, unsigned order
) { }
883 static inline void destroy_compound_gigantic_page(struct page
*page
,
884 unsigned long order
) { }
885 static inline int alloc_fresh_gigantic_page(struct hstate
*h
,
886 nodemask_t
*nodes_allowed
) { return 0; }
889 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
893 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
897 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
898 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
899 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
900 1 << PG_referenced
| 1 << PG_dirty
|
901 1 << PG_active
| 1 << PG_private
|
904 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
905 set_compound_page_dtor(page
, NULL
);
906 set_page_refcounted(page
);
907 if (hstate_is_gigantic(h
)) {
908 destroy_compound_gigantic_page(page
, huge_page_order(h
));
909 free_gigantic_page(page
, huge_page_order(h
));
911 arch_release_hugepage(page
);
912 __free_pages(page
, huge_page_order(h
));
916 struct hstate
*size_to_hstate(unsigned long size
)
921 if (huge_page_size(h
) == size
)
928 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
929 * to hstate->hugepage_activelist.)
931 * This function can be called for tail pages, but never returns true for them.
933 bool page_huge_active(struct page
*page
)
935 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
936 return PageHead(page
) && PagePrivate(&page
[1]);
939 /* never called for tail page */
940 static void set_page_huge_active(struct page
*page
)
942 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
943 SetPagePrivate(&page
[1]);
946 static void clear_page_huge_active(struct page
*page
)
948 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
949 ClearPagePrivate(&page
[1]);
952 void free_huge_page(struct page
*page
)
955 * Can't pass hstate in here because it is called from the
956 * compound page destructor.
958 struct hstate
*h
= page_hstate(page
);
959 int nid
= page_to_nid(page
);
960 struct hugepage_subpool
*spool
=
961 (struct hugepage_subpool
*)page_private(page
);
962 bool restore_reserve
;
964 set_page_private(page
, 0);
965 page
->mapping
= NULL
;
966 BUG_ON(page_count(page
));
967 BUG_ON(page_mapcount(page
));
968 restore_reserve
= PagePrivate(page
);
969 ClearPagePrivate(page
);
972 * A return code of zero implies that the subpool will be under its
973 * minimum size if the reservation is not restored after page is free.
974 * Therefore, force restore_reserve operation.
976 if (hugepage_subpool_put_pages(spool
, 1) == 0)
977 restore_reserve
= true;
979 spin_lock(&hugetlb_lock
);
980 clear_page_huge_active(page
);
981 hugetlb_cgroup_uncharge_page(hstate_index(h
),
982 pages_per_huge_page(h
), page
);
984 h
->resv_huge_pages
++;
986 if (h
->surplus_huge_pages_node
[nid
]) {
987 /* remove the page from active list */
988 list_del(&page
->lru
);
989 update_and_free_page(h
, page
);
990 h
->surplus_huge_pages
--;
991 h
->surplus_huge_pages_node
[nid
]--;
993 arch_clear_hugepage_flags(page
);
994 enqueue_huge_page(h
, page
);
996 spin_unlock(&hugetlb_lock
);
999 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1001 INIT_LIST_HEAD(&page
->lru
);
1002 set_compound_page_dtor(page
, free_huge_page
);
1003 spin_lock(&hugetlb_lock
);
1004 set_hugetlb_cgroup(page
, NULL
);
1006 h
->nr_huge_pages_node
[nid
]++;
1007 spin_unlock(&hugetlb_lock
);
1008 put_page(page
); /* free it into the hugepage allocator */
1011 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
1014 int nr_pages
= 1 << order
;
1015 struct page
*p
= page
+ 1;
1017 /* we rely on prep_new_huge_page to set the destructor */
1018 set_compound_order(page
, order
);
1019 __SetPageHead(page
);
1020 __ClearPageReserved(page
);
1021 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1023 * For gigantic hugepages allocated through bootmem at
1024 * boot, it's safer to be consistent with the not-gigantic
1025 * hugepages and clear the PG_reserved bit from all tail pages
1026 * too. Otherwse drivers using get_user_pages() to access tail
1027 * pages may get the reference counting wrong if they see
1028 * PG_reserved set on a tail page (despite the head page not
1029 * having PG_reserved set). Enforcing this consistency between
1030 * head and tail pages allows drivers to optimize away a check
1031 * on the head page when they need know if put_page() is needed
1032 * after get_user_pages().
1034 __ClearPageReserved(p
);
1035 set_page_count(p
, 0);
1036 p
->first_page
= page
;
1037 /* Make sure p->first_page is always valid for PageTail() */
1044 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1045 * transparent huge pages. See the PageTransHuge() documentation for more
1048 int PageHuge(struct page
*page
)
1050 if (!PageCompound(page
))
1053 page
= compound_head(page
);
1054 return get_compound_page_dtor(page
) == free_huge_page
;
1056 EXPORT_SYMBOL_GPL(PageHuge
);
1059 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1060 * normal or transparent huge pages.
1062 int PageHeadHuge(struct page
*page_head
)
1064 if (!PageHead(page_head
))
1067 return get_compound_page_dtor(page_head
) == free_huge_page
;
1070 pgoff_t
__basepage_index(struct page
*page
)
1072 struct page
*page_head
= compound_head(page
);
1073 pgoff_t index
= page_index(page_head
);
1074 unsigned long compound_idx
;
1076 if (!PageHuge(page_head
))
1077 return page_index(page
);
1079 if (compound_order(page_head
) >= MAX_ORDER
)
1080 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1082 compound_idx
= page
- page_head
;
1084 return (index
<< compound_order(page_head
)) + compound_idx
;
1087 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
1091 page
= alloc_pages_exact_node(nid
,
1092 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1093 __GFP_REPEAT
|__GFP_NOWARN
,
1094 huge_page_order(h
));
1096 if (arch_prepare_hugepage(page
)) {
1097 __free_pages(page
, huge_page_order(h
));
1100 prep_new_huge_page(h
, page
, nid
);
1106 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1112 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1113 page
= alloc_fresh_huge_page_node(h
, node
);
1121 count_vm_event(HTLB_BUDDY_PGALLOC
);
1123 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1129 * Free huge page from pool from next node to free.
1130 * Attempt to keep persistent huge pages more or less
1131 * balanced over allowed nodes.
1132 * Called with hugetlb_lock locked.
1134 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1140 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1142 * If we're returning unused surplus pages, only examine
1143 * nodes with surplus pages.
1145 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1146 !list_empty(&h
->hugepage_freelists
[node
])) {
1148 list_entry(h
->hugepage_freelists
[node
].next
,
1150 list_del(&page
->lru
);
1151 h
->free_huge_pages
--;
1152 h
->free_huge_pages_node
[node
]--;
1154 h
->surplus_huge_pages
--;
1155 h
->surplus_huge_pages_node
[node
]--;
1157 update_and_free_page(h
, page
);
1167 * Dissolve a given free hugepage into free buddy pages. This function does
1168 * nothing for in-use (including surplus) hugepages.
1170 static void dissolve_free_huge_page(struct page
*page
)
1172 spin_lock(&hugetlb_lock
);
1173 if (PageHuge(page
) && !page_count(page
)) {
1174 struct hstate
*h
= page_hstate(page
);
1175 int nid
= page_to_nid(page
);
1176 list_del(&page
->lru
);
1177 h
->free_huge_pages
--;
1178 h
->free_huge_pages_node
[nid
]--;
1179 update_and_free_page(h
, page
);
1181 spin_unlock(&hugetlb_lock
);
1185 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1186 * make specified memory blocks removable from the system.
1187 * Note that start_pfn should aligned with (minimum) hugepage size.
1189 void dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1191 unsigned int order
= 8 * sizeof(void *);
1195 if (!hugepages_supported())
1198 /* Set scan step to minimum hugepage size */
1200 if (order
> huge_page_order(h
))
1201 order
= huge_page_order(h
);
1202 VM_BUG_ON(!IS_ALIGNED(start_pfn
, 1 << order
));
1203 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << order
)
1204 dissolve_free_huge_page(pfn_to_page(pfn
));
1207 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
1212 if (hstate_is_gigantic(h
))
1216 * Assume we will successfully allocate the surplus page to
1217 * prevent racing processes from causing the surplus to exceed
1220 * This however introduces a different race, where a process B
1221 * tries to grow the static hugepage pool while alloc_pages() is
1222 * called by process A. B will only examine the per-node
1223 * counters in determining if surplus huge pages can be
1224 * converted to normal huge pages in adjust_pool_surplus(). A
1225 * won't be able to increment the per-node counter, until the
1226 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1227 * no more huge pages can be converted from surplus to normal
1228 * state (and doesn't try to convert again). Thus, we have a
1229 * case where a surplus huge page exists, the pool is grown, and
1230 * the surplus huge page still exists after, even though it
1231 * should just have been converted to a normal huge page. This
1232 * does not leak memory, though, as the hugepage will be freed
1233 * once it is out of use. It also does not allow the counters to
1234 * go out of whack in adjust_pool_surplus() as we don't modify
1235 * the node values until we've gotten the hugepage and only the
1236 * per-node value is checked there.
1238 spin_lock(&hugetlb_lock
);
1239 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1240 spin_unlock(&hugetlb_lock
);
1244 h
->surplus_huge_pages
++;
1246 spin_unlock(&hugetlb_lock
);
1248 if (nid
== NUMA_NO_NODE
)
1249 page
= alloc_pages(htlb_alloc_mask(h
)|__GFP_COMP
|
1250 __GFP_REPEAT
|__GFP_NOWARN
,
1251 huge_page_order(h
));
1253 page
= alloc_pages_exact_node(nid
,
1254 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1255 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
1257 if (page
&& arch_prepare_hugepage(page
)) {
1258 __free_pages(page
, huge_page_order(h
));
1262 spin_lock(&hugetlb_lock
);
1264 INIT_LIST_HEAD(&page
->lru
);
1265 r_nid
= page_to_nid(page
);
1266 set_compound_page_dtor(page
, free_huge_page
);
1267 set_hugetlb_cgroup(page
, NULL
);
1269 * We incremented the global counters already
1271 h
->nr_huge_pages_node
[r_nid
]++;
1272 h
->surplus_huge_pages_node
[r_nid
]++;
1273 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1276 h
->surplus_huge_pages
--;
1277 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1279 spin_unlock(&hugetlb_lock
);
1285 * This allocation function is useful in the context where vma is irrelevant.
1286 * E.g. soft-offlining uses this function because it only cares physical
1287 * address of error page.
1289 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1291 struct page
*page
= NULL
;
1293 spin_lock(&hugetlb_lock
);
1294 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1295 page
= dequeue_huge_page_node(h
, nid
);
1296 spin_unlock(&hugetlb_lock
);
1299 page
= alloc_buddy_huge_page(h
, nid
);
1305 * Increase the hugetlb pool such that it can accommodate a reservation
1308 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1310 struct list_head surplus_list
;
1311 struct page
*page
, *tmp
;
1313 int needed
, allocated
;
1314 bool alloc_ok
= true;
1316 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1318 h
->resv_huge_pages
+= delta
;
1323 INIT_LIST_HEAD(&surplus_list
);
1327 spin_unlock(&hugetlb_lock
);
1328 for (i
= 0; i
< needed
; i
++) {
1329 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1334 list_add(&page
->lru
, &surplus_list
);
1339 * After retaking hugetlb_lock, we need to recalculate 'needed'
1340 * because either resv_huge_pages or free_huge_pages may have changed.
1342 spin_lock(&hugetlb_lock
);
1343 needed
= (h
->resv_huge_pages
+ delta
) -
1344 (h
->free_huge_pages
+ allocated
);
1349 * We were not able to allocate enough pages to
1350 * satisfy the entire reservation so we free what
1351 * we've allocated so far.
1356 * The surplus_list now contains _at_least_ the number of extra pages
1357 * needed to accommodate the reservation. Add the appropriate number
1358 * of pages to the hugetlb pool and free the extras back to the buddy
1359 * allocator. Commit the entire reservation here to prevent another
1360 * process from stealing the pages as they are added to the pool but
1361 * before they are reserved.
1363 needed
+= allocated
;
1364 h
->resv_huge_pages
+= delta
;
1367 /* Free the needed pages to the hugetlb pool */
1368 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1372 * This page is now managed by the hugetlb allocator and has
1373 * no users -- drop the buddy allocator's reference.
1375 put_page_testzero(page
);
1376 VM_BUG_ON_PAGE(page_count(page
), page
);
1377 enqueue_huge_page(h
, page
);
1380 spin_unlock(&hugetlb_lock
);
1382 /* Free unnecessary surplus pages to the buddy allocator */
1383 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1385 spin_lock(&hugetlb_lock
);
1391 * When releasing a hugetlb pool reservation, any surplus pages that were
1392 * allocated to satisfy the reservation must be explicitly freed if they were
1394 * Called with hugetlb_lock held.
1396 static void return_unused_surplus_pages(struct hstate
*h
,
1397 unsigned long unused_resv_pages
)
1399 unsigned long nr_pages
;
1401 /* Uncommit the reservation */
1402 h
->resv_huge_pages
-= unused_resv_pages
;
1404 /* Cannot return gigantic pages currently */
1405 if (hstate_is_gigantic(h
))
1408 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1411 * We want to release as many surplus pages as possible, spread
1412 * evenly across all nodes with memory. Iterate across these nodes
1413 * until we can no longer free unreserved surplus pages. This occurs
1414 * when the nodes with surplus pages have no free pages.
1415 * free_pool_huge_page() will balance the the freed pages across the
1416 * on-line nodes with memory and will handle the hstate accounting.
1418 while (nr_pages
--) {
1419 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1421 cond_resched_lock(&hugetlb_lock
);
1426 * Determine if the huge page at addr within the vma has an associated
1427 * reservation. Where it does not we will need to logically increase
1428 * reservation and actually increase subpool usage before an allocation
1429 * can occur. Where any new reservation would be required the
1430 * reservation change is prepared, but not committed. Once the page
1431 * has been allocated from the subpool and instantiated the change should
1432 * be committed via vma_commit_reservation. No action is required on
1435 static long vma_needs_reservation(struct hstate
*h
,
1436 struct vm_area_struct
*vma
, unsigned long addr
)
1438 struct resv_map
*resv
;
1442 resv
= vma_resv_map(vma
);
1446 idx
= vma_hugecache_offset(h
, vma
, addr
);
1447 chg
= region_chg(resv
, idx
, idx
+ 1);
1449 if (vma
->vm_flags
& VM_MAYSHARE
)
1452 return chg
< 0 ? chg
: 0;
1454 static void vma_commit_reservation(struct hstate
*h
,
1455 struct vm_area_struct
*vma
, unsigned long addr
)
1457 struct resv_map
*resv
;
1460 resv
= vma_resv_map(vma
);
1464 idx
= vma_hugecache_offset(h
, vma
, addr
);
1465 region_add(resv
, idx
, idx
+ 1);
1468 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1469 unsigned long addr
, int avoid_reserve
)
1471 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1472 struct hstate
*h
= hstate_vma(vma
);
1476 struct hugetlb_cgroup
*h_cg
;
1478 idx
= hstate_index(h
);
1480 * Processes that did not create the mapping will have no
1481 * reserves and will not have accounted against subpool
1482 * limit. Check that the subpool limit can be made before
1483 * satisfying the allocation MAP_NORESERVE mappings may also
1484 * need pages and subpool limit allocated allocated if no reserve
1487 chg
= vma_needs_reservation(h
, vma
, addr
);
1489 return ERR_PTR(-ENOMEM
);
1490 if (chg
|| avoid_reserve
)
1491 if (hugepage_subpool_get_pages(spool
, 1) < 0)
1492 return ERR_PTR(-ENOSPC
);
1494 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1496 goto out_subpool_put
;
1498 spin_lock(&hugetlb_lock
);
1499 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, chg
);
1501 spin_unlock(&hugetlb_lock
);
1502 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1504 goto out_uncharge_cgroup
;
1506 spin_lock(&hugetlb_lock
);
1507 list_move(&page
->lru
, &h
->hugepage_activelist
);
1510 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
1511 spin_unlock(&hugetlb_lock
);
1513 set_page_private(page
, (unsigned long)spool
);
1515 vma_commit_reservation(h
, vma
, addr
);
1518 out_uncharge_cgroup
:
1519 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
1521 if (chg
|| avoid_reserve
)
1522 hugepage_subpool_put_pages(spool
, 1);
1523 return ERR_PTR(-ENOSPC
);
1527 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1528 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1529 * where no ERR_VALUE is expected to be returned.
1531 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
1532 unsigned long addr
, int avoid_reserve
)
1534 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
1540 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1542 struct huge_bootmem_page
*m
;
1545 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
1548 addr
= memblock_virt_alloc_try_nid_nopanic(
1549 huge_page_size(h
), huge_page_size(h
),
1550 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
1553 * Use the beginning of the huge page to store the
1554 * huge_bootmem_page struct (until gather_bootmem
1555 * puts them into the mem_map).
1564 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
1565 /* Put them into a private list first because mem_map is not up yet */
1566 list_add(&m
->list
, &huge_boot_pages
);
1571 static void __init
prep_compound_huge_page(struct page
*page
, int order
)
1573 if (unlikely(order
> (MAX_ORDER
- 1)))
1574 prep_compound_gigantic_page(page
, order
);
1576 prep_compound_page(page
, order
);
1579 /* Put bootmem huge pages into the standard lists after mem_map is up */
1580 static void __init
gather_bootmem_prealloc(void)
1582 struct huge_bootmem_page
*m
;
1584 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1585 struct hstate
*h
= m
->hstate
;
1588 #ifdef CONFIG_HIGHMEM
1589 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
1590 memblock_free_late(__pa(m
),
1591 sizeof(struct huge_bootmem_page
));
1593 page
= virt_to_page(m
);
1595 WARN_ON(page_count(page
) != 1);
1596 prep_compound_huge_page(page
, h
->order
);
1597 WARN_ON(PageReserved(page
));
1598 prep_new_huge_page(h
, page
, page_to_nid(page
));
1600 * If we had gigantic hugepages allocated at boot time, we need
1601 * to restore the 'stolen' pages to totalram_pages in order to
1602 * fix confusing memory reports from free(1) and another
1603 * side-effects, like CommitLimit going negative.
1605 if (hstate_is_gigantic(h
))
1606 adjust_managed_page_count(page
, 1 << h
->order
);
1610 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1614 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1615 if (hstate_is_gigantic(h
)) {
1616 if (!alloc_bootmem_huge_page(h
))
1618 } else if (!alloc_fresh_huge_page(h
,
1619 &node_states
[N_MEMORY
]))
1622 h
->max_huge_pages
= i
;
1625 static void __init
hugetlb_init_hstates(void)
1629 for_each_hstate(h
) {
1630 /* oversize hugepages were init'ed in early boot */
1631 if (!hstate_is_gigantic(h
))
1632 hugetlb_hstate_alloc_pages(h
);
1636 static char * __init
memfmt(char *buf
, unsigned long n
)
1638 if (n
>= (1UL << 30))
1639 sprintf(buf
, "%lu GB", n
>> 30);
1640 else if (n
>= (1UL << 20))
1641 sprintf(buf
, "%lu MB", n
>> 20);
1643 sprintf(buf
, "%lu KB", n
>> 10);
1647 static void __init
report_hugepages(void)
1651 for_each_hstate(h
) {
1653 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1654 memfmt(buf
, huge_page_size(h
)),
1655 h
->free_huge_pages
);
1659 #ifdef CONFIG_HIGHMEM
1660 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1661 nodemask_t
*nodes_allowed
)
1665 if (hstate_is_gigantic(h
))
1668 for_each_node_mask(i
, *nodes_allowed
) {
1669 struct page
*page
, *next
;
1670 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1671 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1672 if (count
>= h
->nr_huge_pages
)
1674 if (PageHighMem(page
))
1676 list_del(&page
->lru
);
1677 update_and_free_page(h
, page
);
1678 h
->free_huge_pages
--;
1679 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1684 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1685 nodemask_t
*nodes_allowed
)
1691 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1692 * balanced by operating on them in a round-robin fashion.
1693 * Returns 1 if an adjustment was made.
1695 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1700 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1703 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1704 if (h
->surplus_huge_pages_node
[node
])
1708 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1709 if (h
->surplus_huge_pages_node
[node
] <
1710 h
->nr_huge_pages_node
[node
])
1717 h
->surplus_huge_pages
+= delta
;
1718 h
->surplus_huge_pages_node
[node
] += delta
;
1722 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1723 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1724 nodemask_t
*nodes_allowed
)
1726 unsigned long min_count
, ret
;
1728 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1729 return h
->max_huge_pages
;
1732 * Increase the pool size
1733 * First take pages out of surplus state. Then make up the
1734 * remaining difference by allocating fresh huge pages.
1736 * We might race with alloc_buddy_huge_page() here and be unable
1737 * to convert a surplus huge page to a normal huge page. That is
1738 * not critical, though, it just means the overall size of the
1739 * pool might be one hugepage larger than it needs to be, but
1740 * within all the constraints specified by the sysctls.
1742 spin_lock(&hugetlb_lock
);
1743 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1744 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1748 while (count
> persistent_huge_pages(h
)) {
1750 * If this allocation races such that we no longer need the
1751 * page, free_huge_page will handle it by freeing the page
1752 * and reducing the surplus.
1754 spin_unlock(&hugetlb_lock
);
1755 if (hstate_is_gigantic(h
))
1756 ret
= alloc_fresh_gigantic_page(h
, nodes_allowed
);
1758 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1759 spin_lock(&hugetlb_lock
);
1763 /* Bail for signals. Probably ctrl-c from user */
1764 if (signal_pending(current
))
1769 * Decrease the pool size
1770 * First return free pages to the buddy allocator (being careful
1771 * to keep enough around to satisfy reservations). Then place
1772 * pages into surplus state as needed so the pool will shrink
1773 * to the desired size as pages become free.
1775 * By placing pages into the surplus state independent of the
1776 * overcommit value, we are allowing the surplus pool size to
1777 * exceed overcommit. There are few sane options here. Since
1778 * alloc_buddy_huge_page() is checking the global counter,
1779 * though, we'll note that we're not allowed to exceed surplus
1780 * and won't grow the pool anywhere else. Not until one of the
1781 * sysctls are changed, or the surplus pages go out of use.
1783 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1784 min_count
= max(count
, min_count
);
1785 try_to_free_low(h
, min_count
, nodes_allowed
);
1786 while (min_count
< persistent_huge_pages(h
)) {
1787 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1789 cond_resched_lock(&hugetlb_lock
);
1791 while (count
< persistent_huge_pages(h
)) {
1792 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1796 ret
= persistent_huge_pages(h
);
1797 spin_unlock(&hugetlb_lock
);
1801 #define HSTATE_ATTR_RO(_name) \
1802 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1804 #define HSTATE_ATTR(_name) \
1805 static struct kobj_attribute _name##_attr = \
1806 __ATTR(_name, 0644, _name##_show, _name##_store)
1808 static struct kobject
*hugepages_kobj
;
1809 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1811 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1813 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1817 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1818 if (hstate_kobjs
[i
] == kobj
) {
1820 *nidp
= NUMA_NO_NODE
;
1824 return kobj_to_node_hstate(kobj
, nidp
);
1827 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1828 struct kobj_attribute
*attr
, char *buf
)
1831 unsigned long nr_huge_pages
;
1834 h
= kobj_to_hstate(kobj
, &nid
);
1835 if (nid
== NUMA_NO_NODE
)
1836 nr_huge_pages
= h
->nr_huge_pages
;
1838 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1840 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1843 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
1844 struct hstate
*h
, int nid
,
1845 unsigned long count
, size_t len
)
1848 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1850 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
1855 if (nid
== NUMA_NO_NODE
) {
1857 * global hstate attribute
1859 if (!(obey_mempolicy
&&
1860 init_nodemask_of_mempolicy(nodes_allowed
))) {
1861 NODEMASK_FREE(nodes_allowed
);
1862 nodes_allowed
= &node_states
[N_MEMORY
];
1864 } else if (nodes_allowed
) {
1866 * per node hstate attribute: adjust count to global,
1867 * but restrict alloc/free to the specified node.
1869 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1870 init_nodemask_of_node(nodes_allowed
, nid
);
1872 nodes_allowed
= &node_states
[N_MEMORY
];
1874 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1876 if (nodes_allowed
!= &node_states
[N_MEMORY
])
1877 NODEMASK_FREE(nodes_allowed
);
1881 NODEMASK_FREE(nodes_allowed
);
1885 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1886 struct kobject
*kobj
, const char *buf
,
1890 unsigned long count
;
1894 err
= kstrtoul(buf
, 10, &count
);
1898 h
= kobj_to_hstate(kobj
, &nid
);
1899 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
1902 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1903 struct kobj_attribute
*attr
, char *buf
)
1905 return nr_hugepages_show_common(kobj
, attr
, buf
);
1908 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1909 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1911 return nr_hugepages_store_common(false, kobj
, buf
, len
);
1913 HSTATE_ATTR(nr_hugepages
);
1918 * hstate attribute for optionally mempolicy-based constraint on persistent
1919 * huge page alloc/free.
1921 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1922 struct kobj_attribute
*attr
, char *buf
)
1924 return nr_hugepages_show_common(kobj
, attr
, buf
);
1927 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1928 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1930 return nr_hugepages_store_common(true, kobj
, buf
, len
);
1932 HSTATE_ATTR(nr_hugepages_mempolicy
);
1936 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1937 struct kobj_attribute
*attr
, char *buf
)
1939 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1940 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1943 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1944 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1947 unsigned long input
;
1948 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1950 if (hstate_is_gigantic(h
))
1953 err
= kstrtoul(buf
, 10, &input
);
1957 spin_lock(&hugetlb_lock
);
1958 h
->nr_overcommit_huge_pages
= input
;
1959 spin_unlock(&hugetlb_lock
);
1963 HSTATE_ATTR(nr_overcommit_hugepages
);
1965 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1966 struct kobj_attribute
*attr
, char *buf
)
1969 unsigned long free_huge_pages
;
1972 h
= kobj_to_hstate(kobj
, &nid
);
1973 if (nid
== NUMA_NO_NODE
)
1974 free_huge_pages
= h
->free_huge_pages
;
1976 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1978 return sprintf(buf
, "%lu\n", free_huge_pages
);
1980 HSTATE_ATTR_RO(free_hugepages
);
1982 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1983 struct kobj_attribute
*attr
, char *buf
)
1985 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1986 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1988 HSTATE_ATTR_RO(resv_hugepages
);
1990 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1991 struct kobj_attribute
*attr
, char *buf
)
1994 unsigned long surplus_huge_pages
;
1997 h
= kobj_to_hstate(kobj
, &nid
);
1998 if (nid
== NUMA_NO_NODE
)
1999 surplus_huge_pages
= h
->surplus_huge_pages
;
2001 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2003 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2005 HSTATE_ATTR_RO(surplus_hugepages
);
2007 static struct attribute
*hstate_attrs
[] = {
2008 &nr_hugepages_attr
.attr
,
2009 &nr_overcommit_hugepages_attr
.attr
,
2010 &free_hugepages_attr
.attr
,
2011 &resv_hugepages_attr
.attr
,
2012 &surplus_hugepages_attr
.attr
,
2014 &nr_hugepages_mempolicy_attr
.attr
,
2019 static struct attribute_group hstate_attr_group
= {
2020 .attrs
= hstate_attrs
,
2023 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2024 struct kobject
**hstate_kobjs
,
2025 struct attribute_group
*hstate_attr_group
)
2028 int hi
= hstate_index(h
);
2030 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2031 if (!hstate_kobjs
[hi
])
2034 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2036 kobject_put(hstate_kobjs
[hi
]);
2041 static void __init
hugetlb_sysfs_init(void)
2046 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2047 if (!hugepages_kobj
)
2050 for_each_hstate(h
) {
2051 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2052 hstate_kobjs
, &hstate_attr_group
);
2054 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2061 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2062 * with node devices in node_devices[] using a parallel array. The array
2063 * index of a node device or _hstate == node id.
2064 * This is here to avoid any static dependency of the node device driver, in
2065 * the base kernel, on the hugetlb module.
2067 struct node_hstate
{
2068 struct kobject
*hugepages_kobj
;
2069 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2071 struct node_hstate node_hstates
[MAX_NUMNODES
];
2074 * A subset of global hstate attributes for node devices
2076 static struct attribute
*per_node_hstate_attrs
[] = {
2077 &nr_hugepages_attr
.attr
,
2078 &free_hugepages_attr
.attr
,
2079 &surplus_hugepages_attr
.attr
,
2083 static struct attribute_group per_node_hstate_attr_group
= {
2084 .attrs
= per_node_hstate_attrs
,
2088 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2089 * Returns node id via non-NULL nidp.
2091 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2095 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2096 struct node_hstate
*nhs
= &node_hstates
[nid
];
2098 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2099 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2111 * Unregister hstate attributes from a single node device.
2112 * No-op if no hstate attributes attached.
2114 static void hugetlb_unregister_node(struct node
*node
)
2117 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2119 if (!nhs
->hugepages_kobj
)
2120 return; /* no hstate attributes */
2122 for_each_hstate(h
) {
2123 int idx
= hstate_index(h
);
2124 if (nhs
->hstate_kobjs
[idx
]) {
2125 kobject_put(nhs
->hstate_kobjs
[idx
]);
2126 nhs
->hstate_kobjs
[idx
] = NULL
;
2130 kobject_put(nhs
->hugepages_kobj
);
2131 nhs
->hugepages_kobj
= NULL
;
2135 * hugetlb module exit: unregister hstate attributes from node devices
2138 static void hugetlb_unregister_all_nodes(void)
2143 * disable node device registrations.
2145 register_hugetlbfs_with_node(NULL
, NULL
);
2148 * remove hstate attributes from any nodes that have them.
2150 for (nid
= 0; nid
< nr_node_ids
; nid
++)
2151 hugetlb_unregister_node(node_devices
[nid
]);
2155 * Register hstate attributes for a single node device.
2156 * No-op if attributes already registered.
2158 static void hugetlb_register_node(struct node
*node
)
2161 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2164 if (nhs
->hugepages_kobj
)
2165 return; /* already allocated */
2167 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2169 if (!nhs
->hugepages_kobj
)
2172 for_each_hstate(h
) {
2173 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2175 &per_node_hstate_attr_group
);
2177 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2178 h
->name
, node
->dev
.id
);
2179 hugetlb_unregister_node(node
);
2186 * hugetlb init time: register hstate attributes for all registered node
2187 * devices of nodes that have memory. All on-line nodes should have
2188 * registered their associated device by this time.
2190 static void __init
hugetlb_register_all_nodes(void)
2194 for_each_node_state(nid
, N_MEMORY
) {
2195 struct node
*node
= node_devices
[nid
];
2196 if (node
->dev
.id
== nid
)
2197 hugetlb_register_node(node
);
2201 * Let the node device driver know we're here so it can
2202 * [un]register hstate attributes on node hotplug.
2204 register_hugetlbfs_with_node(hugetlb_register_node
,
2205 hugetlb_unregister_node
);
2207 #else /* !CONFIG_NUMA */
2209 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2217 static void hugetlb_unregister_all_nodes(void) { }
2219 static void hugetlb_register_all_nodes(void) { }
2223 static void __exit
hugetlb_exit(void)
2227 hugetlb_unregister_all_nodes();
2229 for_each_hstate(h
) {
2230 kobject_put(hstate_kobjs
[hstate_index(h
)]);
2233 kobject_put(hugepages_kobj
);
2234 kfree(htlb_fault_mutex_table
);
2236 module_exit(hugetlb_exit
);
2238 static int __init
hugetlb_init(void)
2242 if (!hugepages_supported())
2245 if (!size_to_hstate(default_hstate_size
)) {
2246 default_hstate_size
= HPAGE_SIZE
;
2247 if (!size_to_hstate(default_hstate_size
))
2248 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2250 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2251 if (default_hstate_max_huge_pages
)
2252 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2254 hugetlb_init_hstates();
2255 gather_bootmem_prealloc();
2258 hugetlb_sysfs_init();
2259 hugetlb_register_all_nodes();
2260 hugetlb_cgroup_file_init();
2263 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2265 num_fault_mutexes
= 1;
2267 htlb_fault_mutex_table
=
2268 kmalloc(sizeof(struct mutex
) * num_fault_mutexes
, GFP_KERNEL
);
2269 BUG_ON(!htlb_fault_mutex_table
);
2271 for (i
= 0; i
< num_fault_mutexes
; i
++)
2272 mutex_init(&htlb_fault_mutex_table
[i
]);
2275 module_init(hugetlb_init
);
2277 /* Should be called on processing a hugepagesz=... option */
2278 void __init
hugetlb_add_hstate(unsigned order
)
2283 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2284 pr_warning("hugepagesz= specified twice, ignoring\n");
2287 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2289 h
= &hstates
[hugetlb_max_hstate
++];
2291 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2292 h
->nr_huge_pages
= 0;
2293 h
->free_huge_pages
= 0;
2294 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2295 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2296 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2297 h
->next_nid_to_alloc
= first_node(node_states
[N_MEMORY
]);
2298 h
->next_nid_to_free
= first_node(node_states
[N_MEMORY
]);
2299 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2300 huge_page_size(h
)/1024);
2305 static int __init
hugetlb_nrpages_setup(char *s
)
2308 static unsigned long *last_mhp
;
2311 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2312 * so this hugepages= parameter goes to the "default hstate".
2314 if (!hugetlb_max_hstate
)
2315 mhp
= &default_hstate_max_huge_pages
;
2317 mhp
= &parsed_hstate
->max_huge_pages
;
2319 if (mhp
== last_mhp
) {
2320 pr_warning("hugepages= specified twice without "
2321 "interleaving hugepagesz=, ignoring\n");
2325 if (sscanf(s
, "%lu", mhp
) <= 0)
2329 * Global state is always initialized later in hugetlb_init.
2330 * But we need to allocate >= MAX_ORDER hstates here early to still
2331 * use the bootmem allocator.
2333 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2334 hugetlb_hstate_alloc_pages(parsed_hstate
);
2340 __setup("hugepages=", hugetlb_nrpages_setup
);
2342 static int __init
hugetlb_default_setup(char *s
)
2344 default_hstate_size
= memparse(s
, &s
);
2347 __setup("default_hugepagesz=", hugetlb_default_setup
);
2349 static unsigned int cpuset_mems_nr(unsigned int *array
)
2352 unsigned int nr
= 0;
2354 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2360 #ifdef CONFIG_SYSCTL
2361 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2362 struct ctl_table
*table
, int write
,
2363 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2365 struct hstate
*h
= &default_hstate
;
2366 unsigned long tmp
= h
->max_huge_pages
;
2369 if (!hugepages_supported())
2373 table
->maxlen
= sizeof(unsigned long);
2374 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2379 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2380 NUMA_NO_NODE
, tmp
, *length
);
2385 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2386 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2389 return hugetlb_sysctl_handler_common(false, table
, write
,
2390 buffer
, length
, ppos
);
2394 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2395 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2397 return hugetlb_sysctl_handler_common(true, table
, write
,
2398 buffer
, length
, ppos
);
2400 #endif /* CONFIG_NUMA */
2402 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2403 void __user
*buffer
,
2404 size_t *length
, loff_t
*ppos
)
2406 struct hstate
*h
= &default_hstate
;
2410 if (!hugepages_supported())
2413 tmp
= h
->nr_overcommit_huge_pages
;
2415 if (write
&& hstate_is_gigantic(h
))
2419 table
->maxlen
= sizeof(unsigned long);
2420 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2425 spin_lock(&hugetlb_lock
);
2426 h
->nr_overcommit_huge_pages
= tmp
;
2427 spin_unlock(&hugetlb_lock
);
2433 #endif /* CONFIG_SYSCTL */
2435 void hugetlb_report_meminfo(struct seq_file
*m
)
2437 struct hstate
*h
= &default_hstate
;
2438 if (!hugepages_supported())
2441 "HugePages_Total: %5lu\n"
2442 "HugePages_Free: %5lu\n"
2443 "HugePages_Rsvd: %5lu\n"
2444 "HugePages_Surp: %5lu\n"
2445 "Hugepagesize: %8lu kB\n",
2449 h
->surplus_huge_pages
,
2450 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2453 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2455 struct hstate
*h
= &default_hstate
;
2456 if (!hugepages_supported())
2459 "Node %d HugePages_Total: %5u\n"
2460 "Node %d HugePages_Free: %5u\n"
2461 "Node %d HugePages_Surp: %5u\n",
2462 nid
, h
->nr_huge_pages_node
[nid
],
2463 nid
, h
->free_huge_pages_node
[nid
],
2464 nid
, h
->surplus_huge_pages_node
[nid
]);
2467 void hugetlb_show_meminfo(void)
2472 if (!hugepages_supported())
2475 for_each_node_state(nid
, N_MEMORY
)
2477 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2479 h
->nr_huge_pages_node
[nid
],
2480 h
->free_huge_pages_node
[nid
],
2481 h
->surplus_huge_pages_node
[nid
],
2482 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2485 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2486 unsigned long hugetlb_total_pages(void)
2489 unsigned long nr_total_pages
= 0;
2492 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2493 return nr_total_pages
;
2496 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2500 spin_lock(&hugetlb_lock
);
2502 * When cpuset is configured, it breaks the strict hugetlb page
2503 * reservation as the accounting is done on a global variable. Such
2504 * reservation is completely rubbish in the presence of cpuset because
2505 * the reservation is not checked against page availability for the
2506 * current cpuset. Application can still potentially OOM'ed by kernel
2507 * with lack of free htlb page in cpuset that the task is in.
2508 * Attempt to enforce strict accounting with cpuset is almost
2509 * impossible (or too ugly) because cpuset is too fluid that
2510 * task or memory node can be dynamically moved between cpusets.
2512 * The change of semantics for shared hugetlb mapping with cpuset is
2513 * undesirable. However, in order to preserve some of the semantics,
2514 * we fall back to check against current free page availability as
2515 * a best attempt and hopefully to minimize the impact of changing
2516 * semantics that cpuset has.
2519 if (gather_surplus_pages(h
, delta
) < 0)
2522 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2523 return_unused_surplus_pages(h
, delta
);
2530 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2533 spin_unlock(&hugetlb_lock
);
2537 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2539 struct resv_map
*resv
= vma_resv_map(vma
);
2542 * This new VMA should share its siblings reservation map if present.
2543 * The VMA will only ever have a valid reservation map pointer where
2544 * it is being copied for another still existing VMA. As that VMA
2545 * has a reference to the reservation map it cannot disappear until
2546 * after this open call completes. It is therefore safe to take a
2547 * new reference here without additional locking.
2549 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2550 kref_get(&resv
->refs
);
2553 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2555 struct hstate
*h
= hstate_vma(vma
);
2556 struct resv_map
*resv
= vma_resv_map(vma
);
2557 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2558 unsigned long reserve
, start
, end
;
2561 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2564 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2565 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2567 reserve
= (end
- start
) - region_count(resv
, start
, end
);
2569 kref_put(&resv
->refs
, resv_map_release
);
2573 * Decrement reserve counts. The global reserve count may be
2574 * adjusted if the subpool has a minimum size.
2576 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
2577 hugetlb_acct_memory(h
, -gbl_reserve
);
2582 * We cannot handle pagefaults against hugetlb pages at all. They cause
2583 * handle_mm_fault() to try to instantiate regular-sized pages in the
2584 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2587 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2593 const struct vm_operations_struct hugetlb_vm_ops
= {
2594 .fault
= hugetlb_vm_op_fault
,
2595 .open
= hugetlb_vm_op_open
,
2596 .close
= hugetlb_vm_op_close
,
2599 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2605 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
2606 vma
->vm_page_prot
)));
2608 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
2609 vma
->vm_page_prot
));
2611 entry
= pte_mkyoung(entry
);
2612 entry
= pte_mkhuge(entry
);
2613 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
2618 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2619 unsigned long address
, pte_t
*ptep
)
2623 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
2624 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
2625 update_mmu_cache(vma
, address
, ptep
);
2628 static int is_hugetlb_entry_migration(pte_t pte
)
2632 if (huge_pte_none(pte
) || pte_present(pte
))
2634 swp
= pte_to_swp_entry(pte
);
2635 if (non_swap_entry(swp
) && is_migration_entry(swp
))
2641 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2645 if (huge_pte_none(pte
) || pte_present(pte
))
2647 swp
= pte_to_swp_entry(pte
);
2648 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
2654 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2655 struct vm_area_struct
*vma
)
2657 pte_t
*src_pte
, *dst_pte
, entry
;
2658 struct page
*ptepage
;
2661 struct hstate
*h
= hstate_vma(vma
);
2662 unsigned long sz
= huge_page_size(h
);
2663 unsigned long mmun_start
; /* For mmu_notifiers */
2664 unsigned long mmun_end
; /* For mmu_notifiers */
2667 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2669 mmun_start
= vma
->vm_start
;
2670 mmun_end
= vma
->vm_end
;
2672 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
2674 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2675 spinlock_t
*src_ptl
, *dst_ptl
;
2676 src_pte
= huge_pte_offset(src
, addr
);
2679 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2685 /* If the pagetables are shared don't copy or take references */
2686 if (dst_pte
== src_pte
)
2689 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
2690 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
2691 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
2692 entry
= huge_ptep_get(src_pte
);
2693 if (huge_pte_none(entry
)) { /* skip none entry */
2695 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
2696 is_hugetlb_entry_hwpoisoned(entry
))) {
2697 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
2699 if (is_write_migration_entry(swp_entry
) && cow
) {
2701 * COW mappings require pages in both
2702 * parent and child to be set to read.
2704 make_migration_entry_read(&swp_entry
);
2705 entry
= swp_entry_to_pte(swp_entry
);
2706 set_huge_pte_at(src
, addr
, src_pte
, entry
);
2708 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2711 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2712 mmu_notifier_invalidate_range(src
, mmun_start
,
2715 entry
= huge_ptep_get(src_pte
);
2716 ptepage
= pte_page(entry
);
2718 page_dup_rmap(ptepage
);
2719 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2721 spin_unlock(src_ptl
);
2722 spin_unlock(dst_ptl
);
2726 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
2731 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2732 unsigned long start
, unsigned long end
,
2733 struct page
*ref_page
)
2735 int force_flush
= 0;
2736 struct mm_struct
*mm
= vma
->vm_mm
;
2737 unsigned long address
;
2742 struct hstate
*h
= hstate_vma(vma
);
2743 unsigned long sz
= huge_page_size(h
);
2744 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
2745 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
2747 WARN_ON(!is_vm_hugetlb_page(vma
));
2748 BUG_ON(start
& ~huge_page_mask(h
));
2749 BUG_ON(end
& ~huge_page_mask(h
));
2751 tlb_start_vma(tlb
, vma
);
2752 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2755 for (; address
< end
; address
+= sz
) {
2756 ptep
= huge_pte_offset(mm
, address
);
2760 ptl
= huge_pte_lock(h
, mm
, ptep
);
2761 if (huge_pmd_unshare(mm
, &address
, ptep
))
2764 pte
= huge_ptep_get(ptep
);
2765 if (huge_pte_none(pte
))
2769 * Migrating hugepage or HWPoisoned hugepage is already
2770 * unmapped and its refcount is dropped, so just clear pte here.
2772 if (unlikely(!pte_present(pte
))) {
2773 huge_pte_clear(mm
, address
, ptep
);
2777 page
= pte_page(pte
);
2779 * If a reference page is supplied, it is because a specific
2780 * page is being unmapped, not a range. Ensure the page we
2781 * are about to unmap is the actual page of interest.
2784 if (page
!= ref_page
)
2788 * Mark the VMA as having unmapped its page so that
2789 * future faults in this VMA will fail rather than
2790 * looking like data was lost
2792 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2795 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2796 tlb_remove_tlb_entry(tlb
, ptep
, address
);
2797 if (huge_pte_dirty(pte
))
2798 set_page_dirty(page
);
2800 page_remove_rmap(page
);
2801 force_flush
= !__tlb_remove_page(tlb
, page
);
2807 /* Bail out after unmapping reference page if supplied */
2816 * mmu_gather ran out of room to batch pages, we break out of
2817 * the PTE lock to avoid doing the potential expensive TLB invalidate
2818 * and page-free while holding it.
2823 if (address
< end
&& !ref_page
)
2826 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2827 tlb_end_vma(tlb
, vma
);
2830 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
2831 struct vm_area_struct
*vma
, unsigned long start
,
2832 unsigned long end
, struct page
*ref_page
)
2834 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
2837 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2838 * test will fail on a vma being torn down, and not grab a page table
2839 * on its way out. We're lucky that the flag has such an appropriate
2840 * name, and can in fact be safely cleared here. We could clear it
2841 * before the __unmap_hugepage_range above, but all that's necessary
2842 * is to clear it before releasing the i_mmap_rwsem. This works
2843 * because in the context this is called, the VMA is about to be
2844 * destroyed and the i_mmap_rwsem is held.
2846 vma
->vm_flags
&= ~VM_MAYSHARE
;
2849 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2850 unsigned long end
, struct page
*ref_page
)
2852 struct mm_struct
*mm
;
2853 struct mmu_gather tlb
;
2857 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2858 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
2859 tlb_finish_mmu(&tlb
, start
, end
);
2863 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2864 * mappping it owns the reserve page for. The intention is to unmap the page
2865 * from other VMAs and let the children be SIGKILLed if they are faulting the
2868 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2869 struct page
*page
, unsigned long address
)
2871 struct hstate
*h
= hstate_vma(vma
);
2872 struct vm_area_struct
*iter_vma
;
2873 struct address_space
*mapping
;
2877 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2878 * from page cache lookup which is in HPAGE_SIZE units.
2880 address
= address
& huge_page_mask(h
);
2881 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
2883 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
2886 * Take the mapping lock for the duration of the table walk. As
2887 * this mapping should be shared between all the VMAs,
2888 * __unmap_hugepage_range() is called as the lock is already held
2890 i_mmap_lock_write(mapping
);
2891 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2892 /* Do not unmap the current VMA */
2893 if (iter_vma
== vma
)
2897 * Unmap the page from other VMAs without their own reserves.
2898 * They get marked to be SIGKILLed if they fault in these
2899 * areas. This is because a future no-page fault on this VMA
2900 * could insert a zeroed page instead of the data existing
2901 * from the time of fork. This would look like data corruption
2903 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2904 unmap_hugepage_range(iter_vma
, address
,
2905 address
+ huge_page_size(h
), page
);
2907 i_mmap_unlock_write(mapping
);
2911 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2912 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2913 * cannot race with other handlers or page migration.
2914 * Keep the pte_same checks anyway to make transition from the mutex easier.
2916 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2917 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2918 struct page
*pagecache_page
, spinlock_t
*ptl
)
2920 struct hstate
*h
= hstate_vma(vma
);
2921 struct page
*old_page
, *new_page
;
2922 int ret
= 0, outside_reserve
= 0;
2923 unsigned long mmun_start
; /* For mmu_notifiers */
2924 unsigned long mmun_end
; /* For mmu_notifiers */
2926 old_page
= pte_page(pte
);
2929 /* If no-one else is actually using this page, avoid the copy
2930 * and just make the page writable */
2931 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
2932 page_move_anon_rmap(old_page
, vma
, address
);
2933 set_huge_ptep_writable(vma
, address
, ptep
);
2938 * If the process that created a MAP_PRIVATE mapping is about to
2939 * perform a COW due to a shared page count, attempt to satisfy
2940 * the allocation without using the existing reserves. The pagecache
2941 * page is used to determine if the reserve at this address was
2942 * consumed or not. If reserves were used, a partial faulted mapping
2943 * at the time of fork() could consume its reserves on COW instead
2944 * of the full address range.
2946 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2947 old_page
!= pagecache_page
)
2948 outside_reserve
= 1;
2950 page_cache_get(old_page
);
2953 * Drop page table lock as buddy allocator may be called. It will
2954 * be acquired again before returning to the caller, as expected.
2957 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2959 if (IS_ERR(new_page
)) {
2961 * If a process owning a MAP_PRIVATE mapping fails to COW,
2962 * it is due to references held by a child and an insufficient
2963 * huge page pool. To guarantee the original mappers
2964 * reliability, unmap the page from child processes. The child
2965 * may get SIGKILLed if it later faults.
2967 if (outside_reserve
) {
2968 page_cache_release(old_page
);
2969 BUG_ON(huge_pte_none(pte
));
2970 unmap_ref_private(mm
, vma
, old_page
, address
);
2971 BUG_ON(huge_pte_none(pte
));
2973 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2975 pte_same(huge_ptep_get(ptep
), pte
)))
2976 goto retry_avoidcopy
;
2978 * race occurs while re-acquiring page table
2979 * lock, and our job is done.
2984 ret
= (PTR_ERR(new_page
) == -ENOMEM
) ?
2985 VM_FAULT_OOM
: VM_FAULT_SIGBUS
;
2986 goto out_release_old
;
2990 * When the original hugepage is shared one, it does not have
2991 * anon_vma prepared.
2993 if (unlikely(anon_vma_prepare(vma
))) {
2995 goto out_release_all
;
2998 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2999 pages_per_huge_page(h
));
3000 __SetPageUptodate(new_page
);
3001 set_page_huge_active(new_page
);
3003 mmun_start
= address
& huge_page_mask(h
);
3004 mmun_end
= mmun_start
+ huge_page_size(h
);
3005 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3008 * Retake the page table lock to check for racing updates
3009 * before the page tables are altered
3012 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
3013 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3014 ClearPagePrivate(new_page
);
3017 huge_ptep_clear_flush(vma
, address
, ptep
);
3018 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
3019 set_huge_pte_at(mm
, address
, ptep
,
3020 make_huge_pte(vma
, new_page
, 1));
3021 page_remove_rmap(old_page
);
3022 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
3023 /* Make the old page be freed below */
3024 new_page
= old_page
;
3027 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3029 page_cache_release(new_page
);
3031 page_cache_release(old_page
);
3033 spin_lock(ptl
); /* Caller expects lock to be held */
3037 /* Return the pagecache page at a given address within a VMA */
3038 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3039 struct vm_area_struct
*vma
, unsigned long address
)
3041 struct address_space
*mapping
;
3044 mapping
= vma
->vm_file
->f_mapping
;
3045 idx
= vma_hugecache_offset(h
, vma
, address
);
3047 return find_lock_page(mapping
, idx
);
3051 * Return whether there is a pagecache page to back given address within VMA.
3052 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3054 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3055 struct vm_area_struct
*vma
, unsigned long address
)
3057 struct address_space
*mapping
;
3061 mapping
= vma
->vm_file
->f_mapping
;
3062 idx
= vma_hugecache_offset(h
, vma
, address
);
3064 page
= find_get_page(mapping
, idx
);
3067 return page
!= NULL
;
3070 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3071 struct address_space
*mapping
, pgoff_t idx
,
3072 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3074 struct hstate
*h
= hstate_vma(vma
);
3075 int ret
= VM_FAULT_SIGBUS
;
3083 * Currently, we are forced to kill the process in the event the
3084 * original mapper has unmapped pages from the child due to a failed
3085 * COW. Warn that such a situation has occurred as it may not be obvious
3087 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3088 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3094 * Use page lock to guard against racing truncation
3095 * before we get page_table_lock.
3098 page
= find_lock_page(mapping
, idx
);
3100 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3103 page
= alloc_huge_page(vma
, address
, 0);
3105 ret
= PTR_ERR(page
);
3109 ret
= VM_FAULT_SIGBUS
;
3112 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3113 __SetPageUptodate(page
);
3114 set_page_huge_active(page
);
3116 if (vma
->vm_flags
& VM_MAYSHARE
) {
3118 struct inode
*inode
= mapping
->host
;
3120 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3127 ClearPagePrivate(page
);
3129 spin_lock(&inode
->i_lock
);
3130 inode
->i_blocks
+= blocks_per_huge_page(h
);
3131 spin_unlock(&inode
->i_lock
);
3134 if (unlikely(anon_vma_prepare(vma
))) {
3136 goto backout_unlocked
;
3142 * If memory error occurs between mmap() and fault, some process
3143 * don't have hwpoisoned swap entry for errored virtual address.
3144 * So we need to block hugepage fault by PG_hwpoison bit check.
3146 if (unlikely(PageHWPoison(page
))) {
3147 ret
= VM_FAULT_HWPOISON
|
3148 VM_FAULT_SET_HINDEX(hstate_index(h
));
3149 goto backout_unlocked
;
3154 * If we are going to COW a private mapping later, we examine the
3155 * pending reservations for this page now. This will ensure that
3156 * any allocations necessary to record that reservation occur outside
3159 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
3160 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3162 goto backout_unlocked
;
3165 ptl
= huge_pte_lockptr(h
, mm
, ptep
);
3167 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3172 if (!huge_pte_none(huge_ptep_get(ptep
)))
3176 ClearPagePrivate(page
);
3177 hugepage_add_new_anon_rmap(page
, vma
, address
);
3179 page_dup_rmap(page
);
3180 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3181 && (vma
->vm_flags
& VM_SHARED
)));
3182 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
3184 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3185 /* Optimization, do the COW without a second fault */
3186 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
, ptl
);
3203 static u32
fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3204 struct vm_area_struct
*vma
,
3205 struct address_space
*mapping
,
3206 pgoff_t idx
, unsigned long address
)
3208 unsigned long key
[2];
3211 if (vma
->vm_flags
& VM_SHARED
) {
3212 key
[0] = (unsigned long) mapping
;
3215 key
[0] = (unsigned long) mm
;
3216 key
[1] = address
>> huge_page_shift(h
);
3219 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3221 return hash
& (num_fault_mutexes
- 1);
3225 * For uniprocesor systems we always use a single mutex, so just
3226 * return 0 and avoid the hashing overhead.
3228 static u32
fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3229 struct vm_area_struct
*vma
,
3230 struct address_space
*mapping
,
3231 pgoff_t idx
, unsigned long address
)
3237 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3238 unsigned long address
, unsigned int flags
)
3245 struct page
*page
= NULL
;
3246 struct page
*pagecache_page
= NULL
;
3247 struct hstate
*h
= hstate_vma(vma
);
3248 struct address_space
*mapping
;
3249 int need_wait_lock
= 0;
3251 address
&= huge_page_mask(h
);
3253 ptep
= huge_pte_offset(mm
, address
);
3255 entry
= huge_ptep_get(ptep
);
3256 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3257 migration_entry_wait_huge(vma
, mm
, ptep
);
3259 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3260 return VM_FAULT_HWPOISON_LARGE
|
3261 VM_FAULT_SET_HINDEX(hstate_index(h
));
3264 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
3266 return VM_FAULT_OOM
;
3268 mapping
= vma
->vm_file
->f_mapping
;
3269 idx
= vma_hugecache_offset(h
, vma
, address
);
3272 * Serialize hugepage allocation and instantiation, so that we don't
3273 * get spurious allocation failures if two CPUs race to instantiate
3274 * the same page in the page cache.
3276 hash
= fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, address
);
3277 mutex_lock(&htlb_fault_mutex_table
[hash
]);
3279 entry
= huge_ptep_get(ptep
);
3280 if (huge_pte_none(entry
)) {
3281 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3288 * entry could be a migration/hwpoison entry at this point, so this
3289 * check prevents the kernel from going below assuming that we have
3290 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3291 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3294 if (!pte_present(entry
))
3298 * If we are going to COW the mapping later, we examine the pending
3299 * reservations for this page now. This will ensure that any
3300 * allocations necessary to record that reservation occur outside the
3301 * spinlock. For private mappings, we also lookup the pagecache
3302 * page now as it is used to determine if a reservation has been
3305 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3306 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3311 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3312 pagecache_page
= hugetlbfs_pagecache_page(h
,
3316 ptl
= huge_pte_lock(h
, mm
, ptep
);
3318 /* Check for a racing update before calling hugetlb_cow */
3319 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3323 * hugetlb_cow() requires page locks of pte_page(entry) and
3324 * pagecache_page, so here we need take the former one
3325 * when page != pagecache_page or !pagecache_page.
3327 page
= pte_page(entry
);
3328 if (page
!= pagecache_page
)
3329 if (!trylock_page(page
)) {
3336 if (flags
& FAULT_FLAG_WRITE
) {
3337 if (!huge_pte_write(entry
)) {
3338 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
3339 pagecache_page
, ptl
);
3342 entry
= huge_pte_mkdirty(entry
);
3344 entry
= pte_mkyoung(entry
);
3345 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3346 flags
& FAULT_FLAG_WRITE
))
3347 update_mmu_cache(vma
, address
, ptep
);
3349 if (page
!= pagecache_page
)
3355 if (pagecache_page
) {
3356 unlock_page(pagecache_page
);
3357 put_page(pagecache_page
);
3360 mutex_unlock(&htlb_fault_mutex_table
[hash
]);
3362 * Generally it's safe to hold refcount during waiting page lock. But
3363 * here we just wait to defer the next page fault to avoid busy loop and
3364 * the page is not used after unlocked before returning from the current
3365 * page fault. So we are safe from accessing freed page, even if we wait
3366 * here without taking refcount.
3369 wait_on_page_locked(page
);
3373 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3374 struct page
**pages
, struct vm_area_struct
**vmas
,
3375 unsigned long *position
, unsigned long *nr_pages
,
3376 long i
, unsigned int flags
)
3378 unsigned long pfn_offset
;
3379 unsigned long vaddr
= *position
;
3380 unsigned long remainder
= *nr_pages
;
3381 struct hstate
*h
= hstate_vma(vma
);
3383 while (vaddr
< vma
->vm_end
&& remainder
) {
3385 spinlock_t
*ptl
= NULL
;
3390 * If we have a pending SIGKILL, don't keep faulting pages and
3391 * potentially allocating memory.
3393 if (unlikely(fatal_signal_pending(current
))) {
3399 * Some archs (sparc64, sh*) have multiple pte_ts to
3400 * each hugepage. We have to make sure we get the
3401 * first, for the page indexing below to work.
3403 * Note that page table lock is not held when pte is null.
3405 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3407 ptl
= huge_pte_lock(h
, mm
, pte
);
3408 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3411 * When coredumping, it suits get_dump_page if we just return
3412 * an error where there's an empty slot with no huge pagecache
3413 * to back it. This way, we avoid allocating a hugepage, and
3414 * the sparse dumpfile avoids allocating disk blocks, but its
3415 * huge holes still show up with zeroes where they need to be.
3417 if (absent
&& (flags
& FOLL_DUMP
) &&
3418 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
3426 * We need call hugetlb_fault for both hugepages under migration
3427 * (in which case hugetlb_fault waits for the migration,) and
3428 * hwpoisoned hugepages (in which case we need to prevent the
3429 * caller from accessing to them.) In order to do this, we use
3430 * here is_swap_pte instead of is_hugetlb_entry_migration and
3431 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3432 * both cases, and because we can't follow correct pages
3433 * directly from any kind of swap entries.
3435 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
3436 ((flags
& FOLL_WRITE
) &&
3437 !huge_pte_write(huge_ptep_get(pte
)))) {
3442 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3443 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3444 if (!(ret
& VM_FAULT_ERROR
))
3451 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3452 page
= pte_page(huge_ptep_get(pte
));
3455 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3456 get_page_foll(pages
[i
]);
3466 if (vaddr
< vma
->vm_end
&& remainder
&&
3467 pfn_offset
< pages_per_huge_page(h
)) {
3469 * We use pfn_offset to avoid touching the pageframes
3470 * of this compound page.
3476 *nr_pages
= remainder
;
3479 return i
? i
: -EFAULT
;
3482 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3483 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3485 struct mm_struct
*mm
= vma
->vm_mm
;
3486 unsigned long start
= address
;
3489 struct hstate
*h
= hstate_vma(vma
);
3490 unsigned long pages
= 0;
3492 BUG_ON(address
>= end
);
3493 flush_cache_range(vma
, address
, end
);
3495 mmu_notifier_invalidate_range_start(mm
, start
, end
);
3496 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
3497 for (; address
< end
; address
+= huge_page_size(h
)) {
3499 ptep
= huge_pte_offset(mm
, address
);
3502 ptl
= huge_pte_lock(h
, mm
, ptep
);
3503 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3508 pte
= huge_ptep_get(ptep
);
3509 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
3513 if (unlikely(is_hugetlb_entry_migration(pte
))) {
3514 swp_entry_t entry
= pte_to_swp_entry(pte
);
3516 if (is_write_migration_entry(entry
)) {
3519 make_migration_entry_read(&entry
);
3520 newpte
= swp_entry_to_pte(entry
);
3521 set_huge_pte_at(mm
, address
, ptep
, newpte
);
3527 if (!huge_pte_none(pte
)) {
3528 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3529 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3530 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
3531 set_huge_pte_at(mm
, address
, ptep
, pte
);
3537 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3538 * may have cleared our pud entry and done put_page on the page table:
3539 * once we release i_mmap_rwsem, another task can do the final put_page
3540 * and that page table be reused and filled with junk.
3542 flush_tlb_range(vma
, start
, end
);
3543 mmu_notifier_invalidate_range(mm
, start
, end
);
3544 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
3545 mmu_notifier_invalidate_range_end(mm
, start
, end
);
3547 return pages
<< h
->order
;
3550 int hugetlb_reserve_pages(struct inode
*inode
,
3552 struct vm_area_struct
*vma
,
3553 vm_flags_t vm_flags
)
3556 struct hstate
*h
= hstate_inode(inode
);
3557 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3558 struct resv_map
*resv_map
;
3562 * Only apply hugepage reservation if asked. At fault time, an
3563 * attempt will be made for VM_NORESERVE to allocate a page
3564 * without using reserves
3566 if (vm_flags
& VM_NORESERVE
)
3570 * Shared mappings base their reservation on the number of pages that
3571 * are already allocated on behalf of the file. Private mappings need
3572 * to reserve the full area even if read-only as mprotect() may be
3573 * called to make the mapping read-write. Assume !vma is a shm mapping
3575 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
3576 resv_map
= inode_resv_map(inode
);
3578 chg
= region_chg(resv_map
, from
, to
);
3581 resv_map
= resv_map_alloc();
3587 set_vma_resv_map(vma
, resv_map
);
3588 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
3597 * There must be enough pages in the subpool for the mapping. If
3598 * the subpool has a minimum size, there may be some global
3599 * reservations already in place (gbl_reserve).
3601 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
3602 if (gbl_reserve
< 0) {
3608 * Check enough hugepages are available for the reservation.
3609 * Hand the pages back to the subpool if there are not
3611 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
3613 /* put back original number of pages, chg */
3614 (void)hugepage_subpool_put_pages(spool
, chg
);
3619 * Account for the reservations made. Shared mappings record regions
3620 * that have reservations as they are shared by multiple VMAs.
3621 * When the last VMA disappears, the region map says how much
3622 * the reservation was and the page cache tells how much of
3623 * the reservation was consumed. Private mappings are per-VMA and
3624 * only the consumed reservations are tracked. When the VMA
3625 * disappears, the original reservation is the VMA size and the
3626 * consumed reservations are stored in the map. Hence, nothing
3627 * else has to be done for private mappings here
3629 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3630 region_add(resv_map
, from
, to
);
3633 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3634 kref_put(&resv_map
->refs
, resv_map_release
);
3638 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
3640 struct hstate
*h
= hstate_inode(inode
);
3641 struct resv_map
*resv_map
= inode_resv_map(inode
);
3643 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3647 chg
= region_truncate(resv_map
, offset
);
3648 spin_lock(&inode
->i_lock
);
3649 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
3650 spin_unlock(&inode
->i_lock
);
3653 * If the subpool has a minimum size, the number of global
3654 * reservations to be released may be adjusted.
3656 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
3657 hugetlb_acct_memory(h
, -gbl_reserve
);
3660 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3661 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
3662 struct vm_area_struct
*vma
,
3663 unsigned long addr
, pgoff_t idx
)
3665 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
3667 unsigned long sbase
= saddr
& PUD_MASK
;
3668 unsigned long s_end
= sbase
+ PUD_SIZE
;
3670 /* Allow segments to share if only one is marked locked */
3671 unsigned long vm_flags
= vma
->vm_flags
& ~VM_LOCKED
;
3672 unsigned long svm_flags
= svma
->vm_flags
& ~VM_LOCKED
;
3675 * match the virtual addresses, permission and the alignment of the
3678 if (pmd_index(addr
) != pmd_index(saddr
) ||
3679 vm_flags
!= svm_flags
||
3680 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
3686 static int vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
3688 unsigned long base
= addr
& PUD_MASK
;
3689 unsigned long end
= base
+ PUD_SIZE
;
3692 * check on proper vm_flags and page table alignment
3694 if (vma
->vm_flags
& VM_MAYSHARE
&&
3695 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
3701 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3702 * and returns the corresponding pte. While this is not necessary for the
3703 * !shared pmd case because we can allocate the pmd later as well, it makes the
3704 * code much cleaner. pmd allocation is essential for the shared case because
3705 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3706 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3707 * bad pmd for sharing.
3709 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3711 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
3712 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
3713 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
3715 struct vm_area_struct
*svma
;
3716 unsigned long saddr
;
3721 if (!vma_shareable(vma
, addr
))
3722 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3724 i_mmap_lock_write(mapping
);
3725 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
3729 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
3731 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
3734 get_page(virt_to_page(spte
));
3743 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, spte
);
3745 if (pud_none(*pud
)) {
3746 pud_populate(mm
, pud
,
3747 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
3749 put_page(virt_to_page(spte
));
3754 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3755 i_mmap_unlock_write(mapping
);
3760 * unmap huge page backed by shared pte.
3762 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3763 * indicated by page_count > 1, unmap is achieved by clearing pud and
3764 * decrementing the ref count. If count == 1, the pte page is not shared.
3766 * called with page table lock held.
3768 * returns: 1 successfully unmapped a shared pte page
3769 * 0 the underlying pte page is not shared, or it is the last user
3771 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
3773 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
3774 pud_t
*pud
= pud_offset(pgd
, *addr
);
3776 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
3777 if (page_count(virt_to_page(ptep
)) == 1)
3781 put_page(virt_to_page(ptep
));
3783 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
3786 #define want_pmd_share() (1)
3787 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3788 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3792 #define want_pmd_share() (0)
3793 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3795 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3796 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
3797 unsigned long addr
, unsigned long sz
)
3803 pgd
= pgd_offset(mm
, addr
);
3804 pud
= pud_alloc(mm
, pgd
, addr
);
3806 if (sz
== PUD_SIZE
) {
3809 BUG_ON(sz
!= PMD_SIZE
);
3810 if (want_pmd_share() && pud_none(*pud
))
3811 pte
= huge_pmd_share(mm
, addr
, pud
);
3813 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3816 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
3821 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
3827 pgd
= pgd_offset(mm
, addr
);
3828 if (pgd_present(*pgd
)) {
3829 pud
= pud_offset(pgd
, addr
);
3830 if (pud_present(*pud
)) {
3832 return (pte_t
*)pud
;
3833 pmd
= pmd_offset(pud
, addr
);
3836 return (pte_t
*) pmd
;
3839 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3842 * These functions are overwritable if your architecture needs its own
3845 struct page
* __weak
3846 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
3849 return ERR_PTR(-EINVAL
);
3852 struct page
* __weak
3853 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
3854 pmd_t
*pmd
, int flags
)
3856 struct page
*page
= NULL
;
3859 ptl
= pmd_lockptr(mm
, pmd
);
3862 * make sure that the address range covered by this pmd is not
3863 * unmapped from other threads.
3865 if (!pmd_huge(*pmd
))
3867 if (pmd_present(*pmd
)) {
3868 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
3869 if (flags
& FOLL_GET
)
3872 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t
*)pmd
))) {
3874 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
3878 * hwpoisoned entry is treated as no_page_table in
3879 * follow_page_mask().
3887 struct page
* __weak
3888 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3889 pud_t
*pud
, int flags
)
3891 if (flags
& FOLL_GET
)
3894 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
3897 #ifdef CONFIG_MEMORY_FAILURE
3900 * This function is called from memory failure code.
3901 * Assume the caller holds page lock of the head page.
3903 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
3905 struct hstate
*h
= page_hstate(hpage
);
3906 int nid
= page_to_nid(hpage
);
3909 spin_lock(&hugetlb_lock
);
3911 * Just checking !page_huge_active is not enough, because that could be
3912 * an isolated/hwpoisoned hugepage (which have >0 refcount).
3914 if (!page_huge_active(hpage
) && !page_count(hpage
)) {
3916 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3917 * but dangling hpage->lru can trigger list-debug warnings
3918 * (this happens when we call unpoison_memory() on it),
3919 * so let it point to itself with list_del_init().
3921 list_del_init(&hpage
->lru
);
3922 set_page_refcounted(hpage
);
3923 h
->free_huge_pages
--;
3924 h
->free_huge_pages_node
[nid
]--;
3927 spin_unlock(&hugetlb_lock
);
3932 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
3936 VM_BUG_ON_PAGE(!PageHead(page
), page
);
3937 spin_lock(&hugetlb_lock
);
3938 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
3942 clear_page_huge_active(page
);
3943 list_move_tail(&page
->lru
, list
);
3945 spin_unlock(&hugetlb_lock
);
3949 void putback_active_hugepage(struct page
*page
)
3951 VM_BUG_ON_PAGE(!PageHead(page
), page
);
3952 spin_lock(&hugetlb_lock
);
3953 set_page_huge_active(page
);
3954 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
3955 spin_unlock(&hugetlb_lock
);