1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/bitmap.h>
4 #include <linux/export.h>
6 #include <linux/slab.h>
7 #include <linux/spinlock.h>
8 #include <linux/xarray.h>
11 * idr_alloc_u32() - Allocate an ID.
13 * @ptr: Pointer to be associated with the new ID.
14 * @nextid: Pointer to an ID.
15 * @max: The maximum ID to allocate (inclusive).
16 * @gfp: Memory allocation flags.
18 * Allocates an unused ID in the range specified by @nextid and @max.
19 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
20 * is exclusive. The new ID is assigned to @nextid before the pointer
21 * is inserted into the IDR, so if @nextid points into the object pointed
22 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
24 * The caller should provide their own locking to ensure that two
25 * concurrent modifications to the IDR are not possible. Read-only
26 * accesses to the IDR may be done under the RCU read lock or may
27 * exclude simultaneous writers.
29 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
30 * or -ENOSPC if no free IDs could be found. If an error occurred,
31 * @nextid is unchanged.
33 int idr_alloc_u32(struct idr
*idr
, void *ptr
, u32
*nextid
,
34 unsigned long max
, gfp_t gfp
)
36 struct radix_tree_iter iter
;
38 unsigned int base
= idr
->idr_base
;
39 unsigned int id
= *nextid
;
41 if (WARN_ON_ONCE(!(idr
->idr_rt
.xa_flags
& ROOT_IS_IDR
)))
42 idr
->idr_rt
.xa_flags
|= IDR_RT_MARKER
;
44 id
= (id
< base
) ? 0 : id
- base
;
45 radix_tree_iter_init(&iter
, id
);
46 slot
= idr_get_free(&idr
->idr_rt
, &iter
, gfp
, max
- base
);
50 *nextid
= iter
.index
+ base
;
51 /* there is a memory barrier inside radix_tree_iter_replace() */
52 radix_tree_iter_replace(&idr
->idr_rt
, &iter
, slot
, ptr
);
53 radix_tree_iter_tag_clear(&idr
->idr_rt
, &iter
, IDR_FREE
);
57 EXPORT_SYMBOL_GPL(idr_alloc_u32
);
60 * idr_alloc() - Allocate an ID.
62 * @ptr: Pointer to be associated with the new ID.
63 * @start: The minimum ID (inclusive).
64 * @end: The maximum ID (exclusive).
65 * @gfp: Memory allocation flags.
67 * Allocates an unused ID in the range specified by @start and @end. If
68 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
69 * callers to use @start + N as @end as long as N is within integer range.
71 * The caller should provide their own locking to ensure that two
72 * concurrent modifications to the IDR are not possible. Read-only
73 * accesses to the IDR may be done under the RCU read lock or may
74 * exclude simultaneous writers.
76 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
77 * or -ENOSPC if no free IDs could be found.
79 int idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
, gfp_t gfp
)
84 if (WARN_ON_ONCE(start
< 0))
87 ret
= idr_alloc_u32(idr
, ptr
, &id
, end
> 0 ? end
- 1 : INT_MAX
, gfp
);
93 EXPORT_SYMBOL_GPL(idr_alloc
);
96 * idr_alloc_cyclic() - Allocate an ID cyclically.
98 * @ptr: Pointer to be associated with the new ID.
99 * @start: The minimum ID (inclusive).
100 * @end: The maximum ID (exclusive).
101 * @gfp: Memory allocation flags.
103 * Allocates an unused ID in the range specified by @nextid and @end. If
104 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
105 * callers to use @start + N as @end as long as N is within integer range.
106 * The search for an unused ID will start at the last ID allocated and will
107 * wrap around to @start if no free IDs are found before reaching @end.
109 * The caller should provide their own locking to ensure that two
110 * concurrent modifications to the IDR are not possible. Read-only
111 * accesses to the IDR may be done under the RCU read lock or may
112 * exclude simultaneous writers.
114 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
115 * or -ENOSPC if no free IDs could be found.
117 int idr_alloc_cyclic(struct idr
*idr
, void *ptr
, int start
, int end
, gfp_t gfp
)
119 u32 id
= idr
->idr_next
;
120 int err
, max
= end
> 0 ? end
- 1 : INT_MAX
;
125 err
= idr_alloc_u32(idr
, ptr
, &id
, max
, gfp
);
126 if ((err
== -ENOSPC
) && (id
> start
)) {
128 err
= idr_alloc_u32(idr
, ptr
, &id
, max
, gfp
);
133 idr
->idr_next
= id
+ 1;
136 EXPORT_SYMBOL(idr_alloc_cyclic
);
139 * idr_remove() - Remove an ID from the IDR.
143 * Removes this ID from the IDR. If the ID was not previously in the IDR,
144 * this function returns %NULL.
146 * Since this function modifies the IDR, the caller should provide their
147 * own locking to ensure that concurrent modification of the same IDR is
150 * Return: The pointer formerly associated with this ID.
152 void *idr_remove(struct idr
*idr
, unsigned long id
)
154 return radix_tree_delete_item(&idr
->idr_rt
, id
- idr
->idr_base
, NULL
);
156 EXPORT_SYMBOL_GPL(idr_remove
);
159 * idr_find() - Return pointer for given ID.
163 * Looks up the pointer associated with this ID. A %NULL pointer may
164 * indicate that @id is not allocated or that the %NULL pointer was
165 * associated with this ID.
167 * This function can be called under rcu_read_lock(), given that the leaf
168 * pointers lifetimes are correctly managed.
170 * Return: The pointer associated with this ID.
172 void *idr_find(const struct idr
*idr
, unsigned long id
)
174 return radix_tree_lookup(&idr
->idr_rt
, id
- idr
->idr_base
);
176 EXPORT_SYMBOL_GPL(idr_find
);
179 * idr_for_each() - Iterate through all stored pointers.
181 * @fn: Function to be called for each pointer.
182 * @data: Data passed to callback function.
184 * The callback function will be called for each entry in @idr, passing
185 * the ID, the entry and @data.
187 * If @fn returns anything other than %0, the iteration stops and that
188 * value is returned from this function.
190 * idr_for_each() can be called concurrently with idr_alloc() and
191 * idr_remove() if protected by RCU. Newly added entries may not be
192 * seen and deleted entries may be seen, but adding and removing entries
193 * will not cause other entries to be skipped, nor spurious ones to be seen.
195 int idr_for_each(const struct idr
*idr
,
196 int (*fn
)(int id
, void *p
, void *data
), void *data
)
198 struct radix_tree_iter iter
;
200 int base
= idr
->idr_base
;
202 radix_tree_for_each_slot(slot
, &idr
->idr_rt
, &iter
, 0) {
204 unsigned long id
= iter
.index
+ base
;
206 if (WARN_ON_ONCE(id
> INT_MAX
))
208 ret
= fn(id
, rcu_dereference_raw(*slot
), data
);
215 EXPORT_SYMBOL(idr_for_each
);
218 * idr_get_next() - Find next populated entry.
220 * @nextid: Pointer to an ID.
222 * Returns the next populated entry in the tree with an ID greater than
223 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
224 * to the ID of the found value. To use in a loop, the value pointed to by
225 * nextid must be incremented by the user.
227 void *idr_get_next(struct idr
*idr
, int *nextid
)
229 struct radix_tree_iter iter
;
232 unsigned long base
= idr
->idr_base
;
233 unsigned long id
= *nextid
;
235 id
= (id
< base
) ? 0 : id
- base
;
236 radix_tree_for_each_slot(slot
, &idr
->idr_rt
, &iter
, id
) {
237 entry
= rcu_dereference_raw(*slot
);
240 if (!xa_is_internal(entry
))
242 if (slot
!= &idr
->idr_rt
.xa_head
&& !xa_is_retry(entry
))
244 slot
= radix_tree_iter_retry(&iter
);
248 id
= iter
.index
+ base
;
250 if (WARN_ON_ONCE(id
> INT_MAX
))
256 EXPORT_SYMBOL(idr_get_next
);
259 * idr_get_next_ul() - Find next populated entry.
261 * @nextid: Pointer to an ID.
263 * Returns the next populated entry in the tree with an ID greater than
264 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
265 * to the ID of the found value. To use in a loop, the value pointed to by
266 * nextid must be incremented by the user.
268 void *idr_get_next_ul(struct idr
*idr
, unsigned long *nextid
)
270 struct radix_tree_iter iter
;
272 unsigned long base
= idr
->idr_base
;
273 unsigned long id
= *nextid
;
275 id
= (id
< base
) ? 0 : id
- base
;
276 slot
= radix_tree_iter_find(&idr
->idr_rt
, &iter
, id
);
280 *nextid
= iter
.index
+ base
;
281 return rcu_dereference_raw(*slot
);
283 EXPORT_SYMBOL(idr_get_next_ul
);
286 * idr_replace() - replace pointer for given ID.
288 * @ptr: New pointer to associate with the ID.
291 * Replace the pointer registered with an ID and return the old value.
292 * This function can be called under the RCU read lock concurrently with
293 * idr_alloc() and idr_remove() (as long as the ID being removed is not
294 * the one being replaced!).
296 * Returns: the old value on success. %-ENOENT indicates that @id was not
297 * found. %-EINVAL indicates that @ptr was not valid.
299 void *idr_replace(struct idr
*idr
, void *ptr
, unsigned long id
)
301 struct radix_tree_node
*node
;
302 void __rcu
**slot
= NULL
;
307 entry
= __radix_tree_lookup(&idr
->idr_rt
, id
, &node
, &slot
);
308 if (!slot
|| radix_tree_tag_get(&idr
->idr_rt
, id
, IDR_FREE
))
309 return ERR_PTR(-ENOENT
);
311 __radix_tree_replace(&idr
->idr_rt
, node
, slot
, ptr
);
315 EXPORT_SYMBOL(idr_replace
);
318 * DOC: IDA description
320 * The IDA is an ID allocator which does not provide the ability to
321 * associate an ID with a pointer. As such, it only needs to store one
322 * bit per ID, and so is more space efficient than an IDR. To use an IDA,
323 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
324 * then initialise it using ida_init()). To allocate a new ID, call
325 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
326 * To free an ID, call ida_free().
328 * ida_destroy() can be used to dispose of an IDA without needing to
329 * free the individual IDs in it. You can use ida_is_empty() to find
330 * out whether the IDA has any IDs currently allocated.
332 * The IDA handles its own locking. It is safe to call any of the IDA
333 * functions without synchronisation in your code.
335 * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
336 * limitation, it should be quite straightforward to raise the maximum.
342 * The IDA uses the functionality provided by the XArray to store bitmaps in
343 * each entry. The XA_FREE_MARK is only cleared when all bits in the bitmap
346 * I considered telling the XArray that each slot is an order-10 node
347 * and indexing by bit number, but the XArray can't allow a single multi-index
348 * entry in the head, which would significantly increase memory consumption
349 * for the IDA. So instead we divide the index by the number of bits in the
350 * leaf bitmap before doing a radix tree lookup.
352 * As an optimisation, if there are only a few low bits set in any given
353 * leaf, instead of allocating a 128-byte bitmap, we store the bits
354 * as a value entry. Value entries never have the XA_FREE_MARK cleared
355 * because we can always convert them into a bitmap entry.
357 * It would be possible to optimise further; once we've run out of a
358 * single 128-byte bitmap, we currently switch to a 576-byte node, put
359 * the 128-byte bitmap in the first entry and then start allocating extra
360 * 128-byte entries. We could instead use the 512 bytes of the node's
361 * data as a bitmap before moving to that scheme. I do not believe this
362 * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
363 * users of the IDA and almost none of them use more than 1024 entries.
364 * Those that do use more than the 8192 IDs that the 512 bytes would
367 * The IDA always uses a lock to alloc/free. If we add a 'test_bit'
368 * equivalent, it will still need locking. Going to RCU lookup would require
369 * using RCU to free bitmaps, and that's not trivial without embedding an
370 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
371 * bitmap, which is excessive.
375 * ida_alloc_range() - Allocate an unused ID.
377 * @min: Lowest ID to allocate.
378 * @max: Highest ID to allocate.
379 * @gfp: Memory allocation flags.
381 * Allocate an ID between @min and @max, inclusive. The allocated ID will
382 * not exceed %INT_MAX, even if @max is larger.
384 * Context: Any context.
385 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
386 * or %-ENOSPC if there are no free IDs.
388 int ida_alloc_range(struct ida
*ida
, unsigned int min
, unsigned int max
,
391 XA_STATE(xas
, &ida
->xa
, min
/ IDA_BITMAP_BITS
);
392 unsigned bit
= min
% IDA_BITMAP_BITS
;
394 struct ida_bitmap
*bitmap
, *alloc
= NULL
;
403 xas_lock_irqsave(&xas
, flags
);
405 bitmap
= xas_find_marked(&xas
, max
/ IDA_BITMAP_BITS
, XA_FREE_MARK
);
406 if (xas
.xa_index
> min
/ IDA_BITMAP_BITS
)
408 if (xas
.xa_index
* IDA_BITMAP_BITS
+ bit
> max
)
411 if (xa_is_value(bitmap
)) {
412 unsigned long tmp
= xa_to_value(bitmap
);
414 if (bit
< BITS_PER_XA_VALUE
) {
415 bit
= find_next_zero_bit(&tmp
, BITS_PER_XA_VALUE
, bit
);
416 if (xas
.xa_index
* IDA_BITMAP_BITS
+ bit
> max
)
418 if (bit
< BITS_PER_XA_VALUE
) {
420 xas_store(&xas
, xa_mk_value(tmp
));
426 bitmap
= kzalloc(sizeof(*bitmap
), GFP_NOWAIT
);
429 bitmap
->bitmap
[0] = tmp
;
430 xas_store(&xas
, bitmap
);
431 if (xas_error(&xas
)) {
432 bitmap
->bitmap
[0] = 0;
438 bit
= find_next_zero_bit(bitmap
->bitmap
, IDA_BITMAP_BITS
, bit
);
439 if (xas
.xa_index
* IDA_BITMAP_BITS
+ bit
> max
)
441 if (bit
== IDA_BITMAP_BITS
)
444 __set_bit(bit
, bitmap
->bitmap
);
445 if (bitmap_full(bitmap
->bitmap
, IDA_BITMAP_BITS
))
446 xas_clear_mark(&xas
, XA_FREE_MARK
);
448 if (bit
< BITS_PER_XA_VALUE
) {
449 bitmap
= xa_mk_value(1UL << bit
);
453 bitmap
= kzalloc(sizeof(*bitmap
), GFP_NOWAIT
);
456 __set_bit(bit
, bitmap
->bitmap
);
458 xas_store(&xas
, bitmap
);
461 xas_unlock_irqrestore(&xas
, flags
);
462 if (xas_nomem(&xas
, gfp
)) {
463 xas
.xa_index
= min
/ IDA_BITMAP_BITS
;
464 bit
= min
% IDA_BITMAP_BITS
;
470 return xas_error(&xas
);
471 return xas
.xa_index
* IDA_BITMAP_BITS
+ bit
;
473 xas_unlock_irqrestore(&xas
, flags
);
474 alloc
= kzalloc(sizeof(*bitmap
), gfp
);
477 xas_set(&xas
, min
/ IDA_BITMAP_BITS
);
478 bit
= min
% IDA_BITMAP_BITS
;
481 xas_unlock_irqrestore(&xas
, flags
);
484 EXPORT_SYMBOL(ida_alloc_range
);
487 * ida_free() - Release an allocated ID.
489 * @id: Previously allocated ID.
491 * Context: Any context.
493 void ida_free(struct ida
*ida
, unsigned int id
)
495 XA_STATE(xas
, &ida
->xa
, id
/ IDA_BITMAP_BITS
);
496 unsigned bit
= id
% IDA_BITMAP_BITS
;
497 struct ida_bitmap
*bitmap
;
502 xas_lock_irqsave(&xas
, flags
);
503 bitmap
= xas_load(&xas
);
505 if (xa_is_value(bitmap
)) {
506 unsigned long v
= xa_to_value(bitmap
);
507 if (bit
>= BITS_PER_XA_VALUE
)
509 if (!(v
& (1UL << bit
)))
514 xas_store(&xas
, xa_mk_value(v
));
516 if (!test_bit(bit
, bitmap
->bitmap
))
518 __clear_bit(bit
, bitmap
->bitmap
);
519 xas_set_mark(&xas
, XA_FREE_MARK
);
520 if (bitmap_empty(bitmap
->bitmap
, IDA_BITMAP_BITS
)) {
523 xas_store(&xas
, NULL
);
526 xas_unlock_irqrestore(&xas
, flags
);
529 xas_unlock_irqrestore(&xas
, flags
);
530 WARN(1, "ida_free called for id=%d which is not allocated.\n", id
);
532 EXPORT_SYMBOL(ida_free
);
535 * ida_destroy() - Free all IDs.
538 * Calling this function frees all IDs and releases all resources used
539 * by an IDA. When this call returns, the IDA is empty and can be reused
540 * or freed. If the IDA is already empty, there is no need to call this
543 * Context: Any context.
545 void ida_destroy(struct ida
*ida
)
547 XA_STATE(xas
, &ida
->xa
, 0);
548 struct ida_bitmap
*bitmap
;
551 xas_lock_irqsave(&xas
, flags
);
552 xas_for_each(&xas
, bitmap
, ULONG_MAX
) {
553 if (!xa_is_value(bitmap
))
555 xas_store(&xas
, NULL
);
557 xas_unlock_irqrestore(&xas
, flags
);
559 EXPORT_SYMBOL(ida_destroy
);
562 extern void xa_dump_index(unsigned long index
, unsigned int shift
);
563 #define IDA_CHUNK_SHIFT ilog2(IDA_BITMAP_BITS)
565 static void ida_dump_entry(void *entry
, unsigned long index
)
572 if (xa_is_node(entry
)) {
573 struct xa_node
*node
= xa_to_node(entry
);
574 unsigned int shift
= node
->shift
+ IDA_CHUNK_SHIFT
+
577 xa_dump_index(index
* IDA_BITMAP_BITS
, shift
);
579 for (i
= 0; i
< XA_CHUNK_SIZE
; i
++)
580 ida_dump_entry(node
->slots
[i
],
581 index
| (i
<< node
->shift
));
582 } else if (xa_is_value(entry
)) {
583 xa_dump_index(index
* IDA_BITMAP_BITS
, ilog2(BITS_PER_LONG
));
584 pr_cont("value: data %lx [%px]\n", xa_to_value(entry
), entry
);
586 struct ida_bitmap
*bitmap
= entry
;
588 xa_dump_index(index
* IDA_BITMAP_BITS
, IDA_CHUNK_SHIFT
);
589 pr_cont("bitmap: %p data", bitmap
);
590 for (i
= 0; i
< IDA_BITMAP_LONGS
; i
++)
591 pr_cont(" %lx", bitmap
->bitmap
[i
]);
596 static void ida_dump(struct ida
*ida
)
598 struct xarray
*xa
= &ida
->xa
;
599 pr_debug("ida: %p node %p free %d\n", ida
, xa
->xa_head
,
600 xa
->xa_flags
>> ROOT_TAG_SHIFT
);
601 ida_dump_entry(xa
->xa_head
, 0);