Linux 3.2.90
[linux/fpc-iii.git] / mm / huge_memory.c
blobd6e6cafdb2c9a74904853cd63f3220263526e7bc
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
68 /**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
74 struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
80 /**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
86 * There is only the one khugepaged_scan instance of this cursor structure.
88 struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
93 static struct khugepaged_scan khugepaged_scan = {
94 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
98 static int set_recommended_min_free_kbytes(void)
100 struct zone *zone;
101 int nr_zones = 0;
102 unsigned long recommended_min;
103 extern int min_free_kbytes;
105 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 &transparent_hugepage_flags) &&
107 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 &transparent_hugepage_flags))
109 return 0;
111 for_each_populated_zone(zone)
112 nr_zones++;
114 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 recommended_min = pageblock_nr_pages * nr_zones * 2;
118 * Make sure that on average at least two pageblocks are almost free
119 * of another type, one for a migratetype to fall back to and a
120 * second to avoid subsequent fallbacks of other types There are 3
121 * MIGRATE_TYPES we care about.
123 recommended_min += pageblock_nr_pages * nr_zones *
124 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126 /* don't ever allow to reserve more than 5% of the lowmem */
127 recommended_min = min(recommended_min,
128 (unsigned long) nr_free_buffer_pages() / 20);
129 recommended_min <<= (PAGE_SHIFT-10);
131 if (recommended_min > min_free_kbytes)
132 min_free_kbytes = recommended_min;
133 setup_per_zone_wmarks();
134 return 0;
136 late_initcall(set_recommended_min_free_kbytes);
138 static int start_khugepaged(void)
140 int err = 0;
141 if (khugepaged_enabled()) {
142 int wakeup;
143 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144 err = -ENOMEM;
145 goto out;
147 mutex_lock(&khugepaged_mutex);
148 if (!khugepaged_thread)
149 khugepaged_thread = kthread_run(khugepaged, NULL,
150 "khugepaged");
151 if (unlikely(IS_ERR(khugepaged_thread))) {
152 printk(KERN_ERR
153 "khugepaged: kthread_run(khugepaged) failed\n");
154 err = PTR_ERR(khugepaged_thread);
155 khugepaged_thread = NULL;
157 wakeup = !list_empty(&khugepaged_scan.mm_head);
158 mutex_unlock(&khugepaged_mutex);
159 if (wakeup)
160 wake_up_interruptible(&khugepaged_wait);
162 set_recommended_min_free_kbytes();
163 } else
164 /* wakeup to exit */
165 wake_up_interruptible(&khugepaged_wait);
166 out:
167 return err;
170 #ifdef CONFIG_SYSFS
172 static ssize_t double_flag_show(struct kobject *kobj,
173 struct kobj_attribute *attr, char *buf,
174 enum transparent_hugepage_flag enabled,
175 enum transparent_hugepage_flag req_madv)
177 if (test_bit(enabled, &transparent_hugepage_flags)) {
178 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179 return sprintf(buf, "[always] madvise never\n");
180 } else if (test_bit(req_madv, &transparent_hugepage_flags))
181 return sprintf(buf, "always [madvise] never\n");
182 else
183 return sprintf(buf, "always madvise [never]\n");
185 static ssize_t double_flag_store(struct kobject *kobj,
186 struct kobj_attribute *attr,
187 const char *buf, size_t count,
188 enum transparent_hugepage_flag enabled,
189 enum transparent_hugepage_flag req_madv)
191 if (!memcmp("always", buf,
192 min(sizeof("always")-1, count))) {
193 set_bit(enabled, &transparent_hugepage_flags);
194 clear_bit(req_madv, &transparent_hugepage_flags);
195 } else if (!memcmp("madvise", buf,
196 min(sizeof("madvise")-1, count))) {
197 clear_bit(enabled, &transparent_hugepage_flags);
198 set_bit(req_madv, &transparent_hugepage_flags);
199 } else if (!memcmp("never", buf,
200 min(sizeof("never")-1, count))) {
201 clear_bit(enabled, &transparent_hugepage_flags);
202 clear_bit(req_madv, &transparent_hugepage_flags);
203 } else
204 return -EINVAL;
206 return count;
209 static ssize_t enabled_show(struct kobject *kobj,
210 struct kobj_attribute *attr, char *buf)
212 return double_flag_show(kobj, attr, buf,
213 TRANSPARENT_HUGEPAGE_FLAG,
214 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
216 static ssize_t enabled_store(struct kobject *kobj,
217 struct kobj_attribute *attr,
218 const char *buf, size_t count)
220 ssize_t ret;
222 ret = double_flag_store(kobj, attr, buf, count,
223 TRANSPARENT_HUGEPAGE_FLAG,
224 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
226 if (ret > 0) {
227 int err = start_khugepaged();
228 if (err)
229 ret = err;
232 if (ret > 0 &&
233 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234 &transparent_hugepage_flags) ||
235 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236 &transparent_hugepage_flags)))
237 set_recommended_min_free_kbytes();
239 return ret;
241 static struct kobj_attribute enabled_attr =
242 __ATTR(enabled, 0644, enabled_show, enabled_store);
244 static ssize_t single_flag_show(struct kobject *kobj,
245 struct kobj_attribute *attr, char *buf,
246 enum transparent_hugepage_flag flag)
248 return sprintf(buf, "%d\n",
249 !!test_bit(flag, &transparent_hugepage_flags));
252 static ssize_t single_flag_store(struct kobject *kobj,
253 struct kobj_attribute *attr,
254 const char *buf, size_t count,
255 enum transparent_hugepage_flag flag)
257 unsigned long value;
258 int ret;
260 ret = kstrtoul(buf, 10, &value);
261 if (ret < 0)
262 return ret;
263 if (value > 1)
264 return -EINVAL;
266 if (value)
267 set_bit(flag, &transparent_hugepage_flags);
268 else
269 clear_bit(flag, &transparent_hugepage_flags);
271 return count;
275 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277 * memory just to allocate one more hugepage.
279 static ssize_t defrag_show(struct kobject *kobj,
280 struct kobj_attribute *attr, char *buf)
282 return double_flag_show(kobj, attr, buf,
283 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
286 static ssize_t defrag_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count)
290 return double_flag_store(kobj, attr, buf, count,
291 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
294 static struct kobj_attribute defrag_attr =
295 __ATTR(defrag, 0644, defrag_show, defrag_store);
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
301 return single_flag_show(kobj, attr, buf,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
304 static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
308 return single_flag_store(kobj, attr, buf, count,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
311 static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
315 static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
318 #ifdef CONFIG_DEBUG_VM
319 &debug_cow_attr.attr,
320 #endif
321 NULL,
324 static struct attribute_group hugepage_attr_group = {
325 .attrs = hugepage_attr,
328 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329 struct kobj_attribute *attr,
330 char *buf)
332 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
335 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336 struct kobj_attribute *attr,
337 const char *buf, size_t count)
339 unsigned long msecs;
340 int err;
342 err = strict_strtoul(buf, 10, &msecs);
343 if (err || msecs > UINT_MAX)
344 return -EINVAL;
346 khugepaged_scan_sleep_millisecs = msecs;
347 wake_up_interruptible(&khugepaged_wait);
349 return count;
351 static struct kobj_attribute scan_sleep_millisecs_attr =
352 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353 scan_sleep_millisecs_store);
355 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 char *buf)
359 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
362 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363 struct kobj_attribute *attr,
364 const char *buf, size_t count)
366 unsigned long msecs;
367 int err;
369 err = strict_strtoul(buf, 10, &msecs);
370 if (err || msecs > UINT_MAX)
371 return -EINVAL;
373 khugepaged_alloc_sleep_millisecs = msecs;
374 wake_up_interruptible(&khugepaged_wait);
376 return count;
378 static struct kobj_attribute alloc_sleep_millisecs_attr =
379 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380 alloc_sleep_millisecs_store);
382 static ssize_t pages_to_scan_show(struct kobject *kobj,
383 struct kobj_attribute *attr,
384 char *buf)
386 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
388 static ssize_t pages_to_scan_store(struct kobject *kobj,
389 struct kobj_attribute *attr,
390 const char *buf, size_t count)
392 int err;
393 unsigned long pages;
395 err = strict_strtoul(buf, 10, &pages);
396 if (err || !pages || pages > UINT_MAX)
397 return -EINVAL;
399 khugepaged_pages_to_scan = pages;
401 return count;
403 static struct kobj_attribute pages_to_scan_attr =
404 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
405 pages_to_scan_store);
407 static ssize_t pages_collapsed_show(struct kobject *kobj,
408 struct kobj_attribute *attr,
409 char *buf)
411 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
413 static struct kobj_attribute pages_collapsed_attr =
414 __ATTR_RO(pages_collapsed);
416 static ssize_t full_scans_show(struct kobject *kobj,
417 struct kobj_attribute *attr,
418 char *buf)
420 return sprintf(buf, "%u\n", khugepaged_full_scans);
422 static struct kobj_attribute full_scans_attr =
423 __ATTR_RO(full_scans);
425 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426 struct kobj_attribute *attr, char *buf)
428 return single_flag_show(kobj, attr, buf,
429 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
431 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432 struct kobj_attribute *attr,
433 const char *buf, size_t count)
435 return single_flag_store(kobj, attr, buf, count,
436 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
438 static struct kobj_attribute khugepaged_defrag_attr =
439 __ATTR(defrag, 0644, khugepaged_defrag_show,
440 khugepaged_defrag_store);
443 * max_ptes_none controls if khugepaged should collapse hugepages over
444 * any unmapped ptes in turn potentially increasing the memory
445 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446 * reduce the available free memory in the system as it
447 * runs. Increasing max_ptes_none will instead potentially reduce the
448 * free memory in the system during the khugepaged scan.
450 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451 struct kobj_attribute *attr,
452 char *buf)
454 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
456 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457 struct kobj_attribute *attr,
458 const char *buf, size_t count)
460 int err;
461 unsigned long max_ptes_none;
463 err = strict_strtoul(buf, 10, &max_ptes_none);
464 if (err || max_ptes_none > HPAGE_PMD_NR-1)
465 return -EINVAL;
467 khugepaged_max_ptes_none = max_ptes_none;
469 return count;
471 static struct kobj_attribute khugepaged_max_ptes_none_attr =
472 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473 khugepaged_max_ptes_none_store);
475 static struct attribute *khugepaged_attr[] = {
476 &khugepaged_defrag_attr.attr,
477 &khugepaged_max_ptes_none_attr.attr,
478 &pages_to_scan_attr.attr,
479 &pages_collapsed_attr.attr,
480 &full_scans_attr.attr,
481 &scan_sleep_millisecs_attr.attr,
482 &alloc_sleep_millisecs_attr.attr,
483 NULL,
486 static struct attribute_group khugepaged_attr_group = {
487 .attrs = khugepaged_attr,
488 .name = "khugepaged",
490 #endif /* CONFIG_SYSFS */
492 static int __init hugepage_init(void)
494 int err;
495 #ifdef CONFIG_SYSFS
496 static struct kobject *hugepage_kobj;
497 #endif
499 err = -EINVAL;
500 if (!has_transparent_hugepage()) {
501 transparent_hugepage_flags = 0;
502 goto out;
505 #ifdef CONFIG_SYSFS
506 err = -ENOMEM;
507 hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
508 if (unlikely(!hugepage_kobj)) {
509 printk(KERN_ERR "hugepage: failed kobject create\n");
510 goto out;
513 err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
514 if (err) {
515 printk(KERN_ERR "hugepage: failed register hugeage group\n");
516 goto out;
519 err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
520 if (err) {
521 printk(KERN_ERR "hugepage: failed register hugeage group\n");
522 goto out;
524 #endif
526 err = khugepaged_slab_init();
527 if (err)
528 goto out;
530 err = mm_slots_hash_init();
531 if (err) {
532 khugepaged_slab_free();
533 goto out;
537 * By default disable transparent hugepages on smaller systems,
538 * where the extra memory used could hurt more than TLB overhead
539 * is likely to save. The admin can still enable it through /sys.
541 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
542 transparent_hugepage_flags = 0;
544 start_khugepaged();
546 set_recommended_min_free_kbytes();
548 out:
549 return err;
551 module_init(hugepage_init)
553 static int __init setup_transparent_hugepage(char *str)
555 int ret = 0;
556 if (!str)
557 goto out;
558 if (!strcmp(str, "always")) {
559 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
560 &transparent_hugepage_flags);
561 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
562 &transparent_hugepage_flags);
563 ret = 1;
564 } else if (!strcmp(str, "madvise")) {
565 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
566 &transparent_hugepage_flags);
567 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
568 &transparent_hugepage_flags);
569 ret = 1;
570 } else if (!strcmp(str, "never")) {
571 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
572 &transparent_hugepage_flags);
573 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
574 &transparent_hugepage_flags);
575 ret = 1;
577 out:
578 if (!ret)
579 printk(KERN_WARNING
580 "transparent_hugepage= cannot parse, ignored\n");
581 return ret;
583 __setup("transparent_hugepage=", setup_transparent_hugepage);
585 static void prepare_pmd_huge_pte(pgtable_t pgtable,
586 struct mm_struct *mm)
588 assert_spin_locked(&mm->page_table_lock);
590 /* FIFO */
591 if (!mm->pmd_huge_pte)
592 INIT_LIST_HEAD(&pgtable->lru);
593 else
594 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
595 mm->pmd_huge_pte = pgtable;
598 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
600 if (likely(vma->vm_flags & VM_WRITE))
601 pmd = pmd_mkwrite(pmd);
602 return pmd;
605 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
606 struct vm_area_struct *vma,
607 unsigned long haddr, pmd_t *pmd,
608 struct page *page)
610 int ret = 0;
611 pgtable_t pgtable;
613 VM_BUG_ON(!PageCompound(page));
614 pgtable = pte_alloc_one(mm, haddr);
615 if (unlikely(!pgtable)) {
616 mem_cgroup_uncharge_page(page);
617 put_page(page);
618 return VM_FAULT_OOM;
621 clear_huge_page(page, haddr, HPAGE_PMD_NR);
622 __SetPageUptodate(page);
624 spin_lock(&mm->page_table_lock);
625 if (unlikely(!pmd_none(*pmd))) {
626 spin_unlock(&mm->page_table_lock);
627 mem_cgroup_uncharge_page(page);
628 put_page(page);
629 pte_free(mm, pgtable);
630 } else {
631 pmd_t entry;
632 entry = mk_pmd(page, vma->vm_page_prot);
633 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
634 entry = pmd_mkhuge(entry);
636 * The spinlocking to take the lru_lock inside
637 * page_add_new_anon_rmap() acts as a full memory
638 * barrier to be sure clear_huge_page writes become
639 * visible after the set_pmd_at() write.
641 page_add_new_anon_rmap(page, vma, haddr);
642 set_pmd_at(mm, haddr, pmd, entry);
643 prepare_pmd_huge_pte(pgtable, mm);
644 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
645 mm->nr_ptes++;
646 spin_unlock(&mm->page_table_lock);
649 return ret;
652 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
654 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
657 static inline struct page *alloc_hugepage_vma(int defrag,
658 struct vm_area_struct *vma,
659 unsigned long haddr, int nd,
660 gfp_t extra_gfp)
662 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
663 HPAGE_PMD_ORDER, vma, haddr, nd);
666 #ifndef CONFIG_NUMA
667 static inline struct page *alloc_hugepage(int defrag)
669 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
670 HPAGE_PMD_ORDER);
672 #endif
674 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
675 unsigned long address, pmd_t *pmd,
676 unsigned int flags)
678 struct page *page;
679 unsigned long haddr = address & HPAGE_PMD_MASK;
680 pte_t *pte;
682 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
683 if (unlikely(anon_vma_prepare(vma)))
684 return VM_FAULT_OOM;
685 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
686 return VM_FAULT_OOM;
687 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
688 vma, haddr, numa_node_id(), 0);
689 if (unlikely(!page)) {
690 count_vm_event(THP_FAULT_FALLBACK);
691 goto out;
693 count_vm_event(THP_FAULT_ALLOC);
694 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
695 put_page(page);
696 goto out;
699 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
701 out:
703 * Use __pte_alloc instead of pte_alloc_map, because we can't
704 * run pte_offset_map on the pmd, if an huge pmd could
705 * materialize from under us from a different thread.
707 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
708 return VM_FAULT_OOM;
709 /* if an huge pmd materialized from under us just retry later */
710 if (unlikely(pmd_trans_huge(*pmd)))
711 return 0;
713 * A regular pmd is established and it can't morph into a huge pmd
714 * from under us anymore at this point because we hold the mmap_sem
715 * read mode and khugepaged takes it in write mode. So now it's
716 * safe to run pte_offset_map().
718 pte = pte_offset_map(pmd, address);
719 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
722 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
723 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
724 struct vm_area_struct *vma)
726 struct page *src_page;
727 pmd_t pmd;
728 pgtable_t pgtable;
729 int ret;
731 ret = -ENOMEM;
732 pgtable = pte_alloc_one(dst_mm, addr);
733 if (unlikely(!pgtable))
734 goto out;
736 spin_lock(&dst_mm->page_table_lock);
737 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
739 ret = -EAGAIN;
740 pmd = *src_pmd;
741 if (unlikely(!pmd_trans_huge(pmd))) {
742 pte_free(dst_mm, pgtable);
743 goto out_unlock;
745 if (unlikely(pmd_trans_splitting(pmd))) {
746 /* split huge page running from under us */
747 spin_unlock(&src_mm->page_table_lock);
748 spin_unlock(&dst_mm->page_table_lock);
749 pte_free(dst_mm, pgtable);
751 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
752 goto out;
754 src_page = pmd_page(pmd);
755 VM_BUG_ON(!PageHead(src_page));
756 get_page(src_page);
757 page_dup_rmap(src_page);
758 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
760 pmdp_set_wrprotect(src_mm, addr, src_pmd);
761 pmd = pmd_mkold(pmd_wrprotect(pmd));
762 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
763 prepare_pmd_huge_pte(pgtable, dst_mm);
764 dst_mm->nr_ptes++;
766 ret = 0;
767 out_unlock:
768 spin_unlock(&src_mm->page_table_lock);
769 spin_unlock(&dst_mm->page_table_lock);
770 out:
771 return ret;
774 /* no "address" argument so destroys page coloring of some arch */
775 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
777 pgtable_t pgtable;
779 assert_spin_locked(&mm->page_table_lock);
781 /* FIFO */
782 pgtable = mm->pmd_huge_pte;
783 if (list_empty(&pgtable->lru))
784 mm->pmd_huge_pte = NULL;
785 else {
786 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
787 struct page, lru);
788 list_del(&pgtable->lru);
790 return pgtable;
793 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
794 struct vm_area_struct *vma,
795 unsigned long address,
796 pmd_t *pmd, pmd_t orig_pmd,
797 struct page *page,
798 unsigned long haddr)
800 pgtable_t pgtable;
801 pmd_t _pmd;
802 int ret = 0, i;
803 struct page **pages;
805 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
806 GFP_KERNEL);
807 if (unlikely(!pages)) {
808 ret |= VM_FAULT_OOM;
809 goto out;
812 for (i = 0; i < HPAGE_PMD_NR; i++) {
813 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
814 __GFP_OTHER_NODE,
815 vma, address, page_to_nid(page));
816 if (unlikely(!pages[i] ||
817 mem_cgroup_newpage_charge(pages[i], mm,
818 GFP_KERNEL))) {
819 if (pages[i])
820 put_page(pages[i]);
821 mem_cgroup_uncharge_start();
822 while (--i >= 0) {
823 mem_cgroup_uncharge_page(pages[i]);
824 put_page(pages[i]);
826 mem_cgroup_uncharge_end();
827 kfree(pages);
828 ret |= VM_FAULT_OOM;
829 goto out;
833 for (i = 0; i < HPAGE_PMD_NR; i++) {
834 copy_user_highpage(pages[i], page + i,
835 haddr + PAGE_SIZE * i, vma);
836 __SetPageUptodate(pages[i]);
837 cond_resched();
840 spin_lock(&mm->page_table_lock);
841 if (unlikely(!pmd_same(*pmd, orig_pmd)))
842 goto out_free_pages;
843 VM_BUG_ON(!PageHead(page));
845 pmdp_clear_flush_notify(vma, haddr, pmd);
846 /* leave pmd empty until pte is filled */
848 pgtable = get_pmd_huge_pte(mm);
849 pmd_populate(mm, &_pmd, pgtable);
851 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
852 pte_t *pte, entry;
853 entry = mk_pte(pages[i], vma->vm_page_prot);
854 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
855 page_add_new_anon_rmap(pages[i], vma, haddr);
856 pte = pte_offset_map(&_pmd, haddr);
857 VM_BUG_ON(!pte_none(*pte));
858 set_pte_at(mm, haddr, pte, entry);
859 pte_unmap(pte);
861 kfree(pages);
863 smp_wmb(); /* make pte visible before pmd */
864 pmd_populate(mm, pmd, pgtable);
865 page_remove_rmap(page);
866 spin_unlock(&mm->page_table_lock);
868 ret |= VM_FAULT_WRITE;
869 put_page(page);
871 out:
872 return ret;
874 out_free_pages:
875 spin_unlock(&mm->page_table_lock);
876 mem_cgroup_uncharge_start();
877 for (i = 0; i < HPAGE_PMD_NR; i++) {
878 mem_cgroup_uncharge_page(pages[i]);
879 put_page(pages[i]);
881 mem_cgroup_uncharge_end();
882 kfree(pages);
883 goto out;
886 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
887 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
889 int ret = 0;
890 struct page *page, *new_page;
891 unsigned long haddr;
893 VM_BUG_ON(!vma->anon_vma);
894 spin_lock(&mm->page_table_lock);
895 if (unlikely(!pmd_same(*pmd, orig_pmd)))
896 goto out_unlock;
898 page = pmd_page(orig_pmd);
899 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
900 haddr = address & HPAGE_PMD_MASK;
901 if (page_mapcount(page) == 1) {
902 pmd_t entry;
903 entry = pmd_mkyoung(orig_pmd);
904 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
905 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
906 update_mmu_cache(vma, address, entry);
907 ret |= VM_FAULT_WRITE;
908 goto out_unlock;
910 get_page(page);
911 spin_unlock(&mm->page_table_lock);
913 if (transparent_hugepage_enabled(vma) &&
914 !transparent_hugepage_debug_cow())
915 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
916 vma, haddr, numa_node_id(), 0);
917 else
918 new_page = NULL;
920 if (unlikely(!new_page)) {
921 count_vm_event(THP_FAULT_FALLBACK);
922 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
923 pmd, orig_pmd, page, haddr);
924 if (ret & VM_FAULT_OOM)
925 split_huge_page(page);
926 put_page(page);
927 goto out;
929 count_vm_event(THP_FAULT_ALLOC);
931 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
932 put_page(new_page);
933 split_huge_page(page);
934 put_page(page);
935 ret |= VM_FAULT_OOM;
936 goto out;
939 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
940 __SetPageUptodate(new_page);
942 spin_lock(&mm->page_table_lock);
943 put_page(page);
944 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
945 mem_cgroup_uncharge_page(new_page);
946 put_page(new_page);
947 } else {
948 pmd_t entry;
949 VM_BUG_ON(!PageHead(page));
950 entry = mk_pmd(new_page, vma->vm_page_prot);
951 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
952 entry = pmd_mkhuge(entry);
953 pmdp_clear_flush_notify(vma, haddr, pmd);
954 page_add_new_anon_rmap(new_page, vma, haddr);
955 set_pmd_at(mm, haddr, pmd, entry);
956 update_mmu_cache(vma, address, entry);
957 page_remove_rmap(page);
958 put_page(page);
959 ret |= VM_FAULT_WRITE;
961 out_unlock:
962 spin_unlock(&mm->page_table_lock);
963 out:
964 return ret;
968 * FOLL_FORCE can write to even unwritable pmd's, but only
969 * after we've gone through a COW cycle and they are dirty.
971 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
972 unsigned int flags)
974 return pmd_write(pmd) ||
975 ((flags & FOLL_FORCE) && (flags & FOLL_COW) &&
976 page && PageAnon(page));
979 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
980 unsigned long addr,
981 pmd_t *pmd,
982 unsigned int flags)
984 struct page *page = NULL;
986 assert_spin_locked(&mm->page_table_lock);
988 page = pmd_page(*pmd);
989 VM_BUG_ON(!PageHead(page));
991 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, page, flags))
992 return NULL;
994 if (flags & FOLL_TOUCH) {
995 pmd_t _pmd;
997 * We should set the dirty bit only for FOLL_WRITE but
998 * for now the dirty bit in the pmd is meaningless.
999 * And if the dirty bit will become meaningful and
1000 * we'll only set it with FOLL_WRITE, an atomic
1001 * set_bit will be required on the pmd to set the
1002 * young bit, instead of the current set_pmd_at.
1004 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1005 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1007 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1008 VM_BUG_ON(!PageCompound(page));
1009 if (flags & FOLL_GET)
1010 get_page_foll(page);
1012 out:
1013 return page;
1016 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1017 pmd_t *pmd)
1019 int ret = 0;
1021 spin_lock(&tlb->mm->page_table_lock);
1022 if (likely(pmd_trans_huge(*pmd))) {
1023 if (unlikely(pmd_trans_splitting(*pmd))) {
1024 spin_unlock(&tlb->mm->page_table_lock);
1025 wait_split_huge_page(vma->anon_vma,
1026 pmd);
1027 } else {
1028 struct page *page;
1029 pgtable_t pgtable;
1030 pgtable = get_pmd_huge_pte(tlb->mm);
1031 page = pmd_page(*pmd);
1032 pmd_clear(pmd);
1033 page_remove_rmap(page);
1034 VM_BUG_ON(page_mapcount(page) < 0);
1035 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1036 VM_BUG_ON(!PageHead(page));
1037 tlb->mm->nr_ptes--;
1038 spin_unlock(&tlb->mm->page_table_lock);
1039 tlb_remove_page(tlb, page);
1040 pte_free(tlb->mm, pgtable);
1041 ret = 1;
1043 } else
1044 spin_unlock(&tlb->mm->page_table_lock);
1046 return ret;
1049 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1050 unsigned long addr, unsigned long end,
1051 unsigned char *vec)
1053 int ret = 0;
1055 spin_lock(&vma->vm_mm->page_table_lock);
1056 if (likely(pmd_trans_huge(*pmd))) {
1057 ret = !pmd_trans_splitting(*pmd);
1058 spin_unlock(&vma->vm_mm->page_table_lock);
1059 if (unlikely(!ret))
1060 wait_split_huge_page(vma->anon_vma, pmd);
1061 else {
1063 * All logical pages in the range are present
1064 * if backed by a huge page.
1066 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1068 } else
1069 spin_unlock(&vma->vm_mm->page_table_lock);
1071 return ret;
1074 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1075 unsigned long old_addr,
1076 unsigned long new_addr, unsigned long old_end,
1077 pmd_t *old_pmd, pmd_t *new_pmd)
1079 int ret = 0;
1080 pmd_t pmd;
1082 struct mm_struct *mm = vma->vm_mm;
1084 if ((old_addr & ~HPAGE_PMD_MASK) ||
1085 (new_addr & ~HPAGE_PMD_MASK) ||
1086 old_end - old_addr < HPAGE_PMD_SIZE ||
1087 (new_vma->vm_flags & VM_NOHUGEPAGE))
1088 goto out;
1091 * The destination pmd shouldn't be established, free_pgtables()
1092 * should have release it.
1094 if (WARN_ON(!pmd_none(*new_pmd))) {
1095 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1096 goto out;
1099 spin_lock(&mm->page_table_lock);
1100 if (likely(pmd_trans_huge(*old_pmd))) {
1101 if (pmd_trans_splitting(*old_pmd)) {
1102 spin_unlock(&mm->page_table_lock);
1103 wait_split_huge_page(vma->anon_vma, old_pmd);
1104 ret = -1;
1105 } else {
1106 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1107 VM_BUG_ON(!pmd_none(*new_pmd));
1108 set_pmd_at(mm, new_addr, new_pmd, pmd);
1109 spin_unlock(&mm->page_table_lock);
1110 ret = 1;
1112 } else {
1113 spin_unlock(&mm->page_table_lock);
1115 out:
1116 return ret;
1119 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1120 unsigned long addr, pgprot_t newprot)
1122 struct mm_struct *mm = vma->vm_mm;
1123 int ret = 0;
1125 spin_lock(&mm->page_table_lock);
1126 if (likely(pmd_trans_huge(*pmd))) {
1127 if (unlikely(pmd_trans_splitting(*pmd))) {
1128 spin_unlock(&mm->page_table_lock);
1129 wait_split_huge_page(vma->anon_vma, pmd);
1130 } else {
1131 pmd_t entry;
1133 entry = pmdp_get_and_clear(mm, addr, pmd);
1134 entry = pmd_modify(entry, newprot);
1135 set_pmd_at(mm, addr, pmd, entry);
1136 spin_unlock(&vma->vm_mm->page_table_lock);
1137 flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1138 ret = 1;
1140 } else
1141 spin_unlock(&vma->vm_mm->page_table_lock);
1143 return ret;
1146 pmd_t *page_check_address_pmd(struct page *page,
1147 struct mm_struct *mm,
1148 unsigned long address,
1149 enum page_check_address_pmd_flag flag)
1151 pgd_t *pgd;
1152 pud_t *pud;
1153 pmd_t *pmd, *ret = NULL;
1155 if (address & ~HPAGE_PMD_MASK)
1156 goto out;
1158 pgd = pgd_offset(mm, address);
1159 if (!pgd_present(*pgd))
1160 goto out;
1162 pud = pud_offset(pgd, address);
1163 if (!pud_present(*pud))
1164 goto out;
1166 pmd = pmd_offset(pud, address);
1167 if (pmd_none(*pmd))
1168 goto out;
1169 if (pmd_page(*pmd) != page)
1170 goto out;
1172 * split_vma() may create temporary aliased mappings. There is
1173 * no risk as long as all huge pmd are found and have their
1174 * splitting bit set before __split_huge_page_refcount
1175 * runs. Finding the same huge pmd more than once during the
1176 * same rmap walk is not a problem.
1178 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1179 pmd_trans_splitting(*pmd))
1180 goto out;
1181 if (pmd_trans_huge(*pmd)) {
1182 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1183 !pmd_trans_splitting(*pmd));
1184 ret = pmd;
1186 out:
1187 return ret;
1190 static int __split_huge_page_splitting(struct page *page,
1191 struct vm_area_struct *vma,
1192 unsigned long address)
1194 struct mm_struct *mm = vma->vm_mm;
1195 pmd_t *pmd;
1196 int ret = 0;
1198 spin_lock(&mm->page_table_lock);
1199 pmd = page_check_address_pmd(page, mm, address,
1200 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1201 if (pmd) {
1203 * We can't temporarily set the pmd to null in order
1204 * to split it, the pmd must remain marked huge at all
1205 * times or the VM won't take the pmd_trans_huge paths
1206 * and it won't wait on the anon_vma->root->mutex to
1207 * serialize against split_huge_page*.
1209 pmdp_splitting_flush_notify(vma, address, pmd);
1210 ret = 1;
1212 spin_unlock(&mm->page_table_lock);
1214 return ret;
1217 static void __split_huge_page_refcount(struct page *page)
1219 int i;
1220 unsigned long head_index = page->index;
1221 struct zone *zone = page_zone(page);
1222 int zonestat;
1223 int tail_count = 0;
1225 /* prevent PageLRU to go away from under us, and freeze lru stats */
1226 spin_lock_irq(&zone->lru_lock);
1227 compound_lock(page);
1229 for (i = 1; i < HPAGE_PMD_NR; i++) {
1230 struct page *page_tail = page + i;
1232 /* tail_page->_mapcount cannot change */
1233 BUG_ON(page_mapcount(page_tail) < 0);
1234 tail_count += page_mapcount(page_tail);
1235 /* check for overflow */
1236 BUG_ON(tail_count < 0);
1237 BUG_ON(atomic_read(&page_tail->_count) != 0);
1239 * tail_page->_count is zero and not changing from
1240 * under us. But get_page_unless_zero() may be running
1241 * from under us on the tail_page. If we used
1242 * atomic_set() below instead of atomic_add(), we
1243 * would then run atomic_set() concurrently with
1244 * get_page_unless_zero(), and atomic_set() is
1245 * implemented in C not using locked ops. spin_unlock
1246 * on x86 sometime uses locked ops because of PPro
1247 * errata 66, 92, so unless somebody can guarantee
1248 * atomic_set() here would be safe on all archs (and
1249 * not only on x86), it's safer to use atomic_add().
1251 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1252 &page_tail->_count);
1254 /* after clearing PageTail the gup refcount can be released */
1255 smp_mb();
1258 * retain hwpoison flag of the poisoned tail page:
1259 * fix for the unsuitable process killed on Guest Machine(KVM)
1260 * by the memory-failure.
1262 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1263 page_tail->flags |= (page->flags &
1264 ((1L << PG_referenced) |
1265 (1L << PG_swapbacked) |
1266 (1L << PG_mlocked) |
1267 (1L << PG_uptodate)));
1268 page_tail->flags |= (1L << PG_dirty);
1270 /* clear PageTail before overwriting first_page */
1271 smp_wmb();
1274 * __split_huge_page_splitting() already set the
1275 * splitting bit in all pmd that could map this
1276 * hugepage, that will ensure no CPU can alter the
1277 * mapcount on the head page. The mapcount is only
1278 * accounted in the head page and it has to be
1279 * transferred to all tail pages in the below code. So
1280 * for this code to be safe, the split the mapcount
1281 * can't change. But that doesn't mean userland can't
1282 * keep changing and reading the page contents while
1283 * we transfer the mapcount, so the pmd splitting
1284 * status is achieved setting a reserved bit in the
1285 * pmd, not by clearing the present bit.
1287 page_tail->_mapcount = page->_mapcount;
1289 BUG_ON(page_tail->mapping);
1290 page_tail->mapping = page->mapping;
1292 page_tail->index = ++head_index;
1294 BUG_ON(!PageAnon(page_tail));
1295 BUG_ON(!PageUptodate(page_tail));
1296 BUG_ON(!PageDirty(page_tail));
1297 BUG_ON(!PageSwapBacked(page_tail));
1299 mem_cgroup_split_huge_fixup(page, page_tail);
1301 lru_add_page_tail(zone, page, page_tail);
1303 atomic_sub(tail_count, &page->_count);
1304 BUG_ON(atomic_read(&page->_count) <= 0);
1306 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1307 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1310 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1311 * so adjust those appropriately if this page is on the LRU.
1313 if (PageLRU(page)) {
1314 zonestat = NR_LRU_BASE + page_lru(page);
1315 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1318 ClearPageCompound(page);
1319 compound_unlock(page);
1320 spin_unlock_irq(&zone->lru_lock);
1322 for (i = 1; i < HPAGE_PMD_NR; i++) {
1323 struct page *page_tail = page + i;
1324 BUG_ON(page_count(page_tail) <= 0);
1326 * Tail pages may be freed if there wasn't any mapping
1327 * like if add_to_swap() is running on a lru page that
1328 * had its mapping zapped. And freeing these pages
1329 * requires taking the lru_lock so we do the put_page
1330 * of the tail pages after the split is complete.
1332 put_page(page_tail);
1336 * Only the head page (now become a regular page) is required
1337 * to be pinned by the caller.
1339 BUG_ON(page_count(page) <= 0);
1342 static int __split_huge_page_map(struct page *page,
1343 struct vm_area_struct *vma,
1344 unsigned long address)
1346 struct mm_struct *mm = vma->vm_mm;
1347 pmd_t *pmd, _pmd;
1348 int ret = 0, i;
1349 pgtable_t pgtable;
1350 unsigned long haddr;
1352 spin_lock(&mm->page_table_lock);
1353 pmd = page_check_address_pmd(page, mm, address,
1354 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1355 if (pmd) {
1356 pgtable = get_pmd_huge_pte(mm);
1357 pmd_populate(mm, &_pmd, pgtable);
1359 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1360 i++, haddr += PAGE_SIZE) {
1361 pte_t *pte, entry;
1362 BUG_ON(PageCompound(page+i));
1363 entry = mk_pte(page + i, vma->vm_page_prot);
1364 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1365 if (!pmd_write(*pmd))
1366 entry = pte_wrprotect(entry);
1367 else
1368 BUG_ON(page_mapcount(page) != 1);
1369 if (!pmd_young(*pmd))
1370 entry = pte_mkold(entry);
1371 pte = pte_offset_map(&_pmd, haddr);
1372 BUG_ON(!pte_none(*pte));
1373 set_pte_at(mm, haddr, pte, entry);
1374 pte_unmap(pte);
1377 smp_wmb(); /* make pte visible before pmd */
1379 * Up to this point the pmd is present and huge and
1380 * userland has the whole access to the hugepage
1381 * during the split (which happens in place). If we
1382 * overwrite the pmd with the not-huge version
1383 * pointing to the pte here (which of course we could
1384 * if all CPUs were bug free), userland could trigger
1385 * a small page size TLB miss on the small sized TLB
1386 * while the hugepage TLB entry is still established
1387 * in the huge TLB. Some CPU doesn't like that. See
1388 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1389 * Erratum 383 on page 93. Intel should be safe but is
1390 * also warns that it's only safe if the permission
1391 * and cache attributes of the two entries loaded in
1392 * the two TLB is identical (which should be the case
1393 * here). But it is generally safer to never allow
1394 * small and huge TLB entries for the same virtual
1395 * address to be loaded simultaneously. So instead of
1396 * doing "pmd_populate(); flush_tlb_range();" we first
1397 * mark the current pmd notpresent (atomically because
1398 * here the pmd_trans_huge and pmd_trans_splitting
1399 * must remain set at all times on the pmd until the
1400 * split is complete for this pmd), then we flush the
1401 * SMP TLB and finally we write the non-huge version
1402 * of the pmd entry with pmd_populate.
1404 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1405 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1406 pmd_populate(mm, pmd, pgtable);
1407 ret = 1;
1409 spin_unlock(&mm->page_table_lock);
1411 return ret;
1414 /* must be called with anon_vma->root->mutex hold */
1415 static void __split_huge_page(struct page *page,
1416 struct anon_vma *anon_vma)
1418 int mapcount, mapcount2;
1419 struct anon_vma_chain *avc;
1421 BUG_ON(!PageHead(page));
1422 BUG_ON(PageTail(page));
1424 mapcount = 0;
1425 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1426 struct vm_area_struct *vma = avc->vma;
1427 unsigned long addr = vma_address(page, vma);
1428 BUG_ON(is_vma_temporary_stack(vma));
1429 if (addr == -EFAULT)
1430 continue;
1431 mapcount += __split_huge_page_splitting(page, vma, addr);
1434 * It is critical that new vmas are added to the tail of the
1435 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1436 * and establishes a child pmd before
1437 * __split_huge_page_splitting() freezes the parent pmd (so if
1438 * we fail to prevent copy_huge_pmd() from running until the
1439 * whole __split_huge_page() is complete), we will still see
1440 * the newly established pmd of the child later during the
1441 * walk, to be able to set it as pmd_trans_splitting too.
1443 if (mapcount != page_mapcount(page))
1444 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1445 mapcount, page_mapcount(page));
1446 BUG_ON(mapcount != page_mapcount(page));
1448 __split_huge_page_refcount(page);
1450 mapcount2 = 0;
1451 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1452 struct vm_area_struct *vma = avc->vma;
1453 unsigned long addr = vma_address(page, vma);
1454 BUG_ON(is_vma_temporary_stack(vma));
1455 if (addr == -EFAULT)
1456 continue;
1457 mapcount2 += __split_huge_page_map(page, vma, addr);
1459 if (mapcount != mapcount2)
1460 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1461 mapcount, mapcount2, page_mapcount(page));
1462 BUG_ON(mapcount != mapcount2);
1465 int split_huge_page(struct page *page)
1467 struct anon_vma *anon_vma;
1468 int ret = 1;
1470 BUG_ON(!PageAnon(page));
1471 anon_vma = page_lock_anon_vma(page);
1472 if (!anon_vma)
1473 goto out;
1474 ret = 0;
1475 if (!PageCompound(page))
1476 goto out_unlock;
1478 BUG_ON(!PageSwapBacked(page));
1479 __split_huge_page(page, anon_vma);
1480 count_vm_event(THP_SPLIT);
1482 BUG_ON(PageCompound(page));
1483 out_unlock:
1484 page_unlock_anon_vma(anon_vma);
1485 out:
1486 return ret;
1489 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1490 VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1492 int hugepage_madvise(struct vm_area_struct *vma,
1493 unsigned long *vm_flags, int advice)
1495 switch (advice) {
1496 case MADV_HUGEPAGE:
1498 * Be somewhat over-protective like KSM for now!
1500 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1501 return -EINVAL;
1502 *vm_flags &= ~VM_NOHUGEPAGE;
1503 *vm_flags |= VM_HUGEPAGE;
1505 * If the vma become good for khugepaged to scan,
1506 * register it here without waiting a page fault that
1507 * may not happen any time soon.
1509 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1510 return -ENOMEM;
1511 break;
1512 case MADV_NOHUGEPAGE:
1514 * Be somewhat over-protective like KSM for now!
1516 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1517 return -EINVAL;
1518 *vm_flags &= ~VM_HUGEPAGE;
1519 *vm_flags |= VM_NOHUGEPAGE;
1521 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1522 * this vma even if we leave the mm registered in khugepaged if
1523 * it got registered before VM_NOHUGEPAGE was set.
1525 break;
1528 return 0;
1531 static int __init khugepaged_slab_init(void)
1533 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1534 sizeof(struct mm_slot),
1535 __alignof__(struct mm_slot), 0, NULL);
1536 if (!mm_slot_cache)
1537 return -ENOMEM;
1539 return 0;
1542 static void __init khugepaged_slab_free(void)
1544 kmem_cache_destroy(mm_slot_cache);
1545 mm_slot_cache = NULL;
1548 static inline struct mm_slot *alloc_mm_slot(void)
1550 if (!mm_slot_cache) /* initialization failed */
1551 return NULL;
1552 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1555 static inline void free_mm_slot(struct mm_slot *mm_slot)
1557 kmem_cache_free(mm_slot_cache, mm_slot);
1560 static int __init mm_slots_hash_init(void)
1562 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1563 GFP_KERNEL);
1564 if (!mm_slots_hash)
1565 return -ENOMEM;
1566 return 0;
1569 #if 0
1570 static void __init mm_slots_hash_free(void)
1572 kfree(mm_slots_hash);
1573 mm_slots_hash = NULL;
1575 #endif
1577 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1579 struct mm_slot *mm_slot;
1580 struct hlist_head *bucket;
1581 struct hlist_node *node;
1583 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1584 % MM_SLOTS_HASH_HEADS];
1585 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1586 if (mm == mm_slot->mm)
1587 return mm_slot;
1589 return NULL;
1592 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1593 struct mm_slot *mm_slot)
1595 struct hlist_head *bucket;
1597 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1598 % MM_SLOTS_HASH_HEADS];
1599 mm_slot->mm = mm;
1600 hlist_add_head(&mm_slot->hash, bucket);
1603 static inline int khugepaged_test_exit(struct mm_struct *mm)
1605 return atomic_read(&mm->mm_users) == 0;
1608 int __khugepaged_enter(struct mm_struct *mm)
1610 struct mm_slot *mm_slot;
1611 int wakeup;
1613 mm_slot = alloc_mm_slot();
1614 if (!mm_slot)
1615 return -ENOMEM;
1617 /* __khugepaged_exit() must not run from under us */
1618 VM_BUG_ON(khugepaged_test_exit(mm));
1619 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1620 free_mm_slot(mm_slot);
1621 return 0;
1624 spin_lock(&khugepaged_mm_lock);
1625 insert_to_mm_slots_hash(mm, mm_slot);
1627 * Insert just behind the scanning cursor, to let the area settle
1628 * down a little.
1630 wakeup = list_empty(&khugepaged_scan.mm_head);
1631 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1632 spin_unlock(&khugepaged_mm_lock);
1634 atomic_inc(&mm->mm_count);
1635 if (wakeup)
1636 wake_up_interruptible(&khugepaged_wait);
1638 return 0;
1641 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1642 unsigned long vm_flags)
1644 unsigned long hstart, hend;
1645 if (!vma->anon_vma)
1647 * Not yet faulted in so we will register later in the
1648 * page fault if needed.
1650 return 0;
1651 if (vma->vm_ops || (vm_flags & VM_NO_THP))
1652 /* khugepaged not yet working on file or special mappings */
1653 return 0;
1655 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1656 * true too, verify it here.
1658 VM_BUG_ON(is_linear_pfn_mapping(vma));
1659 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1660 hend = vma->vm_end & HPAGE_PMD_MASK;
1661 if (hstart < hend)
1662 return khugepaged_enter(vma, vm_flags);
1663 return 0;
1666 void __khugepaged_exit(struct mm_struct *mm)
1668 struct mm_slot *mm_slot;
1669 int free = 0;
1671 spin_lock(&khugepaged_mm_lock);
1672 mm_slot = get_mm_slot(mm);
1673 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1674 hlist_del(&mm_slot->hash);
1675 list_del(&mm_slot->mm_node);
1676 free = 1;
1678 spin_unlock(&khugepaged_mm_lock);
1680 if (free) {
1681 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1682 free_mm_slot(mm_slot);
1683 mmdrop(mm);
1684 } else if (mm_slot) {
1686 * This is required to serialize against
1687 * khugepaged_test_exit() (which is guaranteed to run
1688 * under mmap sem read mode). Stop here (after we
1689 * return all pagetables will be destroyed) until
1690 * khugepaged has finished working on the pagetables
1691 * under the mmap_sem.
1693 down_write(&mm->mmap_sem);
1694 up_write(&mm->mmap_sem);
1698 static void release_pte_page(struct page *page)
1700 /* 0 stands for page_is_file_cache(page) == false */
1701 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1702 unlock_page(page);
1703 putback_lru_page(page);
1706 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1708 while (--_pte >= pte) {
1709 pte_t pteval = *_pte;
1710 if (!pte_none(pteval))
1711 release_pte_page(pte_page(pteval));
1715 static void release_all_pte_pages(pte_t *pte)
1717 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1720 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1721 unsigned long address,
1722 pte_t *pte)
1724 struct page *page;
1725 pte_t *_pte;
1726 int referenced = 0, isolated = 0, none = 0;
1727 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1728 _pte++, address += PAGE_SIZE) {
1729 pte_t pteval = *_pte;
1730 if (pte_none(pteval)) {
1731 if (++none <= khugepaged_max_ptes_none)
1732 continue;
1733 else {
1734 release_pte_pages(pte, _pte);
1735 goto out;
1738 if (!pte_present(pteval) || !pte_write(pteval)) {
1739 release_pte_pages(pte, _pte);
1740 goto out;
1742 page = vm_normal_page(vma, address, pteval);
1743 if (unlikely(!page)) {
1744 release_pte_pages(pte, _pte);
1745 goto out;
1747 VM_BUG_ON(PageCompound(page));
1748 BUG_ON(!PageAnon(page));
1749 VM_BUG_ON(!PageSwapBacked(page));
1751 /* cannot use mapcount: can't collapse if there's a gup pin */
1752 if (page_count(page) != 1) {
1753 release_pte_pages(pte, _pte);
1754 goto out;
1757 * We can do it before isolate_lru_page because the
1758 * page can't be freed from under us. NOTE: PG_lock
1759 * is needed to serialize against split_huge_page
1760 * when invoked from the VM.
1762 if (!trylock_page(page)) {
1763 release_pte_pages(pte, _pte);
1764 goto out;
1767 * Isolate the page to avoid collapsing an hugepage
1768 * currently in use by the VM.
1770 if (isolate_lru_page(page)) {
1771 unlock_page(page);
1772 release_pte_pages(pte, _pte);
1773 goto out;
1775 /* 0 stands for page_is_file_cache(page) == false */
1776 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1777 VM_BUG_ON(!PageLocked(page));
1778 VM_BUG_ON(PageLRU(page));
1780 /* If there is no mapped pte young don't collapse the page */
1781 if (pte_young(pteval) || PageReferenced(page) ||
1782 mmu_notifier_test_young(vma->vm_mm, address))
1783 referenced = 1;
1785 if (unlikely(!referenced))
1786 release_all_pte_pages(pte);
1787 else
1788 isolated = 1;
1789 out:
1790 return isolated;
1793 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1794 struct vm_area_struct *vma,
1795 unsigned long address,
1796 spinlock_t *ptl)
1798 pte_t *_pte;
1799 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1800 pte_t pteval = *_pte;
1801 struct page *src_page;
1803 if (pte_none(pteval)) {
1804 clear_user_highpage(page, address);
1805 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1806 } else {
1807 src_page = pte_page(pteval);
1808 copy_user_highpage(page, src_page, address, vma);
1809 VM_BUG_ON(page_mapcount(src_page) != 1);
1810 VM_BUG_ON(page_count(src_page) != 2);
1811 release_pte_page(src_page);
1813 * ptl mostly unnecessary, but preempt has to
1814 * be disabled to update the per-cpu stats
1815 * inside page_remove_rmap().
1817 spin_lock(ptl);
1819 * paravirt calls inside pte_clear here are
1820 * superfluous.
1822 pte_clear(vma->vm_mm, address, _pte);
1823 page_remove_rmap(src_page);
1824 spin_unlock(ptl);
1825 free_page_and_swap_cache(src_page);
1828 address += PAGE_SIZE;
1829 page++;
1833 static bool hugepage_vma_check(struct vm_area_struct *vma)
1835 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1836 (vma->vm_flags & VM_NOHUGEPAGE))
1837 return false;
1839 if (!vma->anon_vma || vma->vm_ops)
1840 return false;
1841 if (is_vma_temporary_stack(vma))
1842 return false;
1844 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1845 * true too, verify it here.
1847 VM_BUG_ON(is_linear_pfn_mapping(vma));
1848 return !(vma->vm_flags & VM_NO_THP);
1851 static void collapse_huge_page(struct mm_struct *mm,
1852 unsigned long address,
1853 struct page **hpage,
1854 struct vm_area_struct *vma,
1855 int node)
1857 pgd_t *pgd;
1858 pud_t *pud;
1859 pmd_t *pmd, _pmd;
1860 pte_t *pte;
1861 pgtable_t pgtable;
1862 struct page *new_page;
1863 spinlock_t *ptl;
1864 int isolated;
1865 unsigned long hstart, hend;
1867 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1868 #ifndef CONFIG_NUMA
1869 up_read(&mm->mmap_sem);
1870 VM_BUG_ON(!*hpage);
1871 new_page = *hpage;
1872 #else
1873 VM_BUG_ON(*hpage);
1875 * Allocate the page while the vma is still valid and under
1876 * the mmap_sem read mode so there is no memory allocation
1877 * later when we take the mmap_sem in write mode. This is more
1878 * friendly behavior (OTOH it may actually hide bugs) to
1879 * filesystems in userland with daemons allocating memory in
1880 * the userland I/O paths. Allocating memory with the
1881 * mmap_sem in read mode is good idea also to allow greater
1882 * scalability.
1884 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1885 node, __GFP_OTHER_NODE);
1888 * After allocating the hugepage, release the mmap_sem read lock in
1889 * preparation for taking it in write mode.
1891 up_read(&mm->mmap_sem);
1892 if (unlikely(!new_page)) {
1893 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1894 *hpage = ERR_PTR(-ENOMEM);
1895 return;
1897 #endif
1899 count_vm_event(THP_COLLAPSE_ALLOC);
1900 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1901 #ifdef CONFIG_NUMA
1902 put_page(new_page);
1903 #endif
1904 return;
1908 * Prevent all access to pagetables with the exception of
1909 * gup_fast later hanlded by the ptep_clear_flush and the VM
1910 * handled by the anon_vma lock + PG_lock.
1912 down_write(&mm->mmap_sem);
1913 if (unlikely(khugepaged_test_exit(mm)))
1914 goto out;
1916 vma = find_vma(mm, address);
1917 if (!vma)
1918 goto out;
1919 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1920 hend = vma->vm_end & HPAGE_PMD_MASK;
1921 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1922 goto out;
1923 if (!hugepage_vma_check(vma))
1924 goto out;
1925 pgd = pgd_offset(mm, address);
1926 if (!pgd_present(*pgd))
1927 goto out;
1929 pud = pud_offset(pgd, address);
1930 if (!pud_present(*pud))
1931 goto out;
1933 pmd = pmd_offset(pud, address);
1934 /* pmd can't go away or become huge under us */
1935 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1936 goto out;
1938 anon_vma_lock(vma->anon_vma);
1940 pte = pte_offset_map(pmd, address);
1941 ptl = pte_lockptr(mm, pmd);
1943 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1945 * After this gup_fast can't run anymore. This also removes
1946 * any huge TLB entry from the CPU so we won't allow
1947 * huge and small TLB entries for the same virtual address
1948 * to avoid the risk of CPU bugs in that area.
1950 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1951 spin_unlock(&mm->page_table_lock);
1953 spin_lock(ptl);
1954 isolated = __collapse_huge_page_isolate(vma, address, pte);
1955 spin_unlock(ptl);
1957 if (unlikely(!isolated)) {
1958 pte_unmap(pte);
1959 spin_lock(&mm->page_table_lock);
1960 BUG_ON(!pmd_none(*pmd));
1962 * We can only use set_pmd_at when establishing
1963 * hugepmds and never for establishing regular pmds that
1964 * points to regular pagetables. Use pmd_populate for that
1966 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1967 spin_unlock(&mm->page_table_lock);
1968 anon_vma_unlock(vma->anon_vma);
1969 goto out;
1973 * All pages are isolated and locked so anon_vma rmap
1974 * can't run anymore.
1976 anon_vma_unlock(vma->anon_vma);
1978 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1979 pte_unmap(pte);
1980 __SetPageUptodate(new_page);
1981 pgtable = pmd_pgtable(_pmd);
1982 VM_BUG_ON(page_count(pgtable) != 1);
1983 VM_BUG_ON(page_mapcount(pgtable) != 0);
1985 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1986 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1987 _pmd = pmd_mkhuge(_pmd);
1990 * spin_lock() below is not the equivalent of smp_wmb(), so
1991 * this is needed to avoid the copy_huge_page writes to become
1992 * visible after the set_pmd_at() write.
1994 smp_wmb();
1996 spin_lock(&mm->page_table_lock);
1997 BUG_ON(!pmd_none(*pmd));
1998 page_add_new_anon_rmap(new_page, vma, address);
1999 set_pmd_at(mm, address, pmd, _pmd);
2000 update_mmu_cache(vma, address, _pmd);
2001 prepare_pmd_huge_pte(pgtable, mm);
2002 spin_unlock(&mm->page_table_lock);
2004 #ifndef CONFIG_NUMA
2005 *hpage = NULL;
2006 #endif
2007 khugepaged_pages_collapsed++;
2008 out_up_write:
2009 up_write(&mm->mmap_sem);
2010 return;
2012 out:
2013 mem_cgroup_uncharge_page(new_page);
2014 #ifdef CONFIG_NUMA
2015 put_page(new_page);
2016 #endif
2017 goto out_up_write;
2020 static int khugepaged_scan_pmd(struct mm_struct *mm,
2021 struct vm_area_struct *vma,
2022 unsigned long address,
2023 struct page **hpage)
2025 pgd_t *pgd;
2026 pud_t *pud;
2027 pmd_t *pmd;
2028 pte_t *pte, *_pte;
2029 int ret = 0, referenced = 0, none = 0;
2030 struct page *page;
2031 unsigned long _address;
2032 spinlock_t *ptl;
2033 int node = -1;
2035 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2037 pgd = pgd_offset(mm, address);
2038 if (!pgd_present(*pgd))
2039 goto out;
2041 pud = pud_offset(pgd, address);
2042 if (!pud_present(*pud))
2043 goto out;
2045 pmd = pmd_offset(pud, address);
2046 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2047 goto out;
2049 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2050 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2051 _pte++, _address += PAGE_SIZE) {
2052 pte_t pteval = *_pte;
2053 if (pte_none(pteval)) {
2054 if (++none <= khugepaged_max_ptes_none)
2055 continue;
2056 else
2057 goto out_unmap;
2059 if (!pte_present(pteval) || !pte_write(pteval))
2060 goto out_unmap;
2061 page = vm_normal_page(vma, _address, pteval);
2062 if (unlikely(!page))
2063 goto out_unmap;
2065 * Chose the node of the first page. This could
2066 * be more sophisticated and look at more pages,
2067 * but isn't for now.
2069 if (node == -1)
2070 node = page_to_nid(page);
2071 VM_BUG_ON(PageCompound(page));
2072 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2073 goto out_unmap;
2074 /* cannot use mapcount: can't collapse if there's a gup pin */
2075 if (page_count(page) != 1)
2076 goto out_unmap;
2077 if (pte_young(pteval) || PageReferenced(page) ||
2078 mmu_notifier_test_young(vma->vm_mm, address))
2079 referenced = 1;
2081 if (referenced)
2082 ret = 1;
2083 out_unmap:
2084 pte_unmap_unlock(pte, ptl);
2085 if (ret)
2086 /* collapse_huge_page will return with the mmap_sem released */
2087 collapse_huge_page(mm, address, hpage, vma, node);
2088 out:
2089 return ret;
2092 static void collect_mm_slot(struct mm_slot *mm_slot)
2094 struct mm_struct *mm = mm_slot->mm;
2096 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2098 if (khugepaged_test_exit(mm)) {
2099 /* free mm_slot */
2100 hlist_del(&mm_slot->hash);
2101 list_del(&mm_slot->mm_node);
2104 * Not strictly needed because the mm exited already.
2106 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2109 /* khugepaged_mm_lock actually not necessary for the below */
2110 free_mm_slot(mm_slot);
2111 mmdrop(mm);
2115 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2116 struct page **hpage)
2117 __releases(&khugepaged_mm_lock)
2118 __acquires(&khugepaged_mm_lock)
2120 struct mm_slot *mm_slot;
2121 struct mm_struct *mm;
2122 struct vm_area_struct *vma;
2123 int progress = 0;
2125 VM_BUG_ON(!pages);
2126 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2128 if (khugepaged_scan.mm_slot)
2129 mm_slot = khugepaged_scan.mm_slot;
2130 else {
2131 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2132 struct mm_slot, mm_node);
2133 khugepaged_scan.address = 0;
2134 khugepaged_scan.mm_slot = mm_slot;
2136 spin_unlock(&khugepaged_mm_lock);
2138 mm = mm_slot->mm;
2139 down_read(&mm->mmap_sem);
2140 if (unlikely(khugepaged_test_exit(mm)))
2141 vma = NULL;
2142 else
2143 vma = find_vma(mm, khugepaged_scan.address);
2145 progress++;
2146 for (; vma; vma = vma->vm_next) {
2147 unsigned long hstart, hend;
2149 cond_resched();
2150 if (unlikely(khugepaged_test_exit(mm))) {
2151 progress++;
2152 break;
2154 if (!hugepage_vma_check(vma)) {
2155 skip:
2156 progress++;
2157 continue;
2159 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2160 hend = vma->vm_end & HPAGE_PMD_MASK;
2161 if (hstart >= hend)
2162 goto skip;
2163 if (khugepaged_scan.address > hend)
2164 goto skip;
2165 if (khugepaged_scan.address < hstart)
2166 khugepaged_scan.address = hstart;
2167 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2169 while (khugepaged_scan.address < hend) {
2170 int ret;
2171 cond_resched();
2172 if (unlikely(khugepaged_test_exit(mm)))
2173 goto breakouterloop;
2175 VM_BUG_ON(khugepaged_scan.address < hstart ||
2176 khugepaged_scan.address + HPAGE_PMD_SIZE >
2177 hend);
2178 ret = khugepaged_scan_pmd(mm, vma,
2179 khugepaged_scan.address,
2180 hpage);
2181 /* move to next address */
2182 khugepaged_scan.address += HPAGE_PMD_SIZE;
2183 progress += HPAGE_PMD_NR;
2184 if (ret)
2185 /* we released mmap_sem so break loop */
2186 goto breakouterloop_mmap_sem;
2187 if (progress >= pages)
2188 goto breakouterloop;
2191 breakouterloop:
2192 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2193 breakouterloop_mmap_sem:
2195 spin_lock(&khugepaged_mm_lock);
2196 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2198 * Release the current mm_slot if this mm is about to die, or
2199 * if we scanned all vmas of this mm.
2201 if (khugepaged_test_exit(mm) || !vma) {
2203 * Make sure that if mm_users is reaching zero while
2204 * khugepaged runs here, khugepaged_exit will find
2205 * mm_slot not pointing to the exiting mm.
2207 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2208 khugepaged_scan.mm_slot = list_entry(
2209 mm_slot->mm_node.next,
2210 struct mm_slot, mm_node);
2211 khugepaged_scan.address = 0;
2212 } else {
2213 khugepaged_scan.mm_slot = NULL;
2214 khugepaged_full_scans++;
2217 collect_mm_slot(mm_slot);
2220 return progress;
2223 static int khugepaged_has_work(void)
2225 return !list_empty(&khugepaged_scan.mm_head) &&
2226 khugepaged_enabled();
2229 static int khugepaged_wait_event(void)
2231 return !list_empty(&khugepaged_scan.mm_head) ||
2232 !khugepaged_enabled();
2235 static void khugepaged_do_scan(struct page **hpage)
2237 unsigned int progress = 0, pass_through_head = 0;
2238 unsigned int pages = khugepaged_pages_to_scan;
2240 barrier(); /* write khugepaged_pages_to_scan to local stack */
2242 while (progress < pages) {
2243 cond_resched();
2245 #ifndef CONFIG_NUMA
2246 if (!*hpage) {
2247 *hpage = alloc_hugepage(khugepaged_defrag());
2248 if (unlikely(!*hpage)) {
2249 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2250 break;
2252 count_vm_event(THP_COLLAPSE_ALLOC);
2254 #else
2255 if (IS_ERR(*hpage))
2256 break;
2257 #endif
2259 if (unlikely(kthread_should_stop() || freezing(current)))
2260 break;
2262 spin_lock(&khugepaged_mm_lock);
2263 if (!khugepaged_scan.mm_slot)
2264 pass_through_head++;
2265 if (khugepaged_has_work() &&
2266 pass_through_head < 2)
2267 progress += khugepaged_scan_mm_slot(pages - progress,
2268 hpage);
2269 else
2270 progress = pages;
2271 spin_unlock(&khugepaged_mm_lock);
2275 static void khugepaged_alloc_sleep(void)
2277 wait_event_freezable_timeout(khugepaged_wait, false,
2278 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2281 #ifndef CONFIG_NUMA
2282 static struct page *khugepaged_alloc_hugepage(void)
2284 struct page *hpage;
2286 do {
2287 hpage = alloc_hugepage(khugepaged_defrag());
2288 if (!hpage) {
2289 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2290 khugepaged_alloc_sleep();
2291 } else
2292 count_vm_event(THP_COLLAPSE_ALLOC);
2293 } while (unlikely(!hpage) &&
2294 likely(khugepaged_enabled()));
2295 return hpage;
2297 #endif
2299 static void khugepaged_loop(void)
2301 struct page *hpage;
2303 #ifdef CONFIG_NUMA
2304 hpage = NULL;
2305 #endif
2306 while (likely(khugepaged_enabled())) {
2307 #ifndef CONFIG_NUMA
2308 hpage = khugepaged_alloc_hugepage();
2309 if (unlikely(!hpage))
2310 break;
2311 #else
2312 if (IS_ERR(hpage)) {
2313 khugepaged_alloc_sleep();
2314 hpage = NULL;
2316 #endif
2318 khugepaged_do_scan(&hpage);
2319 #ifndef CONFIG_NUMA
2320 if (hpage)
2321 put_page(hpage);
2322 #endif
2323 try_to_freeze();
2324 if (unlikely(kthread_should_stop()))
2325 break;
2326 if (khugepaged_has_work()) {
2327 if (!khugepaged_scan_sleep_millisecs)
2328 continue;
2329 wait_event_freezable_timeout(khugepaged_wait, false,
2330 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2331 } else if (khugepaged_enabled())
2332 wait_event_freezable(khugepaged_wait,
2333 khugepaged_wait_event());
2337 static int khugepaged(void *none)
2339 struct mm_slot *mm_slot;
2341 set_freezable();
2342 set_user_nice(current, 19);
2344 /* serialize with start_khugepaged() */
2345 mutex_lock(&khugepaged_mutex);
2347 for (;;) {
2348 mutex_unlock(&khugepaged_mutex);
2349 VM_BUG_ON(khugepaged_thread != current);
2350 khugepaged_loop();
2351 VM_BUG_ON(khugepaged_thread != current);
2353 mutex_lock(&khugepaged_mutex);
2354 if (!khugepaged_enabled())
2355 break;
2356 if (unlikely(kthread_should_stop()))
2357 break;
2360 spin_lock(&khugepaged_mm_lock);
2361 mm_slot = khugepaged_scan.mm_slot;
2362 khugepaged_scan.mm_slot = NULL;
2363 if (mm_slot)
2364 collect_mm_slot(mm_slot);
2365 spin_unlock(&khugepaged_mm_lock);
2367 khugepaged_thread = NULL;
2368 mutex_unlock(&khugepaged_mutex);
2370 return 0;
2373 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2375 struct page *page;
2377 spin_lock(&mm->page_table_lock);
2378 if (unlikely(!pmd_trans_huge(*pmd))) {
2379 spin_unlock(&mm->page_table_lock);
2380 return;
2382 page = pmd_page(*pmd);
2383 VM_BUG_ON(!page_count(page));
2384 get_page(page);
2385 spin_unlock(&mm->page_table_lock);
2387 split_huge_page(page);
2389 put_page(page);
2390 BUG_ON(pmd_trans_huge(*pmd));
2393 static void split_huge_page_address(struct mm_struct *mm,
2394 unsigned long address)
2396 pgd_t *pgd;
2397 pud_t *pud;
2398 pmd_t *pmd;
2400 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2402 pgd = pgd_offset(mm, address);
2403 if (!pgd_present(*pgd))
2404 return;
2406 pud = pud_offset(pgd, address);
2407 if (!pud_present(*pud))
2408 return;
2410 pmd = pmd_offset(pud, address);
2411 if (!pmd_present(*pmd))
2412 return;
2414 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2415 * materialize from under us.
2417 split_huge_page_pmd(mm, pmd);
2420 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2421 unsigned long start,
2422 unsigned long end,
2423 long adjust_next)
2426 * If the new start address isn't hpage aligned and it could
2427 * previously contain an hugepage: check if we need to split
2428 * an huge pmd.
2430 if (start & ~HPAGE_PMD_MASK &&
2431 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2432 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2433 split_huge_page_address(vma->vm_mm, start);
2436 * If the new end address isn't hpage aligned and it could
2437 * previously contain an hugepage: check if we need to split
2438 * an huge pmd.
2440 if (end & ~HPAGE_PMD_MASK &&
2441 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2442 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2443 split_huge_page_address(vma->vm_mm, end);
2446 * If we're also updating the vma->vm_next->vm_start, if the new
2447 * vm_next->vm_start isn't page aligned and it could previously
2448 * contain an hugepage: check if we need to split an huge pmd.
2450 if (adjust_next > 0) {
2451 struct vm_area_struct *next = vma->vm_next;
2452 unsigned long nstart = next->vm_start;
2453 nstart += adjust_next << PAGE_SHIFT;
2454 if (nstart & ~HPAGE_PMD_MASK &&
2455 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2456 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2457 split_huge_page_address(next->vm_mm, nstart);