ALSA: usb-audio: Add a quirk for Plantronics BT600
[linux/fpc-iii.git] / mm / vmscan.c
blobf16e330e1096373c98b96f88bd78eec4bce7d689
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
56 #include "internal.h"
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
61 struct scan_control {
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
65 /* This context's GFP mask */
66 gfp_t gfp_mask;
68 /* Allocation order */
69 int order;
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
75 nodemask_t *nodemask;
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
81 struct mem_cgroup *target_mem_cgroup;
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
86 unsigned int may_writepage:1;
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
97 unsigned int hibernation_mode:1;
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
120 } while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
134 } while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
140 * From 0 .. 100. Higher means more swappy.
142 int vm_swappiness = 60;
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
147 unsigned long vm_total_pages;
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
152 #ifdef CONFIG_MEMCG
153 static bool global_reclaim(struct scan_control *sc)
155 return !sc->target_mem_cgroup;
157 #else
158 static bool global_reclaim(struct scan_control *sc)
160 return true;
162 #endif
164 static unsigned long zone_reclaimable_pages(struct zone *zone)
166 int nr;
168 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
169 zone_page_state(zone, NR_INACTIVE_FILE);
171 if (get_nr_swap_pages() > 0)
172 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
173 zone_page_state(zone, NR_INACTIVE_ANON);
175 return nr;
178 bool zone_reclaimable(struct zone *zone)
180 return zone_page_state(zone, NR_PAGES_SCANNED) <
181 zone_reclaimable_pages(zone) * 6;
184 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
186 if (!mem_cgroup_disabled())
187 return mem_cgroup_get_lru_size(lruvec, lru);
189 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
193 * Add a shrinker callback to be called from the vm.
195 int register_shrinker(struct shrinker *shrinker)
197 size_t size = sizeof(*shrinker->nr_deferred);
200 * If we only have one possible node in the system anyway, save
201 * ourselves the trouble and disable NUMA aware behavior. This way we
202 * will save memory and some small loop time later.
204 if (nr_node_ids == 1)
205 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
207 if (shrinker->flags & SHRINKER_NUMA_AWARE)
208 size *= nr_node_ids;
210 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
211 if (!shrinker->nr_deferred)
212 return -ENOMEM;
214 down_write(&shrinker_rwsem);
215 list_add_tail(&shrinker->list, &shrinker_list);
216 up_write(&shrinker_rwsem);
217 return 0;
219 EXPORT_SYMBOL(register_shrinker);
222 * Remove one
224 void unregister_shrinker(struct shrinker *shrinker)
226 down_write(&shrinker_rwsem);
227 list_del(&shrinker->list);
228 up_write(&shrinker_rwsem);
229 kfree(shrinker->nr_deferred);
231 EXPORT_SYMBOL(unregister_shrinker);
233 #define SHRINK_BATCH 128
235 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
236 struct shrinker *shrinker,
237 unsigned long nr_scanned,
238 unsigned long nr_eligible)
240 unsigned long freed = 0;
241 unsigned long long delta;
242 long total_scan;
243 long freeable;
244 long nr;
245 long new_nr;
246 int nid = shrinkctl->nid;
247 long batch_size = shrinker->batch ? shrinker->batch
248 : SHRINK_BATCH;
249 long scanned = 0, next_deferred;
251 freeable = shrinker->count_objects(shrinker, shrinkctl);
252 if (freeable == 0)
253 return 0;
256 * copy the current shrinker scan count into a local variable
257 * and zero it so that other concurrent shrinker invocations
258 * don't also do this scanning work.
260 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
262 total_scan = nr;
263 delta = (4 * nr_scanned) / shrinker->seeks;
264 delta *= freeable;
265 do_div(delta, nr_eligible + 1);
266 total_scan += delta;
267 if (total_scan < 0) {
268 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
269 shrinker->scan_objects, total_scan);
270 total_scan = freeable;
271 next_deferred = nr;
272 } else
273 next_deferred = total_scan;
276 * We need to avoid excessive windup on filesystem shrinkers
277 * due to large numbers of GFP_NOFS allocations causing the
278 * shrinkers to return -1 all the time. This results in a large
279 * nr being built up so when a shrink that can do some work
280 * comes along it empties the entire cache due to nr >>>
281 * freeable. This is bad for sustaining a working set in
282 * memory.
284 * Hence only allow the shrinker to scan the entire cache when
285 * a large delta change is calculated directly.
287 if (delta < freeable / 4)
288 total_scan = min(total_scan, freeable / 2);
291 * Avoid risking looping forever due to too large nr value:
292 * never try to free more than twice the estimate number of
293 * freeable entries.
295 if (total_scan > freeable * 2)
296 total_scan = freeable * 2;
298 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
299 nr_scanned, nr_eligible,
300 freeable, delta, total_scan);
303 * Normally, we should not scan less than batch_size objects in one
304 * pass to avoid too frequent shrinker calls, but if the slab has less
305 * than batch_size objects in total and we are really tight on memory,
306 * we will try to reclaim all available objects, otherwise we can end
307 * up failing allocations although there are plenty of reclaimable
308 * objects spread over several slabs with usage less than the
309 * batch_size.
311 * We detect the "tight on memory" situations by looking at the total
312 * number of objects we want to scan (total_scan). If it is greater
313 * than the total number of objects on slab (freeable), we must be
314 * scanning at high prio and therefore should try to reclaim as much as
315 * possible.
317 while (total_scan >= batch_size ||
318 total_scan >= freeable) {
319 unsigned long ret;
320 unsigned long nr_to_scan = min(batch_size, total_scan);
322 shrinkctl->nr_to_scan = nr_to_scan;
323 ret = shrinker->scan_objects(shrinker, shrinkctl);
324 if (ret == SHRINK_STOP)
325 break;
326 freed += ret;
328 count_vm_events(SLABS_SCANNED, nr_to_scan);
329 total_scan -= nr_to_scan;
330 scanned += nr_to_scan;
332 cond_resched();
335 if (next_deferred >= scanned)
336 next_deferred -= scanned;
337 else
338 next_deferred = 0;
340 * move the unused scan count back into the shrinker in a
341 * manner that handles concurrent updates. If we exhausted the
342 * scan, there is no need to do an update.
344 if (next_deferred > 0)
345 new_nr = atomic_long_add_return(next_deferred,
346 &shrinker->nr_deferred[nid]);
347 else
348 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
350 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
351 return freed;
355 * shrink_slab - shrink slab caches
356 * @gfp_mask: allocation context
357 * @nid: node whose slab caches to target
358 * @memcg: memory cgroup whose slab caches to target
359 * @nr_scanned: pressure numerator
360 * @nr_eligible: pressure denominator
362 * Call the shrink functions to age shrinkable caches.
364 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
365 * unaware shrinkers will receive a node id of 0 instead.
367 * @memcg specifies the memory cgroup to target. If it is not NULL,
368 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
369 * objects from the memory cgroup specified. Otherwise all shrinkers
370 * are called, and memcg aware shrinkers are supposed to scan the
371 * global list then.
373 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
374 * the available objects should be scanned. Page reclaim for example
375 * passes the number of pages scanned and the number of pages on the
376 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
377 * when it encountered mapped pages. The ratio is further biased by
378 * the ->seeks setting of the shrink function, which indicates the
379 * cost to recreate an object relative to that of an LRU page.
381 * Returns the number of reclaimed slab objects.
383 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
384 struct mem_cgroup *memcg,
385 unsigned long nr_scanned,
386 unsigned long nr_eligible)
388 struct shrinker *shrinker;
389 unsigned long freed = 0;
391 if (memcg && !memcg_kmem_is_active(memcg))
392 return 0;
394 if (nr_scanned == 0)
395 nr_scanned = SWAP_CLUSTER_MAX;
397 if (!down_read_trylock(&shrinker_rwsem)) {
399 * If we would return 0, our callers would understand that we
400 * have nothing else to shrink and give up trying. By returning
401 * 1 we keep it going and assume we'll be able to shrink next
402 * time.
404 freed = 1;
405 goto out;
408 list_for_each_entry(shrinker, &shrinker_list, list) {
409 struct shrink_control sc = {
410 .gfp_mask = gfp_mask,
411 .nid = nid,
412 .memcg = memcg,
415 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
416 continue;
418 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
419 sc.nid = 0;
421 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
424 up_read(&shrinker_rwsem);
425 out:
426 cond_resched();
427 return freed;
430 void drop_slab_node(int nid)
432 unsigned long freed;
434 do {
435 struct mem_cgroup *memcg = NULL;
437 freed = 0;
438 do {
439 freed += shrink_slab(GFP_KERNEL, nid, memcg,
440 1000, 1000);
441 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
442 } while (freed > 10);
445 void drop_slab(void)
447 int nid;
449 for_each_online_node(nid)
450 drop_slab_node(nid);
453 static inline int is_page_cache_freeable(struct page *page)
456 * A freeable page cache page is referenced only by the caller
457 * that isolated the page, the page cache radix tree and
458 * optional buffer heads at page->private.
460 return page_count(page) - page_has_private(page) == 2;
463 static int may_write_to_queue(struct backing_dev_info *bdi,
464 struct scan_control *sc)
466 if (current->flags & PF_SWAPWRITE)
467 return 1;
468 if (!bdi_write_congested(bdi))
469 return 1;
470 if (bdi == current->backing_dev_info)
471 return 1;
472 return 0;
476 * We detected a synchronous write error writing a page out. Probably
477 * -ENOSPC. We need to propagate that into the address_space for a subsequent
478 * fsync(), msync() or close().
480 * The tricky part is that after writepage we cannot touch the mapping: nothing
481 * prevents it from being freed up. But we have a ref on the page and once
482 * that page is locked, the mapping is pinned.
484 * We're allowed to run sleeping lock_page() here because we know the caller has
485 * __GFP_FS.
487 static void handle_write_error(struct address_space *mapping,
488 struct page *page, int error)
490 lock_page(page);
491 if (page_mapping(page) == mapping)
492 mapping_set_error(mapping, error);
493 unlock_page(page);
496 /* possible outcome of pageout() */
497 typedef enum {
498 /* failed to write page out, page is locked */
499 PAGE_KEEP,
500 /* move page to the active list, page is locked */
501 PAGE_ACTIVATE,
502 /* page has been sent to the disk successfully, page is unlocked */
503 PAGE_SUCCESS,
504 /* page is clean and locked */
505 PAGE_CLEAN,
506 } pageout_t;
509 * pageout is called by shrink_page_list() for each dirty page.
510 * Calls ->writepage().
512 static pageout_t pageout(struct page *page, struct address_space *mapping,
513 struct scan_control *sc)
516 * If the page is dirty, only perform writeback if that write
517 * will be non-blocking. To prevent this allocation from being
518 * stalled by pagecache activity. But note that there may be
519 * stalls if we need to run get_block(). We could test
520 * PagePrivate for that.
522 * If this process is currently in __generic_file_write_iter() against
523 * this page's queue, we can perform writeback even if that
524 * will block.
526 * If the page is swapcache, write it back even if that would
527 * block, for some throttling. This happens by accident, because
528 * swap_backing_dev_info is bust: it doesn't reflect the
529 * congestion state of the swapdevs. Easy to fix, if needed.
531 if (!is_page_cache_freeable(page))
532 return PAGE_KEEP;
533 if (!mapping) {
535 * Some data journaling orphaned pages can have
536 * page->mapping == NULL while being dirty with clean buffers.
538 if (page_has_private(page)) {
539 if (try_to_free_buffers(page)) {
540 ClearPageDirty(page);
541 pr_info("%s: orphaned page\n", __func__);
542 return PAGE_CLEAN;
545 return PAGE_KEEP;
547 if (mapping->a_ops->writepage == NULL)
548 return PAGE_ACTIVATE;
549 if (!may_write_to_queue(inode_to_bdi(mapping->host), sc))
550 return PAGE_KEEP;
552 if (clear_page_dirty_for_io(page)) {
553 int res;
554 struct writeback_control wbc = {
555 .sync_mode = WB_SYNC_NONE,
556 .nr_to_write = SWAP_CLUSTER_MAX,
557 .range_start = 0,
558 .range_end = LLONG_MAX,
559 .for_reclaim = 1,
562 SetPageReclaim(page);
563 res = mapping->a_ops->writepage(page, &wbc);
564 if (res < 0)
565 handle_write_error(mapping, page, res);
566 if (res == AOP_WRITEPAGE_ACTIVATE) {
567 ClearPageReclaim(page);
568 return PAGE_ACTIVATE;
571 if (!PageWriteback(page)) {
572 /* synchronous write or broken a_ops? */
573 ClearPageReclaim(page);
575 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
576 inc_zone_page_state(page, NR_VMSCAN_WRITE);
577 return PAGE_SUCCESS;
580 return PAGE_CLEAN;
584 * Same as remove_mapping, but if the page is removed from the mapping, it
585 * gets returned with a refcount of 0.
587 static int __remove_mapping(struct address_space *mapping, struct page *page,
588 bool reclaimed)
590 BUG_ON(!PageLocked(page));
591 BUG_ON(mapping != page_mapping(page));
593 spin_lock_irq(&mapping->tree_lock);
595 * The non racy check for a busy page.
597 * Must be careful with the order of the tests. When someone has
598 * a ref to the page, it may be possible that they dirty it then
599 * drop the reference. So if PageDirty is tested before page_count
600 * here, then the following race may occur:
602 * get_user_pages(&page);
603 * [user mapping goes away]
604 * write_to(page);
605 * !PageDirty(page) [good]
606 * SetPageDirty(page);
607 * put_page(page);
608 * !page_count(page) [good, discard it]
610 * [oops, our write_to data is lost]
612 * Reversing the order of the tests ensures such a situation cannot
613 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
614 * load is not satisfied before that of page->_count.
616 * Note that if SetPageDirty is always performed via set_page_dirty,
617 * and thus under tree_lock, then this ordering is not required.
619 if (!page_freeze_refs(page, 2))
620 goto cannot_free;
621 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
622 if (unlikely(PageDirty(page))) {
623 page_unfreeze_refs(page, 2);
624 goto cannot_free;
627 if (PageSwapCache(page)) {
628 swp_entry_t swap = { .val = page_private(page) };
629 mem_cgroup_swapout(page, swap);
630 __delete_from_swap_cache(page);
631 spin_unlock_irq(&mapping->tree_lock);
632 swapcache_free(swap);
633 } else {
634 void (*freepage)(struct page *);
635 void *shadow = NULL;
637 freepage = mapping->a_ops->freepage;
639 * Remember a shadow entry for reclaimed file cache in
640 * order to detect refaults, thus thrashing, later on.
642 * But don't store shadows in an address space that is
643 * already exiting. This is not just an optizimation,
644 * inode reclaim needs to empty out the radix tree or
645 * the nodes are lost. Don't plant shadows behind its
646 * back.
648 if (reclaimed && page_is_file_cache(page) &&
649 !mapping_exiting(mapping))
650 shadow = workingset_eviction(mapping, page);
651 __delete_from_page_cache(page, shadow);
652 spin_unlock_irq(&mapping->tree_lock);
654 if (freepage != NULL)
655 freepage(page);
658 return 1;
660 cannot_free:
661 spin_unlock_irq(&mapping->tree_lock);
662 return 0;
666 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
667 * someone else has a ref on the page, abort and return 0. If it was
668 * successfully detached, return 1. Assumes the caller has a single ref on
669 * this page.
671 int remove_mapping(struct address_space *mapping, struct page *page)
673 if (__remove_mapping(mapping, page, false)) {
675 * Unfreezing the refcount with 1 rather than 2 effectively
676 * drops the pagecache ref for us without requiring another
677 * atomic operation.
679 page_unfreeze_refs(page, 1);
680 return 1;
682 return 0;
686 * putback_lru_page - put previously isolated page onto appropriate LRU list
687 * @page: page to be put back to appropriate lru list
689 * Add previously isolated @page to appropriate LRU list.
690 * Page may still be unevictable for other reasons.
692 * lru_lock must not be held, interrupts must be enabled.
694 void putback_lru_page(struct page *page)
696 bool is_unevictable;
697 int was_unevictable = PageUnevictable(page);
699 VM_BUG_ON_PAGE(PageLRU(page), page);
701 redo:
702 ClearPageUnevictable(page);
704 if (page_evictable(page)) {
706 * For evictable pages, we can use the cache.
707 * In event of a race, worst case is we end up with an
708 * unevictable page on [in]active list.
709 * We know how to handle that.
711 is_unevictable = false;
712 lru_cache_add(page);
713 } else {
715 * Put unevictable pages directly on zone's unevictable
716 * list.
718 is_unevictable = true;
719 add_page_to_unevictable_list(page);
721 * When racing with an mlock or AS_UNEVICTABLE clearing
722 * (page is unlocked) make sure that if the other thread
723 * does not observe our setting of PG_lru and fails
724 * isolation/check_move_unevictable_pages,
725 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
726 * the page back to the evictable list.
728 * The other side is TestClearPageMlocked() or shmem_lock().
730 smp_mb();
734 * page's status can change while we move it among lru. If an evictable
735 * page is on unevictable list, it never be freed. To avoid that,
736 * check after we added it to the list, again.
738 if (is_unevictable && page_evictable(page)) {
739 if (!isolate_lru_page(page)) {
740 put_page(page);
741 goto redo;
743 /* This means someone else dropped this page from LRU
744 * So, it will be freed or putback to LRU again. There is
745 * nothing to do here.
749 if (was_unevictable && !is_unevictable)
750 count_vm_event(UNEVICTABLE_PGRESCUED);
751 else if (!was_unevictable && is_unevictable)
752 count_vm_event(UNEVICTABLE_PGCULLED);
754 put_page(page); /* drop ref from isolate */
757 enum page_references {
758 PAGEREF_RECLAIM,
759 PAGEREF_RECLAIM_CLEAN,
760 PAGEREF_KEEP,
761 PAGEREF_ACTIVATE,
764 static enum page_references page_check_references(struct page *page,
765 struct scan_control *sc)
767 int referenced_ptes, referenced_page;
768 unsigned long vm_flags;
770 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
771 &vm_flags);
772 referenced_page = TestClearPageReferenced(page);
775 * Mlock lost the isolation race with us. Let try_to_unmap()
776 * move the page to the unevictable list.
778 if (vm_flags & VM_LOCKED)
779 return PAGEREF_RECLAIM;
781 if (referenced_ptes) {
782 if (PageSwapBacked(page))
783 return PAGEREF_ACTIVATE;
785 * All mapped pages start out with page table
786 * references from the instantiating fault, so we need
787 * to look twice if a mapped file page is used more
788 * than once.
790 * Mark it and spare it for another trip around the
791 * inactive list. Another page table reference will
792 * lead to its activation.
794 * Note: the mark is set for activated pages as well
795 * so that recently deactivated but used pages are
796 * quickly recovered.
798 SetPageReferenced(page);
800 if (referenced_page || referenced_ptes > 1)
801 return PAGEREF_ACTIVATE;
804 * Activate file-backed executable pages after first usage.
806 if (vm_flags & VM_EXEC)
807 return PAGEREF_ACTIVATE;
809 return PAGEREF_KEEP;
812 /* Reclaim if clean, defer dirty pages to writeback */
813 if (referenced_page && !PageSwapBacked(page))
814 return PAGEREF_RECLAIM_CLEAN;
816 return PAGEREF_RECLAIM;
819 /* Check if a page is dirty or under writeback */
820 static void page_check_dirty_writeback(struct page *page,
821 bool *dirty, bool *writeback)
823 struct address_space *mapping;
826 * Anonymous pages are not handled by flushers and must be written
827 * from reclaim context. Do not stall reclaim based on them
829 if (!page_is_file_cache(page)) {
830 *dirty = false;
831 *writeback = false;
832 return;
835 /* By default assume that the page flags are accurate */
836 *dirty = PageDirty(page);
837 *writeback = PageWriteback(page);
839 /* Verify dirty/writeback state if the filesystem supports it */
840 if (!page_has_private(page))
841 return;
843 mapping = page_mapping(page);
844 if (mapping && mapping->a_ops->is_dirty_writeback)
845 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
849 * shrink_page_list() returns the number of reclaimed pages
851 static unsigned long shrink_page_list(struct list_head *page_list,
852 struct zone *zone,
853 struct scan_control *sc,
854 enum ttu_flags ttu_flags,
855 unsigned long *ret_nr_dirty,
856 unsigned long *ret_nr_unqueued_dirty,
857 unsigned long *ret_nr_congested,
858 unsigned long *ret_nr_writeback,
859 unsigned long *ret_nr_immediate,
860 bool force_reclaim)
862 LIST_HEAD(ret_pages);
863 LIST_HEAD(free_pages);
864 int pgactivate = 0;
865 unsigned long nr_unqueued_dirty = 0;
866 unsigned long nr_dirty = 0;
867 unsigned long nr_congested = 0;
868 unsigned long nr_reclaimed = 0;
869 unsigned long nr_writeback = 0;
870 unsigned long nr_immediate = 0;
872 cond_resched();
874 while (!list_empty(page_list)) {
875 struct address_space *mapping;
876 struct page *page;
877 int may_enter_fs;
878 enum page_references references = PAGEREF_RECLAIM_CLEAN;
879 bool dirty, writeback;
881 cond_resched();
883 page = lru_to_page(page_list);
884 list_del(&page->lru);
886 if (!trylock_page(page))
887 goto keep;
889 VM_BUG_ON_PAGE(PageActive(page), page);
890 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
892 sc->nr_scanned++;
894 if (unlikely(!page_evictable(page)))
895 goto cull_mlocked;
897 if (!sc->may_unmap && page_mapped(page))
898 goto keep_locked;
900 /* Double the slab pressure for mapped and swapcache pages */
901 if (page_mapped(page) || PageSwapCache(page))
902 sc->nr_scanned++;
904 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
905 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
908 * The number of dirty pages determines if a zone is marked
909 * reclaim_congested which affects wait_iff_congested. kswapd
910 * will stall and start writing pages if the tail of the LRU
911 * is all dirty unqueued pages.
913 page_check_dirty_writeback(page, &dirty, &writeback);
914 if (dirty || writeback)
915 nr_dirty++;
917 if (dirty && !writeback)
918 nr_unqueued_dirty++;
921 * Treat this page as congested if the underlying BDI is or if
922 * pages are cycling through the LRU so quickly that the
923 * pages marked for immediate reclaim are making it to the
924 * end of the LRU a second time.
926 mapping = page_mapping(page);
927 if (((dirty || writeback) && mapping &&
928 bdi_write_congested(inode_to_bdi(mapping->host))) ||
929 (writeback && PageReclaim(page)))
930 nr_congested++;
933 * If a page at the tail of the LRU is under writeback, there
934 * are three cases to consider.
936 * 1) If reclaim is encountering an excessive number of pages
937 * under writeback and this page is both under writeback and
938 * PageReclaim then it indicates that pages are being queued
939 * for IO but are being recycled through the LRU before the
940 * IO can complete. Waiting on the page itself risks an
941 * indefinite stall if it is impossible to writeback the
942 * page due to IO error or disconnected storage so instead
943 * note that the LRU is being scanned too quickly and the
944 * caller can stall after page list has been processed.
946 * 2) Global reclaim encounters a page, memcg encounters a
947 * page that is not marked for immediate reclaim or
948 * the caller does not have __GFP_FS (or __GFP_IO if it's
949 * simply going to swap, not to fs). In this case mark
950 * the page for immediate reclaim and continue scanning.
952 * Require may_enter_fs because we would wait on fs, which
953 * may not have submitted IO yet. And the loop driver might
954 * enter reclaim, and deadlock if it waits on a page for
955 * which it is needed to do the write (loop masks off
956 * __GFP_IO|__GFP_FS for this reason); but more thought
957 * would probably show more reasons.
959 * 3) memcg encounters a page that is not already marked
960 * PageReclaim. memcg does not have any dirty pages
961 * throttling so we could easily OOM just because too many
962 * pages are in writeback and there is nothing else to
963 * reclaim. Wait for the writeback to complete.
965 if (PageWriteback(page)) {
966 /* Case 1 above */
967 if (current_is_kswapd() &&
968 PageReclaim(page) &&
969 test_bit(ZONE_WRITEBACK, &zone->flags)) {
970 nr_immediate++;
971 goto keep_locked;
973 /* Case 2 above */
974 } else if (global_reclaim(sc) ||
975 !PageReclaim(page) || !may_enter_fs) {
977 * This is slightly racy - end_page_writeback()
978 * might have just cleared PageReclaim, then
979 * setting PageReclaim here end up interpreted
980 * as PageReadahead - but that does not matter
981 * enough to care. What we do want is for this
982 * page to have PageReclaim set next time memcg
983 * reclaim reaches the tests above, so it will
984 * then wait_on_page_writeback() to avoid OOM;
985 * and it's also appropriate in global reclaim.
987 SetPageReclaim(page);
988 nr_writeback++;
990 goto keep_locked;
992 /* Case 3 above */
993 } else {
994 wait_on_page_writeback(page);
998 if (!force_reclaim)
999 references = page_check_references(page, sc);
1001 switch (references) {
1002 case PAGEREF_ACTIVATE:
1003 goto activate_locked;
1004 case PAGEREF_KEEP:
1005 goto keep_locked;
1006 case PAGEREF_RECLAIM:
1007 case PAGEREF_RECLAIM_CLEAN:
1008 ; /* try to reclaim the page below */
1012 * Anonymous process memory has backing store?
1013 * Try to allocate it some swap space here.
1015 if (PageAnon(page) && !PageSwapCache(page)) {
1016 if (!(sc->gfp_mask & __GFP_IO))
1017 goto keep_locked;
1018 if (!add_to_swap(page, page_list))
1019 goto activate_locked;
1020 may_enter_fs = 1;
1022 /* Adding to swap updated mapping */
1023 mapping = page_mapping(page);
1027 * The page is mapped into the page tables of one or more
1028 * processes. Try to unmap it here.
1030 if (page_mapped(page) && mapping) {
1031 switch (try_to_unmap(page, ttu_flags)) {
1032 case SWAP_FAIL:
1033 goto activate_locked;
1034 case SWAP_AGAIN:
1035 goto keep_locked;
1036 case SWAP_MLOCK:
1037 goto cull_mlocked;
1038 case SWAP_SUCCESS:
1039 ; /* try to free the page below */
1043 if (PageDirty(page)) {
1045 * Only kswapd can writeback filesystem pages to
1046 * avoid risk of stack overflow but only writeback
1047 * if many dirty pages have been encountered.
1049 if (page_is_file_cache(page) &&
1050 (!current_is_kswapd() ||
1051 !test_bit(ZONE_DIRTY, &zone->flags))) {
1053 * Immediately reclaim when written back.
1054 * Similar in principal to deactivate_page()
1055 * except we already have the page isolated
1056 * and know it's dirty
1058 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1059 SetPageReclaim(page);
1061 goto keep_locked;
1064 if (references == PAGEREF_RECLAIM_CLEAN)
1065 goto keep_locked;
1066 if (!may_enter_fs)
1067 goto keep_locked;
1068 if (!sc->may_writepage)
1069 goto keep_locked;
1071 /* Page is dirty, try to write it out here */
1072 switch (pageout(page, mapping, sc)) {
1073 case PAGE_KEEP:
1074 goto keep_locked;
1075 case PAGE_ACTIVATE:
1076 goto activate_locked;
1077 case PAGE_SUCCESS:
1078 if (PageWriteback(page))
1079 goto keep;
1080 if (PageDirty(page))
1081 goto keep;
1084 * A synchronous write - probably a ramdisk. Go
1085 * ahead and try to reclaim the page.
1087 if (!trylock_page(page))
1088 goto keep;
1089 if (PageDirty(page) || PageWriteback(page))
1090 goto keep_locked;
1091 mapping = page_mapping(page);
1092 case PAGE_CLEAN:
1093 ; /* try to free the page below */
1098 * If the page has buffers, try to free the buffer mappings
1099 * associated with this page. If we succeed we try to free
1100 * the page as well.
1102 * We do this even if the page is PageDirty().
1103 * try_to_release_page() does not perform I/O, but it is
1104 * possible for a page to have PageDirty set, but it is actually
1105 * clean (all its buffers are clean). This happens if the
1106 * buffers were written out directly, with submit_bh(). ext3
1107 * will do this, as well as the blockdev mapping.
1108 * try_to_release_page() will discover that cleanness and will
1109 * drop the buffers and mark the page clean - it can be freed.
1111 * Rarely, pages can have buffers and no ->mapping. These are
1112 * the pages which were not successfully invalidated in
1113 * truncate_complete_page(). We try to drop those buffers here
1114 * and if that worked, and the page is no longer mapped into
1115 * process address space (page_count == 1) it can be freed.
1116 * Otherwise, leave the page on the LRU so it is swappable.
1118 if (page_has_private(page)) {
1119 if (!try_to_release_page(page, sc->gfp_mask))
1120 goto activate_locked;
1121 if (!mapping && page_count(page) == 1) {
1122 unlock_page(page);
1123 if (put_page_testzero(page))
1124 goto free_it;
1125 else {
1127 * rare race with speculative reference.
1128 * the speculative reference will free
1129 * this page shortly, so we may
1130 * increment nr_reclaimed here (and
1131 * leave it off the LRU).
1133 nr_reclaimed++;
1134 continue;
1139 if (!mapping || !__remove_mapping(mapping, page, true))
1140 goto keep_locked;
1143 * At this point, we have no other references and there is
1144 * no way to pick any more up (removed from LRU, removed
1145 * from pagecache). Can use non-atomic bitops now (and
1146 * we obviously don't have to worry about waking up a process
1147 * waiting on the page lock, because there are no references.
1149 __clear_page_locked(page);
1150 free_it:
1151 nr_reclaimed++;
1154 * Is there need to periodically free_page_list? It would
1155 * appear not as the counts should be low
1157 list_add(&page->lru, &free_pages);
1158 continue;
1160 cull_mlocked:
1161 if (PageSwapCache(page))
1162 try_to_free_swap(page);
1163 unlock_page(page);
1164 list_add(&page->lru, &ret_pages);
1165 continue;
1167 activate_locked:
1168 /* Not a candidate for swapping, so reclaim swap space. */
1169 if (PageSwapCache(page) && vm_swap_full())
1170 try_to_free_swap(page);
1171 VM_BUG_ON_PAGE(PageActive(page), page);
1172 SetPageActive(page);
1173 pgactivate++;
1174 keep_locked:
1175 unlock_page(page);
1176 keep:
1177 list_add(&page->lru, &ret_pages);
1178 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1181 mem_cgroup_uncharge_list(&free_pages);
1182 free_hot_cold_page_list(&free_pages, true);
1184 list_splice(&ret_pages, page_list);
1185 count_vm_events(PGACTIVATE, pgactivate);
1187 *ret_nr_dirty += nr_dirty;
1188 *ret_nr_congested += nr_congested;
1189 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1190 *ret_nr_writeback += nr_writeback;
1191 *ret_nr_immediate += nr_immediate;
1192 return nr_reclaimed;
1195 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1196 struct list_head *page_list)
1198 struct scan_control sc = {
1199 .gfp_mask = GFP_KERNEL,
1200 .priority = DEF_PRIORITY,
1201 .may_unmap = 1,
1203 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1204 struct page *page, *next;
1205 LIST_HEAD(clean_pages);
1207 list_for_each_entry_safe(page, next, page_list, lru) {
1208 if (page_is_file_cache(page) && !PageDirty(page) &&
1209 !isolated_balloon_page(page)) {
1210 ClearPageActive(page);
1211 list_move(&page->lru, &clean_pages);
1215 ret = shrink_page_list(&clean_pages, zone, &sc,
1216 TTU_UNMAP|TTU_IGNORE_ACCESS,
1217 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1218 list_splice(&clean_pages, page_list);
1219 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1220 return ret;
1224 * Attempt to remove the specified page from its LRU. Only take this page
1225 * if it is of the appropriate PageActive status. Pages which are being
1226 * freed elsewhere are also ignored.
1228 * page: page to consider
1229 * mode: one of the LRU isolation modes defined above
1231 * returns 0 on success, -ve errno on failure.
1233 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1235 int ret = -EINVAL;
1237 /* Only take pages on the LRU. */
1238 if (!PageLRU(page))
1239 return ret;
1241 /* Compaction should not handle unevictable pages but CMA can do so */
1242 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1243 return ret;
1245 ret = -EBUSY;
1248 * To minimise LRU disruption, the caller can indicate that it only
1249 * wants to isolate pages it will be able to operate on without
1250 * blocking - clean pages for the most part.
1252 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1253 * is used by reclaim when it is cannot write to backing storage
1255 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1256 * that it is possible to migrate without blocking
1258 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1259 /* All the caller can do on PageWriteback is block */
1260 if (PageWriteback(page))
1261 return ret;
1263 if (PageDirty(page)) {
1264 struct address_space *mapping;
1266 /* ISOLATE_CLEAN means only clean pages */
1267 if (mode & ISOLATE_CLEAN)
1268 return ret;
1271 * Only pages without mappings or that have a
1272 * ->migratepage callback are possible to migrate
1273 * without blocking
1275 mapping = page_mapping(page);
1276 if (mapping && !mapping->a_ops->migratepage)
1277 return ret;
1281 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1282 return ret;
1284 if (likely(get_page_unless_zero(page))) {
1286 * Be careful not to clear PageLRU until after we're
1287 * sure the page is not being freed elsewhere -- the
1288 * page release code relies on it.
1290 ClearPageLRU(page);
1291 ret = 0;
1294 return ret;
1298 * zone->lru_lock is heavily contended. Some of the functions that
1299 * shrink the lists perform better by taking out a batch of pages
1300 * and working on them outside the LRU lock.
1302 * For pagecache intensive workloads, this function is the hottest
1303 * spot in the kernel (apart from copy_*_user functions).
1305 * Appropriate locks must be held before calling this function.
1307 * @nr_to_scan: The number of pages to look through on the list.
1308 * @lruvec: The LRU vector to pull pages from.
1309 * @dst: The temp list to put pages on to.
1310 * @nr_scanned: The number of pages that were scanned.
1311 * @sc: The scan_control struct for this reclaim session
1312 * @mode: One of the LRU isolation modes
1313 * @lru: LRU list id for isolating
1315 * returns how many pages were moved onto *@dst.
1317 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1318 struct lruvec *lruvec, struct list_head *dst,
1319 unsigned long *nr_scanned, struct scan_control *sc,
1320 isolate_mode_t mode, enum lru_list lru)
1322 struct list_head *src = &lruvec->lists[lru];
1323 unsigned long nr_taken = 0;
1324 unsigned long scan;
1326 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1327 struct page *page;
1328 int nr_pages;
1330 page = lru_to_page(src);
1331 prefetchw_prev_lru_page(page, src, flags);
1333 VM_BUG_ON_PAGE(!PageLRU(page), page);
1335 switch (__isolate_lru_page(page, mode)) {
1336 case 0:
1337 nr_pages = hpage_nr_pages(page);
1338 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1339 list_move(&page->lru, dst);
1340 nr_taken += nr_pages;
1341 break;
1343 case -EBUSY:
1344 /* else it is being freed elsewhere */
1345 list_move(&page->lru, src);
1346 continue;
1348 default:
1349 BUG();
1353 *nr_scanned = scan;
1354 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1355 nr_taken, mode, is_file_lru(lru));
1356 return nr_taken;
1360 * isolate_lru_page - tries to isolate a page from its LRU list
1361 * @page: page to isolate from its LRU list
1363 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1364 * vmstat statistic corresponding to whatever LRU list the page was on.
1366 * Returns 0 if the page was removed from an LRU list.
1367 * Returns -EBUSY if the page was not on an LRU list.
1369 * The returned page will have PageLRU() cleared. If it was found on
1370 * the active list, it will have PageActive set. If it was found on
1371 * the unevictable list, it will have the PageUnevictable bit set. That flag
1372 * may need to be cleared by the caller before letting the page go.
1374 * The vmstat statistic corresponding to the list on which the page was
1375 * found will be decremented.
1377 * Restrictions:
1378 * (1) Must be called with an elevated refcount on the page. This is a
1379 * fundamentnal difference from isolate_lru_pages (which is called
1380 * without a stable reference).
1381 * (2) the lru_lock must not be held.
1382 * (3) interrupts must be enabled.
1384 int isolate_lru_page(struct page *page)
1386 int ret = -EBUSY;
1388 VM_BUG_ON_PAGE(!page_count(page), page);
1390 if (PageLRU(page)) {
1391 struct zone *zone = page_zone(page);
1392 struct lruvec *lruvec;
1394 spin_lock_irq(&zone->lru_lock);
1395 lruvec = mem_cgroup_page_lruvec(page, zone);
1396 if (PageLRU(page)) {
1397 int lru = page_lru(page);
1398 get_page(page);
1399 ClearPageLRU(page);
1400 del_page_from_lru_list(page, lruvec, lru);
1401 ret = 0;
1403 spin_unlock_irq(&zone->lru_lock);
1405 return ret;
1409 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1410 * then get resheduled. When there are massive number of tasks doing page
1411 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1412 * the LRU list will go small and be scanned faster than necessary, leading to
1413 * unnecessary swapping, thrashing and OOM.
1415 static int too_many_isolated(struct zone *zone, int file,
1416 struct scan_control *sc)
1418 unsigned long inactive, isolated;
1420 if (current_is_kswapd())
1421 return 0;
1423 if (!global_reclaim(sc))
1424 return 0;
1426 if (file) {
1427 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1428 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1429 } else {
1430 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1431 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1435 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1436 * won't get blocked by normal direct-reclaimers, forming a circular
1437 * deadlock.
1439 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1440 inactive >>= 3;
1442 return isolated > inactive;
1445 static noinline_for_stack void
1446 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1448 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1449 struct zone *zone = lruvec_zone(lruvec);
1450 LIST_HEAD(pages_to_free);
1453 * Put back any unfreeable pages.
1455 while (!list_empty(page_list)) {
1456 struct page *page = lru_to_page(page_list);
1457 int lru;
1459 VM_BUG_ON_PAGE(PageLRU(page), page);
1460 list_del(&page->lru);
1461 if (unlikely(!page_evictable(page))) {
1462 spin_unlock_irq(&zone->lru_lock);
1463 putback_lru_page(page);
1464 spin_lock_irq(&zone->lru_lock);
1465 continue;
1468 lruvec = mem_cgroup_page_lruvec(page, zone);
1470 SetPageLRU(page);
1471 lru = page_lru(page);
1472 add_page_to_lru_list(page, lruvec, lru);
1474 if (is_active_lru(lru)) {
1475 int file = is_file_lru(lru);
1476 int numpages = hpage_nr_pages(page);
1477 reclaim_stat->recent_rotated[file] += numpages;
1479 if (put_page_testzero(page)) {
1480 __ClearPageLRU(page);
1481 __ClearPageActive(page);
1482 del_page_from_lru_list(page, lruvec, lru);
1484 if (unlikely(PageCompound(page))) {
1485 spin_unlock_irq(&zone->lru_lock);
1486 mem_cgroup_uncharge(page);
1487 (*get_compound_page_dtor(page))(page);
1488 spin_lock_irq(&zone->lru_lock);
1489 } else
1490 list_add(&page->lru, &pages_to_free);
1495 * To save our caller's stack, now use input list for pages to free.
1497 list_splice(&pages_to_free, page_list);
1501 * If a kernel thread (such as nfsd for loop-back mounts) services
1502 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1503 * In that case we should only throttle if the backing device it is
1504 * writing to is congested. In other cases it is safe to throttle.
1506 static int current_may_throttle(void)
1508 return !(current->flags & PF_LESS_THROTTLE) ||
1509 current->backing_dev_info == NULL ||
1510 bdi_write_congested(current->backing_dev_info);
1514 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1515 * of reclaimed pages
1517 static noinline_for_stack unsigned long
1518 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1519 struct scan_control *sc, enum lru_list lru)
1521 LIST_HEAD(page_list);
1522 unsigned long nr_scanned;
1523 unsigned long nr_reclaimed = 0;
1524 unsigned long nr_taken;
1525 unsigned long nr_dirty = 0;
1526 unsigned long nr_congested = 0;
1527 unsigned long nr_unqueued_dirty = 0;
1528 unsigned long nr_writeback = 0;
1529 unsigned long nr_immediate = 0;
1530 isolate_mode_t isolate_mode = 0;
1531 int file = is_file_lru(lru);
1532 struct zone *zone = lruvec_zone(lruvec);
1533 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1535 while (unlikely(too_many_isolated(zone, file, sc))) {
1536 congestion_wait(BLK_RW_ASYNC, HZ/10);
1538 /* We are about to die and free our memory. Return now. */
1539 if (fatal_signal_pending(current))
1540 return SWAP_CLUSTER_MAX;
1543 lru_add_drain();
1545 if (!sc->may_unmap)
1546 isolate_mode |= ISOLATE_UNMAPPED;
1547 if (!sc->may_writepage)
1548 isolate_mode |= ISOLATE_CLEAN;
1550 spin_lock_irq(&zone->lru_lock);
1552 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1553 &nr_scanned, sc, isolate_mode, lru);
1555 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1556 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1558 if (global_reclaim(sc)) {
1559 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1560 if (current_is_kswapd())
1561 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1562 else
1563 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1565 spin_unlock_irq(&zone->lru_lock);
1567 if (nr_taken == 0)
1568 return 0;
1570 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1571 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1572 &nr_writeback, &nr_immediate,
1573 false);
1575 spin_lock_irq(&zone->lru_lock);
1577 reclaim_stat->recent_scanned[file] += nr_taken;
1579 if (global_reclaim(sc)) {
1580 if (current_is_kswapd())
1581 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1582 nr_reclaimed);
1583 else
1584 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1585 nr_reclaimed);
1588 putback_inactive_pages(lruvec, &page_list);
1590 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1592 spin_unlock_irq(&zone->lru_lock);
1594 mem_cgroup_uncharge_list(&page_list);
1595 free_hot_cold_page_list(&page_list, true);
1598 * If reclaim is isolating dirty pages under writeback, it implies
1599 * that the long-lived page allocation rate is exceeding the page
1600 * laundering rate. Either the global limits are not being effective
1601 * at throttling processes due to the page distribution throughout
1602 * zones or there is heavy usage of a slow backing device. The
1603 * only option is to throttle from reclaim context which is not ideal
1604 * as there is no guarantee the dirtying process is throttled in the
1605 * same way balance_dirty_pages() manages.
1607 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1608 * of pages under pages flagged for immediate reclaim and stall if any
1609 * are encountered in the nr_immediate check below.
1611 if (nr_writeback && nr_writeback == nr_taken)
1612 set_bit(ZONE_WRITEBACK, &zone->flags);
1615 * memcg will stall in page writeback so only consider forcibly
1616 * stalling for global reclaim
1618 if (global_reclaim(sc)) {
1620 * Tag a zone as congested if all the dirty pages scanned were
1621 * backed by a congested BDI and wait_iff_congested will stall.
1623 if (nr_dirty && nr_dirty == nr_congested)
1624 set_bit(ZONE_CONGESTED, &zone->flags);
1627 * If dirty pages are scanned that are not queued for IO, it
1628 * implies that flushers are not keeping up. In this case, flag
1629 * the zone ZONE_DIRTY and kswapd will start writing pages from
1630 * reclaim context.
1632 if (nr_unqueued_dirty == nr_taken)
1633 set_bit(ZONE_DIRTY, &zone->flags);
1636 * If kswapd scans pages marked marked for immediate
1637 * reclaim and under writeback (nr_immediate), it implies
1638 * that pages are cycling through the LRU faster than
1639 * they are written so also forcibly stall.
1641 if (nr_immediate && current_may_throttle())
1642 congestion_wait(BLK_RW_ASYNC, HZ/10);
1646 * Stall direct reclaim for IO completions if underlying BDIs or zone
1647 * is congested. Allow kswapd to continue until it starts encountering
1648 * unqueued dirty pages or cycling through the LRU too quickly.
1650 if (!sc->hibernation_mode && !current_is_kswapd() &&
1651 current_may_throttle())
1652 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1654 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1655 zone_idx(zone),
1656 nr_scanned, nr_reclaimed,
1657 sc->priority,
1658 trace_shrink_flags(file));
1659 return nr_reclaimed;
1663 * This moves pages from the active list to the inactive list.
1665 * We move them the other way if the page is referenced by one or more
1666 * processes, from rmap.
1668 * If the pages are mostly unmapped, the processing is fast and it is
1669 * appropriate to hold zone->lru_lock across the whole operation. But if
1670 * the pages are mapped, the processing is slow (page_referenced()) so we
1671 * should drop zone->lru_lock around each page. It's impossible to balance
1672 * this, so instead we remove the pages from the LRU while processing them.
1673 * It is safe to rely on PG_active against the non-LRU pages in here because
1674 * nobody will play with that bit on a non-LRU page.
1676 * The downside is that we have to touch page->_count against each page.
1677 * But we had to alter page->flags anyway.
1680 static void move_active_pages_to_lru(struct lruvec *lruvec,
1681 struct list_head *list,
1682 struct list_head *pages_to_free,
1683 enum lru_list lru)
1685 struct zone *zone = lruvec_zone(lruvec);
1686 unsigned long pgmoved = 0;
1687 struct page *page;
1688 int nr_pages;
1690 while (!list_empty(list)) {
1691 page = lru_to_page(list);
1692 lruvec = mem_cgroup_page_lruvec(page, zone);
1694 VM_BUG_ON_PAGE(PageLRU(page), page);
1695 SetPageLRU(page);
1697 nr_pages = hpage_nr_pages(page);
1698 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1699 list_move(&page->lru, &lruvec->lists[lru]);
1700 pgmoved += nr_pages;
1702 if (put_page_testzero(page)) {
1703 __ClearPageLRU(page);
1704 __ClearPageActive(page);
1705 del_page_from_lru_list(page, lruvec, lru);
1707 if (unlikely(PageCompound(page))) {
1708 spin_unlock_irq(&zone->lru_lock);
1709 mem_cgroup_uncharge(page);
1710 (*get_compound_page_dtor(page))(page);
1711 spin_lock_irq(&zone->lru_lock);
1712 } else
1713 list_add(&page->lru, pages_to_free);
1716 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1717 if (!is_active_lru(lru))
1718 __count_vm_events(PGDEACTIVATE, pgmoved);
1721 static void shrink_active_list(unsigned long nr_to_scan,
1722 struct lruvec *lruvec,
1723 struct scan_control *sc,
1724 enum lru_list lru)
1726 unsigned long nr_taken;
1727 unsigned long nr_scanned;
1728 unsigned long vm_flags;
1729 LIST_HEAD(l_hold); /* The pages which were snipped off */
1730 LIST_HEAD(l_active);
1731 LIST_HEAD(l_inactive);
1732 struct page *page;
1733 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1734 unsigned long nr_rotated = 0;
1735 isolate_mode_t isolate_mode = 0;
1736 int file = is_file_lru(lru);
1737 struct zone *zone = lruvec_zone(lruvec);
1739 lru_add_drain();
1741 if (!sc->may_unmap)
1742 isolate_mode |= ISOLATE_UNMAPPED;
1743 if (!sc->may_writepage)
1744 isolate_mode |= ISOLATE_CLEAN;
1746 spin_lock_irq(&zone->lru_lock);
1748 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1749 &nr_scanned, sc, isolate_mode, lru);
1750 if (global_reclaim(sc))
1751 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1753 reclaim_stat->recent_scanned[file] += nr_taken;
1755 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1756 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1757 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1758 spin_unlock_irq(&zone->lru_lock);
1760 while (!list_empty(&l_hold)) {
1761 cond_resched();
1762 page = lru_to_page(&l_hold);
1763 list_del(&page->lru);
1765 if (unlikely(!page_evictable(page))) {
1766 putback_lru_page(page);
1767 continue;
1770 if (unlikely(buffer_heads_over_limit)) {
1771 if (page_has_private(page) && trylock_page(page)) {
1772 if (page_has_private(page))
1773 try_to_release_page(page, 0);
1774 unlock_page(page);
1778 if (page_referenced(page, 0, sc->target_mem_cgroup,
1779 &vm_flags)) {
1780 nr_rotated += hpage_nr_pages(page);
1782 * Identify referenced, file-backed active pages and
1783 * give them one more trip around the active list. So
1784 * that executable code get better chances to stay in
1785 * memory under moderate memory pressure. Anon pages
1786 * are not likely to be evicted by use-once streaming
1787 * IO, plus JVM can create lots of anon VM_EXEC pages,
1788 * so we ignore them here.
1790 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1791 list_add(&page->lru, &l_active);
1792 continue;
1796 ClearPageActive(page); /* we are de-activating */
1797 list_add(&page->lru, &l_inactive);
1801 * Move pages back to the lru list.
1803 spin_lock_irq(&zone->lru_lock);
1805 * Count referenced pages from currently used mappings as rotated,
1806 * even though only some of them are actually re-activated. This
1807 * helps balance scan pressure between file and anonymous pages in
1808 * get_scan_count.
1810 reclaim_stat->recent_rotated[file] += nr_rotated;
1812 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1813 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1814 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1815 spin_unlock_irq(&zone->lru_lock);
1817 mem_cgroup_uncharge_list(&l_hold);
1818 free_hot_cold_page_list(&l_hold, true);
1821 #ifdef CONFIG_SWAP
1822 static int inactive_anon_is_low_global(struct zone *zone)
1824 unsigned long active, inactive;
1826 active = zone_page_state(zone, NR_ACTIVE_ANON);
1827 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1829 if (inactive * zone->inactive_ratio < active)
1830 return 1;
1832 return 0;
1836 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1837 * @lruvec: LRU vector to check
1839 * Returns true if the zone does not have enough inactive anon pages,
1840 * meaning some active anon pages need to be deactivated.
1842 static int inactive_anon_is_low(struct lruvec *lruvec)
1845 * If we don't have swap space, anonymous page deactivation
1846 * is pointless.
1848 if (!total_swap_pages)
1849 return 0;
1851 if (!mem_cgroup_disabled())
1852 return mem_cgroup_inactive_anon_is_low(lruvec);
1854 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1856 #else
1857 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1859 return 0;
1861 #endif
1864 * inactive_file_is_low - check if file pages need to be deactivated
1865 * @lruvec: LRU vector to check
1867 * When the system is doing streaming IO, memory pressure here
1868 * ensures that active file pages get deactivated, until more
1869 * than half of the file pages are on the inactive list.
1871 * Once we get to that situation, protect the system's working
1872 * set from being evicted by disabling active file page aging.
1874 * This uses a different ratio than the anonymous pages, because
1875 * the page cache uses a use-once replacement algorithm.
1877 static int inactive_file_is_low(struct lruvec *lruvec)
1879 unsigned long inactive;
1880 unsigned long active;
1882 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1883 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1885 return active > inactive;
1888 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1890 if (is_file_lru(lru))
1891 return inactive_file_is_low(lruvec);
1892 else
1893 return inactive_anon_is_low(lruvec);
1896 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1897 struct lruvec *lruvec, struct scan_control *sc)
1899 if (is_active_lru(lru)) {
1900 if (inactive_list_is_low(lruvec, lru))
1901 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1902 return 0;
1905 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1908 enum scan_balance {
1909 SCAN_EQUAL,
1910 SCAN_FRACT,
1911 SCAN_ANON,
1912 SCAN_FILE,
1916 * Determine how aggressively the anon and file LRU lists should be
1917 * scanned. The relative value of each set of LRU lists is determined
1918 * by looking at the fraction of the pages scanned we did rotate back
1919 * onto the active list instead of evict.
1921 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1922 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1924 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1925 struct scan_control *sc, unsigned long *nr,
1926 unsigned long *lru_pages)
1928 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1929 u64 fraction[2];
1930 u64 denominator = 0; /* gcc */
1931 struct zone *zone = lruvec_zone(lruvec);
1932 unsigned long anon_prio, file_prio;
1933 enum scan_balance scan_balance;
1934 unsigned long anon, file;
1935 bool force_scan = false;
1936 unsigned long ap, fp;
1937 enum lru_list lru;
1938 bool some_scanned;
1939 int pass;
1942 * If the zone or memcg is small, nr[l] can be 0. This
1943 * results in no scanning on this priority and a potential
1944 * priority drop. Global direct reclaim can go to the next
1945 * zone and tends to have no problems. Global kswapd is for
1946 * zone balancing and it needs to scan a minimum amount. When
1947 * reclaiming for a memcg, a priority drop can cause high
1948 * latencies, so it's better to scan a minimum amount there as
1949 * well.
1951 if (current_is_kswapd()) {
1952 if (!zone_reclaimable(zone))
1953 force_scan = true;
1954 if (!mem_cgroup_lruvec_online(lruvec))
1955 force_scan = true;
1957 if (!global_reclaim(sc))
1958 force_scan = true;
1960 /* If we have no swap space, do not bother scanning anon pages. */
1961 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1962 scan_balance = SCAN_FILE;
1963 goto out;
1967 * Global reclaim will swap to prevent OOM even with no
1968 * swappiness, but memcg users want to use this knob to
1969 * disable swapping for individual groups completely when
1970 * using the memory controller's swap limit feature would be
1971 * too expensive.
1973 if (!global_reclaim(sc) && !swappiness) {
1974 scan_balance = SCAN_FILE;
1975 goto out;
1979 * Do not apply any pressure balancing cleverness when the
1980 * system is close to OOM, scan both anon and file equally
1981 * (unless the swappiness setting disagrees with swapping).
1983 if (!sc->priority && swappiness) {
1984 scan_balance = SCAN_EQUAL;
1985 goto out;
1989 * Prevent the reclaimer from falling into the cache trap: as
1990 * cache pages start out inactive, every cache fault will tip
1991 * the scan balance towards the file LRU. And as the file LRU
1992 * shrinks, so does the window for rotation from references.
1993 * This means we have a runaway feedback loop where a tiny
1994 * thrashing file LRU becomes infinitely more attractive than
1995 * anon pages. Try to detect this based on file LRU size.
1997 if (global_reclaim(sc)) {
1998 unsigned long zonefile;
1999 unsigned long zonefree;
2001 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2002 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2003 zone_page_state(zone, NR_INACTIVE_FILE);
2005 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2006 scan_balance = SCAN_ANON;
2007 goto out;
2012 * There is enough inactive page cache, do not reclaim
2013 * anything from the anonymous working set right now.
2015 if (!inactive_file_is_low(lruvec)) {
2016 scan_balance = SCAN_FILE;
2017 goto out;
2020 scan_balance = SCAN_FRACT;
2023 * With swappiness at 100, anonymous and file have the same priority.
2024 * This scanning priority is essentially the inverse of IO cost.
2026 anon_prio = swappiness;
2027 file_prio = 200 - anon_prio;
2030 * OK, so we have swap space and a fair amount of page cache
2031 * pages. We use the recently rotated / recently scanned
2032 * ratios to determine how valuable each cache is.
2034 * Because workloads change over time (and to avoid overflow)
2035 * we keep these statistics as a floating average, which ends
2036 * up weighing recent references more than old ones.
2038 * anon in [0], file in [1]
2041 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2042 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2043 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2044 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2046 spin_lock_irq(&zone->lru_lock);
2047 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2048 reclaim_stat->recent_scanned[0] /= 2;
2049 reclaim_stat->recent_rotated[0] /= 2;
2052 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2053 reclaim_stat->recent_scanned[1] /= 2;
2054 reclaim_stat->recent_rotated[1] /= 2;
2058 * The amount of pressure on anon vs file pages is inversely
2059 * proportional to the fraction of recently scanned pages on
2060 * each list that were recently referenced and in active use.
2062 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2063 ap /= reclaim_stat->recent_rotated[0] + 1;
2065 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2066 fp /= reclaim_stat->recent_rotated[1] + 1;
2067 spin_unlock_irq(&zone->lru_lock);
2069 fraction[0] = ap;
2070 fraction[1] = fp;
2071 denominator = ap + fp + 1;
2072 out:
2073 some_scanned = false;
2074 /* Only use force_scan on second pass. */
2075 for (pass = 0; !some_scanned && pass < 2; pass++) {
2076 *lru_pages = 0;
2077 for_each_evictable_lru(lru) {
2078 int file = is_file_lru(lru);
2079 unsigned long size;
2080 unsigned long scan;
2082 size = get_lru_size(lruvec, lru);
2083 scan = size >> sc->priority;
2085 if (!scan && pass && force_scan)
2086 scan = min(size, SWAP_CLUSTER_MAX);
2088 switch (scan_balance) {
2089 case SCAN_EQUAL:
2090 /* Scan lists relative to size */
2091 break;
2092 case SCAN_FRACT:
2094 * Scan types proportional to swappiness and
2095 * their relative recent reclaim efficiency.
2097 scan = div64_u64(scan * fraction[file],
2098 denominator);
2099 break;
2100 case SCAN_FILE:
2101 case SCAN_ANON:
2102 /* Scan one type exclusively */
2103 if ((scan_balance == SCAN_FILE) != file) {
2104 size = 0;
2105 scan = 0;
2107 break;
2108 default:
2109 /* Look ma, no brain */
2110 BUG();
2113 *lru_pages += size;
2114 nr[lru] = scan;
2117 * Skip the second pass and don't force_scan,
2118 * if we found something to scan.
2120 some_scanned |= !!scan;
2126 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2128 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2129 struct scan_control *sc, unsigned long *lru_pages)
2131 unsigned long nr[NR_LRU_LISTS];
2132 unsigned long targets[NR_LRU_LISTS];
2133 unsigned long nr_to_scan;
2134 enum lru_list lru;
2135 unsigned long nr_reclaimed = 0;
2136 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2137 struct blk_plug plug;
2138 bool scan_adjusted;
2140 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2142 /* Record the original scan target for proportional adjustments later */
2143 memcpy(targets, nr, sizeof(nr));
2146 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2147 * event that can occur when there is little memory pressure e.g.
2148 * multiple streaming readers/writers. Hence, we do not abort scanning
2149 * when the requested number of pages are reclaimed when scanning at
2150 * DEF_PRIORITY on the assumption that the fact we are direct
2151 * reclaiming implies that kswapd is not keeping up and it is best to
2152 * do a batch of work at once. For memcg reclaim one check is made to
2153 * abort proportional reclaim if either the file or anon lru has already
2154 * dropped to zero at the first pass.
2156 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2157 sc->priority == DEF_PRIORITY);
2159 blk_start_plug(&plug);
2160 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2161 nr[LRU_INACTIVE_FILE]) {
2162 unsigned long nr_anon, nr_file, percentage;
2163 unsigned long nr_scanned;
2165 for_each_evictable_lru(lru) {
2166 if (nr[lru]) {
2167 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2168 nr[lru] -= nr_to_scan;
2170 nr_reclaimed += shrink_list(lru, nr_to_scan,
2171 lruvec, sc);
2175 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2176 continue;
2179 * For kswapd and memcg, reclaim at least the number of pages
2180 * requested. Ensure that the anon and file LRUs are scanned
2181 * proportionally what was requested by get_scan_count(). We
2182 * stop reclaiming one LRU and reduce the amount scanning
2183 * proportional to the original scan target.
2185 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2186 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2189 * It's just vindictive to attack the larger once the smaller
2190 * has gone to zero. And given the way we stop scanning the
2191 * smaller below, this makes sure that we only make one nudge
2192 * towards proportionality once we've got nr_to_reclaim.
2194 if (!nr_file || !nr_anon)
2195 break;
2197 if (nr_file > nr_anon) {
2198 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2199 targets[LRU_ACTIVE_ANON] + 1;
2200 lru = LRU_BASE;
2201 percentage = nr_anon * 100 / scan_target;
2202 } else {
2203 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2204 targets[LRU_ACTIVE_FILE] + 1;
2205 lru = LRU_FILE;
2206 percentage = nr_file * 100 / scan_target;
2209 /* Stop scanning the smaller of the LRU */
2210 nr[lru] = 0;
2211 nr[lru + LRU_ACTIVE] = 0;
2214 * Recalculate the other LRU scan count based on its original
2215 * scan target and the percentage scanning already complete
2217 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2218 nr_scanned = targets[lru] - nr[lru];
2219 nr[lru] = targets[lru] * (100 - percentage) / 100;
2220 nr[lru] -= min(nr[lru], nr_scanned);
2222 lru += LRU_ACTIVE;
2223 nr_scanned = targets[lru] - nr[lru];
2224 nr[lru] = targets[lru] * (100 - percentage) / 100;
2225 nr[lru] -= min(nr[lru], nr_scanned);
2227 scan_adjusted = true;
2229 blk_finish_plug(&plug);
2230 sc->nr_reclaimed += nr_reclaimed;
2233 * Even if we did not try to evict anon pages at all, we want to
2234 * rebalance the anon lru active/inactive ratio.
2236 if (inactive_anon_is_low(lruvec))
2237 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2238 sc, LRU_ACTIVE_ANON);
2240 throttle_vm_writeout(sc->gfp_mask);
2243 /* Use reclaim/compaction for costly allocs or under memory pressure */
2244 static bool in_reclaim_compaction(struct scan_control *sc)
2246 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2247 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2248 sc->priority < DEF_PRIORITY - 2))
2249 return true;
2251 return false;
2255 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2256 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2257 * true if more pages should be reclaimed such that when the page allocator
2258 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2259 * It will give up earlier than that if there is difficulty reclaiming pages.
2261 static inline bool should_continue_reclaim(struct zone *zone,
2262 unsigned long nr_reclaimed,
2263 unsigned long nr_scanned,
2264 struct scan_control *sc)
2266 unsigned long pages_for_compaction;
2267 unsigned long inactive_lru_pages;
2269 /* If not in reclaim/compaction mode, stop */
2270 if (!in_reclaim_compaction(sc))
2271 return false;
2273 /* Consider stopping depending on scan and reclaim activity */
2274 if (sc->gfp_mask & __GFP_REPEAT) {
2276 * For __GFP_REPEAT allocations, stop reclaiming if the
2277 * full LRU list has been scanned and we are still failing
2278 * to reclaim pages. This full LRU scan is potentially
2279 * expensive but a __GFP_REPEAT caller really wants to succeed
2281 if (!nr_reclaimed && !nr_scanned)
2282 return false;
2283 } else {
2285 * For non-__GFP_REPEAT allocations which can presumably
2286 * fail without consequence, stop if we failed to reclaim
2287 * any pages from the last SWAP_CLUSTER_MAX number of
2288 * pages that were scanned. This will return to the
2289 * caller faster at the risk reclaim/compaction and
2290 * the resulting allocation attempt fails
2292 if (!nr_reclaimed)
2293 return false;
2297 * If we have not reclaimed enough pages for compaction and the
2298 * inactive lists are large enough, continue reclaiming
2300 pages_for_compaction = (2UL << sc->order);
2301 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2302 if (get_nr_swap_pages() > 0)
2303 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2304 if (sc->nr_reclaimed < pages_for_compaction &&
2305 inactive_lru_pages > pages_for_compaction)
2306 return true;
2308 /* If compaction would go ahead or the allocation would succeed, stop */
2309 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2310 case COMPACT_PARTIAL:
2311 case COMPACT_CONTINUE:
2312 return false;
2313 default:
2314 return true;
2318 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2319 bool is_classzone)
2321 struct reclaim_state *reclaim_state = current->reclaim_state;
2322 unsigned long nr_reclaimed, nr_scanned;
2323 bool reclaimable = false;
2325 do {
2326 struct mem_cgroup *root = sc->target_mem_cgroup;
2327 struct mem_cgroup_reclaim_cookie reclaim = {
2328 .zone = zone,
2329 .priority = sc->priority,
2331 unsigned long zone_lru_pages = 0;
2332 struct mem_cgroup *memcg;
2334 nr_reclaimed = sc->nr_reclaimed;
2335 nr_scanned = sc->nr_scanned;
2337 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2338 do {
2339 unsigned long lru_pages;
2340 unsigned long scanned;
2341 struct lruvec *lruvec;
2342 int swappiness;
2344 if (mem_cgroup_low(root, memcg)) {
2345 if (!sc->may_thrash)
2346 continue;
2347 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2350 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2351 swappiness = mem_cgroup_swappiness(memcg);
2352 scanned = sc->nr_scanned;
2354 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2355 zone_lru_pages += lru_pages;
2357 if (memcg && is_classzone)
2358 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2359 memcg, sc->nr_scanned - scanned,
2360 lru_pages);
2363 * Direct reclaim and kswapd have to scan all memory
2364 * cgroups to fulfill the overall scan target for the
2365 * zone.
2367 * Limit reclaim, on the other hand, only cares about
2368 * nr_to_reclaim pages to be reclaimed and it will
2369 * retry with decreasing priority if one round over the
2370 * whole hierarchy is not sufficient.
2372 if (!global_reclaim(sc) &&
2373 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2374 mem_cgroup_iter_break(root, memcg);
2375 break;
2377 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2380 * Shrink the slab caches in the same proportion that
2381 * the eligible LRU pages were scanned.
2383 if (global_reclaim(sc) && is_classzone)
2384 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2385 sc->nr_scanned - nr_scanned,
2386 zone_lru_pages);
2388 if (reclaim_state) {
2389 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2390 reclaim_state->reclaimed_slab = 0;
2393 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2394 sc->nr_scanned - nr_scanned,
2395 sc->nr_reclaimed - nr_reclaimed);
2397 if (sc->nr_reclaimed - nr_reclaimed)
2398 reclaimable = true;
2400 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2401 sc->nr_scanned - nr_scanned, sc));
2403 return reclaimable;
2407 * Returns true if compaction should go ahead for a high-order request, or
2408 * the high-order allocation would succeed without compaction.
2410 static inline bool compaction_ready(struct zone *zone, int order)
2412 unsigned long balance_gap, watermark;
2413 bool watermark_ok;
2416 * Compaction takes time to run and there are potentially other
2417 * callers using the pages just freed. Continue reclaiming until
2418 * there is a buffer of free pages available to give compaction
2419 * a reasonable chance of completing and allocating the page
2421 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2422 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2423 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2424 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2427 * If compaction is deferred, reclaim up to a point where
2428 * compaction will have a chance of success when re-enabled
2430 if (compaction_deferred(zone, order))
2431 return watermark_ok;
2434 * If compaction is not ready to start and allocation is not likely
2435 * to succeed without it, then keep reclaiming.
2437 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2438 return false;
2440 return watermark_ok;
2444 * This is the direct reclaim path, for page-allocating processes. We only
2445 * try to reclaim pages from zones which will satisfy the caller's allocation
2446 * request.
2448 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2449 * Because:
2450 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2451 * allocation or
2452 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2453 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2454 * zone defense algorithm.
2456 * If a zone is deemed to be full of pinned pages then just give it a light
2457 * scan then give up on it.
2459 * Returns true if a zone was reclaimable.
2461 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2463 struct zoneref *z;
2464 struct zone *zone;
2465 unsigned long nr_soft_reclaimed;
2466 unsigned long nr_soft_scanned;
2467 gfp_t orig_mask;
2468 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2469 bool reclaimable = false;
2472 * If the number of buffer_heads in the machine exceeds the maximum
2473 * allowed level, force direct reclaim to scan the highmem zone as
2474 * highmem pages could be pinning lowmem pages storing buffer_heads
2476 orig_mask = sc->gfp_mask;
2477 if (buffer_heads_over_limit)
2478 sc->gfp_mask |= __GFP_HIGHMEM;
2480 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2481 gfp_zone(sc->gfp_mask), sc->nodemask) {
2482 enum zone_type classzone_idx;
2484 if (!populated_zone(zone))
2485 continue;
2487 classzone_idx = requested_highidx;
2488 while (!populated_zone(zone->zone_pgdat->node_zones +
2489 classzone_idx))
2490 classzone_idx--;
2493 * Take care memory controller reclaiming has small influence
2494 * to global LRU.
2496 if (global_reclaim(sc)) {
2497 if (!cpuset_zone_allowed(zone,
2498 GFP_KERNEL | __GFP_HARDWALL))
2499 continue;
2501 if (sc->priority != DEF_PRIORITY &&
2502 !zone_reclaimable(zone))
2503 continue; /* Let kswapd poll it */
2506 * If we already have plenty of memory free for
2507 * compaction in this zone, don't free any more.
2508 * Even though compaction is invoked for any
2509 * non-zero order, only frequent costly order
2510 * reclamation is disruptive enough to become a
2511 * noticeable problem, like transparent huge
2512 * page allocations.
2514 if (IS_ENABLED(CONFIG_COMPACTION) &&
2515 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2516 zonelist_zone_idx(z) <= requested_highidx &&
2517 compaction_ready(zone, sc->order)) {
2518 sc->compaction_ready = true;
2519 continue;
2523 * This steals pages from memory cgroups over softlimit
2524 * and returns the number of reclaimed pages and
2525 * scanned pages. This works for global memory pressure
2526 * and balancing, not for a memcg's limit.
2528 nr_soft_scanned = 0;
2529 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2530 sc->order, sc->gfp_mask,
2531 &nr_soft_scanned);
2532 sc->nr_reclaimed += nr_soft_reclaimed;
2533 sc->nr_scanned += nr_soft_scanned;
2534 if (nr_soft_reclaimed)
2535 reclaimable = true;
2536 /* need some check for avoid more shrink_zone() */
2539 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2540 reclaimable = true;
2542 if (global_reclaim(sc) &&
2543 !reclaimable && zone_reclaimable(zone))
2544 reclaimable = true;
2548 * Restore to original mask to avoid the impact on the caller if we
2549 * promoted it to __GFP_HIGHMEM.
2551 sc->gfp_mask = orig_mask;
2553 return reclaimable;
2557 * This is the main entry point to direct page reclaim.
2559 * If a full scan of the inactive list fails to free enough memory then we
2560 * are "out of memory" and something needs to be killed.
2562 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2563 * high - the zone may be full of dirty or under-writeback pages, which this
2564 * caller can't do much about. We kick the writeback threads and take explicit
2565 * naps in the hope that some of these pages can be written. But if the
2566 * allocating task holds filesystem locks which prevent writeout this might not
2567 * work, and the allocation attempt will fail.
2569 * returns: 0, if no pages reclaimed
2570 * else, the number of pages reclaimed
2572 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2573 struct scan_control *sc)
2575 int initial_priority = sc->priority;
2576 unsigned long total_scanned = 0;
2577 unsigned long writeback_threshold;
2578 bool zones_reclaimable;
2579 retry:
2580 delayacct_freepages_start();
2582 if (global_reclaim(sc))
2583 count_vm_event(ALLOCSTALL);
2585 do {
2586 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2587 sc->priority);
2588 sc->nr_scanned = 0;
2589 zones_reclaimable = shrink_zones(zonelist, sc);
2591 total_scanned += sc->nr_scanned;
2592 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2593 break;
2595 if (sc->compaction_ready)
2596 break;
2599 * If we're getting trouble reclaiming, start doing
2600 * writepage even in laptop mode.
2602 if (sc->priority < DEF_PRIORITY - 2)
2603 sc->may_writepage = 1;
2606 * Try to write back as many pages as we just scanned. This
2607 * tends to cause slow streaming writers to write data to the
2608 * disk smoothly, at the dirtying rate, which is nice. But
2609 * that's undesirable in laptop mode, where we *want* lumpy
2610 * writeout. So in laptop mode, write out the whole world.
2612 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2613 if (total_scanned > writeback_threshold) {
2614 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2615 WB_REASON_TRY_TO_FREE_PAGES);
2616 sc->may_writepage = 1;
2618 } while (--sc->priority >= 0);
2620 delayacct_freepages_end();
2622 if (sc->nr_reclaimed)
2623 return sc->nr_reclaimed;
2625 /* Aborted reclaim to try compaction? don't OOM, then */
2626 if (sc->compaction_ready)
2627 return 1;
2629 /* Untapped cgroup reserves? Don't OOM, retry. */
2630 if (!sc->may_thrash) {
2631 sc->priority = initial_priority;
2632 sc->may_thrash = 1;
2633 goto retry;
2636 /* Any of the zones still reclaimable? Don't OOM. */
2637 if (zones_reclaimable)
2638 return 1;
2640 return 0;
2643 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2645 struct zone *zone;
2646 unsigned long pfmemalloc_reserve = 0;
2647 unsigned long free_pages = 0;
2648 int i;
2649 bool wmark_ok;
2651 for (i = 0; i <= ZONE_NORMAL; i++) {
2652 zone = &pgdat->node_zones[i];
2653 if (!populated_zone(zone))
2654 continue;
2656 pfmemalloc_reserve += min_wmark_pages(zone);
2657 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2660 /* If there are no reserves (unexpected config) then do not throttle */
2661 if (!pfmemalloc_reserve)
2662 return true;
2664 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2666 /* kswapd must be awake if processes are being throttled */
2667 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2668 pgdat->classzone_idx = min(pgdat->classzone_idx,
2669 (enum zone_type)ZONE_NORMAL);
2670 wake_up_interruptible(&pgdat->kswapd_wait);
2673 return wmark_ok;
2677 * Throttle direct reclaimers if backing storage is backed by the network
2678 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2679 * depleted. kswapd will continue to make progress and wake the processes
2680 * when the low watermark is reached.
2682 * Returns true if a fatal signal was delivered during throttling. If this
2683 * happens, the page allocator should not consider triggering the OOM killer.
2685 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2686 nodemask_t *nodemask)
2688 struct zoneref *z;
2689 struct zone *zone;
2690 pg_data_t *pgdat = NULL;
2693 * Kernel threads should not be throttled as they may be indirectly
2694 * responsible for cleaning pages necessary for reclaim to make forward
2695 * progress. kjournald for example may enter direct reclaim while
2696 * committing a transaction where throttling it could forcing other
2697 * processes to block on log_wait_commit().
2699 if (current->flags & PF_KTHREAD)
2700 goto out;
2703 * If a fatal signal is pending, this process should not throttle.
2704 * It should return quickly so it can exit and free its memory
2706 if (fatal_signal_pending(current))
2707 goto out;
2710 * Check if the pfmemalloc reserves are ok by finding the first node
2711 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2712 * GFP_KERNEL will be required for allocating network buffers when
2713 * swapping over the network so ZONE_HIGHMEM is unusable.
2715 * Throttling is based on the first usable node and throttled processes
2716 * wait on a queue until kswapd makes progress and wakes them. There
2717 * is an affinity then between processes waking up and where reclaim
2718 * progress has been made assuming the process wakes on the same node.
2719 * More importantly, processes running on remote nodes will not compete
2720 * for remote pfmemalloc reserves and processes on different nodes
2721 * should make reasonable progress.
2723 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2724 gfp_zone(gfp_mask), nodemask) {
2725 if (zone_idx(zone) > ZONE_NORMAL)
2726 continue;
2728 /* Throttle based on the first usable node */
2729 pgdat = zone->zone_pgdat;
2730 if (pfmemalloc_watermark_ok(pgdat))
2731 goto out;
2732 break;
2735 /* If no zone was usable by the allocation flags then do not throttle */
2736 if (!pgdat)
2737 goto out;
2739 /* Account for the throttling */
2740 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2743 * If the caller cannot enter the filesystem, it's possible that it
2744 * is due to the caller holding an FS lock or performing a journal
2745 * transaction in the case of a filesystem like ext[3|4]. In this case,
2746 * it is not safe to block on pfmemalloc_wait as kswapd could be
2747 * blocked waiting on the same lock. Instead, throttle for up to a
2748 * second before continuing.
2750 if (!(gfp_mask & __GFP_FS)) {
2751 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2752 pfmemalloc_watermark_ok(pgdat), HZ);
2754 goto check_pending;
2757 /* Throttle until kswapd wakes the process */
2758 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2759 pfmemalloc_watermark_ok(pgdat));
2761 check_pending:
2762 if (fatal_signal_pending(current))
2763 return true;
2765 out:
2766 return false;
2769 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2770 gfp_t gfp_mask, nodemask_t *nodemask)
2772 unsigned long nr_reclaimed;
2773 struct scan_control sc = {
2774 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2775 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2776 .order = order,
2777 .nodemask = nodemask,
2778 .priority = DEF_PRIORITY,
2779 .may_writepage = !laptop_mode,
2780 .may_unmap = 1,
2781 .may_swap = 1,
2785 * Do not enter reclaim if fatal signal was delivered while throttled.
2786 * 1 is returned so that the page allocator does not OOM kill at this
2787 * point.
2789 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2790 return 1;
2792 trace_mm_vmscan_direct_reclaim_begin(order,
2793 sc.may_writepage,
2794 gfp_mask);
2796 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2798 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2800 return nr_reclaimed;
2803 #ifdef CONFIG_MEMCG
2805 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2806 gfp_t gfp_mask, bool noswap,
2807 struct zone *zone,
2808 unsigned long *nr_scanned)
2810 struct scan_control sc = {
2811 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2812 .target_mem_cgroup = memcg,
2813 .may_writepage = !laptop_mode,
2814 .may_unmap = 1,
2815 .may_swap = !noswap,
2817 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2818 int swappiness = mem_cgroup_swappiness(memcg);
2819 unsigned long lru_pages;
2821 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2822 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2824 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2825 sc.may_writepage,
2826 sc.gfp_mask);
2829 * NOTE: Although we can get the priority field, using it
2830 * here is not a good idea, since it limits the pages we can scan.
2831 * if we don't reclaim here, the shrink_zone from balance_pgdat
2832 * will pick up pages from other mem cgroup's as well. We hack
2833 * the priority and make it zero.
2835 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2837 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2839 *nr_scanned = sc.nr_scanned;
2840 return sc.nr_reclaimed;
2843 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2844 unsigned long nr_pages,
2845 gfp_t gfp_mask,
2846 bool may_swap)
2848 struct zonelist *zonelist;
2849 unsigned long nr_reclaimed;
2850 int nid;
2851 struct scan_control sc = {
2852 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2853 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2854 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2855 .target_mem_cgroup = memcg,
2856 .priority = DEF_PRIORITY,
2857 .may_writepage = !laptop_mode,
2858 .may_unmap = 1,
2859 .may_swap = may_swap,
2863 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2864 * take care of from where we get pages. So the node where we start the
2865 * scan does not need to be the current node.
2867 nid = mem_cgroup_select_victim_node(memcg);
2869 zonelist = NODE_DATA(nid)->node_zonelists;
2871 trace_mm_vmscan_memcg_reclaim_begin(0,
2872 sc.may_writepage,
2873 sc.gfp_mask);
2875 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2877 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2879 return nr_reclaimed;
2881 #endif
2883 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2885 struct mem_cgroup *memcg;
2887 if (!total_swap_pages)
2888 return;
2890 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2891 do {
2892 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2894 if (inactive_anon_is_low(lruvec))
2895 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2896 sc, LRU_ACTIVE_ANON);
2898 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2899 } while (memcg);
2902 static bool zone_balanced(struct zone *zone, int order,
2903 unsigned long balance_gap, int classzone_idx)
2905 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2906 balance_gap, classzone_idx, 0))
2907 return false;
2909 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2910 order, 0, classzone_idx) == COMPACT_SKIPPED)
2911 return false;
2913 return true;
2917 * pgdat_balanced() is used when checking if a node is balanced.
2919 * For order-0, all zones must be balanced!
2921 * For high-order allocations only zones that meet watermarks and are in a
2922 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2923 * total of balanced pages must be at least 25% of the zones allowed by
2924 * classzone_idx for the node to be considered balanced. Forcing all zones to
2925 * be balanced for high orders can cause excessive reclaim when there are
2926 * imbalanced zones.
2927 * The choice of 25% is due to
2928 * o a 16M DMA zone that is balanced will not balance a zone on any
2929 * reasonable sized machine
2930 * o On all other machines, the top zone must be at least a reasonable
2931 * percentage of the middle zones. For example, on 32-bit x86, highmem
2932 * would need to be at least 256M for it to be balance a whole node.
2933 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2934 * to balance a node on its own. These seemed like reasonable ratios.
2936 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2938 unsigned long managed_pages = 0;
2939 unsigned long balanced_pages = 0;
2940 int i;
2942 /* Check the watermark levels */
2943 for (i = 0; i <= classzone_idx; i++) {
2944 struct zone *zone = pgdat->node_zones + i;
2946 if (!populated_zone(zone))
2947 continue;
2949 managed_pages += zone->managed_pages;
2952 * A special case here:
2954 * balance_pgdat() skips over all_unreclaimable after
2955 * DEF_PRIORITY. Effectively, it considers them balanced so
2956 * they must be considered balanced here as well!
2958 if (!zone_reclaimable(zone)) {
2959 balanced_pages += zone->managed_pages;
2960 continue;
2963 if (zone_balanced(zone, order, 0, i))
2964 balanced_pages += zone->managed_pages;
2965 else if (!order)
2966 return false;
2969 if (order)
2970 return balanced_pages >= (managed_pages >> 2);
2971 else
2972 return true;
2976 * Prepare kswapd for sleeping. This verifies that there are no processes
2977 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2979 * Returns true if kswapd is ready to sleep
2981 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2982 int classzone_idx)
2984 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2985 if (remaining)
2986 return false;
2989 * The throttled processes are normally woken up in balance_pgdat() as
2990 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2991 * race between when kswapd checks the watermarks and a process gets
2992 * throttled. There is also a potential race if processes get
2993 * throttled, kswapd wakes, a large process exits thereby balancing the
2994 * zones, which causes kswapd to exit balance_pgdat() before reaching
2995 * the wake up checks. If kswapd is going to sleep, no process should
2996 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2997 * the wake up is premature, processes will wake kswapd and get
2998 * throttled again. The difference from wake ups in balance_pgdat() is
2999 * that here we are under prepare_to_wait().
3001 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3002 wake_up_all(&pgdat->pfmemalloc_wait);
3004 return pgdat_balanced(pgdat, order, classzone_idx);
3008 * kswapd shrinks the zone by the number of pages required to reach
3009 * the high watermark.
3011 * Returns true if kswapd scanned at least the requested number of pages to
3012 * reclaim or if the lack of progress was due to pages under writeback.
3013 * This is used to determine if the scanning priority needs to be raised.
3015 static bool kswapd_shrink_zone(struct zone *zone,
3016 int classzone_idx,
3017 struct scan_control *sc,
3018 unsigned long *nr_attempted)
3020 int testorder = sc->order;
3021 unsigned long balance_gap;
3022 bool lowmem_pressure;
3024 /* Reclaim above the high watermark. */
3025 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3028 * Kswapd reclaims only single pages with compaction enabled. Trying
3029 * too hard to reclaim until contiguous free pages have become
3030 * available can hurt performance by evicting too much useful data
3031 * from memory. Do not reclaim more than needed for compaction.
3033 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3034 compaction_suitable(zone, sc->order, 0, classzone_idx)
3035 != COMPACT_SKIPPED)
3036 testorder = 0;
3039 * We put equal pressure on every zone, unless one zone has way too
3040 * many pages free already. The "too many pages" is defined as the
3041 * high wmark plus a "gap" where the gap is either the low
3042 * watermark or 1% of the zone, whichever is smaller.
3044 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3045 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3048 * If there is no low memory pressure or the zone is balanced then no
3049 * reclaim is necessary
3051 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3052 if (!lowmem_pressure && zone_balanced(zone, testorder,
3053 balance_gap, classzone_idx))
3054 return true;
3056 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3058 /* Account for the number of pages attempted to reclaim */
3059 *nr_attempted += sc->nr_to_reclaim;
3061 clear_bit(ZONE_WRITEBACK, &zone->flags);
3064 * If a zone reaches its high watermark, consider it to be no longer
3065 * congested. It's possible there are dirty pages backed by congested
3066 * BDIs but as pressure is relieved, speculatively avoid congestion
3067 * waits.
3069 if (zone_reclaimable(zone) &&
3070 zone_balanced(zone, testorder, 0, classzone_idx)) {
3071 clear_bit(ZONE_CONGESTED, &zone->flags);
3072 clear_bit(ZONE_DIRTY, &zone->flags);
3075 return sc->nr_scanned >= sc->nr_to_reclaim;
3079 * For kswapd, balance_pgdat() will work across all this node's zones until
3080 * they are all at high_wmark_pages(zone).
3082 * Returns the final order kswapd was reclaiming at
3084 * There is special handling here for zones which are full of pinned pages.
3085 * This can happen if the pages are all mlocked, or if they are all used by
3086 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3087 * What we do is to detect the case where all pages in the zone have been
3088 * scanned twice and there has been zero successful reclaim. Mark the zone as
3089 * dead and from now on, only perform a short scan. Basically we're polling
3090 * the zone for when the problem goes away.
3092 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3093 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3094 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3095 * lower zones regardless of the number of free pages in the lower zones. This
3096 * interoperates with the page allocator fallback scheme to ensure that aging
3097 * of pages is balanced across the zones.
3099 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3100 int *classzone_idx)
3102 int i;
3103 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3104 unsigned long nr_soft_reclaimed;
3105 unsigned long nr_soft_scanned;
3106 struct scan_control sc = {
3107 .gfp_mask = GFP_KERNEL,
3108 .order = order,
3109 .priority = DEF_PRIORITY,
3110 .may_writepage = !laptop_mode,
3111 .may_unmap = 1,
3112 .may_swap = 1,
3114 count_vm_event(PAGEOUTRUN);
3116 do {
3117 unsigned long nr_attempted = 0;
3118 bool raise_priority = true;
3119 bool pgdat_needs_compaction = (order > 0);
3121 sc.nr_reclaimed = 0;
3124 * Scan in the highmem->dma direction for the highest
3125 * zone which needs scanning
3127 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3128 struct zone *zone = pgdat->node_zones + i;
3130 if (!populated_zone(zone))
3131 continue;
3133 if (sc.priority != DEF_PRIORITY &&
3134 !zone_reclaimable(zone))
3135 continue;
3138 * Do some background aging of the anon list, to give
3139 * pages a chance to be referenced before reclaiming.
3141 age_active_anon(zone, &sc);
3144 * If the number of buffer_heads in the machine
3145 * exceeds the maximum allowed level and this node
3146 * has a highmem zone, force kswapd to reclaim from
3147 * it to relieve lowmem pressure.
3149 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3150 end_zone = i;
3151 break;
3154 if (!zone_balanced(zone, order, 0, 0)) {
3155 end_zone = i;
3156 break;
3157 } else {
3159 * If balanced, clear the dirty and congested
3160 * flags
3162 clear_bit(ZONE_CONGESTED, &zone->flags);
3163 clear_bit(ZONE_DIRTY, &zone->flags);
3167 if (i < 0)
3168 goto out;
3170 for (i = 0; i <= end_zone; i++) {
3171 struct zone *zone = pgdat->node_zones + i;
3173 if (!populated_zone(zone))
3174 continue;
3177 * If any zone is currently balanced then kswapd will
3178 * not call compaction as it is expected that the
3179 * necessary pages are already available.
3181 if (pgdat_needs_compaction &&
3182 zone_watermark_ok(zone, order,
3183 low_wmark_pages(zone),
3184 *classzone_idx, 0))
3185 pgdat_needs_compaction = false;
3189 * If we're getting trouble reclaiming, start doing writepage
3190 * even in laptop mode.
3192 if (sc.priority < DEF_PRIORITY - 2)
3193 sc.may_writepage = 1;
3196 * Now scan the zone in the dma->highmem direction, stopping
3197 * at the last zone which needs scanning.
3199 * We do this because the page allocator works in the opposite
3200 * direction. This prevents the page allocator from allocating
3201 * pages behind kswapd's direction of progress, which would
3202 * cause too much scanning of the lower zones.
3204 for (i = 0; i <= end_zone; i++) {
3205 struct zone *zone = pgdat->node_zones + i;
3207 if (!populated_zone(zone))
3208 continue;
3210 if (sc.priority != DEF_PRIORITY &&
3211 !zone_reclaimable(zone))
3212 continue;
3214 sc.nr_scanned = 0;
3216 nr_soft_scanned = 0;
3218 * Call soft limit reclaim before calling shrink_zone.
3220 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3221 order, sc.gfp_mask,
3222 &nr_soft_scanned);
3223 sc.nr_reclaimed += nr_soft_reclaimed;
3226 * There should be no need to raise the scanning
3227 * priority if enough pages are already being scanned
3228 * that that high watermark would be met at 100%
3229 * efficiency.
3231 if (kswapd_shrink_zone(zone, end_zone,
3232 &sc, &nr_attempted))
3233 raise_priority = false;
3237 * If the low watermark is met there is no need for processes
3238 * to be throttled on pfmemalloc_wait as they should not be
3239 * able to safely make forward progress. Wake them
3241 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3242 pfmemalloc_watermark_ok(pgdat))
3243 wake_up_all(&pgdat->pfmemalloc_wait);
3246 * Fragmentation may mean that the system cannot be rebalanced
3247 * for high-order allocations in all zones. If twice the
3248 * allocation size has been reclaimed and the zones are still
3249 * not balanced then recheck the watermarks at order-0 to
3250 * prevent kswapd reclaiming excessively. Assume that a
3251 * process requested a high-order can direct reclaim/compact.
3253 if (order && sc.nr_reclaimed >= 2UL << order)
3254 order = sc.order = 0;
3256 /* Check if kswapd should be suspending */
3257 if (try_to_freeze() || kthread_should_stop())
3258 break;
3261 * Compact if necessary and kswapd is reclaiming at least the
3262 * high watermark number of pages as requsted
3264 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3265 compact_pgdat(pgdat, order);
3268 * Raise priority if scanning rate is too low or there was no
3269 * progress in reclaiming pages
3271 if (raise_priority || !sc.nr_reclaimed)
3272 sc.priority--;
3273 } while (sc.priority >= 1 &&
3274 !pgdat_balanced(pgdat, order, *classzone_idx));
3276 out:
3278 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3279 * makes a decision on the order we were last reclaiming at. However,
3280 * if another caller entered the allocator slow path while kswapd
3281 * was awake, order will remain at the higher level
3283 *classzone_idx = end_zone;
3284 return order;
3287 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3289 long remaining = 0;
3290 DEFINE_WAIT(wait);
3292 if (freezing(current) || kthread_should_stop())
3293 return;
3295 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3297 /* Try to sleep for a short interval */
3298 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3299 remaining = schedule_timeout(HZ/10);
3300 finish_wait(&pgdat->kswapd_wait, &wait);
3301 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3305 * After a short sleep, check if it was a premature sleep. If not, then
3306 * go fully to sleep until explicitly woken up.
3308 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3309 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3312 * vmstat counters are not perfectly accurate and the estimated
3313 * value for counters such as NR_FREE_PAGES can deviate from the
3314 * true value by nr_online_cpus * threshold. To avoid the zone
3315 * watermarks being breached while under pressure, we reduce the
3316 * per-cpu vmstat threshold while kswapd is awake and restore
3317 * them before going back to sleep.
3319 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3322 * Compaction records what page blocks it recently failed to
3323 * isolate pages from and skips them in the future scanning.
3324 * When kswapd is going to sleep, it is reasonable to assume
3325 * that pages and compaction may succeed so reset the cache.
3327 reset_isolation_suitable(pgdat);
3329 if (!kthread_should_stop())
3330 schedule();
3332 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3333 } else {
3334 if (remaining)
3335 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3336 else
3337 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3339 finish_wait(&pgdat->kswapd_wait, &wait);
3343 * The background pageout daemon, started as a kernel thread
3344 * from the init process.
3346 * This basically trickles out pages so that we have _some_
3347 * free memory available even if there is no other activity
3348 * that frees anything up. This is needed for things like routing
3349 * etc, where we otherwise might have all activity going on in
3350 * asynchronous contexts that cannot page things out.
3352 * If there are applications that are active memory-allocators
3353 * (most normal use), this basically shouldn't matter.
3355 static int kswapd(void *p)
3357 unsigned long order, new_order;
3358 unsigned balanced_order;
3359 int classzone_idx, new_classzone_idx;
3360 int balanced_classzone_idx;
3361 pg_data_t *pgdat = (pg_data_t*)p;
3362 struct task_struct *tsk = current;
3364 struct reclaim_state reclaim_state = {
3365 .reclaimed_slab = 0,
3367 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3369 lockdep_set_current_reclaim_state(GFP_KERNEL);
3371 if (!cpumask_empty(cpumask))
3372 set_cpus_allowed_ptr(tsk, cpumask);
3373 current->reclaim_state = &reclaim_state;
3376 * Tell the memory management that we're a "memory allocator",
3377 * and that if we need more memory we should get access to it
3378 * regardless (see "__alloc_pages()"). "kswapd" should
3379 * never get caught in the normal page freeing logic.
3381 * (Kswapd normally doesn't need memory anyway, but sometimes
3382 * you need a small amount of memory in order to be able to
3383 * page out something else, and this flag essentially protects
3384 * us from recursively trying to free more memory as we're
3385 * trying to free the first piece of memory in the first place).
3387 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3388 set_freezable();
3390 order = new_order = 0;
3391 balanced_order = 0;
3392 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3393 balanced_classzone_idx = classzone_idx;
3394 for ( ; ; ) {
3395 bool ret;
3398 * If the last balance_pgdat was unsuccessful it's unlikely a
3399 * new request of a similar or harder type will succeed soon
3400 * so consider going to sleep on the basis we reclaimed at
3402 if (balanced_classzone_idx >= new_classzone_idx &&
3403 balanced_order == new_order) {
3404 new_order = pgdat->kswapd_max_order;
3405 new_classzone_idx = pgdat->classzone_idx;
3406 pgdat->kswapd_max_order = 0;
3407 pgdat->classzone_idx = pgdat->nr_zones - 1;
3410 if (order < new_order || classzone_idx > new_classzone_idx) {
3412 * Don't sleep if someone wants a larger 'order'
3413 * allocation or has tigher zone constraints
3415 order = new_order;
3416 classzone_idx = new_classzone_idx;
3417 } else {
3418 kswapd_try_to_sleep(pgdat, balanced_order,
3419 balanced_classzone_idx);
3420 order = pgdat->kswapd_max_order;
3421 classzone_idx = pgdat->classzone_idx;
3422 new_order = order;
3423 new_classzone_idx = classzone_idx;
3424 pgdat->kswapd_max_order = 0;
3425 pgdat->classzone_idx = pgdat->nr_zones - 1;
3428 ret = try_to_freeze();
3429 if (kthread_should_stop())
3430 break;
3433 * We can speed up thawing tasks if we don't call balance_pgdat
3434 * after returning from the refrigerator
3436 if (!ret) {
3437 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3438 balanced_classzone_idx = classzone_idx;
3439 balanced_order = balance_pgdat(pgdat, order,
3440 &balanced_classzone_idx);
3444 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3445 current->reclaim_state = NULL;
3446 lockdep_clear_current_reclaim_state();
3448 return 0;
3452 * A zone is low on free memory, so wake its kswapd task to service it.
3454 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3456 pg_data_t *pgdat;
3458 if (!populated_zone(zone))
3459 return;
3461 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3462 return;
3463 pgdat = zone->zone_pgdat;
3464 if (pgdat->kswapd_max_order < order) {
3465 pgdat->kswapd_max_order = order;
3466 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3468 if (!waitqueue_active(&pgdat->kswapd_wait))
3469 return;
3470 if (zone_balanced(zone, order, 0, 0))
3471 return;
3473 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3474 wake_up_interruptible(&pgdat->kswapd_wait);
3477 #ifdef CONFIG_HIBERNATION
3479 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3480 * freed pages.
3482 * Rather than trying to age LRUs the aim is to preserve the overall
3483 * LRU order by reclaiming preferentially
3484 * inactive > active > active referenced > active mapped
3486 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3488 struct reclaim_state reclaim_state;
3489 struct scan_control sc = {
3490 .nr_to_reclaim = nr_to_reclaim,
3491 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3492 .priority = DEF_PRIORITY,
3493 .may_writepage = 1,
3494 .may_unmap = 1,
3495 .may_swap = 1,
3496 .hibernation_mode = 1,
3498 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3499 struct task_struct *p = current;
3500 unsigned long nr_reclaimed;
3502 p->flags |= PF_MEMALLOC;
3503 lockdep_set_current_reclaim_state(sc.gfp_mask);
3504 reclaim_state.reclaimed_slab = 0;
3505 p->reclaim_state = &reclaim_state;
3507 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3509 p->reclaim_state = NULL;
3510 lockdep_clear_current_reclaim_state();
3511 p->flags &= ~PF_MEMALLOC;
3513 return nr_reclaimed;
3515 #endif /* CONFIG_HIBERNATION */
3517 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3518 not required for correctness. So if the last cpu in a node goes
3519 away, we get changed to run anywhere: as the first one comes back,
3520 restore their cpu bindings. */
3521 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3522 void *hcpu)
3524 int nid;
3526 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3527 for_each_node_state(nid, N_MEMORY) {
3528 pg_data_t *pgdat = NODE_DATA(nid);
3529 const struct cpumask *mask;
3531 mask = cpumask_of_node(pgdat->node_id);
3533 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3534 /* One of our CPUs online: restore mask */
3535 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3538 return NOTIFY_OK;
3542 * This kswapd start function will be called by init and node-hot-add.
3543 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3545 int kswapd_run(int nid)
3547 pg_data_t *pgdat = NODE_DATA(nid);
3548 int ret = 0;
3550 if (pgdat->kswapd)
3551 return 0;
3553 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3554 if (IS_ERR(pgdat->kswapd)) {
3555 /* failure at boot is fatal */
3556 BUG_ON(system_state == SYSTEM_BOOTING);
3557 pr_err("Failed to start kswapd on node %d\n", nid);
3558 ret = PTR_ERR(pgdat->kswapd);
3559 pgdat->kswapd = NULL;
3561 return ret;
3565 * Called by memory hotplug when all memory in a node is offlined. Caller must
3566 * hold mem_hotplug_begin/end().
3568 void kswapd_stop(int nid)
3570 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3572 if (kswapd) {
3573 kthread_stop(kswapd);
3574 NODE_DATA(nid)->kswapd = NULL;
3578 static int __init kswapd_init(void)
3580 int nid;
3582 swap_setup();
3583 for_each_node_state(nid, N_MEMORY)
3584 kswapd_run(nid);
3585 hotcpu_notifier(cpu_callback, 0);
3586 return 0;
3589 module_init(kswapd_init)
3591 #ifdef CONFIG_NUMA
3593 * Zone reclaim mode
3595 * If non-zero call zone_reclaim when the number of free pages falls below
3596 * the watermarks.
3598 int zone_reclaim_mode __read_mostly;
3600 #define RECLAIM_OFF 0
3601 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3602 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3603 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3606 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3607 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3608 * a zone.
3610 #define ZONE_RECLAIM_PRIORITY 4
3613 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3614 * occur.
3616 int sysctl_min_unmapped_ratio = 1;
3619 * If the number of slab pages in a zone grows beyond this percentage then
3620 * slab reclaim needs to occur.
3622 int sysctl_min_slab_ratio = 5;
3624 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3626 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3627 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3628 zone_page_state(zone, NR_ACTIVE_FILE);
3631 * It's possible for there to be more file mapped pages than
3632 * accounted for by the pages on the file LRU lists because
3633 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3635 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3638 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3639 static long zone_pagecache_reclaimable(struct zone *zone)
3641 long nr_pagecache_reclaimable;
3642 long delta = 0;
3645 * If RECLAIM_SWAP is set, then all file pages are considered
3646 * potentially reclaimable. Otherwise, we have to worry about
3647 * pages like swapcache and zone_unmapped_file_pages() provides
3648 * a better estimate
3650 if (zone_reclaim_mode & RECLAIM_SWAP)
3651 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3652 else
3653 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3655 /* If we can't clean pages, remove dirty pages from consideration */
3656 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3657 delta += zone_page_state(zone, NR_FILE_DIRTY);
3659 /* Watch for any possible underflows due to delta */
3660 if (unlikely(delta > nr_pagecache_reclaimable))
3661 delta = nr_pagecache_reclaimable;
3663 return nr_pagecache_reclaimable - delta;
3667 * Try to free up some pages from this zone through reclaim.
3669 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3671 /* Minimum pages needed in order to stay on node */
3672 const unsigned long nr_pages = 1 << order;
3673 struct task_struct *p = current;
3674 struct reclaim_state reclaim_state;
3675 struct scan_control sc = {
3676 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3677 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3678 .order = order,
3679 .priority = ZONE_RECLAIM_PRIORITY,
3680 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3681 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3682 .may_swap = 1,
3685 cond_resched();
3687 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3688 * and we also need to be able to write out pages for RECLAIM_WRITE
3689 * and RECLAIM_SWAP.
3691 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3692 lockdep_set_current_reclaim_state(gfp_mask);
3693 reclaim_state.reclaimed_slab = 0;
3694 p->reclaim_state = &reclaim_state;
3696 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3698 * Free memory by calling shrink zone with increasing
3699 * priorities until we have enough memory freed.
3701 do {
3702 shrink_zone(zone, &sc, true);
3703 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3706 p->reclaim_state = NULL;
3707 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3708 lockdep_clear_current_reclaim_state();
3709 return sc.nr_reclaimed >= nr_pages;
3712 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3714 int node_id;
3715 int ret;
3718 * Zone reclaim reclaims unmapped file backed pages and
3719 * slab pages if we are over the defined limits.
3721 * A small portion of unmapped file backed pages is needed for
3722 * file I/O otherwise pages read by file I/O will be immediately
3723 * thrown out if the zone is overallocated. So we do not reclaim
3724 * if less than a specified percentage of the zone is used by
3725 * unmapped file backed pages.
3727 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3728 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3729 return ZONE_RECLAIM_FULL;
3731 if (!zone_reclaimable(zone))
3732 return ZONE_RECLAIM_FULL;
3735 * Do not scan if the allocation should not be delayed.
3737 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3738 return ZONE_RECLAIM_NOSCAN;
3741 * Only run zone reclaim on the local zone or on zones that do not
3742 * have associated processors. This will favor the local processor
3743 * over remote processors and spread off node memory allocations
3744 * as wide as possible.
3746 node_id = zone_to_nid(zone);
3747 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3748 return ZONE_RECLAIM_NOSCAN;
3750 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3751 return ZONE_RECLAIM_NOSCAN;
3753 ret = __zone_reclaim(zone, gfp_mask, order);
3754 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3756 if (!ret)
3757 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3759 return ret;
3761 #endif
3764 * page_evictable - test whether a page is evictable
3765 * @page: the page to test
3767 * Test whether page is evictable--i.e., should be placed on active/inactive
3768 * lists vs unevictable list.
3770 * Reasons page might not be evictable:
3771 * (1) page's mapping marked unevictable
3772 * (2) page is part of an mlocked VMA
3775 int page_evictable(struct page *page)
3777 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3780 #ifdef CONFIG_SHMEM
3782 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3783 * @pages: array of pages to check
3784 * @nr_pages: number of pages to check
3786 * Checks pages for evictability and moves them to the appropriate lru list.
3788 * This function is only used for SysV IPC SHM_UNLOCK.
3790 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3792 struct lruvec *lruvec;
3793 struct zone *zone = NULL;
3794 int pgscanned = 0;
3795 int pgrescued = 0;
3796 int i;
3798 for (i = 0; i < nr_pages; i++) {
3799 struct page *page = pages[i];
3800 struct zone *pagezone;
3802 pgscanned++;
3803 pagezone = page_zone(page);
3804 if (pagezone != zone) {
3805 if (zone)
3806 spin_unlock_irq(&zone->lru_lock);
3807 zone = pagezone;
3808 spin_lock_irq(&zone->lru_lock);
3810 lruvec = mem_cgroup_page_lruvec(page, zone);
3812 if (!PageLRU(page) || !PageUnevictable(page))
3813 continue;
3815 if (page_evictable(page)) {
3816 enum lru_list lru = page_lru_base_type(page);
3818 VM_BUG_ON_PAGE(PageActive(page), page);
3819 ClearPageUnevictable(page);
3820 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3821 add_page_to_lru_list(page, lruvec, lru);
3822 pgrescued++;
3826 if (zone) {
3827 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3828 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3829 spin_unlock_irq(&zone->lru_lock);
3832 #endif /* CONFIG_SHMEM */