ALSA: usb-audio: Add a quirk for Plantronics BT600
[linux/fpc-iii.git] / mm / mmap.c
blobd30b8f8f02b19aa043007011f7896da26fa684a0
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
50 #include "internal.h"
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags) (0)
54 #endif
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len) (addr)
58 #endif
60 static void unmap_region(struct mm_struct *mm,
61 struct vm_area_struct *vma, struct vm_area_struct *prev,
62 unsigned long start, unsigned long end);
64 /* description of effects of mapping type and prot in current implementation.
65 * this is due to the limited x86 page protection hardware. The expected
66 * behavior is in parens:
68 * map_type prot
69 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
70 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (yes) yes w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
75 * w: (no) no w: (no) no w: (copy) copy w: (no) no
76 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
79 pgprot_t protection_map[16] = {
80 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
86 return __pgprot(pgprot_val(protection_map[vm_flags &
87 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88 pgprot_val(arch_vm_get_page_prot(vm_flags)));
90 EXPORT_SYMBOL(vm_get_page_prot);
92 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
94 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
98 void vma_set_page_prot(struct vm_area_struct *vma)
100 unsigned long vm_flags = vma->vm_flags;
102 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
103 if (vma_wants_writenotify(vma)) {
104 vm_flags &= ~VM_SHARED;
105 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
106 vm_flags);
111 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
112 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
113 unsigned long sysctl_overcommit_kbytes __read_mostly;
114 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
115 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
116 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
118 * Make sure vm_committed_as in one cacheline and not cacheline shared with
119 * other variables. It can be updated by several CPUs frequently.
121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
124 * The global memory commitment made in the system can be a metric
125 * that can be used to drive ballooning decisions when Linux is hosted
126 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
127 * balancing memory across competing virtual machines that are hosted.
128 * Several metrics drive this policy engine including the guest reported
129 * memory commitment.
131 unsigned long vm_memory_committed(void)
133 return percpu_counter_read_positive(&vm_committed_as);
135 EXPORT_SYMBOL_GPL(vm_memory_committed);
138 * Check that a process has enough memory to allocate a new virtual
139 * mapping. 0 means there is enough memory for the allocation to
140 * succeed and -ENOMEM implies there is not.
142 * We currently support three overcommit policies, which are set via the
143 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
145 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
146 * Additional code 2002 Jul 20 by Robert Love.
148 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
150 * Note this is a helper function intended to be used by LSMs which
151 * wish to use this logic.
153 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
155 long free, allowed, reserve;
157 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
158 -(s64)vm_committed_as_batch * num_online_cpus(),
159 "memory commitment underflow");
161 vm_acct_memory(pages);
164 * Sometimes we want to use more memory than we have
166 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
167 return 0;
169 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
170 free = global_page_state(NR_FREE_PAGES);
171 free += global_page_state(NR_FILE_PAGES);
174 * shmem pages shouldn't be counted as free in this
175 * case, they can't be purged, only swapped out, and
176 * that won't affect the overall amount of available
177 * memory in the system.
179 free -= global_page_state(NR_SHMEM);
181 free += get_nr_swap_pages();
184 * Any slabs which are created with the
185 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
186 * which are reclaimable, under pressure. The dentry
187 * cache and most inode caches should fall into this
189 free += global_page_state(NR_SLAB_RECLAIMABLE);
192 * Leave reserved pages. The pages are not for anonymous pages.
194 if (free <= totalreserve_pages)
195 goto error;
196 else
197 free -= totalreserve_pages;
200 * Reserve some for root
202 if (!cap_sys_admin)
203 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
205 if (free > pages)
206 return 0;
208 goto error;
211 allowed = vm_commit_limit();
213 * Reserve some for root
215 if (!cap_sys_admin)
216 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
219 * Don't let a single process grow so big a user can't recover
221 if (mm) {
222 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
223 allowed -= min_t(long, mm->total_vm / 32, reserve);
226 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
227 return 0;
228 error:
229 vm_unacct_memory(pages);
231 return -ENOMEM;
235 * Requires inode->i_mapping->i_mmap_rwsem
237 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
238 struct file *file, struct address_space *mapping)
240 if (vma->vm_flags & VM_DENYWRITE)
241 atomic_inc(&file_inode(file)->i_writecount);
242 if (vma->vm_flags & VM_SHARED)
243 mapping_unmap_writable(mapping);
245 flush_dcache_mmap_lock(mapping);
246 vma_interval_tree_remove(vma, &mapping->i_mmap);
247 flush_dcache_mmap_unlock(mapping);
251 * Unlink a file-based vm structure from its interval tree, to hide
252 * vma from rmap and vmtruncate before freeing its page tables.
254 void unlink_file_vma(struct vm_area_struct *vma)
256 struct file *file = vma->vm_file;
258 if (file) {
259 struct address_space *mapping = file->f_mapping;
260 i_mmap_lock_write(mapping);
261 __remove_shared_vm_struct(vma, file, mapping);
262 i_mmap_unlock_write(mapping);
267 * Close a vm structure and free it, returning the next.
269 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
271 struct vm_area_struct *next = vma->vm_next;
273 might_sleep();
274 if (vma->vm_ops && vma->vm_ops->close)
275 vma->vm_ops->close(vma);
276 if (vma->vm_file)
277 fput(vma->vm_file);
278 mpol_put(vma_policy(vma));
279 kmem_cache_free(vm_area_cachep, vma);
280 return next;
283 static unsigned long do_brk(unsigned long addr, unsigned long len);
285 SYSCALL_DEFINE1(brk, unsigned long, brk)
287 unsigned long retval;
288 unsigned long newbrk, oldbrk;
289 struct mm_struct *mm = current->mm;
290 unsigned long min_brk;
291 bool populate;
293 down_write(&mm->mmap_sem);
295 #ifdef CONFIG_COMPAT_BRK
297 * CONFIG_COMPAT_BRK can still be overridden by setting
298 * randomize_va_space to 2, which will still cause mm->start_brk
299 * to be arbitrarily shifted
301 if (current->brk_randomized)
302 min_brk = mm->start_brk;
303 else
304 min_brk = mm->end_data;
305 #else
306 min_brk = mm->start_brk;
307 #endif
308 if (brk < min_brk)
309 goto out;
312 * Check against rlimit here. If this check is done later after the test
313 * of oldbrk with newbrk then it can escape the test and let the data
314 * segment grow beyond its set limit the in case where the limit is
315 * not page aligned -Ram Gupta
317 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
318 mm->end_data, mm->start_data))
319 goto out;
321 newbrk = PAGE_ALIGN(brk);
322 oldbrk = PAGE_ALIGN(mm->brk);
323 if (oldbrk == newbrk)
324 goto set_brk;
326 /* Always allow shrinking brk. */
327 if (brk <= mm->brk) {
328 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
329 goto set_brk;
330 goto out;
333 /* Check against existing mmap mappings. */
334 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
335 goto out;
337 /* Ok, looks good - let it rip. */
338 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
339 goto out;
341 set_brk:
342 mm->brk = brk;
343 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
344 up_write(&mm->mmap_sem);
345 if (populate)
346 mm_populate(oldbrk, newbrk - oldbrk);
347 return brk;
349 out:
350 retval = mm->brk;
351 up_write(&mm->mmap_sem);
352 return retval;
355 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
357 unsigned long max, subtree_gap;
358 max = vma->vm_start;
359 if (vma->vm_prev)
360 max -= vma->vm_prev->vm_end;
361 if (vma->vm_rb.rb_left) {
362 subtree_gap = rb_entry(vma->vm_rb.rb_left,
363 struct vm_area_struct, vm_rb)->rb_subtree_gap;
364 if (subtree_gap > max)
365 max = subtree_gap;
367 if (vma->vm_rb.rb_right) {
368 subtree_gap = rb_entry(vma->vm_rb.rb_right,
369 struct vm_area_struct, vm_rb)->rb_subtree_gap;
370 if (subtree_gap > max)
371 max = subtree_gap;
373 return max;
376 #ifdef CONFIG_DEBUG_VM_RB
377 static int browse_rb(struct rb_root *root)
379 int i = 0, j, bug = 0;
380 struct rb_node *nd, *pn = NULL;
381 unsigned long prev = 0, pend = 0;
383 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
384 struct vm_area_struct *vma;
385 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
386 if (vma->vm_start < prev) {
387 pr_emerg("vm_start %lx < prev %lx\n",
388 vma->vm_start, prev);
389 bug = 1;
391 if (vma->vm_start < pend) {
392 pr_emerg("vm_start %lx < pend %lx\n",
393 vma->vm_start, pend);
394 bug = 1;
396 if (vma->vm_start > vma->vm_end) {
397 pr_emerg("vm_start %lx > vm_end %lx\n",
398 vma->vm_start, vma->vm_end);
399 bug = 1;
401 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
402 pr_emerg("free gap %lx, correct %lx\n",
403 vma->rb_subtree_gap,
404 vma_compute_subtree_gap(vma));
405 bug = 1;
407 i++;
408 pn = nd;
409 prev = vma->vm_start;
410 pend = vma->vm_end;
412 j = 0;
413 for (nd = pn; nd; nd = rb_prev(nd))
414 j++;
415 if (i != j) {
416 pr_emerg("backwards %d, forwards %d\n", j, i);
417 bug = 1;
419 return bug ? -1 : i;
422 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
424 struct rb_node *nd;
426 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
427 struct vm_area_struct *vma;
428 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
429 VM_BUG_ON_VMA(vma != ignore &&
430 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
431 vma);
435 static void validate_mm(struct mm_struct *mm)
437 int bug = 0;
438 int i = 0;
439 unsigned long highest_address = 0;
440 struct vm_area_struct *vma = mm->mmap;
442 while (vma) {
443 struct anon_vma *anon_vma = vma->anon_vma;
444 struct anon_vma_chain *avc;
446 if (anon_vma) {
447 anon_vma_lock_read(anon_vma);
448 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
449 anon_vma_interval_tree_verify(avc);
450 anon_vma_unlock_read(anon_vma);
453 highest_address = vma->vm_end;
454 vma = vma->vm_next;
455 i++;
457 if (i != mm->map_count) {
458 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
459 bug = 1;
461 if (highest_address != mm->highest_vm_end) {
462 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
463 mm->highest_vm_end, highest_address);
464 bug = 1;
466 i = browse_rb(&mm->mm_rb);
467 if (i != mm->map_count) {
468 if (i != -1)
469 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
470 bug = 1;
472 VM_BUG_ON_MM(bug, mm);
474 #else
475 #define validate_mm_rb(root, ignore) do { } while (0)
476 #define validate_mm(mm) do { } while (0)
477 #endif
479 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
480 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
483 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
484 * vma->vm_prev->vm_end values changed, without modifying the vma's position
485 * in the rbtree.
487 static void vma_gap_update(struct vm_area_struct *vma)
490 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
491 * function that does exacltly what we want.
493 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
496 static inline void vma_rb_insert(struct vm_area_struct *vma,
497 struct rb_root *root)
499 /* All rb_subtree_gap values must be consistent prior to insertion */
500 validate_mm_rb(root, NULL);
502 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
505 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
508 * All rb_subtree_gap values must be consistent prior to erase,
509 * with the possible exception of the vma being erased.
511 validate_mm_rb(root, vma);
514 * Note rb_erase_augmented is a fairly large inline function,
515 * so make sure we instantiate it only once with our desired
516 * augmented rbtree callbacks.
518 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
522 * vma has some anon_vma assigned, and is already inserted on that
523 * anon_vma's interval trees.
525 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
526 * vma must be removed from the anon_vma's interval trees using
527 * anon_vma_interval_tree_pre_update_vma().
529 * After the update, the vma will be reinserted using
530 * anon_vma_interval_tree_post_update_vma().
532 * The entire update must be protected by exclusive mmap_sem and by
533 * the root anon_vma's mutex.
535 static inline void
536 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
538 struct anon_vma_chain *avc;
540 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
541 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
544 static inline void
545 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
547 struct anon_vma_chain *avc;
549 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
550 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
553 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
554 unsigned long end, struct vm_area_struct **pprev,
555 struct rb_node ***rb_link, struct rb_node **rb_parent)
557 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
559 __rb_link = &mm->mm_rb.rb_node;
560 rb_prev = __rb_parent = NULL;
562 while (*__rb_link) {
563 struct vm_area_struct *vma_tmp;
565 __rb_parent = *__rb_link;
566 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
568 if (vma_tmp->vm_end > addr) {
569 /* Fail if an existing vma overlaps the area */
570 if (vma_tmp->vm_start < end)
571 return -ENOMEM;
572 __rb_link = &__rb_parent->rb_left;
573 } else {
574 rb_prev = __rb_parent;
575 __rb_link = &__rb_parent->rb_right;
579 *pprev = NULL;
580 if (rb_prev)
581 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
582 *rb_link = __rb_link;
583 *rb_parent = __rb_parent;
584 return 0;
587 static unsigned long count_vma_pages_range(struct mm_struct *mm,
588 unsigned long addr, unsigned long end)
590 unsigned long nr_pages = 0;
591 struct vm_area_struct *vma;
593 /* Find first overlaping mapping */
594 vma = find_vma_intersection(mm, addr, end);
595 if (!vma)
596 return 0;
598 nr_pages = (min(end, vma->vm_end) -
599 max(addr, vma->vm_start)) >> PAGE_SHIFT;
601 /* Iterate over the rest of the overlaps */
602 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
603 unsigned long overlap_len;
605 if (vma->vm_start > end)
606 break;
608 overlap_len = min(end, vma->vm_end) - vma->vm_start;
609 nr_pages += overlap_len >> PAGE_SHIFT;
612 return nr_pages;
615 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
616 struct rb_node **rb_link, struct rb_node *rb_parent)
618 /* Update tracking information for the gap following the new vma. */
619 if (vma->vm_next)
620 vma_gap_update(vma->vm_next);
621 else
622 mm->highest_vm_end = vma->vm_end;
625 * vma->vm_prev wasn't known when we followed the rbtree to find the
626 * correct insertion point for that vma. As a result, we could not
627 * update the vma vm_rb parents rb_subtree_gap values on the way down.
628 * So, we first insert the vma with a zero rb_subtree_gap value
629 * (to be consistent with what we did on the way down), and then
630 * immediately update the gap to the correct value. Finally we
631 * rebalance the rbtree after all augmented values have been set.
633 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
634 vma->rb_subtree_gap = 0;
635 vma_gap_update(vma);
636 vma_rb_insert(vma, &mm->mm_rb);
639 static void __vma_link_file(struct vm_area_struct *vma)
641 struct file *file;
643 file = vma->vm_file;
644 if (file) {
645 struct address_space *mapping = file->f_mapping;
647 if (vma->vm_flags & VM_DENYWRITE)
648 atomic_dec(&file_inode(file)->i_writecount);
649 if (vma->vm_flags & VM_SHARED)
650 atomic_inc(&mapping->i_mmap_writable);
652 flush_dcache_mmap_lock(mapping);
653 vma_interval_tree_insert(vma, &mapping->i_mmap);
654 flush_dcache_mmap_unlock(mapping);
658 static void
659 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
660 struct vm_area_struct *prev, struct rb_node **rb_link,
661 struct rb_node *rb_parent)
663 __vma_link_list(mm, vma, prev, rb_parent);
664 __vma_link_rb(mm, vma, rb_link, rb_parent);
667 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
668 struct vm_area_struct *prev, struct rb_node **rb_link,
669 struct rb_node *rb_parent)
671 struct address_space *mapping = NULL;
673 if (vma->vm_file) {
674 mapping = vma->vm_file->f_mapping;
675 i_mmap_lock_write(mapping);
678 __vma_link(mm, vma, prev, rb_link, rb_parent);
679 __vma_link_file(vma);
681 if (mapping)
682 i_mmap_unlock_write(mapping);
684 mm->map_count++;
685 validate_mm(mm);
689 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
690 * mm's list and rbtree. It has already been inserted into the interval tree.
692 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
694 struct vm_area_struct *prev;
695 struct rb_node **rb_link, *rb_parent;
697 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
698 &prev, &rb_link, &rb_parent))
699 BUG();
700 __vma_link(mm, vma, prev, rb_link, rb_parent);
701 mm->map_count++;
704 static inline void
705 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
706 struct vm_area_struct *prev)
708 struct vm_area_struct *next;
710 vma_rb_erase(vma, &mm->mm_rb);
711 prev->vm_next = next = vma->vm_next;
712 if (next)
713 next->vm_prev = prev;
715 /* Kill the cache */
716 vmacache_invalidate(mm);
720 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
721 * is already present in an i_mmap tree without adjusting the tree.
722 * The following helper function should be used when such adjustments
723 * are necessary. The "insert" vma (if any) is to be inserted
724 * before we drop the necessary locks.
726 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
727 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
729 struct mm_struct *mm = vma->vm_mm;
730 struct vm_area_struct *next = vma->vm_next;
731 struct vm_area_struct *importer = NULL;
732 struct address_space *mapping = NULL;
733 struct rb_root *root = NULL;
734 struct anon_vma *anon_vma = NULL;
735 struct file *file = vma->vm_file;
736 bool start_changed = false, end_changed = false;
737 long adjust_next = 0;
738 int remove_next = 0;
740 if (next && !insert) {
741 struct vm_area_struct *exporter = NULL;
743 if (end >= next->vm_end) {
745 * vma expands, overlapping all the next, and
746 * perhaps the one after too (mprotect case 6).
748 again: remove_next = 1 + (end > next->vm_end);
749 end = next->vm_end;
750 exporter = next;
751 importer = vma;
752 } else if (end > next->vm_start) {
754 * vma expands, overlapping part of the next:
755 * mprotect case 5 shifting the boundary up.
757 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
758 exporter = next;
759 importer = vma;
760 } else if (end < vma->vm_end) {
762 * vma shrinks, and !insert tells it's not
763 * split_vma inserting another: so it must be
764 * mprotect case 4 shifting the boundary down.
766 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
767 exporter = vma;
768 importer = next;
772 * Easily overlooked: when mprotect shifts the boundary,
773 * make sure the expanding vma has anon_vma set if the
774 * shrinking vma had, to cover any anon pages imported.
776 if (exporter && exporter->anon_vma && !importer->anon_vma) {
777 int error;
779 importer->anon_vma = exporter->anon_vma;
780 error = anon_vma_clone(importer, exporter);
781 if (error)
782 return error;
786 if (file) {
787 mapping = file->f_mapping;
788 root = &mapping->i_mmap;
789 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
791 if (adjust_next)
792 uprobe_munmap(next, next->vm_start, next->vm_end);
794 i_mmap_lock_write(mapping);
795 if (insert) {
797 * Put into interval tree now, so instantiated pages
798 * are visible to arm/parisc __flush_dcache_page
799 * throughout; but we cannot insert into address
800 * space until vma start or end is updated.
802 __vma_link_file(insert);
806 vma_adjust_trans_huge(vma, start, end, adjust_next);
808 anon_vma = vma->anon_vma;
809 if (!anon_vma && adjust_next)
810 anon_vma = next->anon_vma;
811 if (anon_vma) {
812 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
813 anon_vma != next->anon_vma, next);
814 anon_vma_lock_write(anon_vma);
815 anon_vma_interval_tree_pre_update_vma(vma);
816 if (adjust_next)
817 anon_vma_interval_tree_pre_update_vma(next);
820 if (root) {
821 flush_dcache_mmap_lock(mapping);
822 vma_interval_tree_remove(vma, root);
823 if (adjust_next)
824 vma_interval_tree_remove(next, root);
827 if (start != vma->vm_start) {
828 vma->vm_start = start;
829 start_changed = true;
831 if (end != vma->vm_end) {
832 vma->vm_end = end;
833 end_changed = true;
835 vma->vm_pgoff = pgoff;
836 if (adjust_next) {
837 next->vm_start += adjust_next << PAGE_SHIFT;
838 next->vm_pgoff += adjust_next;
841 if (root) {
842 if (adjust_next)
843 vma_interval_tree_insert(next, root);
844 vma_interval_tree_insert(vma, root);
845 flush_dcache_mmap_unlock(mapping);
848 if (remove_next) {
850 * vma_merge has merged next into vma, and needs
851 * us to remove next before dropping the locks.
853 __vma_unlink(mm, next, vma);
854 if (file)
855 __remove_shared_vm_struct(next, file, mapping);
856 } else if (insert) {
858 * split_vma has split insert from vma, and needs
859 * us to insert it before dropping the locks
860 * (it may either follow vma or precede it).
862 __insert_vm_struct(mm, insert);
863 } else {
864 if (start_changed)
865 vma_gap_update(vma);
866 if (end_changed) {
867 if (!next)
868 mm->highest_vm_end = end;
869 else if (!adjust_next)
870 vma_gap_update(next);
874 if (anon_vma) {
875 anon_vma_interval_tree_post_update_vma(vma);
876 if (adjust_next)
877 anon_vma_interval_tree_post_update_vma(next);
878 anon_vma_unlock_write(anon_vma);
880 if (mapping)
881 i_mmap_unlock_write(mapping);
883 if (root) {
884 uprobe_mmap(vma);
886 if (adjust_next)
887 uprobe_mmap(next);
890 if (remove_next) {
891 if (file) {
892 uprobe_munmap(next, next->vm_start, next->vm_end);
893 fput(file);
895 if (next->anon_vma)
896 anon_vma_merge(vma, next);
897 mm->map_count--;
898 mpol_put(vma_policy(next));
899 kmem_cache_free(vm_area_cachep, next);
901 * In mprotect's case 6 (see comments on vma_merge),
902 * we must remove another next too. It would clutter
903 * up the code too much to do both in one go.
905 next = vma->vm_next;
906 if (remove_next == 2)
907 goto again;
908 else if (next)
909 vma_gap_update(next);
910 else
911 mm->highest_vm_end = end;
913 if (insert && file)
914 uprobe_mmap(insert);
916 validate_mm(mm);
918 return 0;
922 * If the vma has a ->close operation then the driver probably needs to release
923 * per-vma resources, so we don't attempt to merge those.
925 static inline int is_mergeable_vma(struct vm_area_struct *vma,
926 struct file *file, unsigned long vm_flags)
929 * VM_SOFTDIRTY should not prevent from VMA merging, if we
930 * match the flags but dirty bit -- the caller should mark
931 * merged VMA as dirty. If dirty bit won't be excluded from
932 * comparison, we increase pressue on the memory system forcing
933 * the kernel to generate new VMAs when old one could be
934 * extended instead.
936 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
937 return 0;
938 if (vma->vm_file != file)
939 return 0;
940 if (vma->vm_ops && vma->vm_ops->close)
941 return 0;
942 return 1;
945 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
946 struct anon_vma *anon_vma2,
947 struct vm_area_struct *vma)
950 * The list_is_singular() test is to avoid merging VMA cloned from
951 * parents. This can improve scalability caused by anon_vma lock.
953 if ((!anon_vma1 || !anon_vma2) && (!vma ||
954 list_is_singular(&vma->anon_vma_chain)))
955 return 1;
956 return anon_vma1 == anon_vma2;
960 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
961 * in front of (at a lower virtual address and file offset than) the vma.
963 * We cannot merge two vmas if they have differently assigned (non-NULL)
964 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
966 * We don't check here for the merged mmap wrapping around the end of pagecache
967 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
968 * wrap, nor mmaps which cover the final page at index -1UL.
970 static int
971 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
972 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
974 if (is_mergeable_vma(vma, file, vm_flags) &&
975 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
976 if (vma->vm_pgoff == vm_pgoff)
977 return 1;
979 return 0;
983 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
984 * beyond (at a higher virtual address and file offset than) the vma.
986 * We cannot merge two vmas if they have differently assigned (non-NULL)
987 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
989 static int
990 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
991 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
993 if (is_mergeable_vma(vma, file, vm_flags) &&
994 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
995 pgoff_t vm_pglen;
996 vm_pglen = vma_pages(vma);
997 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
998 return 1;
1000 return 0;
1004 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1005 * whether that can be merged with its predecessor or its successor.
1006 * Or both (it neatly fills a hole).
1008 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1009 * certain not to be mapped by the time vma_merge is called; but when
1010 * called for mprotect, it is certain to be already mapped (either at
1011 * an offset within prev, or at the start of next), and the flags of
1012 * this area are about to be changed to vm_flags - and the no-change
1013 * case has already been eliminated.
1015 * The following mprotect cases have to be considered, where AAAA is
1016 * the area passed down from mprotect_fixup, never extending beyond one
1017 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1019 * AAAA AAAA AAAA AAAA
1020 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1021 * cannot merge might become might become might become
1022 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1023 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1024 * mremap move: PPPPNNNNNNNN 8
1025 * AAAA
1026 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1027 * might become case 1 below case 2 below case 3 below
1029 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1030 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1032 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1033 struct vm_area_struct *prev, unsigned long addr,
1034 unsigned long end, unsigned long vm_flags,
1035 struct anon_vma *anon_vma, struct file *file,
1036 pgoff_t pgoff, struct mempolicy *policy)
1038 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1039 struct vm_area_struct *area, *next;
1040 int err;
1043 * We later require that vma->vm_flags == vm_flags,
1044 * so this tests vma->vm_flags & VM_SPECIAL, too.
1046 if (vm_flags & VM_SPECIAL)
1047 return NULL;
1049 if (prev)
1050 next = prev->vm_next;
1051 else
1052 next = mm->mmap;
1053 area = next;
1054 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1055 next = next->vm_next;
1058 * Can it merge with the predecessor?
1060 if (prev && prev->vm_end == addr &&
1061 mpol_equal(vma_policy(prev), policy) &&
1062 can_vma_merge_after(prev, vm_flags,
1063 anon_vma, file, pgoff)) {
1065 * OK, it can. Can we now merge in the successor as well?
1067 if (next && end == next->vm_start &&
1068 mpol_equal(policy, vma_policy(next)) &&
1069 can_vma_merge_before(next, vm_flags,
1070 anon_vma, file, pgoff+pglen) &&
1071 is_mergeable_anon_vma(prev->anon_vma,
1072 next->anon_vma, NULL)) {
1073 /* cases 1, 6 */
1074 err = vma_adjust(prev, prev->vm_start,
1075 next->vm_end, prev->vm_pgoff, NULL);
1076 } else /* cases 2, 5, 7 */
1077 err = vma_adjust(prev, prev->vm_start,
1078 end, prev->vm_pgoff, NULL);
1079 if (err)
1080 return NULL;
1081 khugepaged_enter_vma_merge(prev, vm_flags);
1082 return prev;
1086 * Can this new request be merged in front of next?
1088 if (next && end == next->vm_start &&
1089 mpol_equal(policy, vma_policy(next)) &&
1090 can_vma_merge_before(next, vm_flags,
1091 anon_vma, file, pgoff+pglen)) {
1092 if (prev && addr < prev->vm_end) /* case 4 */
1093 err = vma_adjust(prev, prev->vm_start,
1094 addr, prev->vm_pgoff, NULL);
1095 else /* cases 3, 8 */
1096 err = vma_adjust(area, addr, next->vm_end,
1097 next->vm_pgoff - pglen, NULL);
1098 if (err)
1099 return NULL;
1100 khugepaged_enter_vma_merge(area, vm_flags);
1101 return area;
1104 return NULL;
1108 * Rough compatbility check to quickly see if it's even worth looking
1109 * at sharing an anon_vma.
1111 * They need to have the same vm_file, and the flags can only differ
1112 * in things that mprotect may change.
1114 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1115 * we can merge the two vma's. For example, we refuse to merge a vma if
1116 * there is a vm_ops->close() function, because that indicates that the
1117 * driver is doing some kind of reference counting. But that doesn't
1118 * really matter for the anon_vma sharing case.
1120 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1122 return a->vm_end == b->vm_start &&
1123 mpol_equal(vma_policy(a), vma_policy(b)) &&
1124 a->vm_file == b->vm_file &&
1125 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1126 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1130 * Do some basic sanity checking to see if we can re-use the anon_vma
1131 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1132 * the same as 'old', the other will be the new one that is trying
1133 * to share the anon_vma.
1135 * NOTE! This runs with mm_sem held for reading, so it is possible that
1136 * the anon_vma of 'old' is concurrently in the process of being set up
1137 * by another page fault trying to merge _that_. But that's ok: if it
1138 * is being set up, that automatically means that it will be a singleton
1139 * acceptable for merging, so we can do all of this optimistically. But
1140 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1142 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1143 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1144 * is to return an anon_vma that is "complex" due to having gone through
1145 * a fork).
1147 * We also make sure that the two vma's are compatible (adjacent,
1148 * and with the same memory policies). That's all stable, even with just
1149 * a read lock on the mm_sem.
1151 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1153 if (anon_vma_compatible(a, b)) {
1154 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1156 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1157 return anon_vma;
1159 return NULL;
1163 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1164 * neighbouring vmas for a suitable anon_vma, before it goes off
1165 * to allocate a new anon_vma. It checks because a repetitive
1166 * sequence of mprotects and faults may otherwise lead to distinct
1167 * anon_vmas being allocated, preventing vma merge in subsequent
1168 * mprotect.
1170 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1172 struct anon_vma *anon_vma;
1173 struct vm_area_struct *near;
1175 near = vma->vm_next;
1176 if (!near)
1177 goto try_prev;
1179 anon_vma = reusable_anon_vma(near, vma, near);
1180 if (anon_vma)
1181 return anon_vma;
1182 try_prev:
1183 near = vma->vm_prev;
1184 if (!near)
1185 goto none;
1187 anon_vma = reusable_anon_vma(near, near, vma);
1188 if (anon_vma)
1189 return anon_vma;
1190 none:
1192 * There's no absolute need to look only at touching neighbours:
1193 * we could search further afield for "compatible" anon_vmas.
1194 * But it would probably just be a waste of time searching,
1195 * or lead to too many vmas hanging off the same anon_vma.
1196 * We're trying to allow mprotect remerging later on,
1197 * not trying to minimize memory used for anon_vmas.
1199 return NULL;
1202 #ifdef CONFIG_PROC_FS
1203 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1204 struct file *file, long pages)
1206 const unsigned long stack_flags
1207 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1209 mm->total_vm += pages;
1211 if (file) {
1212 mm->shared_vm += pages;
1213 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1214 mm->exec_vm += pages;
1215 } else if (flags & stack_flags)
1216 mm->stack_vm += pages;
1218 #endif /* CONFIG_PROC_FS */
1221 * If a hint addr is less than mmap_min_addr change hint to be as
1222 * low as possible but still greater than mmap_min_addr
1224 static inline unsigned long round_hint_to_min(unsigned long hint)
1226 hint &= PAGE_MASK;
1227 if (((void *)hint != NULL) &&
1228 (hint < mmap_min_addr))
1229 return PAGE_ALIGN(mmap_min_addr);
1230 return hint;
1233 static inline int mlock_future_check(struct mm_struct *mm,
1234 unsigned long flags,
1235 unsigned long len)
1237 unsigned long locked, lock_limit;
1239 /* mlock MCL_FUTURE? */
1240 if (flags & VM_LOCKED) {
1241 locked = len >> PAGE_SHIFT;
1242 locked += mm->locked_vm;
1243 lock_limit = rlimit(RLIMIT_MEMLOCK);
1244 lock_limit >>= PAGE_SHIFT;
1245 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1246 return -EAGAIN;
1248 return 0;
1252 * The caller must hold down_write(&current->mm->mmap_sem).
1255 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1256 unsigned long len, unsigned long prot,
1257 unsigned long flags, unsigned long pgoff,
1258 unsigned long *populate)
1260 struct mm_struct *mm = current->mm;
1261 vm_flags_t vm_flags;
1263 *populate = 0;
1266 * Does the application expect PROT_READ to imply PROT_EXEC?
1268 * (the exception is when the underlying filesystem is noexec
1269 * mounted, in which case we dont add PROT_EXEC.)
1271 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1272 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1273 prot |= PROT_EXEC;
1275 if (!len)
1276 return -EINVAL;
1278 if (!(flags & MAP_FIXED))
1279 addr = round_hint_to_min(addr);
1281 /* Careful about overflows.. */
1282 len = PAGE_ALIGN(len);
1283 if (!len)
1284 return -ENOMEM;
1286 /* offset overflow? */
1287 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1288 return -EOVERFLOW;
1290 /* Too many mappings? */
1291 if (mm->map_count > sysctl_max_map_count)
1292 return -ENOMEM;
1294 /* Obtain the address to map to. we verify (or select) it and ensure
1295 * that it represents a valid section of the address space.
1297 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1298 if (addr & ~PAGE_MASK)
1299 return addr;
1301 /* Do simple checking here so the lower-level routines won't have
1302 * to. we assume access permissions have been handled by the open
1303 * of the memory object, so we don't do any here.
1305 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1306 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1308 if (flags & MAP_LOCKED)
1309 if (!can_do_mlock())
1310 return -EPERM;
1312 if (mlock_future_check(mm, vm_flags, len))
1313 return -EAGAIN;
1315 if (file) {
1316 struct inode *inode = file_inode(file);
1318 switch (flags & MAP_TYPE) {
1319 case MAP_SHARED:
1320 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1321 return -EACCES;
1324 * Make sure we don't allow writing to an append-only
1325 * file..
1327 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1328 return -EACCES;
1331 * Make sure there are no mandatory locks on the file.
1333 if (locks_verify_locked(file))
1334 return -EAGAIN;
1336 vm_flags |= VM_SHARED | VM_MAYSHARE;
1337 if (!(file->f_mode & FMODE_WRITE))
1338 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1340 /* fall through */
1341 case MAP_PRIVATE:
1342 if (!(file->f_mode & FMODE_READ))
1343 return -EACCES;
1344 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1345 if (vm_flags & VM_EXEC)
1346 return -EPERM;
1347 vm_flags &= ~VM_MAYEXEC;
1350 if (!file->f_op->mmap)
1351 return -ENODEV;
1352 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1353 return -EINVAL;
1354 break;
1356 default:
1357 return -EINVAL;
1359 } else {
1360 switch (flags & MAP_TYPE) {
1361 case MAP_SHARED:
1362 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1363 return -EINVAL;
1365 * Ignore pgoff.
1367 pgoff = 0;
1368 vm_flags |= VM_SHARED | VM_MAYSHARE;
1369 break;
1370 case MAP_PRIVATE:
1372 * Set pgoff according to addr for anon_vma.
1374 pgoff = addr >> PAGE_SHIFT;
1375 break;
1376 default:
1377 return -EINVAL;
1382 * Set 'VM_NORESERVE' if we should not account for the
1383 * memory use of this mapping.
1385 if (flags & MAP_NORESERVE) {
1386 /* We honor MAP_NORESERVE if allowed to overcommit */
1387 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1388 vm_flags |= VM_NORESERVE;
1390 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1391 if (file && is_file_hugepages(file))
1392 vm_flags |= VM_NORESERVE;
1395 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1396 if (!IS_ERR_VALUE(addr) &&
1397 ((vm_flags & VM_LOCKED) ||
1398 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1399 *populate = len;
1400 return addr;
1403 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1404 unsigned long, prot, unsigned long, flags,
1405 unsigned long, fd, unsigned long, pgoff)
1407 struct file *file = NULL;
1408 unsigned long retval = -EBADF;
1410 if (!(flags & MAP_ANONYMOUS)) {
1411 audit_mmap_fd(fd, flags);
1412 file = fget(fd);
1413 if (!file)
1414 goto out;
1415 if (is_file_hugepages(file))
1416 len = ALIGN(len, huge_page_size(hstate_file(file)));
1417 retval = -EINVAL;
1418 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1419 goto out_fput;
1420 } else if (flags & MAP_HUGETLB) {
1421 struct user_struct *user = NULL;
1422 struct hstate *hs;
1424 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1425 if (!hs)
1426 return -EINVAL;
1428 len = ALIGN(len, huge_page_size(hs));
1430 * VM_NORESERVE is used because the reservations will be
1431 * taken when vm_ops->mmap() is called
1432 * A dummy user value is used because we are not locking
1433 * memory so no accounting is necessary
1435 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1436 VM_NORESERVE,
1437 &user, HUGETLB_ANONHUGE_INODE,
1438 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1439 if (IS_ERR(file))
1440 return PTR_ERR(file);
1443 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1445 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1446 out_fput:
1447 if (file)
1448 fput(file);
1449 out:
1450 return retval;
1453 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1454 struct mmap_arg_struct {
1455 unsigned long addr;
1456 unsigned long len;
1457 unsigned long prot;
1458 unsigned long flags;
1459 unsigned long fd;
1460 unsigned long offset;
1463 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1465 struct mmap_arg_struct a;
1467 if (copy_from_user(&a, arg, sizeof(a)))
1468 return -EFAULT;
1469 if (a.offset & ~PAGE_MASK)
1470 return -EINVAL;
1472 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1473 a.offset >> PAGE_SHIFT);
1475 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1478 * Some shared mappigns will want the pages marked read-only
1479 * to track write events. If so, we'll downgrade vm_page_prot
1480 * to the private version (using protection_map[] without the
1481 * VM_SHARED bit).
1483 int vma_wants_writenotify(struct vm_area_struct *vma)
1485 vm_flags_t vm_flags = vma->vm_flags;
1487 /* If it was private or non-writable, the write bit is already clear */
1488 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1489 return 0;
1491 /* The backer wishes to know when pages are first written to? */
1492 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1493 return 1;
1495 /* The open routine did something to the protections that pgprot_modify
1496 * won't preserve? */
1497 if (pgprot_val(vma->vm_page_prot) !=
1498 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1499 return 0;
1501 /* Do we need to track softdirty? */
1502 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1503 return 1;
1505 /* Specialty mapping? */
1506 if (vm_flags & VM_PFNMAP)
1507 return 0;
1509 /* Can the mapping track the dirty pages? */
1510 return vma->vm_file && vma->vm_file->f_mapping &&
1511 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1515 * We account for memory if it's a private writeable mapping,
1516 * not hugepages and VM_NORESERVE wasn't set.
1518 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1521 * hugetlb has its own accounting separate from the core VM
1522 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1524 if (file && is_file_hugepages(file))
1525 return 0;
1527 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1530 unsigned long mmap_region(struct file *file, unsigned long addr,
1531 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1533 struct mm_struct *mm = current->mm;
1534 struct vm_area_struct *vma, *prev;
1535 int error;
1536 struct rb_node **rb_link, *rb_parent;
1537 unsigned long charged = 0;
1539 /* Check against address space limit. */
1540 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1541 unsigned long nr_pages;
1544 * MAP_FIXED may remove pages of mappings that intersects with
1545 * requested mapping. Account for the pages it would unmap.
1547 if (!(vm_flags & MAP_FIXED))
1548 return -ENOMEM;
1550 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1552 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1553 return -ENOMEM;
1556 /* Clear old maps */
1557 error = -ENOMEM;
1558 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1559 &rb_parent)) {
1560 if (do_munmap(mm, addr, len))
1561 return -ENOMEM;
1565 * Private writable mapping: check memory availability
1567 if (accountable_mapping(file, vm_flags)) {
1568 charged = len >> PAGE_SHIFT;
1569 if (security_vm_enough_memory_mm(mm, charged))
1570 return -ENOMEM;
1571 vm_flags |= VM_ACCOUNT;
1575 * Can we just expand an old mapping?
1577 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff,
1578 NULL);
1579 if (vma)
1580 goto out;
1583 * Determine the object being mapped and call the appropriate
1584 * specific mapper. the address has already been validated, but
1585 * not unmapped, but the maps are removed from the list.
1587 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1588 if (!vma) {
1589 error = -ENOMEM;
1590 goto unacct_error;
1593 vma->vm_mm = mm;
1594 vma->vm_start = addr;
1595 vma->vm_end = addr + len;
1596 vma->vm_flags = vm_flags;
1597 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1598 vma->vm_pgoff = pgoff;
1599 INIT_LIST_HEAD(&vma->anon_vma_chain);
1601 if (file) {
1602 if (vm_flags & VM_DENYWRITE) {
1603 error = deny_write_access(file);
1604 if (error)
1605 goto free_vma;
1607 if (vm_flags & VM_SHARED) {
1608 error = mapping_map_writable(file->f_mapping);
1609 if (error)
1610 goto allow_write_and_free_vma;
1613 /* ->mmap() can change vma->vm_file, but must guarantee that
1614 * vma_link() below can deny write-access if VM_DENYWRITE is set
1615 * and map writably if VM_SHARED is set. This usually means the
1616 * new file must not have been exposed to user-space, yet.
1618 vma->vm_file = get_file(file);
1619 error = file->f_op->mmap(file, vma);
1620 if (error)
1621 goto unmap_and_free_vma;
1623 /* Can addr have changed??
1625 * Answer: Yes, several device drivers can do it in their
1626 * f_op->mmap method. -DaveM
1627 * Bug: If addr is changed, prev, rb_link, rb_parent should
1628 * be updated for vma_link()
1630 WARN_ON_ONCE(addr != vma->vm_start);
1632 addr = vma->vm_start;
1633 vm_flags = vma->vm_flags;
1634 } else if (vm_flags & VM_SHARED) {
1635 error = shmem_zero_setup(vma);
1636 if (error)
1637 goto free_vma;
1640 vma_link(mm, vma, prev, rb_link, rb_parent);
1641 /* Once vma denies write, undo our temporary denial count */
1642 if (file) {
1643 if (vm_flags & VM_SHARED)
1644 mapping_unmap_writable(file->f_mapping);
1645 if (vm_flags & VM_DENYWRITE)
1646 allow_write_access(file);
1648 file = vma->vm_file;
1649 out:
1650 perf_event_mmap(vma);
1652 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1653 if (vm_flags & VM_LOCKED) {
1654 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1655 vma == get_gate_vma(current->mm)))
1656 mm->locked_vm += (len >> PAGE_SHIFT);
1657 else
1658 vma->vm_flags &= ~VM_LOCKED;
1661 if (file)
1662 uprobe_mmap(vma);
1665 * New (or expanded) vma always get soft dirty status.
1666 * Otherwise user-space soft-dirty page tracker won't
1667 * be able to distinguish situation when vma area unmapped,
1668 * then new mapped in-place (which must be aimed as
1669 * a completely new data area).
1671 vma->vm_flags |= VM_SOFTDIRTY;
1673 vma_set_page_prot(vma);
1675 return addr;
1677 unmap_and_free_vma:
1678 vma->vm_file = NULL;
1679 fput(file);
1681 /* Undo any partial mapping done by a device driver. */
1682 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1683 charged = 0;
1684 if (vm_flags & VM_SHARED)
1685 mapping_unmap_writable(file->f_mapping);
1686 allow_write_and_free_vma:
1687 if (vm_flags & VM_DENYWRITE)
1688 allow_write_access(file);
1689 free_vma:
1690 kmem_cache_free(vm_area_cachep, vma);
1691 unacct_error:
1692 if (charged)
1693 vm_unacct_memory(charged);
1694 return error;
1697 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1700 * We implement the search by looking for an rbtree node that
1701 * immediately follows a suitable gap. That is,
1702 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1703 * - gap_end = vma->vm_start >= info->low_limit + length;
1704 * - gap_end - gap_start >= length
1707 struct mm_struct *mm = current->mm;
1708 struct vm_area_struct *vma;
1709 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1711 /* Adjust search length to account for worst case alignment overhead */
1712 length = info->length + info->align_mask;
1713 if (length < info->length)
1714 return -ENOMEM;
1716 /* Adjust search limits by the desired length */
1717 if (info->high_limit < length)
1718 return -ENOMEM;
1719 high_limit = info->high_limit - length;
1721 if (info->low_limit > high_limit)
1722 return -ENOMEM;
1723 low_limit = info->low_limit + length;
1725 /* Check if rbtree root looks promising */
1726 if (RB_EMPTY_ROOT(&mm->mm_rb))
1727 goto check_highest;
1728 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1729 if (vma->rb_subtree_gap < length)
1730 goto check_highest;
1732 while (true) {
1733 /* Visit left subtree if it looks promising */
1734 gap_end = vma->vm_start;
1735 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1736 struct vm_area_struct *left =
1737 rb_entry(vma->vm_rb.rb_left,
1738 struct vm_area_struct, vm_rb);
1739 if (left->rb_subtree_gap >= length) {
1740 vma = left;
1741 continue;
1745 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1746 check_current:
1747 /* Check if current node has a suitable gap */
1748 if (gap_start > high_limit)
1749 return -ENOMEM;
1750 if (gap_end >= low_limit && gap_end - gap_start >= length)
1751 goto found;
1753 /* Visit right subtree if it looks promising */
1754 if (vma->vm_rb.rb_right) {
1755 struct vm_area_struct *right =
1756 rb_entry(vma->vm_rb.rb_right,
1757 struct vm_area_struct, vm_rb);
1758 if (right->rb_subtree_gap >= length) {
1759 vma = right;
1760 continue;
1764 /* Go back up the rbtree to find next candidate node */
1765 while (true) {
1766 struct rb_node *prev = &vma->vm_rb;
1767 if (!rb_parent(prev))
1768 goto check_highest;
1769 vma = rb_entry(rb_parent(prev),
1770 struct vm_area_struct, vm_rb);
1771 if (prev == vma->vm_rb.rb_left) {
1772 gap_start = vma->vm_prev->vm_end;
1773 gap_end = vma->vm_start;
1774 goto check_current;
1779 check_highest:
1780 /* Check highest gap, which does not precede any rbtree node */
1781 gap_start = mm->highest_vm_end;
1782 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1783 if (gap_start > high_limit)
1784 return -ENOMEM;
1786 found:
1787 /* We found a suitable gap. Clip it with the original low_limit. */
1788 if (gap_start < info->low_limit)
1789 gap_start = info->low_limit;
1791 /* Adjust gap address to the desired alignment */
1792 gap_start += (info->align_offset - gap_start) & info->align_mask;
1794 VM_BUG_ON(gap_start + info->length > info->high_limit);
1795 VM_BUG_ON(gap_start + info->length > gap_end);
1796 return gap_start;
1799 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1801 struct mm_struct *mm = current->mm;
1802 struct vm_area_struct *vma;
1803 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1805 /* Adjust search length to account for worst case alignment overhead */
1806 length = info->length + info->align_mask;
1807 if (length < info->length)
1808 return -ENOMEM;
1811 * Adjust search limits by the desired length.
1812 * See implementation comment at top of unmapped_area().
1814 gap_end = info->high_limit;
1815 if (gap_end < length)
1816 return -ENOMEM;
1817 high_limit = gap_end - length;
1819 if (info->low_limit > high_limit)
1820 return -ENOMEM;
1821 low_limit = info->low_limit + length;
1823 /* Check highest gap, which does not precede any rbtree node */
1824 gap_start = mm->highest_vm_end;
1825 if (gap_start <= high_limit)
1826 goto found_highest;
1828 /* Check if rbtree root looks promising */
1829 if (RB_EMPTY_ROOT(&mm->mm_rb))
1830 return -ENOMEM;
1831 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1832 if (vma->rb_subtree_gap < length)
1833 return -ENOMEM;
1835 while (true) {
1836 /* Visit right subtree if it looks promising */
1837 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1838 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1839 struct vm_area_struct *right =
1840 rb_entry(vma->vm_rb.rb_right,
1841 struct vm_area_struct, vm_rb);
1842 if (right->rb_subtree_gap >= length) {
1843 vma = right;
1844 continue;
1848 check_current:
1849 /* Check if current node has a suitable gap */
1850 gap_end = vma->vm_start;
1851 if (gap_end < low_limit)
1852 return -ENOMEM;
1853 if (gap_start <= high_limit && gap_end - gap_start >= length)
1854 goto found;
1856 /* Visit left subtree if it looks promising */
1857 if (vma->vm_rb.rb_left) {
1858 struct vm_area_struct *left =
1859 rb_entry(vma->vm_rb.rb_left,
1860 struct vm_area_struct, vm_rb);
1861 if (left->rb_subtree_gap >= length) {
1862 vma = left;
1863 continue;
1867 /* Go back up the rbtree to find next candidate node */
1868 while (true) {
1869 struct rb_node *prev = &vma->vm_rb;
1870 if (!rb_parent(prev))
1871 return -ENOMEM;
1872 vma = rb_entry(rb_parent(prev),
1873 struct vm_area_struct, vm_rb);
1874 if (prev == vma->vm_rb.rb_right) {
1875 gap_start = vma->vm_prev ?
1876 vma->vm_prev->vm_end : 0;
1877 goto check_current;
1882 found:
1883 /* We found a suitable gap. Clip it with the original high_limit. */
1884 if (gap_end > info->high_limit)
1885 gap_end = info->high_limit;
1887 found_highest:
1888 /* Compute highest gap address at the desired alignment */
1889 gap_end -= info->length;
1890 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1892 VM_BUG_ON(gap_end < info->low_limit);
1893 VM_BUG_ON(gap_end < gap_start);
1894 return gap_end;
1897 /* Get an address range which is currently unmapped.
1898 * For shmat() with addr=0.
1900 * Ugly calling convention alert:
1901 * Return value with the low bits set means error value,
1902 * ie
1903 * if (ret & ~PAGE_MASK)
1904 * error = ret;
1906 * This function "knows" that -ENOMEM has the bits set.
1908 #ifndef HAVE_ARCH_UNMAPPED_AREA
1909 unsigned long
1910 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1911 unsigned long len, unsigned long pgoff, unsigned long flags)
1913 struct mm_struct *mm = current->mm;
1914 struct vm_area_struct *vma;
1915 struct vm_unmapped_area_info info;
1917 if (len > TASK_SIZE - mmap_min_addr)
1918 return -ENOMEM;
1920 if (flags & MAP_FIXED)
1921 return addr;
1923 if (addr) {
1924 addr = PAGE_ALIGN(addr);
1925 vma = find_vma(mm, addr);
1926 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1927 (!vma || addr + len <= vma->vm_start))
1928 return addr;
1931 info.flags = 0;
1932 info.length = len;
1933 info.low_limit = mm->mmap_base;
1934 info.high_limit = TASK_SIZE;
1935 info.align_mask = 0;
1936 return vm_unmapped_area(&info);
1938 #endif
1941 * This mmap-allocator allocates new areas top-down from below the
1942 * stack's low limit (the base):
1944 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1945 unsigned long
1946 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1947 const unsigned long len, const unsigned long pgoff,
1948 const unsigned long flags)
1950 struct vm_area_struct *vma;
1951 struct mm_struct *mm = current->mm;
1952 unsigned long addr = addr0;
1953 struct vm_unmapped_area_info info;
1955 /* requested length too big for entire address space */
1956 if (len > TASK_SIZE - mmap_min_addr)
1957 return -ENOMEM;
1959 if (flags & MAP_FIXED)
1960 return addr;
1962 /* requesting a specific address */
1963 if (addr) {
1964 addr = PAGE_ALIGN(addr);
1965 vma = find_vma(mm, addr);
1966 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1967 (!vma || addr + len <= vma->vm_start))
1968 return addr;
1971 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1972 info.length = len;
1973 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1974 info.high_limit = mm->mmap_base;
1975 info.align_mask = 0;
1976 addr = vm_unmapped_area(&info);
1979 * A failed mmap() very likely causes application failure,
1980 * so fall back to the bottom-up function here. This scenario
1981 * can happen with large stack limits and large mmap()
1982 * allocations.
1984 if (addr & ~PAGE_MASK) {
1985 VM_BUG_ON(addr != -ENOMEM);
1986 info.flags = 0;
1987 info.low_limit = TASK_UNMAPPED_BASE;
1988 info.high_limit = TASK_SIZE;
1989 addr = vm_unmapped_area(&info);
1992 return addr;
1994 #endif
1996 unsigned long
1997 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1998 unsigned long pgoff, unsigned long flags)
2000 unsigned long (*get_area)(struct file *, unsigned long,
2001 unsigned long, unsigned long, unsigned long);
2003 unsigned long error = arch_mmap_check(addr, len, flags);
2004 if (error)
2005 return error;
2007 /* Careful about overflows.. */
2008 if (len > TASK_SIZE)
2009 return -ENOMEM;
2011 get_area = current->mm->get_unmapped_area;
2012 if (file && file->f_op->get_unmapped_area)
2013 get_area = file->f_op->get_unmapped_area;
2014 addr = get_area(file, addr, len, pgoff, flags);
2015 if (IS_ERR_VALUE(addr))
2016 return addr;
2018 if (addr > TASK_SIZE - len)
2019 return -ENOMEM;
2020 if (addr & ~PAGE_MASK)
2021 return -EINVAL;
2023 addr = arch_rebalance_pgtables(addr, len);
2024 error = security_mmap_addr(addr);
2025 return error ? error : addr;
2028 EXPORT_SYMBOL(get_unmapped_area);
2030 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2031 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2033 struct rb_node *rb_node;
2034 struct vm_area_struct *vma;
2036 /* Check the cache first. */
2037 vma = vmacache_find(mm, addr);
2038 if (likely(vma))
2039 return vma;
2041 rb_node = mm->mm_rb.rb_node;
2042 vma = NULL;
2044 while (rb_node) {
2045 struct vm_area_struct *tmp;
2047 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2049 if (tmp->vm_end > addr) {
2050 vma = tmp;
2051 if (tmp->vm_start <= addr)
2052 break;
2053 rb_node = rb_node->rb_left;
2054 } else
2055 rb_node = rb_node->rb_right;
2058 if (vma)
2059 vmacache_update(addr, vma);
2060 return vma;
2063 EXPORT_SYMBOL(find_vma);
2066 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2068 struct vm_area_struct *
2069 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2070 struct vm_area_struct **pprev)
2072 struct vm_area_struct *vma;
2074 vma = find_vma(mm, addr);
2075 if (vma) {
2076 *pprev = vma->vm_prev;
2077 } else {
2078 struct rb_node *rb_node = mm->mm_rb.rb_node;
2079 *pprev = NULL;
2080 while (rb_node) {
2081 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2082 rb_node = rb_node->rb_right;
2085 return vma;
2089 * Verify that the stack growth is acceptable and
2090 * update accounting. This is shared with both the
2091 * grow-up and grow-down cases.
2093 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2095 struct mm_struct *mm = vma->vm_mm;
2096 struct rlimit *rlim = current->signal->rlim;
2097 unsigned long new_start, actual_size;
2099 /* address space limit tests */
2100 if (!may_expand_vm(mm, grow))
2101 return -ENOMEM;
2103 /* Stack limit test */
2104 actual_size = size;
2105 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2106 actual_size -= PAGE_SIZE;
2107 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2108 return -ENOMEM;
2110 /* mlock limit tests */
2111 if (vma->vm_flags & VM_LOCKED) {
2112 unsigned long locked;
2113 unsigned long limit;
2114 locked = mm->locked_vm + grow;
2115 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2116 limit >>= PAGE_SHIFT;
2117 if (locked > limit && !capable(CAP_IPC_LOCK))
2118 return -ENOMEM;
2121 /* Check to ensure the stack will not grow into a hugetlb-only region */
2122 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2123 vma->vm_end - size;
2124 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2125 return -EFAULT;
2128 * Overcommit.. This must be the final test, as it will
2129 * update security statistics.
2131 if (security_vm_enough_memory_mm(mm, grow))
2132 return -ENOMEM;
2134 /* Ok, everything looks good - let it rip */
2135 if (vma->vm_flags & VM_LOCKED)
2136 mm->locked_vm += grow;
2137 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2138 return 0;
2141 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2143 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2144 * vma is the last one with address > vma->vm_end. Have to extend vma.
2146 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2148 int error = 0;
2150 if (!(vma->vm_flags & VM_GROWSUP))
2151 return -EFAULT;
2153 /* Guard against wrapping around to address 0. */
2154 if (address < PAGE_ALIGN(address+4))
2155 address = PAGE_ALIGN(address+4);
2156 else
2157 return -ENOMEM;
2159 /* We must make sure the anon_vma is allocated. */
2160 if (unlikely(anon_vma_prepare(vma)))
2161 return -ENOMEM;
2164 * vma->vm_start/vm_end cannot change under us because the caller
2165 * is required to hold the mmap_sem in read mode. We need the
2166 * anon_vma lock to serialize against concurrent expand_stacks.
2168 anon_vma_lock_write(vma->anon_vma);
2170 /* Somebody else might have raced and expanded it already */
2171 if (address > vma->vm_end) {
2172 unsigned long size, grow;
2174 size = address - vma->vm_start;
2175 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2177 error = -ENOMEM;
2178 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2179 error = acct_stack_growth(vma, size, grow);
2180 if (!error) {
2182 * vma_gap_update() doesn't support concurrent
2183 * updates, but we only hold a shared mmap_sem
2184 * lock here, so we need to protect against
2185 * concurrent vma expansions.
2186 * anon_vma_lock_write() doesn't help here, as
2187 * we don't guarantee that all growable vmas
2188 * in a mm share the same root anon vma.
2189 * So, we reuse mm->page_table_lock to guard
2190 * against concurrent vma expansions.
2192 spin_lock(&vma->vm_mm->page_table_lock);
2193 anon_vma_interval_tree_pre_update_vma(vma);
2194 vma->vm_end = address;
2195 anon_vma_interval_tree_post_update_vma(vma);
2196 if (vma->vm_next)
2197 vma_gap_update(vma->vm_next);
2198 else
2199 vma->vm_mm->highest_vm_end = address;
2200 spin_unlock(&vma->vm_mm->page_table_lock);
2202 perf_event_mmap(vma);
2206 anon_vma_unlock_write(vma->anon_vma);
2207 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2208 validate_mm(vma->vm_mm);
2209 return error;
2211 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2214 * vma is the first one with address < vma->vm_start. Have to extend vma.
2216 int expand_downwards(struct vm_area_struct *vma,
2217 unsigned long address)
2219 int error;
2221 address &= PAGE_MASK;
2222 error = security_mmap_addr(address);
2223 if (error)
2224 return error;
2226 /* We must make sure the anon_vma is allocated. */
2227 if (unlikely(anon_vma_prepare(vma)))
2228 return -ENOMEM;
2231 * vma->vm_start/vm_end cannot change under us because the caller
2232 * is required to hold the mmap_sem in read mode. We need the
2233 * anon_vma lock to serialize against concurrent expand_stacks.
2235 anon_vma_lock_write(vma->anon_vma);
2237 /* Somebody else might have raced and expanded it already */
2238 if (address < vma->vm_start) {
2239 unsigned long size, grow;
2241 size = vma->vm_end - address;
2242 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2244 error = -ENOMEM;
2245 if (grow <= vma->vm_pgoff) {
2246 error = acct_stack_growth(vma, size, grow);
2247 if (!error) {
2249 * vma_gap_update() doesn't support concurrent
2250 * updates, but we only hold a shared mmap_sem
2251 * lock here, so we need to protect against
2252 * concurrent vma expansions.
2253 * anon_vma_lock_write() doesn't help here, as
2254 * we don't guarantee that all growable vmas
2255 * in a mm share the same root anon vma.
2256 * So, we reuse mm->page_table_lock to guard
2257 * against concurrent vma expansions.
2259 spin_lock(&vma->vm_mm->page_table_lock);
2260 anon_vma_interval_tree_pre_update_vma(vma);
2261 vma->vm_start = address;
2262 vma->vm_pgoff -= grow;
2263 anon_vma_interval_tree_post_update_vma(vma);
2264 vma_gap_update(vma);
2265 spin_unlock(&vma->vm_mm->page_table_lock);
2267 perf_event_mmap(vma);
2271 anon_vma_unlock_write(vma->anon_vma);
2272 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2273 validate_mm(vma->vm_mm);
2274 return error;
2278 * Note how expand_stack() refuses to expand the stack all the way to
2279 * abut the next virtual mapping, *unless* that mapping itself is also
2280 * a stack mapping. We want to leave room for a guard page, after all
2281 * (the guard page itself is not added here, that is done by the
2282 * actual page faulting logic)
2284 * This matches the behavior of the guard page logic (see mm/memory.c:
2285 * check_stack_guard_page()), which only allows the guard page to be
2286 * removed under these circumstances.
2288 #ifdef CONFIG_STACK_GROWSUP
2289 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2291 struct vm_area_struct *next;
2293 address &= PAGE_MASK;
2294 next = vma->vm_next;
2295 if (next && next->vm_start == address + PAGE_SIZE) {
2296 if (!(next->vm_flags & VM_GROWSUP))
2297 return -ENOMEM;
2299 return expand_upwards(vma, address);
2302 struct vm_area_struct *
2303 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2305 struct vm_area_struct *vma, *prev;
2307 addr &= PAGE_MASK;
2308 vma = find_vma_prev(mm, addr, &prev);
2309 if (vma && (vma->vm_start <= addr))
2310 return vma;
2311 if (!prev || expand_stack(prev, addr))
2312 return NULL;
2313 if (prev->vm_flags & VM_LOCKED)
2314 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2315 return prev;
2317 #else
2318 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2320 struct vm_area_struct *prev;
2322 address &= PAGE_MASK;
2323 prev = vma->vm_prev;
2324 if (prev && prev->vm_end == address) {
2325 if (!(prev->vm_flags & VM_GROWSDOWN))
2326 return -ENOMEM;
2328 return expand_downwards(vma, address);
2331 struct vm_area_struct *
2332 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2334 struct vm_area_struct *vma;
2335 unsigned long start;
2337 addr &= PAGE_MASK;
2338 vma = find_vma(mm, addr);
2339 if (!vma)
2340 return NULL;
2341 if (vma->vm_start <= addr)
2342 return vma;
2343 if (!(vma->vm_flags & VM_GROWSDOWN))
2344 return NULL;
2345 start = vma->vm_start;
2346 if (expand_stack(vma, addr))
2347 return NULL;
2348 if (vma->vm_flags & VM_LOCKED)
2349 populate_vma_page_range(vma, addr, start, NULL);
2350 return vma;
2352 #endif
2354 EXPORT_SYMBOL_GPL(find_extend_vma);
2357 * Ok - we have the memory areas we should free on the vma list,
2358 * so release them, and do the vma updates.
2360 * Called with the mm semaphore held.
2362 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2364 unsigned long nr_accounted = 0;
2366 /* Update high watermark before we lower total_vm */
2367 update_hiwater_vm(mm);
2368 do {
2369 long nrpages = vma_pages(vma);
2371 if (vma->vm_flags & VM_ACCOUNT)
2372 nr_accounted += nrpages;
2373 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2374 vma = remove_vma(vma);
2375 } while (vma);
2376 vm_unacct_memory(nr_accounted);
2377 validate_mm(mm);
2381 * Get rid of page table information in the indicated region.
2383 * Called with the mm semaphore held.
2385 static void unmap_region(struct mm_struct *mm,
2386 struct vm_area_struct *vma, struct vm_area_struct *prev,
2387 unsigned long start, unsigned long end)
2389 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2390 struct mmu_gather tlb;
2392 lru_add_drain();
2393 tlb_gather_mmu(&tlb, mm, start, end);
2394 update_hiwater_rss(mm);
2395 unmap_vmas(&tlb, vma, start, end);
2396 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2397 next ? next->vm_start : USER_PGTABLES_CEILING);
2398 tlb_finish_mmu(&tlb, start, end);
2402 * Create a list of vma's touched by the unmap, removing them from the mm's
2403 * vma list as we go..
2405 static void
2406 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2407 struct vm_area_struct *prev, unsigned long end)
2409 struct vm_area_struct **insertion_point;
2410 struct vm_area_struct *tail_vma = NULL;
2412 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2413 vma->vm_prev = NULL;
2414 do {
2415 vma_rb_erase(vma, &mm->mm_rb);
2416 mm->map_count--;
2417 tail_vma = vma;
2418 vma = vma->vm_next;
2419 } while (vma && vma->vm_start < end);
2420 *insertion_point = vma;
2421 if (vma) {
2422 vma->vm_prev = prev;
2423 vma_gap_update(vma);
2424 } else
2425 mm->highest_vm_end = prev ? prev->vm_end : 0;
2426 tail_vma->vm_next = NULL;
2428 /* Kill the cache */
2429 vmacache_invalidate(mm);
2433 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2434 * munmap path where it doesn't make sense to fail.
2436 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2437 unsigned long addr, int new_below)
2439 struct vm_area_struct *new;
2440 int err = -ENOMEM;
2442 if (is_vm_hugetlb_page(vma) && (addr &
2443 ~(huge_page_mask(hstate_vma(vma)))))
2444 return -EINVAL;
2446 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2447 if (!new)
2448 goto out_err;
2450 /* most fields are the same, copy all, and then fixup */
2451 *new = *vma;
2453 INIT_LIST_HEAD(&new->anon_vma_chain);
2455 if (new_below)
2456 new->vm_end = addr;
2457 else {
2458 new->vm_start = addr;
2459 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2462 err = vma_dup_policy(vma, new);
2463 if (err)
2464 goto out_free_vma;
2466 err = anon_vma_clone(new, vma);
2467 if (err)
2468 goto out_free_mpol;
2470 if (new->vm_file)
2471 get_file(new->vm_file);
2473 if (new->vm_ops && new->vm_ops->open)
2474 new->vm_ops->open(new);
2476 if (new_below)
2477 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2478 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2479 else
2480 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2482 /* Success. */
2483 if (!err)
2484 return 0;
2486 /* Clean everything up if vma_adjust failed. */
2487 if (new->vm_ops && new->vm_ops->close)
2488 new->vm_ops->close(new);
2489 if (new->vm_file)
2490 fput(new->vm_file);
2491 unlink_anon_vmas(new);
2492 out_free_mpol:
2493 mpol_put(vma_policy(new));
2494 out_free_vma:
2495 kmem_cache_free(vm_area_cachep, new);
2496 out_err:
2497 return err;
2501 * Split a vma into two pieces at address 'addr', a new vma is allocated
2502 * either for the first part or the tail.
2504 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2505 unsigned long addr, int new_below)
2507 if (mm->map_count >= sysctl_max_map_count)
2508 return -ENOMEM;
2510 return __split_vma(mm, vma, addr, new_below);
2513 /* Munmap is split into 2 main parts -- this part which finds
2514 * what needs doing, and the areas themselves, which do the
2515 * work. This now handles partial unmappings.
2516 * Jeremy Fitzhardinge <jeremy@goop.org>
2518 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2520 unsigned long end;
2521 struct vm_area_struct *vma, *prev, *last;
2523 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2524 return -EINVAL;
2526 len = PAGE_ALIGN(len);
2527 if (len == 0)
2528 return -EINVAL;
2530 /* Find the first overlapping VMA */
2531 vma = find_vma(mm, start);
2532 if (!vma)
2533 return 0;
2534 prev = vma->vm_prev;
2535 /* we have start < vma->vm_end */
2537 /* if it doesn't overlap, we have nothing.. */
2538 end = start + len;
2539 if (vma->vm_start >= end)
2540 return 0;
2543 * If we need to split any vma, do it now to save pain later.
2545 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2546 * unmapped vm_area_struct will remain in use: so lower split_vma
2547 * places tmp vma above, and higher split_vma places tmp vma below.
2549 if (start > vma->vm_start) {
2550 int error;
2553 * Make sure that map_count on return from munmap() will
2554 * not exceed its limit; but let map_count go just above
2555 * its limit temporarily, to help free resources as expected.
2557 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2558 return -ENOMEM;
2560 error = __split_vma(mm, vma, start, 0);
2561 if (error)
2562 return error;
2563 prev = vma;
2566 /* Does it split the last one? */
2567 last = find_vma(mm, end);
2568 if (last && end > last->vm_start) {
2569 int error = __split_vma(mm, last, end, 1);
2570 if (error)
2571 return error;
2573 vma = prev ? prev->vm_next : mm->mmap;
2576 * unlock any mlock()ed ranges before detaching vmas
2578 if (mm->locked_vm) {
2579 struct vm_area_struct *tmp = vma;
2580 while (tmp && tmp->vm_start < end) {
2581 if (tmp->vm_flags & VM_LOCKED) {
2582 mm->locked_vm -= vma_pages(tmp);
2583 munlock_vma_pages_all(tmp);
2585 tmp = tmp->vm_next;
2590 * Remove the vma's, and unmap the actual pages
2592 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2593 unmap_region(mm, vma, prev, start, end);
2595 arch_unmap(mm, vma, start, end);
2597 /* Fix up all other VM information */
2598 remove_vma_list(mm, vma);
2600 return 0;
2603 int vm_munmap(unsigned long start, size_t len)
2605 int ret;
2606 struct mm_struct *mm = current->mm;
2608 down_write(&mm->mmap_sem);
2609 ret = do_munmap(mm, start, len);
2610 up_write(&mm->mmap_sem);
2611 return ret;
2613 EXPORT_SYMBOL(vm_munmap);
2615 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2617 profile_munmap(addr);
2618 return vm_munmap(addr, len);
2623 * Emulation of deprecated remap_file_pages() syscall.
2625 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2626 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2629 struct mm_struct *mm = current->mm;
2630 struct vm_area_struct *vma;
2631 unsigned long populate = 0;
2632 unsigned long ret = -EINVAL;
2633 struct file *file;
2635 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2636 "See Documentation/vm/remap_file_pages.txt.\n",
2637 current->comm, current->pid);
2639 if (prot)
2640 return ret;
2641 start = start & PAGE_MASK;
2642 size = size & PAGE_MASK;
2644 if (start + size <= start)
2645 return ret;
2647 /* Does pgoff wrap? */
2648 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2649 return ret;
2651 down_write(&mm->mmap_sem);
2652 vma = find_vma(mm, start);
2654 if (!vma || !(vma->vm_flags & VM_SHARED))
2655 goto out;
2657 if (start < vma->vm_start)
2658 goto out;
2660 if (start + size > vma->vm_end) {
2661 struct vm_area_struct *next;
2663 for (next = vma->vm_next; next; next = next->vm_next) {
2664 /* hole between vmas ? */
2665 if (next->vm_start != next->vm_prev->vm_end)
2666 goto out;
2668 if (next->vm_file != vma->vm_file)
2669 goto out;
2671 if (next->vm_flags != vma->vm_flags)
2672 goto out;
2674 if (start + size <= next->vm_end)
2675 break;
2678 if (!next)
2679 goto out;
2682 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2683 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2684 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2686 flags &= MAP_NONBLOCK;
2687 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2688 if (vma->vm_flags & VM_LOCKED) {
2689 struct vm_area_struct *tmp;
2690 flags |= MAP_LOCKED;
2692 /* drop PG_Mlocked flag for over-mapped range */
2693 for (tmp = vma; tmp->vm_start >= start + size;
2694 tmp = tmp->vm_next) {
2695 munlock_vma_pages_range(tmp,
2696 max(tmp->vm_start, start),
2697 min(tmp->vm_end, start + size));
2701 file = get_file(vma->vm_file);
2702 ret = do_mmap_pgoff(vma->vm_file, start, size,
2703 prot, flags, pgoff, &populate);
2704 fput(file);
2705 out:
2706 up_write(&mm->mmap_sem);
2707 if (populate)
2708 mm_populate(ret, populate);
2709 if (!IS_ERR_VALUE(ret))
2710 ret = 0;
2711 return ret;
2714 static inline void verify_mm_writelocked(struct mm_struct *mm)
2716 #ifdef CONFIG_DEBUG_VM
2717 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2718 WARN_ON(1);
2719 up_read(&mm->mmap_sem);
2721 #endif
2725 * this is really a simplified "do_mmap". it only handles
2726 * anonymous maps. eventually we may be able to do some
2727 * brk-specific accounting here.
2729 static unsigned long do_brk(unsigned long addr, unsigned long len)
2731 struct mm_struct *mm = current->mm;
2732 struct vm_area_struct *vma, *prev;
2733 unsigned long flags;
2734 struct rb_node **rb_link, *rb_parent;
2735 pgoff_t pgoff = addr >> PAGE_SHIFT;
2736 int error;
2738 len = PAGE_ALIGN(len);
2739 if (!len)
2740 return addr;
2742 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2744 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2745 if (error & ~PAGE_MASK)
2746 return error;
2748 error = mlock_future_check(mm, mm->def_flags, len);
2749 if (error)
2750 return error;
2753 * mm->mmap_sem is required to protect against another thread
2754 * changing the mappings in case we sleep.
2756 verify_mm_writelocked(mm);
2759 * Clear old maps. this also does some error checking for us
2761 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2762 &rb_parent)) {
2763 if (do_munmap(mm, addr, len))
2764 return -ENOMEM;
2767 /* Check against address space limits *after* clearing old maps... */
2768 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2769 return -ENOMEM;
2771 if (mm->map_count > sysctl_max_map_count)
2772 return -ENOMEM;
2774 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2775 return -ENOMEM;
2777 /* Can we just expand an old private anonymous mapping? */
2778 vma = vma_merge(mm, prev, addr, addr + len, flags,
2779 NULL, NULL, pgoff, NULL);
2780 if (vma)
2781 goto out;
2784 * create a vma struct for an anonymous mapping
2786 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2787 if (!vma) {
2788 vm_unacct_memory(len >> PAGE_SHIFT);
2789 return -ENOMEM;
2792 INIT_LIST_HEAD(&vma->anon_vma_chain);
2793 vma->vm_mm = mm;
2794 vma->vm_start = addr;
2795 vma->vm_end = addr + len;
2796 vma->vm_pgoff = pgoff;
2797 vma->vm_flags = flags;
2798 vma->vm_page_prot = vm_get_page_prot(flags);
2799 vma_link(mm, vma, prev, rb_link, rb_parent);
2800 out:
2801 perf_event_mmap(vma);
2802 mm->total_vm += len >> PAGE_SHIFT;
2803 if (flags & VM_LOCKED)
2804 mm->locked_vm += (len >> PAGE_SHIFT);
2805 vma->vm_flags |= VM_SOFTDIRTY;
2806 return addr;
2809 unsigned long vm_brk(unsigned long addr, unsigned long len)
2811 struct mm_struct *mm = current->mm;
2812 unsigned long ret;
2813 bool populate;
2815 down_write(&mm->mmap_sem);
2816 ret = do_brk(addr, len);
2817 populate = ((mm->def_flags & VM_LOCKED) != 0);
2818 up_write(&mm->mmap_sem);
2819 if (populate)
2820 mm_populate(addr, len);
2821 return ret;
2823 EXPORT_SYMBOL(vm_brk);
2825 /* Release all mmaps. */
2826 void exit_mmap(struct mm_struct *mm)
2828 struct mmu_gather tlb;
2829 struct vm_area_struct *vma;
2830 unsigned long nr_accounted = 0;
2832 /* mm's last user has gone, and its about to be pulled down */
2833 mmu_notifier_release(mm);
2835 if (mm->locked_vm) {
2836 vma = mm->mmap;
2837 while (vma) {
2838 if (vma->vm_flags & VM_LOCKED)
2839 munlock_vma_pages_all(vma);
2840 vma = vma->vm_next;
2844 arch_exit_mmap(mm);
2846 vma = mm->mmap;
2847 if (!vma) /* Can happen if dup_mmap() received an OOM */
2848 return;
2850 lru_add_drain();
2851 flush_cache_mm(mm);
2852 tlb_gather_mmu(&tlb, mm, 0, -1);
2853 /* update_hiwater_rss(mm) here? but nobody should be looking */
2854 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2855 unmap_vmas(&tlb, vma, 0, -1);
2857 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2858 tlb_finish_mmu(&tlb, 0, -1);
2861 * Walk the list again, actually closing and freeing it,
2862 * with preemption enabled, without holding any MM locks.
2864 while (vma) {
2865 if (vma->vm_flags & VM_ACCOUNT)
2866 nr_accounted += vma_pages(vma);
2867 vma = remove_vma(vma);
2869 vm_unacct_memory(nr_accounted);
2872 /* Insert vm structure into process list sorted by address
2873 * and into the inode's i_mmap tree. If vm_file is non-NULL
2874 * then i_mmap_rwsem is taken here.
2876 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2878 struct vm_area_struct *prev;
2879 struct rb_node **rb_link, *rb_parent;
2882 * The vm_pgoff of a purely anonymous vma should be irrelevant
2883 * until its first write fault, when page's anon_vma and index
2884 * are set. But now set the vm_pgoff it will almost certainly
2885 * end up with (unless mremap moves it elsewhere before that
2886 * first wfault), so /proc/pid/maps tells a consistent story.
2888 * By setting it to reflect the virtual start address of the
2889 * vma, merges and splits can happen in a seamless way, just
2890 * using the existing file pgoff checks and manipulations.
2891 * Similarly in do_mmap_pgoff and in do_brk.
2893 if (!vma->vm_file) {
2894 BUG_ON(vma->anon_vma);
2895 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2897 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2898 &prev, &rb_link, &rb_parent))
2899 return -ENOMEM;
2900 if ((vma->vm_flags & VM_ACCOUNT) &&
2901 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2902 return -ENOMEM;
2904 vma_link(mm, vma, prev, rb_link, rb_parent);
2905 return 0;
2909 * Copy the vma structure to a new location in the same mm,
2910 * prior to moving page table entries, to effect an mremap move.
2912 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2913 unsigned long addr, unsigned long len, pgoff_t pgoff,
2914 bool *need_rmap_locks)
2916 struct vm_area_struct *vma = *vmap;
2917 unsigned long vma_start = vma->vm_start;
2918 struct mm_struct *mm = vma->vm_mm;
2919 struct vm_area_struct *new_vma, *prev;
2920 struct rb_node **rb_link, *rb_parent;
2921 bool faulted_in_anon_vma = true;
2924 * If anonymous vma has not yet been faulted, update new pgoff
2925 * to match new location, to increase its chance of merging.
2927 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2928 pgoff = addr >> PAGE_SHIFT;
2929 faulted_in_anon_vma = false;
2932 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2933 return NULL; /* should never get here */
2934 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2935 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2936 if (new_vma) {
2938 * Source vma may have been merged into new_vma
2940 if (unlikely(vma_start >= new_vma->vm_start &&
2941 vma_start < new_vma->vm_end)) {
2943 * The only way we can get a vma_merge with
2944 * self during an mremap is if the vma hasn't
2945 * been faulted in yet and we were allowed to
2946 * reset the dst vma->vm_pgoff to the
2947 * destination address of the mremap to allow
2948 * the merge to happen. mremap must change the
2949 * vm_pgoff linearity between src and dst vmas
2950 * (in turn preventing a vma_merge) to be
2951 * safe. It is only safe to keep the vm_pgoff
2952 * linear if there are no pages mapped yet.
2954 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2955 *vmap = vma = new_vma;
2957 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2958 } else {
2959 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2960 if (new_vma) {
2961 *new_vma = *vma;
2962 new_vma->vm_start = addr;
2963 new_vma->vm_end = addr + len;
2964 new_vma->vm_pgoff = pgoff;
2965 if (vma_dup_policy(vma, new_vma))
2966 goto out_free_vma;
2967 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2968 if (anon_vma_clone(new_vma, vma))
2969 goto out_free_mempol;
2970 if (new_vma->vm_file)
2971 get_file(new_vma->vm_file);
2972 if (new_vma->vm_ops && new_vma->vm_ops->open)
2973 new_vma->vm_ops->open(new_vma);
2974 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2975 *need_rmap_locks = false;
2978 return new_vma;
2980 out_free_mempol:
2981 mpol_put(vma_policy(new_vma));
2982 out_free_vma:
2983 kmem_cache_free(vm_area_cachep, new_vma);
2984 return NULL;
2988 * Return true if the calling process may expand its vm space by the passed
2989 * number of pages
2991 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2993 unsigned long cur = mm->total_vm; /* pages */
2994 unsigned long lim;
2996 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2998 if (cur + npages > lim)
2999 return 0;
3000 return 1;
3003 static int special_mapping_fault(struct vm_area_struct *vma,
3004 struct vm_fault *vmf);
3007 * Having a close hook prevents vma merging regardless of flags.
3009 static void special_mapping_close(struct vm_area_struct *vma)
3013 static const char *special_mapping_name(struct vm_area_struct *vma)
3015 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3018 static const struct vm_operations_struct special_mapping_vmops = {
3019 .close = special_mapping_close,
3020 .fault = special_mapping_fault,
3021 .name = special_mapping_name,
3024 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3025 .close = special_mapping_close,
3026 .fault = special_mapping_fault,
3029 static int special_mapping_fault(struct vm_area_struct *vma,
3030 struct vm_fault *vmf)
3032 pgoff_t pgoff;
3033 struct page **pages;
3036 * special mappings have no vm_file, and in that case, the mm
3037 * uses vm_pgoff internally. So we have to subtract it from here.
3038 * We are allowed to do this because we are the mm; do not copy
3039 * this code into drivers!
3041 pgoff = vmf->pgoff - vma->vm_pgoff;
3043 if (vma->vm_ops == &legacy_special_mapping_vmops)
3044 pages = vma->vm_private_data;
3045 else
3046 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3047 pages;
3049 for (; pgoff && *pages; ++pages)
3050 pgoff--;
3052 if (*pages) {
3053 struct page *page = *pages;
3054 get_page(page);
3055 vmf->page = page;
3056 return 0;
3059 return VM_FAULT_SIGBUS;
3062 static struct vm_area_struct *__install_special_mapping(
3063 struct mm_struct *mm,
3064 unsigned long addr, unsigned long len,
3065 unsigned long vm_flags, const struct vm_operations_struct *ops,
3066 void *priv)
3068 int ret;
3069 struct vm_area_struct *vma;
3071 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3072 if (unlikely(vma == NULL))
3073 return ERR_PTR(-ENOMEM);
3075 INIT_LIST_HEAD(&vma->anon_vma_chain);
3076 vma->vm_mm = mm;
3077 vma->vm_start = addr;
3078 vma->vm_end = addr + len;
3080 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3081 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3083 vma->vm_ops = ops;
3084 vma->vm_private_data = priv;
3086 ret = insert_vm_struct(mm, vma);
3087 if (ret)
3088 goto out;
3090 mm->total_vm += len >> PAGE_SHIFT;
3092 perf_event_mmap(vma);
3094 return vma;
3096 out:
3097 kmem_cache_free(vm_area_cachep, vma);
3098 return ERR_PTR(ret);
3102 * Called with mm->mmap_sem held for writing.
3103 * Insert a new vma covering the given region, with the given flags.
3104 * Its pages are supplied by the given array of struct page *.
3105 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3106 * The region past the last page supplied will always produce SIGBUS.
3107 * The array pointer and the pages it points to are assumed to stay alive
3108 * for as long as this mapping might exist.
3110 struct vm_area_struct *_install_special_mapping(
3111 struct mm_struct *mm,
3112 unsigned long addr, unsigned long len,
3113 unsigned long vm_flags, const struct vm_special_mapping *spec)
3115 return __install_special_mapping(mm, addr, len, vm_flags,
3116 &special_mapping_vmops, (void *)spec);
3119 int install_special_mapping(struct mm_struct *mm,
3120 unsigned long addr, unsigned long len,
3121 unsigned long vm_flags, struct page **pages)
3123 struct vm_area_struct *vma = __install_special_mapping(
3124 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3125 (void *)pages);
3127 return PTR_ERR_OR_ZERO(vma);
3130 static DEFINE_MUTEX(mm_all_locks_mutex);
3132 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3134 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3136 * The LSB of head.next can't change from under us
3137 * because we hold the mm_all_locks_mutex.
3139 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3141 * We can safely modify head.next after taking the
3142 * anon_vma->root->rwsem. If some other vma in this mm shares
3143 * the same anon_vma we won't take it again.
3145 * No need of atomic instructions here, head.next
3146 * can't change from under us thanks to the
3147 * anon_vma->root->rwsem.
3149 if (__test_and_set_bit(0, (unsigned long *)
3150 &anon_vma->root->rb_root.rb_node))
3151 BUG();
3155 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3157 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3159 * AS_MM_ALL_LOCKS can't change from under us because
3160 * we hold the mm_all_locks_mutex.
3162 * Operations on ->flags have to be atomic because
3163 * even if AS_MM_ALL_LOCKS is stable thanks to the
3164 * mm_all_locks_mutex, there may be other cpus
3165 * changing other bitflags in parallel to us.
3167 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3168 BUG();
3169 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3174 * This operation locks against the VM for all pte/vma/mm related
3175 * operations that could ever happen on a certain mm. This includes
3176 * vmtruncate, try_to_unmap, and all page faults.
3178 * The caller must take the mmap_sem in write mode before calling
3179 * mm_take_all_locks(). The caller isn't allowed to release the
3180 * mmap_sem until mm_drop_all_locks() returns.
3182 * mmap_sem in write mode is required in order to block all operations
3183 * that could modify pagetables and free pages without need of
3184 * altering the vma layout. It's also needed in write mode to avoid new
3185 * anon_vmas to be associated with existing vmas.
3187 * A single task can't take more than one mm_take_all_locks() in a row
3188 * or it would deadlock.
3190 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3191 * mapping->flags avoid to take the same lock twice, if more than one
3192 * vma in this mm is backed by the same anon_vma or address_space.
3194 * We can take all the locks in random order because the VM code
3195 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3196 * takes more than one of them in a row. Secondly we're protected
3197 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3199 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3200 * that may have to take thousand of locks.
3202 * mm_take_all_locks() can fail if it's interrupted by signals.
3204 int mm_take_all_locks(struct mm_struct *mm)
3206 struct vm_area_struct *vma;
3207 struct anon_vma_chain *avc;
3209 BUG_ON(down_read_trylock(&mm->mmap_sem));
3211 mutex_lock(&mm_all_locks_mutex);
3213 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3214 if (signal_pending(current))
3215 goto out_unlock;
3216 if (vma->vm_file && vma->vm_file->f_mapping)
3217 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3220 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3221 if (signal_pending(current))
3222 goto out_unlock;
3223 if (vma->anon_vma)
3224 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3225 vm_lock_anon_vma(mm, avc->anon_vma);
3228 return 0;
3230 out_unlock:
3231 mm_drop_all_locks(mm);
3232 return -EINTR;
3235 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3237 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3239 * The LSB of head.next can't change to 0 from under
3240 * us because we hold the mm_all_locks_mutex.
3242 * We must however clear the bitflag before unlocking
3243 * the vma so the users using the anon_vma->rb_root will
3244 * never see our bitflag.
3246 * No need of atomic instructions here, head.next
3247 * can't change from under us until we release the
3248 * anon_vma->root->rwsem.
3250 if (!__test_and_clear_bit(0, (unsigned long *)
3251 &anon_vma->root->rb_root.rb_node))
3252 BUG();
3253 anon_vma_unlock_write(anon_vma);
3257 static void vm_unlock_mapping(struct address_space *mapping)
3259 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3261 * AS_MM_ALL_LOCKS can't change to 0 from under us
3262 * because we hold the mm_all_locks_mutex.
3264 i_mmap_unlock_write(mapping);
3265 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3266 &mapping->flags))
3267 BUG();
3272 * The mmap_sem cannot be released by the caller until
3273 * mm_drop_all_locks() returns.
3275 void mm_drop_all_locks(struct mm_struct *mm)
3277 struct vm_area_struct *vma;
3278 struct anon_vma_chain *avc;
3280 BUG_ON(down_read_trylock(&mm->mmap_sem));
3281 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3283 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3284 if (vma->anon_vma)
3285 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3286 vm_unlock_anon_vma(avc->anon_vma);
3287 if (vma->vm_file && vma->vm_file->f_mapping)
3288 vm_unlock_mapping(vma->vm_file->f_mapping);
3291 mutex_unlock(&mm_all_locks_mutex);
3295 * initialise the VMA slab
3297 void __init mmap_init(void)
3299 int ret;
3301 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3302 VM_BUG_ON(ret);
3306 * Initialise sysctl_user_reserve_kbytes.
3308 * This is intended to prevent a user from starting a single memory hogging
3309 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3310 * mode.
3312 * The default value is min(3% of free memory, 128MB)
3313 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3315 static int init_user_reserve(void)
3317 unsigned long free_kbytes;
3319 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3321 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3322 return 0;
3324 subsys_initcall(init_user_reserve);
3327 * Initialise sysctl_admin_reserve_kbytes.
3329 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3330 * to log in and kill a memory hogging process.
3332 * Systems with more than 256MB will reserve 8MB, enough to recover
3333 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3334 * only reserve 3% of free pages by default.
3336 static int init_admin_reserve(void)
3338 unsigned long free_kbytes;
3340 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3342 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3343 return 0;
3345 subsys_initcall(init_admin_reserve);
3348 * Reinititalise user and admin reserves if memory is added or removed.
3350 * The default user reserve max is 128MB, and the default max for the
3351 * admin reserve is 8MB. These are usually, but not always, enough to
3352 * enable recovery from a memory hogging process using login/sshd, a shell,
3353 * and tools like top. It may make sense to increase or even disable the
3354 * reserve depending on the existence of swap or variations in the recovery
3355 * tools. So, the admin may have changed them.
3357 * If memory is added and the reserves have been eliminated or increased above
3358 * the default max, then we'll trust the admin.
3360 * If memory is removed and there isn't enough free memory, then we
3361 * need to reset the reserves.
3363 * Otherwise keep the reserve set by the admin.
3365 static int reserve_mem_notifier(struct notifier_block *nb,
3366 unsigned long action, void *data)
3368 unsigned long tmp, free_kbytes;
3370 switch (action) {
3371 case MEM_ONLINE:
3372 /* Default max is 128MB. Leave alone if modified by operator. */
3373 tmp = sysctl_user_reserve_kbytes;
3374 if (0 < tmp && tmp < (1UL << 17))
3375 init_user_reserve();
3377 /* Default max is 8MB. Leave alone if modified by operator. */
3378 tmp = sysctl_admin_reserve_kbytes;
3379 if (0 < tmp && tmp < (1UL << 13))
3380 init_admin_reserve();
3382 break;
3383 case MEM_OFFLINE:
3384 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3386 if (sysctl_user_reserve_kbytes > free_kbytes) {
3387 init_user_reserve();
3388 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3389 sysctl_user_reserve_kbytes);
3392 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3393 init_admin_reserve();
3394 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3395 sysctl_admin_reserve_kbytes);
3397 break;
3398 default:
3399 break;
3401 return NOTIFY_OK;
3404 static struct notifier_block reserve_mem_nb = {
3405 .notifier_call = reserve_mem_notifier,
3408 static int __meminit init_reserve_notifier(void)
3410 if (register_hotmemory_notifier(&reserve_mem_nb))
3411 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3413 return 0;
3415 subsys_initcall(init_reserve_notifier);