2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
21 #include <asm/pgalloc.h>
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
31 unsigned long transparent_hugepage_flags __read_mostly
=
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
)|
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly
= HPAGE_PMD_NR
*8;
43 static unsigned int khugepaged_pages_collapsed
;
44 static unsigned int khugepaged_full_scans
;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
48 static struct task_struct
*khugepaged_thread __read_mostly
;
49 static DEFINE_MUTEX(khugepaged_mutex
);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
57 static unsigned int khugepaged_max_ptes_none __read_mostly
= HPAGE_PMD_NR
-1;
59 static int khugepaged(void *none
);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head
*mm_slots_hash __read_mostly
;
66 static struct kmem_cache
*mm_slot_cache __read_mostly
;
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
75 struct hlist_node hash
;
76 struct list_head mm_node
;
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
86 * There is only the one khugepaged_scan instance of this cursor structure.
88 struct khugepaged_scan
{
89 struct list_head mm_head
;
90 struct mm_slot
*mm_slot
;
91 unsigned long address
;
93 static struct khugepaged_scan khugepaged_scan
= {
94 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
98 static int set_recommended_min_free_kbytes(void)
102 unsigned long recommended_min
;
103 extern int min_free_kbytes
;
105 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG
,
106 &transparent_hugepage_flags
) &&
107 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
108 &transparent_hugepage_flags
))
111 for_each_populated_zone(zone
)
114 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
118 * Make sure that on average at least two pageblocks are almost free
119 * of another type, one for a migratetype to fall back to and a
120 * second to avoid subsequent fallbacks of other types There are 3
121 * MIGRATE_TYPES we care about.
123 recommended_min
+= pageblock_nr_pages
* nr_zones
*
124 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
126 /* don't ever allow to reserve more than 5% of the lowmem */
127 recommended_min
= min(recommended_min
,
128 (unsigned long) nr_free_buffer_pages() / 20);
129 recommended_min
<<= (PAGE_SHIFT
-10);
131 if (recommended_min
> min_free_kbytes
)
132 min_free_kbytes
= recommended_min
;
133 setup_per_zone_wmarks();
136 late_initcall(set_recommended_min_free_kbytes
);
138 static int start_khugepaged(void)
141 if (khugepaged_enabled()) {
143 if (unlikely(!mm_slot_cache
|| !mm_slots_hash
)) {
147 mutex_lock(&khugepaged_mutex
);
148 if (!khugepaged_thread
)
149 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
151 if (unlikely(IS_ERR(khugepaged_thread
))) {
153 "khugepaged: kthread_run(khugepaged) failed\n");
154 err
= PTR_ERR(khugepaged_thread
);
155 khugepaged_thread
= NULL
;
157 wakeup
= !list_empty(&khugepaged_scan
.mm_head
);
158 mutex_unlock(&khugepaged_mutex
);
160 wake_up_interruptible(&khugepaged_wait
);
162 set_recommended_min_free_kbytes();
165 wake_up_interruptible(&khugepaged_wait
);
172 static ssize_t
double_flag_show(struct kobject
*kobj
,
173 struct kobj_attribute
*attr
, char *buf
,
174 enum transparent_hugepage_flag enabled
,
175 enum transparent_hugepage_flag req_madv
)
177 if (test_bit(enabled
, &transparent_hugepage_flags
)) {
178 VM_BUG_ON(test_bit(req_madv
, &transparent_hugepage_flags
));
179 return sprintf(buf
, "[always] madvise never\n");
180 } else if (test_bit(req_madv
, &transparent_hugepage_flags
))
181 return sprintf(buf
, "always [madvise] never\n");
183 return sprintf(buf
, "always madvise [never]\n");
185 static ssize_t
double_flag_store(struct kobject
*kobj
,
186 struct kobj_attribute
*attr
,
187 const char *buf
, size_t count
,
188 enum transparent_hugepage_flag enabled
,
189 enum transparent_hugepage_flag req_madv
)
191 if (!memcmp("always", buf
,
192 min(sizeof("always")-1, count
))) {
193 set_bit(enabled
, &transparent_hugepage_flags
);
194 clear_bit(req_madv
, &transparent_hugepage_flags
);
195 } else if (!memcmp("madvise", buf
,
196 min(sizeof("madvise")-1, count
))) {
197 clear_bit(enabled
, &transparent_hugepage_flags
);
198 set_bit(req_madv
, &transparent_hugepage_flags
);
199 } else if (!memcmp("never", buf
,
200 min(sizeof("never")-1, count
))) {
201 clear_bit(enabled
, &transparent_hugepage_flags
);
202 clear_bit(req_madv
, &transparent_hugepage_flags
);
209 static ssize_t
enabled_show(struct kobject
*kobj
,
210 struct kobj_attribute
*attr
, char *buf
)
212 return double_flag_show(kobj
, attr
, buf
,
213 TRANSPARENT_HUGEPAGE_FLAG
,
214 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
216 static ssize_t
enabled_store(struct kobject
*kobj
,
217 struct kobj_attribute
*attr
,
218 const char *buf
, size_t count
)
222 ret
= double_flag_store(kobj
, attr
, buf
, count
,
223 TRANSPARENT_HUGEPAGE_FLAG
,
224 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
227 int err
= start_khugepaged();
233 (test_bit(TRANSPARENT_HUGEPAGE_FLAG
,
234 &transparent_hugepage_flags
) ||
235 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
236 &transparent_hugepage_flags
)))
237 set_recommended_min_free_kbytes();
241 static struct kobj_attribute enabled_attr
=
242 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
244 static ssize_t
single_flag_show(struct kobject
*kobj
,
245 struct kobj_attribute
*attr
, char *buf
,
246 enum transparent_hugepage_flag flag
)
248 return sprintf(buf
, "%d\n",
249 !!test_bit(flag
, &transparent_hugepage_flags
));
252 static ssize_t
single_flag_store(struct kobject
*kobj
,
253 struct kobj_attribute
*attr
,
254 const char *buf
, size_t count
,
255 enum transparent_hugepage_flag flag
)
260 ret
= kstrtoul(buf
, 10, &value
);
267 set_bit(flag
, &transparent_hugepage_flags
);
269 clear_bit(flag
, &transparent_hugepage_flags
);
275 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277 * memory just to allocate one more hugepage.
279 static ssize_t
defrag_show(struct kobject
*kobj
,
280 struct kobj_attribute
*attr
, char *buf
)
282 return double_flag_show(kobj
, attr
, buf
,
283 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
284 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
286 static ssize_t
defrag_store(struct kobject
*kobj
,
287 struct kobj_attribute
*attr
,
288 const char *buf
, size_t count
)
290 return double_flag_store(kobj
, attr
, buf
, count
,
291 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
292 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
294 static struct kobj_attribute defrag_attr
=
295 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t
debug_cow_show(struct kobject
*kobj
,
299 struct kobj_attribute
*attr
, char *buf
)
301 return single_flag_show(kobj
, attr
, buf
,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
304 static ssize_t
debug_cow_store(struct kobject
*kobj
,
305 struct kobj_attribute
*attr
,
306 const char *buf
, size_t count
)
308 return single_flag_store(kobj
, attr
, buf
, count
,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
311 static struct kobj_attribute debug_cow_attr
=
312 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
313 #endif /* CONFIG_DEBUG_VM */
315 static struct attribute
*hugepage_attr
[] = {
318 #ifdef CONFIG_DEBUG_VM
319 &debug_cow_attr
.attr
,
324 static struct attribute_group hugepage_attr_group
= {
325 .attrs
= hugepage_attr
,
328 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
329 struct kobj_attribute
*attr
,
332 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
335 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
336 struct kobj_attribute
*attr
,
337 const char *buf
, size_t count
)
342 err
= strict_strtoul(buf
, 10, &msecs
);
343 if (err
|| msecs
> UINT_MAX
)
346 khugepaged_scan_sleep_millisecs
= msecs
;
347 wake_up_interruptible(&khugepaged_wait
);
351 static struct kobj_attribute scan_sleep_millisecs_attr
=
352 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
353 scan_sleep_millisecs_store
);
355 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
356 struct kobj_attribute
*attr
,
359 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
362 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
363 struct kobj_attribute
*attr
,
364 const char *buf
, size_t count
)
369 err
= strict_strtoul(buf
, 10, &msecs
);
370 if (err
|| msecs
> UINT_MAX
)
373 khugepaged_alloc_sleep_millisecs
= msecs
;
374 wake_up_interruptible(&khugepaged_wait
);
378 static struct kobj_attribute alloc_sleep_millisecs_attr
=
379 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
380 alloc_sleep_millisecs_store
);
382 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
383 struct kobj_attribute
*attr
,
386 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
388 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
389 struct kobj_attribute
*attr
,
390 const char *buf
, size_t count
)
395 err
= strict_strtoul(buf
, 10, &pages
);
396 if (err
|| !pages
|| pages
> UINT_MAX
)
399 khugepaged_pages_to_scan
= pages
;
403 static struct kobj_attribute pages_to_scan_attr
=
404 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
405 pages_to_scan_store
);
407 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
408 struct kobj_attribute
*attr
,
411 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
413 static struct kobj_attribute pages_collapsed_attr
=
414 __ATTR_RO(pages_collapsed
);
416 static ssize_t
full_scans_show(struct kobject
*kobj
,
417 struct kobj_attribute
*attr
,
420 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
422 static struct kobj_attribute full_scans_attr
=
423 __ATTR_RO(full_scans
);
425 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
426 struct kobj_attribute
*attr
, char *buf
)
428 return single_flag_show(kobj
, attr
, buf
,
429 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
431 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
432 struct kobj_attribute
*attr
,
433 const char *buf
, size_t count
)
435 return single_flag_store(kobj
, attr
, buf
, count
,
436 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
438 static struct kobj_attribute khugepaged_defrag_attr
=
439 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
440 khugepaged_defrag_store
);
443 * max_ptes_none controls if khugepaged should collapse hugepages over
444 * any unmapped ptes in turn potentially increasing the memory
445 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446 * reduce the available free memory in the system as it
447 * runs. Increasing max_ptes_none will instead potentially reduce the
448 * free memory in the system during the khugepaged scan.
450 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
451 struct kobj_attribute
*attr
,
454 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
456 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
457 struct kobj_attribute
*attr
,
458 const char *buf
, size_t count
)
461 unsigned long max_ptes_none
;
463 err
= strict_strtoul(buf
, 10, &max_ptes_none
);
464 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
467 khugepaged_max_ptes_none
= max_ptes_none
;
471 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
472 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
473 khugepaged_max_ptes_none_store
);
475 static struct attribute
*khugepaged_attr
[] = {
476 &khugepaged_defrag_attr
.attr
,
477 &khugepaged_max_ptes_none_attr
.attr
,
478 &pages_to_scan_attr
.attr
,
479 &pages_collapsed_attr
.attr
,
480 &full_scans_attr
.attr
,
481 &scan_sleep_millisecs_attr
.attr
,
482 &alloc_sleep_millisecs_attr
.attr
,
486 static struct attribute_group khugepaged_attr_group
= {
487 .attrs
= khugepaged_attr
,
488 .name
= "khugepaged",
490 #endif /* CONFIG_SYSFS */
492 static int __init
hugepage_init(void)
496 static struct kobject
*hugepage_kobj
;
500 if (!has_transparent_hugepage()) {
501 transparent_hugepage_flags
= 0;
507 hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
508 if (unlikely(!hugepage_kobj
)) {
509 printk(KERN_ERR
"hugepage: failed kobject create\n");
513 err
= sysfs_create_group(hugepage_kobj
, &hugepage_attr_group
);
515 printk(KERN_ERR
"hugepage: failed register hugeage group\n");
519 err
= sysfs_create_group(hugepage_kobj
, &khugepaged_attr_group
);
521 printk(KERN_ERR
"hugepage: failed register hugeage group\n");
526 err
= khugepaged_slab_init();
530 err
= mm_slots_hash_init();
532 khugepaged_slab_free();
537 * By default disable transparent hugepages on smaller systems,
538 * where the extra memory used could hurt more than TLB overhead
539 * is likely to save. The admin can still enable it through /sys.
541 if (totalram_pages
< (512 << (20 - PAGE_SHIFT
)))
542 transparent_hugepage_flags
= 0;
546 set_recommended_min_free_kbytes();
551 module_init(hugepage_init
)
553 static int __init
setup_transparent_hugepage(char *str
)
558 if (!strcmp(str
, "always")) {
559 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
560 &transparent_hugepage_flags
);
561 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
562 &transparent_hugepage_flags
);
564 } else if (!strcmp(str
, "madvise")) {
565 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
566 &transparent_hugepage_flags
);
567 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
568 &transparent_hugepage_flags
);
570 } else if (!strcmp(str
, "never")) {
571 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
572 &transparent_hugepage_flags
);
573 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
574 &transparent_hugepage_flags
);
580 "transparent_hugepage= cannot parse, ignored\n");
583 __setup("transparent_hugepage=", setup_transparent_hugepage
);
585 static void prepare_pmd_huge_pte(pgtable_t pgtable
,
586 struct mm_struct
*mm
)
588 assert_spin_locked(&mm
->page_table_lock
);
591 if (!mm
->pmd_huge_pte
)
592 INIT_LIST_HEAD(&pgtable
->lru
);
594 list_add(&pgtable
->lru
, &mm
->pmd_huge_pte
->lru
);
595 mm
->pmd_huge_pte
= pgtable
;
598 static inline pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
600 if (likely(vma
->vm_flags
& VM_WRITE
))
601 pmd
= pmd_mkwrite(pmd
);
605 static int __do_huge_pmd_anonymous_page(struct mm_struct
*mm
,
606 struct vm_area_struct
*vma
,
607 unsigned long haddr
, pmd_t
*pmd
,
613 VM_BUG_ON(!PageCompound(page
));
614 pgtable
= pte_alloc_one(mm
, haddr
);
615 if (unlikely(!pgtable
)) {
616 mem_cgroup_uncharge_page(page
);
621 clear_huge_page(page
, haddr
, HPAGE_PMD_NR
);
622 __SetPageUptodate(page
);
624 spin_lock(&mm
->page_table_lock
);
625 if (unlikely(!pmd_none(*pmd
))) {
626 spin_unlock(&mm
->page_table_lock
);
627 mem_cgroup_uncharge_page(page
);
629 pte_free(mm
, pgtable
);
632 entry
= mk_pmd(page
, vma
->vm_page_prot
);
633 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
634 entry
= pmd_mkhuge(entry
);
636 * The spinlocking to take the lru_lock inside
637 * page_add_new_anon_rmap() acts as a full memory
638 * barrier to be sure clear_huge_page writes become
639 * visible after the set_pmd_at() write.
641 page_add_new_anon_rmap(page
, vma
, haddr
);
642 set_pmd_at(mm
, haddr
, pmd
, entry
);
643 prepare_pmd_huge_pte(pgtable
, mm
);
644 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
646 spin_unlock(&mm
->page_table_lock
);
652 static inline gfp_t
alloc_hugepage_gfpmask(int defrag
, gfp_t extra_gfp
)
654 return (GFP_TRANSHUGE
& ~(defrag
? 0 : __GFP_WAIT
)) | extra_gfp
;
657 static inline struct page
*alloc_hugepage_vma(int defrag
,
658 struct vm_area_struct
*vma
,
659 unsigned long haddr
, int nd
,
662 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag
, extra_gfp
),
663 HPAGE_PMD_ORDER
, vma
, haddr
, nd
);
667 static inline struct page
*alloc_hugepage(int defrag
)
669 return alloc_pages(alloc_hugepage_gfpmask(defrag
, 0),
674 int do_huge_pmd_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
675 unsigned long address
, pmd_t
*pmd
,
679 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
682 if (haddr
>= vma
->vm_start
&& haddr
+ HPAGE_PMD_SIZE
<= vma
->vm_end
) {
683 if (unlikely(anon_vma_prepare(vma
)))
685 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
687 page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
688 vma
, haddr
, numa_node_id(), 0);
689 if (unlikely(!page
)) {
690 count_vm_event(THP_FAULT_FALLBACK
);
693 count_vm_event(THP_FAULT_ALLOC
);
694 if (unlikely(mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))) {
699 return __do_huge_pmd_anonymous_page(mm
, vma
, haddr
, pmd
, page
);
703 * Use __pte_alloc instead of pte_alloc_map, because we can't
704 * run pte_offset_map on the pmd, if an huge pmd could
705 * materialize from under us from a different thread.
707 if (unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
709 /* if an huge pmd materialized from under us just retry later */
710 if (unlikely(pmd_trans_huge(*pmd
)))
713 * A regular pmd is established and it can't morph into a huge pmd
714 * from under us anymore at this point because we hold the mmap_sem
715 * read mode and khugepaged takes it in write mode. So now it's
716 * safe to run pte_offset_map().
718 pte
= pte_offset_map(pmd
, address
);
719 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
722 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
723 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
724 struct vm_area_struct
*vma
)
726 struct page
*src_page
;
732 pgtable
= pte_alloc_one(dst_mm
, addr
);
733 if (unlikely(!pgtable
))
736 spin_lock(&dst_mm
->page_table_lock
);
737 spin_lock_nested(&src_mm
->page_table_lock
, SINGLE_DEPTH_NESTING
);
741 if (unlikely(!pmd_trans_huge(pmd
))) {
742 pte_free(dst_mm
, pgtable
);
745 if (unlikely(pmd_trans_splitting(pmd
))) {
746 /* split huge page running from under us */
747 spin_unlock(&src_mm
->page_table_lock
);
748 spin_unlock(&dst_mm
->page_table_lock
);
749 pte_free(dst_mm
, pgtable
);
751 wait_split_huge_page(vma
->anon_vma
, src_pmd
); /* src_vma */
754 src_page
= pmd_page(pmd
);
755 VM_BUG_ON(!PageHead(src_page
));
757 page_dup_rmap(src_page
);
758 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
760 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
761 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
762 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
763 prepare_pmd_huge_pte(pgtable
, dst_mm
);
768 spin_unlock(&src_mm
->page_table_lock
);
769 spin_unlock(&dst_mm
->page_table_lock
);
774 /* no "address" argument so destroys page coloring of some arch */
775 pgtable_t
get_pmd_huge_pte(struct mm_struct
*mm
)
779 assert_spin_locked(&mm
->page_table_lock
);
782 pgtable
= mm
->pmd_huge_pte
;
783 if (list_empty(&pgtable
->lru
))
784 mm
->pmd_huge_pte
= NULL
;
786 mm
->pmd_huge_pte
= list_entry(pgtable
->lru
.next
,
788 list_del(&pgtable
->lru
);
793 static int do_huge_pmd_wp_page_fallback(struct mm_struct
*mm
,
794 struct vm_area_struct
*vma
,
795 unsigned long address
,
796 pmd_t
*pmd
, pmd_t orig_pmd
,
805 pages
= kmalloc(sizeof(struct page
*) * HPAGE_PMD_NR
,
807 if (unlikely(!pages
)) {
812 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
813 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
|
815 vma
, address
, page_to_nid(page
));
816 if (unlikely(!pages
[i
] ||
817 mem_cgroup_newpage_charge(pages
[i
], mm
,
821 mem_cgroup_uncharge_start();
823 mem_cgroup_uncharge_page(pages
[i
]);
826 mem_cgroup_uncharge_end();
833 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
834 copy_user_highpage(pages
[i
], page
+ i
,
835 haddr
+ PAGE_SIZE
* i
, vma
);
836 __SetPageUptodate(pages
[i
]);
840 spin_lock(&mm
->page_table_lock
);
841 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
843 VM_BUG_ON(!PageHead(page
));
845 pmdp_clear_flush_notify(vma
, haddr
, pmd
);
846 /* leave pmd empty until pte is filled */
848 pgtable
= get_pmd_huge_pte(mm
);
849 pmd_populate(mm
, &_pmd
, pgtable
);
851 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
853 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
854 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
855 page_add_new_anon_rmap(pages
[i
], vma
, haddr
);
856 pte
= pte_offset_map(&_pmd
, haddr
);
857 VM_BUG_ON(!pte_none(*pte
));
858 set_pte_at(mm
, haddr
, pte
, entry
);
863 smp_wmb(); /* make pte visible before pmd */
864 pmd_populate(mm
, pmd
, pgtable
);
865 page_remove_rmap(page
);
866 spin_unlock(&mm
->page_table_lock
);
868 ret
|= VM_FAULT_WRITE
;
875 spin_unlock(&mm
->page_table_lock
);
876 mem_cgroup_uncharge_start();
877 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
878 mem_cgroup_uncharge_page(pages
[i
]);
881 mem_cgroup_uncharge_end();
886 int do_huge_pmd_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
887 unsigned long address
, pmd_t
*pmd
, pmd_t orig_pmd
)
890 struct page
*page
, *new_page
;
893 VM_BUG_ON(!vma
->anon_vma
);
894 spin_lock(&mm
->page_table_lock
);
895 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
898 page
= pmd_page(orig_pmd
);
899 VM_BUG_ON(!PageCompound(page
) || !PageHead(page
));
900 haddr
= address
& HPAGE_PMD_MASK
;
901 if (page_mapcount(page
) == 1) {
903 entry
= pmd_mkyoung(orig_pmd
);
904 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
905 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, 1))
906 update_mmu_cache(vma
, address
, entry
);
907 ret
|= VM_FAULT_WRITE
;
911 spin_unlock(&mm
->page_table_lock
);
913 if (transparent_hugepage_enabled(vma
) &&
914 !transparent_hugepage_debug_cow())
915 new_page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
916 vma
, haddr
, numa_node_id(), 0);
920 if (unlikely(!new_page
)) {
921 count_vm_event(THP_FAULT_FALLBACK
);
922 ret
= do_huge_pmd_wp_page_fallback(mm
, vma
, address
,
923 pmd
, orig_pmd
, page
, haddr
);
924 if (ret
& VM_FAULT_OOM
)
925 split_huge_page(page
);
929 count_vm_event(THP_FAULT_ALLOC
);
931 if (unlikely(mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))) {
933 split_huge_page(page
);
939 copy_user_huge_page(new_page
, page
, haddr
, vma
, HPAGE_PMD_NR
);
940 __SetPageUptodate(new_page
);
942 spin_lock(&mm
->page_table_lock
);
944 if (unlikely(!pmd_same(*pmd
, orig_pmd
))) {
945 mem_cgroup_uncharge_page(new_page
);
949 VM_BUG_ON(!PageHead(page
));
950 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
951 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
952 entry
= pmd_mkhuge(entry
);
953 pmdp_clear_flush_notify(vma
, haddr
, pmd
);
954 page_add_new_anon_rmap(new_page
, vma
, haddr
);
955 set_pmd_at(mm
, haddr
, pmd
, entry
);
956 update_mmu_cache(vma
, address
, entry
);
957 page_remove_rmap(page
);
959 ret
|= VM_FAULT_WRITE
;
962 spin_unlock(&mm
->page_table_lock
);
968 * FOLL_FORCE can write to even unwritable pmd's, but only
969 * after we've gone through a COW cycle and they are dirty.
971 static inline bool can_follow_write_pmd(pmd_t pmd
, struct page
*page
,
974 return pmd_write(pmd
) ||
975 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) &&
976 page
&& PageAnon(page
));
979 struct page
*follow_trans_huge_pmd(struct mm_struct
*mm
,
984 struct page
*page
= NULL
;
986 assert_spin_locked(&mm
->page_table_lock
);
988 page
= pmd_page(*pmd
);
989 VM_BUG_ON(!PageHead(page
));
991 if (flags
& FOLL_WRITE
&& !can_follow_write_pmd(*pmd
, page
, flags
))
994 if (flags
& FOLL_TOUCH
) {
997 * We should set the dirty bit only for FOLL_WRITE but
998 * for now the dirty bit in the pmd is meaningless.
999 * And if the dirty bit will become meaningful and
1000 * we'll only set it with FOLL_WRITE, an atomic
1001 * set_bit will be required on the pmd to set the
1002 * young bit, instead of the current set_pmd_at.
1004 _pmd
= pmd_mkyoung(pmd_mkdirty(*pmd
));
1005 set_pmd_at(mm
, addr
& HPAGE_PMD_MASK
, pmd
, _pmd
);
1007 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1008 VM_BUG_ON(!PageCompound(page
));
1009 if (flags
& FOLL_GET
)
1010 get_page_foll(page
);
1016 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1021 spin_lock(&tlb
->mm
->page_table_lock
);
1022 if (likely(pmd_trans_huge(*pmd
))) {
1023 if (unlikely(pmd_trans_splitting(*pmd
))) {
1024 spin_unlock(&tlb
->mm
->page_table_lock
);
1025 wait_split_huge_page(vma
->anon_vma
,
1030 pgtable
= get_pmd_huge_pte(tlb
->mm
);
1031 page
= pmd_page(*pmd
);
1033 page_remove_rmap(page
);
1034 VM_BUG_ON(page_mapcount(page
) < 0);
1035 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1036 VM_BUG_ON(!PageHead(page
));
1038 spin_unlock(&tlb
->mm
->page_table_lock
);
1039 tlb_remove_page(tlb
, page
);
1040 pte_free(tlb
->mm
, pgtable
);
1044 spin_unlock(&tlb
->mm
->page_table_lock
);
1049 int mincore_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1050 unsigned long addr
, unsigned long end
,
1055 spin_lock(&vma
->vm_mm
->page_table_lock
);
1056 if (likely(pmd_trans_huge(*pmd
))) {
1057 ret
= !pmd_trans_splitting(*pmd
);
1058 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1060 wait_split_huge_page(vma
->anon_vma
, pmd
);
1063 * All logical pages in the range are present
1064 * if backed by a huge page.
1066 memset(vec
, 1, (end
- addr
) >> PAGE_SHIFT
);
1069 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1074 int move_huge_pmd(struct vm_area_struct
*vma
, struct vm_area_struct
*new_vma
,
1075 unsigned long old_addr
,
1076 unsigned long new_addr
, unsigned long old_end
,
1077 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1082 struct mm_struct
*mm
= vma
->vm_mm
;
1084 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1085 (new_addr
& ~HPAGE_PMD_MASK
) ||
1086 old_end
- old_addr
< HPAGE_PMD_SIZE
||
1087 (new_vma
->vm_flags
& VM_NOHUGEPAGE
))
1091 * The destination pmd shouldn't be established, free_pgtables()
1092 * should have release it.
1094 if (WARN_ON(!pmd_none(*new_pmd
))) {
1095 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1099 spin_lock(&mm
->page_table_lock
);
1100 if (likely(pmd_trans_huge(*old_pmd
))) {
1101 if (pmd_trans_splitting(*old_pmd
)) {
1102 spin_unlock(&mm
->page_table_lock
);
1103 wait_split_huge_page(vma
->anon_vma
, old_pmd
);
1106 pmd
= pmdp_get_and_clear(mm
, old_addr
, old_pmd
);
1107 VM_BUG_ON(!pmd_none(*new_pmd
));
1108 set_pmd_at(mm
, new_addr
, new_pmd
, pmd
);
1109 spin_unlock(&mm
->page_table_lock
);
1113 spin_unlock(&mm
->page_table_lock
);
1119 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1120 unsigned long addr
, pgprot_t newprot
)
1122 struct mm_struct
*mm
= vma
->vm_mm
;
1125 spin_lock(&mm
->page_table_lock
);
1126 if (likely(pmd_trans_huge(*pmd
))) {
1127 if (unlikely(pmd_trans_splitting(*pmd
))) {
1128 spin_unlock(&mm
->page_table_lock
);
1129 wait_split_huge_page(vma
->anon_vma
, pmd
);
1133 entry
= pmdp_get_and_clear(mm
, addr
, pmd
);
1134 entry
= pmd_modify(entry
, newprot
);
1135 set_pmd_at(mm
, addr
, pmd
, entry
);
1136 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1137 flush_tlb_range(vma
, addr
, addr
+ HPAGE_PMD_SIZE
);
1141 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1146 pmd_t
*page_check_address_pmd(struct page
*page
,
1147 struct mm_struct
*mm
,
1148 unsigned long address
,
1149 enum page_check_address_pmd_flag flag
)
1153 pmd_t
*pmd
, *ret
= NULL
;
1155 if (address
& ~HPAGE_PMD_MASK
)
1158 pgd
= pgd_offset(mm
, address
);
1159 if (!pgd_present(*pgd
))
1162 pud
= pud_offset(pgd
, address
);
1163 if (!pud_present(*pud
))
1166 pmd
= pmd_offset(pud
, address
);
1169 if (pmd_page(*pmd
) != page
)
1172 * split_vma() may create temporary aliased mappings. There is
1173 * no risk as long as all huge pmd are found and have their
1174 * splitting bit set before __split_huge_page_refcount
1175 * runs. Finding the same huge pmd more than once during the
1176 * same rmap walk is not a problem.
1178 if (flag
== PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
&&
1179 pmd_trans_splitting(*pmd
))
1181 if (pmd_trans_huge(*pmd
)) {
1182 VM_BUG_ON(flag
== PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
&&
1183 !pmd_trans_splitting(*pmd
));
1190 static int __split_huge_page_splitting(struct page
*page
,
1191 struct vm_area_struct
*vma
,
1192 unsigned long address
)
1194 struct mm_struct
*mm
= vma
->vm_mm
;
1198 spin_lock(&mm
->page_table_lock
);
1199 pmd
= page_check_address_pmd(page
, mm
, address
,
1200 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
);
1203 * We can't temporarily set the pmd to null in order
1204 * to split it, the pmd must remain marked huge at all
1205 * times or the VM won't take the pmd_trans_huge paths
1206 * and it won't wait on the anon_vma->root->mutex to
1207 * serialize against split_huge_page*.
1209 pmdp_splitting_flush_notify(vma
, address
, pmd
);
1212 spin_unlock(&mm
->page_table_lock
);
1217 static void __split_huge_page_refcount(struct page
*page
)
1220 unsigned long head_index
= page
->index
;
1221 struct zone
*zone
= page_zone(page
);
1225 /* prevent PageLRU to go away from under us, and freeze lru stats */
1226 spin_lock_irq(&zone
->lru_lock
);
1227 compound_lock(page
);
1229 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
1230 struct page
*page_tail
= page
+ i
;
1232 /* tail_page->_mapcount cannot change */
1233 BUG_ON(page_mapcount(page_tail
) < 0);
1234 tail_count
+= page_mapcount(page_tail
);
1235 /* check for overflow */
1236 BUG_ON(tail_count
< 0);
1237 BUG_ON(atomic_read(&page_tail
->_count
) != 0);
1239 * tail_page->_count is zero and not changing from
1240 * under us. But get_page_unless_zero() may be running
1241 * from under us on the tail_page. If we used
1242 * atomic_set() below instead of atomic_add(), we
1243 * would then run atomic_set() concurrently with
1244 * get_page_unless_zero(), and atomic_set() is
1245 * implemented in C not using locked ops. spin_unlock
1246 * on x86 sometime uses locked ops because of PPro
1247 * errata 66, 92, so unless somebody can guarantee
1248 * atomic_set() here would be safe on all archs (and
1249 * not only on x86), it's safer to use atomic_add().
1251 atomic_add(page_mapcount(page
) + page_mapcount(page_tail
) + 1,
1252 &page_tail
->_count
);
1254 /* after clearing PageTail the gup refcount can be released */
1258 * retain hwpoison flag of the poisoned tail page:
1259 * fix for the unsuitable process killed on Guest Machine(KVM)
1260 * by the memory-failure.
1262 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
| __PG_HWPOISON
;
1263 page_tail
->flags
|= (page
->flags
&
1264 ((1L << PG_referenced
) |
1265 (1L << PG_swapbacked
) |
1266 (1L << PG_mlocked
) |
1267 (1L << PG_uptodate
)));
1268 page_tail
->flags
|= (1L << PG_dirty
);
1270 /* clear PageTail before overwriting first_page */
1274 * __split_huge_page_splitting() already set the
1275 * splitting bit in all pmd that could map this
1276 * hugepage, that will ensure no CPU can alter the
1277 * mapcount on the head page. The mapcount is only
1278 * accounted in the head page and it has to be
1279 * transferred to all tail pages in the below code. So
1280 * for this code to be safe, the split the mapcount
1281 * can't change. But that doesn't mean userland can't
1282 * keep changing and reading the page contents while
1283 * we transfer the mapcount, so the pmd splitting
1284 * status is achieved setting a reserved bit in the
1285 * pmd, not by clearing the present bit.
1287 page_tail
->_mapcount
= page
->_mapcount
;
1289 BUG_ON(page_tail
->mapping
);
1290 page_tail
->mapping
= page
->mapping
;
1292 page_tail
->index
= ++head_index
;
1294 BUG_ON(!PageAnon(page_tail
));
1295 BUG_ON(!PageUptodate(page_tail
));
1296 BUG_ON(!PageDirty(page_tail
));
1297 BUG_ON(!PageSwapBacked(page_tail
));
1299 mem_cgroup_split_huge_fixup(page
, page_tail
);
1301 lru_add_page_tail(zone
, page
, page_tail
);
1303 atomic_sub(tail_count
, &page
->_count
);
1304 BUG_ON(atomic_read(&page
->_count
) <= 0);
1306 __dec_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1307 __mod_zone_page_state(zone
, NR_ANON_PAGES
, HPAGE_PMD_NR
);
1310 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1311 * so adjust those appropriately if this page is on the LRU.
1313 if (PageLRU(page
)) {
1314 zonestat
= NR_LRU_BASE
+ page_lru(page
);
1315 __mod_zone_page_state(zone
, zonestat
, -(HPAGE_PMD_NR
-1));
1318 ClearPageCompound(page
);
1319 compound_unlock(page
);
1320 spin_unlock_irq(&zone
->lru_lock
);
1322 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
1323 struct page
*page_tail
= page
+ i
;
1324 BUG_ON(page_count(page_tail
) <= 0);
1326 * Tail pages may be freed if there wasn't any mapping
1327 * like if add_to_swap() is running on a lru page that
1328 * had its mapping zapped. And freeing these pages
1329 * requires taking the lru_lock so we do the put_page
1330 * of the tail pages after the split is complete.
1332 put_page(page_tail
);
1336 * Only the head page (now become a regular page) is required
1337 * to be pinned by the caller.
1339 BUG_ON(page_count(page
) <= 0);
1342 static int __split_huge_page_map(struct page
*page
,
1343 struct vm_area_struct
*vma
,
1344 unsigned long address
)
1346 struct mm_struct
*mm
= vma
->vm_mm
;
1350 unsigned long haddr
;
1352 spin_lock(&mm
->page_table_lock
);
1353 pmd
= page_check_address_pmd(page
, mm
, address
,
1354 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
);
1356 pgtable
= get_pmd_huge_pte(mm
);
1357 pmd_populate(mm
, &_pmd
, pgtable
);
1359 for (i
= 0, haddr
= address
; i
< HPAGE_PMD_NR
;
1360 i
++, haddr
+= PAGE_SIZE
) {
1362 BUG_ON(PageCompound(page
+i
));
1363 entry
= mk_pte(page
+ i
, vma
->vm_page_prot
);
1364 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1365 if (!pmd_write(*pmd
))
1366 entry
= pte_wrprotect(entry
);
1368 BUG_ON(page_mapcount(page
) != 1);
1369 if (!pmd_young(*pmd
))
1370 entry
= pte_mkold(entry
);
1371 pte
= pte_offset_map(&_pmd
, haddr
);
1372 BUG_ON(!pte_none(*pte
));
1373 set_pte_at(mm
, haddr
, pte
, entry
);
1377 smp_wmb(); /* make pte visible before pmd */
1379 * Up to this point the pmd is present and huge and
1380 * userland has the whole access to the hugepage
1381 * during the split (which happens in place). If we
1382 * overwrite the pmd with the not-huge version
1383 * pointing to the pte here (which of course we could
1384 * if all CPUs were bug free), userland could trigger
1385 * a small page size TLB miss on the small sized TLB
1386 * while the hugepage TLB entry is still established
1387 * in the huge TLB. Some CPU doesn't like that. See
1388 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1389 * Erratum 383 on page 93. Intel should be safe but is
1390 * also warns that it's only safe if the permission
1391 * and cache attributes of the two entries loaded in
1392 * the two TLB is identical (which should be the case
1393 * here). But it is generally safer to never allow
1394 * small and huge TLB entries for the same virtual
1395 * address to be loaded simultaneously. So instead of
1396 * doing "pmd_populate(); flush_tlb_range();" we first
1397 * mark the current pmd notpresent (atomically because
1398 * here the pmd_trans_huge and pmd_trans_splitting
1399 * must remain set at all times on the pmd until the
1400 * split is complete for this pmd), then we flush the
1401 * SMP TLB and finally we write the non-huge version
1402 * of the pmd entry with pmd_populate.
1404 set_pmd_at(mm
, address
, pmd
, pmd_mknotpresent(*pmd
));
1405 flush_tlb_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
1406 pmd_populate(mm
, pmd
, pgtable
);
1409 spin_unlock(&mm
->page_table_lock
);
1414 /* must be called with anon_vma->root->mutex hold */
1415 static void __split_huge_page(struct page
*page
,
1416 struct anon_vma
*anon_vma
)
1418 int mapcount
, mapcount2
;
1419 struct anon_vma_chain
*avc
;
1421 BUG_ON(!PageHead(page
));
1422 BUG_ON(PageTail(page
));
1425 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1426 struct vm_area_struct
*vma
= avc
->vma
;
1427 unsigned long addr
= vma_address(page
, vma
);
1428 BUG_ON(is_vma_temporary_stack(vma
));
1429 if (addr
== -EFAULT
)
1431 mapcount
+= __split_huge_page_splitting(page
, vma
, addr
);
1434 * It is critical that new vmas are added to the tail of the
1435 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1436 * and establishes a child pmd before
1437 * __split_huge_page_splitting() freezes the parent pmd (so if
1438 * we fail to prevent copy_huge_pmd() from running until the
1439 * whole __split_huge_page() is complete), we will still see
1440 * the newly established pmd of the child later during the
1441 * walk, to be able to set it as pmd_trans_splitting too.
1443 if (mapcount
!= page_mapcount(page
))
1444 printk(KERN_ERR
"mapcount %d page_mapcount %d\n",
1445 mapcount
, page_mapcount(page
));
1446 BUG_ON(mapcount
!= page_mapcount(page
));
1448 __split_huge_page_refcount(page
);
1451 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1452 struct vm_area_struct
*vma
= avc
->vma
;
1453 unsigned long addr
= vma_address(page
, vma
);
1454 BUG_ON(is_vma_temporary_stack(vma
));
1455 if (addr
== -EFAULT
)
1457 mapcount2
+= __split_huge_page_map(page
, vma
, addr
);
1459 if (mapcount
!= mapcount2
)
1460 printk(KERN_ERR
"mapcount %d mapcount2 %d page_mapcount %d\n",
1461 mapcount
, mapcount2
, page_mapcount(page
));
1462 BUG_ON(mapcount
!= mapcount2
);
1465 int split_huge_page(struct page
*page
)
1467 struct anon_vma
*anon_vma
;
1470 BUG_ON(!PageAnon(page
));
1471 anon_vma
= page_lock_anon_vma(page
);
1475 if (!PageCompound(page
))
1478 BUG_ON(!PageSwapBacked(page
));
1479 __split_huge_page(page
, anon_vma
);
1480 count_vm_event(THP_SPLIT
);
1482 BUG_ON(PageCompound(page
));
1484 page_unlock_anon_vma(anon_vma
);
1489 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1490 VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1492 int hugepage_madvise(struct vm_area_struct
*vma
,
1493 unsigned long *vm_flags
, int advice
)
1498 * Be somewhat over-protective like KSM for now!
1500 if (*vm_flags
& (VM_HUGEPAGE
| VM_NO_THP
))
1502 *vm_flags
&= ~VM_NOHUGEPAGE
;
1503 *vm_flags
|= VM_HUGEPAGE
;
1505 * If the vma become good for khugepaged to scan,
1506 * register it here without waiting a page fault that
1507 * may not happen any time soon.
1509 if (unlikely(khugepaged_enter_vma_merge(vma
, *vm_flags
)))
1512 case MADV_NOHUGEPAGE
:
1514 * Be somewhat over-protective like KSM for now!
1516 if (*vm_flags
& (VM_NOHUGEPAGE
| VM_NO_THP
))
1518 *vm_flags
&= ~VM_HUGEPAGE
;
1519 *vm_flags
|= VM_NOHUGEPAGE
;
1521 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1522 * this vma even if we leave the mm registered in khugepaged if
1523 * it got registered before VM_NOHUGEPAGE was set.
1531 static int __init
khugepaged_slab_init(void)
1533 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
1534 sizeof(struct mm_slot
),
1535 __alignof__(struct mm_slot
), 0, NULL
);
1542 static void __init
khugepaged_slab_free(void)
1544 kmem_cache_destroy(mm_slot_cache
);
1545 mm_slot_cache
= NULL
;
1548 static inline struct mm_slot
*alloc_mm_slot(void)
1550 if (!mm_slot_cache
) /* initialization failed */
1552 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
1555 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
1557 kmem_cache_free(mm_slot_cache
, mm_slot
);
1560 static int __init
mm_slots_hash_init(void)
1562 mm_slots_hash
= kzalloc(MM_SLOTS_HASH_HEADS
* sizeof(struct hlist_head
),
1570 static void __init
mm_slots_hash_free(void)
1572 kfree(mm_slots_hash
);
1573 mm_slots_hash
= NULL
;
1577 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
1579 struct mm_slot
*mm_slot
;
1580 struct hlist_head
*bucket
;
1581 struct hlist_node
*node
;
1583 bucket
= &mm_slots_hash
[((unsigned long)mm
/ sizeof(struct mm_struct
))
1584 % MM_SLOTS_HASH_HEADS
];
1585 hlist_for_each_entry(mm_slot
, node
, bucket
, hash
) {
1586 if (mm
== mm_slot
->mm
)
1592 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
1593 struct mm_slot
*mm_slot
)
1595 struct hlist_head
*bucket
;
1597 bucket
= &mm_slots_hash
[((unsigned long)mm
/ sizeof(struct mm_struct
))
1598 % MM_SLOTS_HASH_HEADS
];
1600 hlist_add_head(&mm_slot
->hash
, bucket
);
1603 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
1605 return atomic_read(&mm
->mm_users
) == 0;
1608 int __khugepaged_enter(struct mm_struct
*mm
)
1610 struct mm_slot
*mm_slot
;
1613 mm_slot
= alloc_mm_slot();
1617 /* __khugepaged_exit() must not run from under us */
1618 VM_BUG_ON(khugepaged_test_exit(mm
));
1619 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
1620 free_mm_slot(mm_slot
);
1624 spin_lock(&khugepaged_mm_lock
);
1625 insert_to_mm_slots_hash(mm
, mm_slot
);
1627 * Insert just behind the scanning cursor, to let the area settle
1630 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
1631 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
1632 spin_unlock(&khugepaged_mm_lock
);
1634 atomic_inc(&mm
->mm_count
);
1636 wake_up_interruptible(&khugepaged_wait
);
1641 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
,
1642 unsigned long vm_flags
)
1644 unsigned long hstart
, hend
;
1647 * Not yet faulted in so we will register later in the
1648 * page fault if needed.
1651 if (vma
->vm_ops
|| (vm_flags
& VM_NO_THP
))
1652 /* khugepaged not yet working on file or special mappings */
1655 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1656 * true too, verify it here.
1658 VM_BUG_ON(is_linear_pfn_mapping(vma
));
1659 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1660 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1662 return khugepaged_enter(vma
, vm_flags
);
1666 void __khugepaged_exit(struct mm_struct
*mm
)
1668 struct mm_slot
*mm_slot
;
1671 spin_lock(&khugepaged_mm_lock
);
1672 mm_slot
= get_mm_slot(mm
);
1673 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
1674 hlist_del(&mm_slot
->hash
);
1675 list_del(&mm_slot
->mm_node
);
1678 spin_unlock(&khugepaged_mm_lock
);
1681 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
1682 free_mm_slot(mm_slot
);
1684 } else if (mm_slot
) {
1686 * This is required to serialize against
1687 * khugepaged_test_exit() (which is guaranteed to run
1688 * under mmap sem read mode). Stop here (after we
1689 * return all pagetables will be destroyed) until
1690 * khugepaged has finished working on the pagetables
1691 * under the mmap_sem.
1693 down_write(&mm
->mmap_sem
);
1694 up_write(&mm
->mmap_sem
);
1698 static void release_pte_page(struct page
*page
)
1700 /* 0 stands for page_is_file_cache(page) == false */
1701 dec_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
1703 putback_lru_page(page
);
1706 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
1708 while (--_pte
>= pte
) {
1709 pte_t pteval
= *_pte
;
1710 if (!pte_none(pteval
))
1711 release_pte_page(pte_page(pteval
));
1715 static void release_all_pte_pages(pte_t
*pte
)
1717 release_pte_pages(pte
, pte
+ HPAGE_PMD_NR
);
1720 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
1721 unsigned long address
,
1726 int referenced
= 0, isolated
= 0, none
= 0;
1727 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
1728 _pte
++, address
+= PAGE_SIZE
) {
1729 pte_t pteval
= *_pte
;
1730 if (pte_none(pteval
)) {
1731 if (++none
<= khugepaged_max_ptes_none
)
1734 release_pte_pages(pte
, _pte
);
1738 if (!pte_present(pteval
) || !pte_write(pteval
)) {
1739 release_pte_pages(pte
, _pte
);
1742 page
= vm_normal_page(vma
, address
, pteval
);
1743 if (unlikely(!page
)) {
1744 release_pte_pages(pte
, _pte
);
1747 VM_BUG_ON(PageCompound(page
));
1748 BUG_ON(!PageAnon(page
));
1749 VM_BUG_ON(!PageSwapBacked(page
));
1751 /* cannot use mapcount: can't collapse if there's a gup pin */
1752 if (page_count(page
) != 1) {
1753 release_pte_pages(pte
, _pte
);
1757 * We can do it before isolate_lru_page because the
1758 * page can't be freed from under us. NOTE: PG_lock
1759 * is needed to serialize against split_huge_page
1760 * when invoked from the VM.
1762 if (!trylock_page(page
)) {
1763 release_pte_pages(pte
, _pte
);
1767 * Isolate the page to avoid collapsing an hugepage
1768 * currently in use by the VM.
1770 if (isolate_lru_page(page
)) {
1772 release_pte_pages(pte
, _pte
);
1775 /* 0 stands for page_is_file_cache(page) == false */
1776 inc_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
1777 VM_BUG_ON(!PageLocked(page
));
1778 VM_BUG_ON(PageLRU(page
));
1780 /* If there is no mapped pte young don't collapse the page */
1781 if (pte_young(pteval
) || PageReferenced(page
) ||
1782 mmu_notifier_test_young(vma
->vm_mm
, address
))
1785 if (unlikely(!referenced
))
1786 release_all_pte_pages(pte
);
1793 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
1794 struct vm_area_struct
*vma
,
1795 unsigned long address
,
1799 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
; _pte
++) {
1800 pte_t pteval
= *_pte
;
1801 struct page
*src_page
;
1803 if (pte_none(pteval
)) {
1804 clear_user_highpage(page
, address
);
1805 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
1807 src_page
= pte_page(pteval
);
1808 copy_user_highpage(page
, src_page
, address
, vma
);
1809 VM_BUG_ON(page_mapcount(src_page
) != 1);
1810 VM_BUG_ON(page_count(src_page
) != 2);
1811 release_pte_page(src_page
);
1813 * ptl mostly unnecessary, but preempt has to
1814 * be disabled to update the per-cpu stats
1815 * inside page_remove_rmap().
1819 * paravirt calls inside pte_clear here are
1822 pte_clear(vma
->vm_mm
, address
, _pte
);
1823 page_remove_rmap(src_page
);
1825 free_page_and_swap_cache(src_page
);
1828 address
+= PAGE_SIZE
;
1833 static bool hugepage_vma_check(struct vm_area_struct
*vma
)
1835 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
1836 (vma
->vm_flags
& VM_NOHUGEPAGE
))
1839 if (!vma
->anon_vma
|| vma
->vm_ops
)
1841 if (is_vma_temporary_stack(vma
))
1844 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1845 * true too, verify it here.
1847 VM_BUG_ON(is_linear_pfn_mapping(vma
));
1848 return !(vma
->vm_flags
& VM_NO_THP
);
1851 static void collapse_huge_page(struct mm_struct
*mm
,
1852 unsigned long address
,
1853 struct page
**hpage
,
1854 struct vm_area_struct
*vma
,
1862 struct page
*new_page
;
1865 unsigned long hstart
, hend
;
1867 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
1869 up_read(&mm
->mmap_sem
);
1875 * Allocate the page while the vma is still valid and under
1876 * the mmap_sem read mode so there is no memory allocation
1877 * later when we take the mmap_sem in write mode. This is more
1878 * friendly behavior (OTOH it may actually hide bugs) to
1879 * filesystems in userland with daemons allocating memory in
1880 * the userland I/O paths. Allocating memory with the
1881 * mmap_sem in read mode is good idea also to allow greater
1884 new_page
= alloc_hugepage_vma(khugepaged_defrag(), vma
, address
,
1885 node
, __GFP_OTHER_NODE
);
1888 * After allocating the hugepage, release the mmap_sem read lock in
1889 * preparation for taking it in write mode.
1891 up_read(&mm
->mmap_sem
);
1892 if (unlikely(!new_page
)) {
1893 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
1894 *hpage
= ERR_PTR(-ENOMEM
);
1899 count_vm_event(THP_COLLAPSE_ALLOC
);
1900 if (unlikely(mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))) {
1908 * Prevent all access to pagetables with the exception of
1909 * gup_fast later hanlded by the ptep_clear_flush and the VM
1910 * handled by the anon_vma lock + PG_lock.
1912 down_write(&mm
->mmap_sem
);
1913 if (unlikely(khugepaged_test_exit(mm
)))
1916 vma
= find_vma(mm
, address
);
1919 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1920 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1921 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
1923 if (!hugepage_vma_check(vma
))
1925 pgd
= pgd_offset(mm
, address
);
1926 if (!pgd_present(*pgd
))
1929 pud
= pud_offset(pgd
, address
);
1930 if (!pud_present(*pud
))
1933 pmd
= pmd_offset(pud
, address
);
1934 /* pmd can't go away or become huge under us */
1935 if (!pmd_present(*pmd
) || pmd_trans_huge(*pmd
))
1938 anon_vma_lock(vma
->anon_vma
);
1940 pte
= pte_offset_map(pmd
, address
);
1941 ptl
= pte_lockptr(mm
, pmd
);
1943 spin_lock(&mm
->page_table_lock
); /* probably unnecessary */
1945 * After this gup_fast can't run anymore. This also removes
1946 * any huge TLB entry from the CPU so we won't allow
1947 * huge and small TLB entries for the same virtual address
1948 * to avoid the risk of CPU bugs in that area.
1950 _pmd
= pmdp_clear_flush_notify(vma
, address
, pmd
);
1951 spin_unlock(&mm
->page_table_lock
);
1954 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
1957 if (unlikely(!isolated
)) {
1959 spin_lock(&mm
->page_table_lock
);
1960 BUG_ON(!pmd_none(*pmd
));
1962 * We can only use set_pmd_at when establishing
1963 * hugepmds and never for establishing regular pmds that
1964 * points to regular pagetables. Use pmd_populate for that
1966 pmd_populate(mm
, pmd
, pmd_pgtable(_pmd
));
1967 spin_unlock(&mm
->page_table_lock
);
1968 anon_vma_unlock(vma
->anon_vma
);
1973 * All pages are isolated and locked so anon_vma rmap
1974 * can't run anymore.
1976 anon_vma_unlock(vma
->anon_vma
);
1978 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, ptl
);
1980 __SetPageUptodate(new_page
);
1981 pgtable
= pmd_pgtable(_pmd
);
1982 VM_BUG_ON(page_count(pgtable
) != 1);
1983 VM_BUG_ON(page_mapcount(pgtable
) != 0);
1985 _pmd
= mk_pmd(new_page
, vma
->vm_page_prot
);
1986 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
1987 _pmd
= pmd_mkhuge(_pmd
);
1990 * spin_lock() below is not the equivalent of smp_wmb(), so
1991 * this is needed to avoid the copy_huge_page writes to become
1992 * visible after the set_pmd_at() write.
1996 spin_lock(&mm
->page_table_lock
);
1997 BUG_ON(!pmd_none(*pmd
));
1998 page_add_new_anon_rmap(new_page
, vma
, address
);
1999 set_pmd_at(mm
, address
, pmd
, _pmd
);
2000 update_mmu_cache(vma
, address
, _pmd
);
2001 prepare_pmd_huge_pte(pgtable
, mm
);
2002 spin_unlock(&mm
->page_table_lock
);
2007 khugepaged_pages_collapsed
++;
2009 up_write(&mm
->mmap_sem
);
2013 mem_cgroup_uncharge_page(new_page
);
2020 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
2021 struct vm_area_struct
*vma
,
2022 unsigned long address
,
2023 struct page
**hpage
)
2029 int ret
= 0, referenced
= 0, none
= 0;
2031 unsigned long _address
;
2035 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2037 pgd
= pgd_offset(mm
, address
);
2038 if (!pgd_present(*pgd
))
2041 pud
= pud_offset(pgd
, address
);
2042 if (!pud_present(*pud
))
2045 pmd
= pmd_offset(pud
, address
);
2046 if (!pmd_present(*pmd
) || pmd_trans_huge(*pmd
))
2049 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2050 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2051 _pte
++, _address
+= PAGE_SIZE
) {
2052 pte_t pteval
= *_pte
;
2053 if (pte_none(pteval
)) {
2054 if (++none
<= khugepaged_max_ptes_none
)
2059 if (!pte_present(pteval
) || !pte_write(pteval
))
2061 page
= vm_normal_page(vma
, _address
, pteval
);
2062 if (unlikely(!page
))
2065 * Chose the node of the first page. This could
2066 * be more sophisticated and look at more pages,
2067 * but isn't for now.
2070 node
= page_to_nid(page
);
2071 VM_BUG_ON(PageCompound(page
));
2072 if (!PageLRU(page
) || PageLocked(page
) || !PageAnon(page
))
2074 /* cannot use mapcount: can't collapse if there's a gup pin */
2075 if (page_count(page
) != 1)
2077 if (pte_young(pteval
) || PageReferenced(page
) ||
2078 mmu_notifier_test_young(vma
->vm_mm
, address
))
2084 pte_unmap_unlock(pte
, ptl
);
2086 /* collapse_huge_page will return with the mmap_sem released */
2087 collapse_huge_page(mm
, address
, hpage
, vma
, node
);
2092 static void collect_mm_slot(struct mm_slot
*mm_slot
)
2094 struct mm_struct
*mm
= mm_slot
->mm
;
2096 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2098 if (khugepaged_test_exit(mm
)) {
2100 hlist_del(&mm_slot
->hash
);
2101 list_del(&mm_slot
->mm_node
);
2104 * Not strictly needed because the mm exited already.
2106 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2109 /* khugepaged_mm_lock actually not necessary for the below */
2110 free_mm_slot(mm_slot
);
2115 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
2116 struct page
**hpage
)
2117 __releases(&khugepaged_mm_lock
)
2118 __acquires(&khugepaged_mm_lock
)
2120 struct mm_slot
*mm_slot
;
2121 struct mm_struct
*mm
;
2122 struct vm_area_struct
*vma
;
2126 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2128 if (khugepaged_scan
.mm_slot
)
2129 mm_slot
= khugepaged_scan
.mm_slot
;
2131 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
2132 struct mm_slot
, mm_node
);
2133 khugepaged_scan
.address
= 0;
2134 khugepaged_scan
.mm_slot
= mm_slot
;
2136 spin_unlock(&khugepaged_mm_lock
);
2139 down_read(&mm
->mmap_sem
);
2140 if (unlikely(khugepaged_test_exit(mm
)))
2143 vma
= find_vma(mm
, khugepaged_scan
.address
);
2146 for (; vma
; vma
= vma
->vm_next
) {
2147 unsigned long hstart
, hend
;
2150 if (unlikely(khugepaged_test_exit(mm
))) {
2154 if (!hugepage_vma_check(vma
)) {
2159 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2160 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2163 if (khugepaged_scan
.address
> hend
)
2165 if (khugepaged_scan
.address
< hstart
)
2166 khugepaged_scan
.address
= hstart
;
2167 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
2169 while (khugepaged_scan
.address
< hend
) {
2172 if (unlikely(khugepaged_test_exit(mm
)))
2173 goto breakouterloop
;
2175 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
2176 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
2178 ret
= khugepaged_scan_pmd(mm
, vma
,
2179 khugepaged_scan
.address
,
2181 /* move to next address */
2182 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
2183 progress
+= HPAGE_PMD_NR
;
2185 /* we released mmap_sem so break loop */
2186 goto breakouterloop_mmap_sem
;
2187 if (progress
>= pages
)
2188 goto breakouterloop
;
2192 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
2193 breakouterloop_mmap_sem
:
2195 spin_lock(&khugepaged_mm_lock
);
2196 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
2198 * Release the current mm_slot if this mm is about to die, or
2199 * if we scanned all vmas of this mm.
2201 if (khugepaged_test_exit(mm
) || !vma
) {
2203 * Make sure that if mm_users is reaching zero while
2204 * khugepaged runs here, khugepaged_exit will find
2205 * mm_slot not pointing to the exiting mm.
2207 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
2208 khugepaged_scan
.mm_slot
= list_entry(
2209 mm_slot
->mm_node
.next
,
2210 struct mm_slot
, mm_node
);
2211 khugepaged_scan
.address
= 0;
2213 khugepaged_scan
.mm_slot
= NULL
;
2214 khugepaged_full_scans
++;
2217 collect_mm_slot(mm_slot
);
2223 static int khugepaged_has_work(void)
2225 return !list_empty(&khugepaged_scan
.mm_head
) &&
2226 khugepaged_enabled();
2229 static int khugepaged_wait_event(void)
2231 return !list_empty(&khugepaged_scan
.mm_head
) ||
2232 !khugepaged_enabled();
2235 static void khugepaged_do_scan(struct page
**hpage
)
2237 unsigned int progress
= 0, pass_through_head
= 0;
2238 unsigned int pages
= khugepaged_pages_to_scan
;
2240 barrier(); /* write khugepaged_pages_to_scan to local stack */
2242 while (progress
< pages
) {
2247 *hpage
= alloc_hugepage(khugepaged_defrag());
2248 if (unlikely(!*hpage
)) {
2249 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2252 count_vm_event(THP_COLLAPSE_ALLOC
);
2259 if (unlikely(kthread_should_stop() || freezing(current
)))
2262 spin_lock(&khugepaged_mm_lock
);
2263 if (!khugepaged_scan
.mm_slot
)
2264 pass_through_head
++;
2265 if (khugepaged_has_work() &&
2266 pass_through_head
< 2)
2267 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
2271 spin_unlock(&khugepaged_mm_lock
);
2275 static void khugepaged_alloc_sleep(void)
2277 wait_event_freezable_timeout(khugepaged_wait
, false,
2278 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
2282 static struct page
*khugepaged_alloc_hugepage(void)
2287 hpage
= alloc_hugepage(khugepaged_defrag());
2289 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2290 khugepaged_alloc_sleep();
2292 count_vm_event(THP_COLLAPSE_ALLOC
);
2293 } while (unlikely(!hpage
) &&
2294 likely(khugepaged_enabled()));
2299 static void khugepaged_loop(void)
2306 while (likely(khugepaged_enabled())) {
2308 hpage
= khugepaged_alloc_hugepage();
2309 if (unlikely(!hpage
))
2312 if (IS_ERR(hpage
)) {
2313 khugepaged_alloc_sleep();
2318 khugepaged_do_scan(&hpage
);
2324 if (unlikely(kthread_should_stop()))
2326 if (khugepaged_has_work()) {
2327 if (!khugepaged_scan_sleep_millisecs
)
2329 wait_event_freezable_timeout(khugepaged_wait
, false,
2330 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
));
2331 } else if (khugepaged_enabled())
2332 wait_event_freezable(khugepaged_wait
,
2333 khugepaged_wait_event());
2337 static int khugepaged(void *none
)
2339 struct mm_slot
*mm_slot
;
2342 set_user_nice(current
, 19);
2344 /* serialize with start_khugepaged() */
2345 mutex_lock(&khugepaged_mutex
);
2348 mutex_unlock(&khugepaged_mutex
);
2349 VM_BUG_ON(khugepaged_thread
!= current
);
2351 VM_BUG_ON(khugepaged_thread
!= current
);
2353 mutex_lock(&khugepaged_mutex
);
2354 if (!khugepaged_enabled())
2356 if (unlikely(kthread_should_stop()))
2360 spin_lock(&khugepaged_mm_lock
);
2361 mm_slot
= khugepaged_scan
.mm_slot
;
2362 khugepaged_scan
.mm_slot
= NULL
;
2364 collect_mm_slot(mm_slot
);
2365 spin_unlock(&khugepaged_mm_lock
);
2367 khugepaged_thread
= NULL
;
2368 mutex_unlock(&khugepaged_mutex
);
2373 void __split_huge_page_pmd(struct mm_struct
*mm
, pmd_t
*pmd
)
2377 spin_lock(&mm
->page_table_lock
);
2378 if (unlikely(!pmd_trans_huge(*pmd
))) {
2379 spin_unlock(&mm
->page_table_lock
);
2382 page
= pmd_page(*pmd
);
2383 VM_BUG_ON(!page_count(page
));
2385 spin_unlock(&mm
->page_table_lock
);
2387 split_huge_page(page
);
2390 BUG_ON(pmd_trans_huge(*pmd
));
2393 static void split_huge_page_address(struct mm_struct
*mm
,
2394 unsigned long address
)
2400 VM_BUG_ON(!(address
& ~HPAGE_PMD_MASK
));
2402 pgd
= pgd_offset(mm
, address
);
2403 if (!pgd_present(*pgd
))
2406 pud
= pud_offset(pgd
, address
);
2407 if (!pud_present(*pud
))
2410 pmd
= pmd_offset(pud
, address
);
2411 if (!pmd_present(*pmd
))
2414 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2415 * materialize from under us.
2417 split_huge_page_pmd(mm
, pmd
);
2420 void __vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2421 unsigned long start
,
2426 * If the new start address isn't hpage aligned and it could
2427 * previously contain an hugepage: check if we need to split
2430 if (start
& ~HPAGE_PMD_MASK
&&
2431 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2432 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2433 split_huge_page_address(vma
->vm_mm
, start
);
2436 * If the new end address isn't hpage aligned and it could
2437 * previously contain an hugepage: check if we need to split
2440 if (end
& ~HPAGE_PMD_MASK
&&
2441 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2442 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2443 split_huge_page_address(vma
->vm_mm
, end
);
2446 * If we're also updating the vma->vm_next->vm_start, if the new
2447 * vm_next->vm_start isn't page aligned and it could previously
2448 * contain an hugepage: check if we need to split an huge pmd.
2450 if (adjust_next
> 0) {
2451 struct vm_area_struct
*next
= vma
->vm_next
;
2452 unsigned long nstart
= next
->vm_start
;
2453 nstart
+= adjust_next
<< PAGE_SHIFT
;
2454 if (nstart
& ~HPAGE_PMD_MASK
&&
2455 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2456 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2457 split_huge_page_address(next
->vm_mm
, nstart
);