Linux 3.2.90
[linux/fpc-iii.git] / mm / rmap.c
blob98f0bf7fc50d1bdaa16506a466b0508602ef6157
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
63 #include "internal.h"
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
68 static inline struct anon_vma *anon_vma_alloc(void)
70 struct anon_vma *anon_vma;
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 anon_vma->degree = 1; /* Reference for first vma */
76 anon_vma->parent = anon_vma;
78 * Initialise the anon_vma root to point to itself. If called
79 * from fork, the root will be reset to the parents anon_vma.
81 anon_vma->root = anon_vma;
84 return anon_vma;
87 static inline void anon_vma_free(struct anon_vma *anon_vma)
89 VM_BUG_ON(atomic_read(&anon_vma->refcount));
92 * Synchronize against page_lock_anon_vma() such that
93 * we can safely hold the lock without the anon_vma getting
94 * freed.
96 * Relies on the full mb implied by the atomic_dec_and_test() from
97 * put_anon_vma() against the acquire barrier implied by
98 * mutex_trylock() from page_lock_anon_vma(). This orders:
100 * page_lock_anon_vma() VS put_anon_vma()
101 * mutex_trylock() atomic_dec_and_test()
102 * LOCK MB
103 * atomic_read() mutex_is_locked()
105 * LOCK should suffice since the actual taking of the lock must
106 * happen _before_ what follows.
108 might_sleep();
109 if (mutex_is_locked(&anon_vma->root->mutex)) {
110 anon_vma_lock(anon_vma);
111 anon_vma_unlock(anon_vma);
114 kmem_cache_free(anon_vma_cachep, anon_vma);
117 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
119 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
122 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
124 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
128 * anon_vma_prepare - attach an anon_vma to a memory region
129 * @vma: the memory region in question
131 * This makes sure the memory mapping described by 'vma' has
132 * an 'anon_vma' attached to it, so that we can associate the
133 * anonymous pages mapped into it with that anon_vma.
135 * The common case will be that we already have one, but if
136 * not we either need to find an adjacent mapping that we
137 * can re-use the anon_vma from (very common when the only
138 * reason for splitting a vma has been mprotect()), or we
139 * allocate a new one.
141 * Anon-vma allocations are very subtle, because we may have
142 * optimistically looked up an anon_vma in page_lock_anon_vma()
143 * and that may actually touch the spinlock even in the newly
144 * allocated vma (it depends on RCU to make sure that the
145 * anon_vma isn't actually destroyed).
147 * As a result, we need to do proper anon_vma locking even
148 * for the new allocation. At the same time, we do not want
149 * to do any locking for the common case of already having
150 * an anon_vma.
152 * This must be called with the mmap_sem held for reading.
154 int anon_vma_prepare(struct vm_area_struct *vma)
156 struct anon_vma *anon_vma = vma->anon_vma;
157 struct anon_vma_chain *avc;
159 might_sleep();
160 if (unlikely(!anon_vma)) {
161 struct mm_struct *mm = vma->vm_mm;
162 struct anon_vma *allocated;
164 avc = anon_vma_chain_alloc(GFP_KERNEL);
165 if (!avc)
166 goto out_enomem;
168 anon_vma = find_mergeable_anon_vma(vma);
169 allocated = NULL;
170 if (!anon_vma) {
171 anon_vma = anon_vma_alloc();
172 if (unlikely(!anon_vma))
173 goto out_enomem_free_avc;
174 allocated = anon_vma;
177 anon_vma_lock(anon_vma);
178 /* page_table_lock to protect against threads */
179 spin_lock(&mm->page_table_lock);
180 if (likely(!vma->anon_vma)) {
181 vma->anon_vma = anon_vma;
182 avc->anon_vma = anon_vma;
183 avc->vma = vma;
184 list_add(&avc->same_vma, &vma->anon_vma_chain);
185 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
186 /* vma reference or self-parent link for new root */
187 anon_vma->degree++;
188 allocated = NULL;
189 avc = NULL;
191 spin_unlock(&mm->page_table_lock);
192 anon_vma_unlock(anon_vma);
194 if (unlikely(allocated))
195 put_anon_vma(allocated);
196 if (unlikely(avc))
197 anon_vma_chain_free(avc);
199 return 0;
201 out_enomem_free_avc:
202 anon_vma_chain_free(avc);
203 out_enomem:
204 return -ENOMEM;
208 * This is a useful helper function for locking the anon_vma root as
209 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
210 * have the same vma.
212 * Such anon_vma's should have the same root, so you'd expect to see
213 * just a single mutex_lock for the whole traversal.
215 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
217 struct anon_vma *new_root = anon_vma->root;
218 if (new_root != root) {
219 if (WARN_ON_ONCE(root))
220 mutex_unlock(&root->mutex);
221 root = new_root;
222 mutex_lock(&root->mutex);
224 return root;
227 static inline void unlock_anon_vma_root(struct anon_vma *root)
229 if (root)
230 mutex_unlock(&root->mutex);
233 static void anon_vma_chain_link(struct vm_area_struct *vma,
234 struct anon_vma_chain *avc,
235 struct anon_vma *anon_vma)
237 avc->vma = vma;
238 avc->anon_vma = anon_vma;
239 list_add(&avc->same_vma, &vma->anon_vma_chain);
242 * It's critical to add new vmas to the tail of the anon_vma,
243 * see comment in huge_memory.c:__split_huge_page().
245 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
249 * Attach the anon_vmas from src to dst.
250 * Returns 0 on success, -ENOMEM on failure.
252 * If dst->anon_vma is NULL this function tries to find and reuse existing
253 * anon_vma which has no vmas and only one child anon_vma. This prevents
254 * degradation of anon_vma hierarchy to endless linear chain in case of
255 * constantly forking task. On the other hand, an anon_vma with more than one
256 * child isn't reused even if there was no alive vma, thus rmap walker has a
257 * good chance of avoiding scanning the whole hierarchy when it searches where
258 * page is mapped.
260 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
262 struct anon_vma_chain *avc, *pavc;
263 struct anon_vma *root = NULL;
265 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
266 struct anon_vma *anon_vma;
268 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
269 if (unlikely(!avc)) {
270 unlock_anon_vma_root(root);
271 root = NULL;
272 avc = anon_vma_chain_alloc(GFP_KERNEL);
273 if (!avc)
274 goto enomem_failure;
276 anon_vma = pavc->anon_vma;
277 root = lock_anon_vma_root(root, anon_vma);
278 anon_vma_chain_link(dst, avc, anon_vma);
281 * Reuse existing anon_vma if its degree lower than two,
282 * that means it has no vma and only one anon_vma child.
284 * Do not chose parent anon_vma, otherwise first child
285 * will always reuse it. Root anon_vma is never reused:
286 * it has self-parent reference and at least one child.
288 if (!dst->anon_vma && anon_vma != src->anon_vma &&
289 anon_vma->degree < 2)
290 dst->anon_vma = anon_vma;
292 if (dst->anon_vma)
293 dst->anon_vma->degree++;
294 unlock_anon_vma_root(root);
295 return 0;
297 enomem_failure:
299 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
300 * decremented in unlink_anon_vmas().
301 * We can safely do this because callers of anon_vma_clone() don't care
302 * about dst->anon_vma if anon_vma_clone() failed.
304 dst->anon_vma = NULL;
305 unlink_anon_vmas(dst);
306 return -ENOMEM;
310 * Attach vma to its own anon_vma, as well as to the anon_vmas that
311 * the corresponding VMA in the parent process is attached to.
312 * Returns 0 on success, non-zero on failure.
314 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
316 struct anon_vma_chain *avc;
317 struct anon_vma *anon_vma;
319 /* Don't bother if the parent process has no anon_vma here. */
320 if (!pvma->anon_vma)
321 return 0;
323 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
324 vma->anon_vma = NULL;
327 * First, attach the new VMA to the parent VMA's anon_vmas,
328 * so rmap can find non-COWed pages in child processes.
330 if (anon_vma_clone(vma, pvma))
331 return -ENOMEM;
333 /* An existing anon_vma has been reused, all done then. */
334 if (vma->anon_vma)
335 return 0;
337 /* Then add our own anon_vma. */
338 anon_vma = anon_vma_alloc();
339 if (!anon_vma)
340 goto out_error;
341 avc = anon_vma_chain_alloc(GFP_KERNEL);
342 if (!avc)
343 goto out_error_free_anon_vma;
346 * The root anon_vma's spinlock is the lock actually used when we
347 * lock any of the anon_vmas in this anon_vma tree.
349 anon_vma->root = pvma->anon_vma->root;
350 anon_vma->parent = pvma->anon_vma;
352 * With refcounts, an anon_vma can stay around longer than the
353 * process it belongs to. The root anon_vma needs to be pinned until
354 * this anon_vma is freed, because the lock lives in the root.
356 get_anon_vma(anon_vma->root);
357 /* Mark this anon_vma as the one where our new (COWed) pages go. */
358 vma->anon_vma = anon_vma;
359 anon_vma_lock(anon_vma);
360 anon_vma_chain_link(vma, avc, anon_vma);
361 anon_vma->parent->degree++;
362 anon_vma_unlock(anon_vma);
364 return 0;
366 out_error_free_anon_vma:
367 put_anon_vma(anon_vma);
368 out_error:
369 unlink_anon_vmas(vma);
370 return -ENOMEM;
373 void unlink_anon_vmas(struct vm_area_struct *vma)
375 struct anon_vma_chain *avc, *next;
376 struct anon_vma *root = NULL;
379 * Unlink each anon_vma chained to the VMA. This list is ordered
380 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
383 struct anon_vma *anon_vma = avc->anon_vma;
385 root = lock_anon_vma_root(root, anon_vma);
386 list_del(&avc->same_anon_vma);
389 * Leave empty anon_vmas on the list - we'll need
390 * to free them outside the lock.
392 if (list_empty(&anon_vma->head)) {
393 anon_vma->parent->degree--;
394 continue;
397 list_del(&avc->same_vma);
398 anon_vma_chain_free(avc);
400 if (vma->anon_vma)
401 vma->anon_vma->degree--;
402 unlock_anon_vma_root(root);
405 * Iterate the list once more, it now only contains empty and unlinked
406 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
407 * needing to acquire the anon_vma->root->mutex.
409 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
410 struct anon_vma *anon_vma = avc->anon_vma;
412 BUG_ON(anon_vma->degree);
413 put_anon_vma(anon_vma);
415 list_del(&avc->same_vma);
416 anon_vma_chain_free(avc);
420 static void anon_vma_ctor(void *data)
422 struct anon_vma *anon_vma = data;
424 mutex_init(&anon_vma->mutex);
425 atomic_set(&anon_vma->refcount, 0);
426 INIT_LIST_HEAD(&anon_vma->head);
429 void __init anon_vma_init(void)
431 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
432 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
433 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
437 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
439 * Since there is no serialization what so ever against page_remove_rmap()
440 * the best this function can do is return a locked anon_vma that might
441 * have been relevant to this page.
443 * The page might have been remapped to a different anon_vma or the anon_vma
444 * returned may already be freed (and even reused).
446 * In case it was remapped to a different anon_vma, the new anon_vma will be a
447 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
448 * ensure that any anon_vma obtained from the page will still be valid for as
449 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
451 * All users of this function must be very careful when walking the anon_vma
452 * chain and verify that the page in question is indeed mapped in it
453 * [ something equivalent to page_mapped_in_vma() ].
455 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
456 * that the anon_vma pointer from page->mapping is valid if there is a
457 * mapcount, we can dereference the anon_vma after observing those.
459 struct anon_vma *page_get_anon_vma(struct page *page)
461 struct anon_vma *anon_vma = NULL;
462 unsigned long anon_mapping;
464 rcu_read_lock();
465 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
466 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
467 goto out;
468 if (!page_mapped(page))
469 goto out;
471 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
472 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
473 anon_vma = NULL;
474 goto out;
478 * If this page is still mapped, then its anon_vma cannot have been
479 * freed. But if it has been unmapped, we have no security against the
480 * anon_vma structure being freed and reused (for another anon_vma:
481 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
482 * above cannot corrupt).
484 if (!page_mapped(page)) {
485 rcu_read_unlock();
486 put_anon_vma(anon_vma);
487 return NULL;
489 out:
490 rcu_read_unlock();
492 return anon_vma;
496 * Similar to page_get_anon_vma() except it locks the anon_vma.
498 * Its a little more complex as it tries to keep the fast path to a single
499 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
500 * reference like with page_get_anon_vma() and then block on the mutex.
502 struct anon_vma *page_lock_anon_vma(struct page *page)
504 struct anon_vma *anon_vma = NULL;
505 struct anon_vma *root_anon_vma;
506 unsigned long anon_mapping;
508 rcu_read_lock();
509 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
510 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
511 goto out;
512 if (!page_mapped(page))
513 goto out;
515 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
516 root_anon_vma = ACCESS_ONCE(anon_vma->root);
517 if (mutex_trylock(&root_anon_vma->mutex)) {
519 * If the page is still mapped, then this anon_vma is still
520 * its anon_vma, and holding the mutex ensures that it will
521 * not go away, see anon_vma_free().
523 if (!page_mapped(page)) {
524 mutex_unlock(&root_anon_vma->mutex);
525 anon_vma = NULL;
527 goto out;
530 /* trylock failed, we got to sleep */
531 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
532 anon_vma = NULL;
533 goto out;
536 if (!page_mapped(page)) {
537 rcu_read_unlock();
538 put_anon_vma(anon_vma);
539 return NULL;
542 /* we pinned the anon_vma, its safe to sleep */
543 rcu_read_unlock();
544 anon_vma_lock(anon_vma);
546 if (atomic_dec_and_test(&anon_vma->refcount)) {
548 * Oops, we held the last refcount, release the lock
549 * and bail -- can't simply use put_anon_vma() because
550 * we'll deadlock on the anon_vma_lock() recursion.
552 anon_vma_unlock(anon_vma);
553 __put_anon_vma(anon_vma);
554 anon_vma = NULL;
557 return anon_vma;
559 out:
560 rcu_read_unlock();
561 return anon_vma;
564 void page_unlock_anon_vma(struct anon_vma *anon_vma)
566 anon_vma_unlock(anon_vma);
570 * At what user virtual address is page expected in @vma?
571 * Returns virtual address or -EFAULT if page's index/offset is not
572 * within the range mapped the @vma.
574 inline unsigned long
575 vma_address(struct page *page, struct vm_area_struct *vma)
577 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
578 unsigned long address;
580 if (unlikely(is_vm_hugetlb_page(vma)))
581 pgoff = page->index << huge_page_order(page_hstate(page));
582 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
583 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
584 /* page should be within @vma mapping range */
585 return -EFAULT;
587 return address;
591 * At what user virtual address is page expected in vma?
592 * Caller should check the page is actually part of the vma.
594 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
596 if (PageAnon(page)) {
597 struct anon_vma *page__anon_vma = page_anon_vma(page);
599 * Note: swapoff's unuse_vma() is more efficient with this
600 * check, and needs it to match anon_vma when KSM is active.
602 if (!vma->anon_vma || !page__anon_vma ||
603 vma->anon_vma->root != page__anon_vma->root)
604 return -EFAULT;
605 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
606 if (!vma->vm_file ||
607 vma->vm_file->f_mapping != page->mapping)
608 return -EFAULT;
609 } else
610 return -EFAULT;
611 return vma_address(page, vma);
615 * Check that @page is mapped at @address into @mm.
617 * If @sync is false, page_check_address may perform a racy check to avoid
618 * the page table lock when the pte is not present (helpful when reclaiming
619 * highly shared pages).
621 * On success returns with pte mapped and locked.
623 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
624 unsigned long address, spinlock_t **ptlp, int sync)
626 pgd_t *pgd;
627 pud_t *pud;
628 pmd_t *pmd;
629 pte_t *pte;
630 spinlock_t *ptl;
632 if (unlikely(PageHuge(page))) {
633 /* when pud is not present, pte will be NULL */
634 pte = huge_pte_offset(mm, address);
635 if (!pte)
636 return NULL;
638 ptl = &mm->page_table_lock;
639 goto check;
642 pgd = pgd_offset(mm, address);
643 if (!pgd_present(*pgd))
644 return NULL;
646 pud = pud_offset(pgd, address);
647 if (!pud_present(*pud))
648 return NULL;
650 pmd = pmd_offset(pud, address);
651 if (!pmd_present(*pmd))
652 return NULL;
653 if (pmd_trans_huge(*pmd))
654 return NULL;
656 pte = pte_offset_map(pmd, address);
657 /* Make a quick check before getting the lock */
658 if (!sync && !pte_present(*pte)) {
659 pte_unmap(pte);
660 return NULL;
663 ptl = pte_lockptr(mm, pmd);
664 check:
665 spin_lock(ptl);
666 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
667 *ptlp = ptl;
668 return pte;
670 pte_unmap_unlock(pte, ptl);
671 return NULL;
675 * page_mapped_in_vma - check whether a page is really mapped in a VMA
676 * @page: the page to test
677 * @vma: the VMA to test
679 * Returns 1 if the page is mapped into the page tables of the VMA, 0
680 * if the page is not mapped into the page tables of this VMA. Only
681 * valid for normal file or anonymous VMAs.
683 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
685 unsigned long address;
686 pte_t *pte;
687 spinlock_t *ptl;
689 address = vma_address(page, vma);
690 if (address == -EFAULT) /* out of vma range */
691 return 0;
692 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
693 if (!pte) /* the page is not in this mm */
694 return 0;
695 pte_unmap_unlock(pte, ptl);
697 return 1;
701 * Subfunctions of page_referenced: page_referenced_one called
702 * repeatedly from either page_referenced_anon or page_referenced_file.
704 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
705 unsigned long address, unsigned int *mapcount,
706 unsigned long *vm_flags)
708 struct mm_struct *mm = vma->vm_mm;
709 int referenced = 0;
711 if (unlikely(PageTransHuge(page))) {
712 pmd_t *pmd;
714 spin_lock(&mm->page_table_lock);
716 * rmap might return false positives; we must filter
717 * these out using page_check_address_pmd().
719 pmd = page_check_address_pmd(page, mm, address,
720 PAGE_CHECK_ADDRESS_PMD_FLAG);
721 if (!pmd) {
722 spin_unlock(&mm->page_table_lock);
723 goto out;
726 if (vma->vm_flags & VM_LOCKED) {
727 spin_unlock(&mm->page_table_lock);
728 *mapcount = 0; /* break early from loop */
729 *vm_flags |= VM_LOCKED;
730 goto out;
733 /* go ahead even if the pmd is pmd_trans_splitting() */
734 if (pmdp_clear_flush_young_notify(vma, address, pmd))
735 referenced++;
736 spin_unlock(&mm->page_table_lock);
737 } else {
738 pte_t *pte;
739 spinlock_t *ptl;
742 * rmap might return false positives; we must filter
743 * these out using page_check_address().
745 pte = page_check_address(page, mm, address, &ptl, 0);
746 if (!pte)
747 goto out;
749 if (vma->vm_flags & VM_LOCKED) {
750 pte_unmap_unlock(pte, ptl);
751 *mapcount = 0; /* break early from loop */
752 *vm_flags |= VM_LOCKED;
753 goto out;
756 if (ptep_clear_flush_young_notify(vma, address, pte)) {
758 * Don't treat a reference through a sequentially read
759 * mapping as such. If the page has been used in
760 * another mapping, we will catch it; if this other
761 * mapping is already gone, the unmap path will have
762 * set PG_referenced or activated the page.
764 if (likely(!VM_SequentialReadHint(vma)))
765 referenced++;
767 pte_unmap_unlock(pte, ptl);
770 /* Pretend the page is referenced if the task has the
771 swap token and is in the middle of a page fault. */
772 if (mm != current->mm && has_swap_token(mm) &&
773 rwsem_is_locked(&mm->mmap_sem))
774 referenced++;
776 (*mapcount)--;
778 if (referenced)
779 *vm_flags |= vma->vm_flags;
780 out:
781 return referenced;
784 static int page_referenced_anon(struct page *page,
785 struct mem_cgroup *mem_cont,
786 unsigned long *vm_flags)
788 unsigned int mapcount;
789 struct anon_vma *anon_vma;
790 struct anon_vma_chain *avc;
791 int referenced = 0;
793 anon_vma = page_lock_anon_vma(page);
794 if (!anon_vma)
795 return referenced;
797 mapcount = page_mapcount(page);
798 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
799 struct vm_area_struct *vma = avc->vma;
800 unsigned long address = vma_address(page, vma);
801 if (address == -EFAULT)
802 continue;
804 * If we are reclaiming on behalf of a cgroup, skip
805 * counting on behalf of references from different
806 * cgroups
808 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
809 continue;
810 referenced += page_referenced_one(page, vma, address,
811 &mapcount, vm_flags);
812 if (!mapcount)
813 break;
816 page_unlock_anon_vma(anon_vma);
817 return referenced;
821 * page_referenced_file - referenced check for object-based rmap
822 * @page: the page we're checking references on.
823 * @mem_cont: target memory controller
824 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
826 * For an object-based mapped page, find all the places it is mapped and
827 * check/clear the referenced flag. This is done by following the page->mapping
828 * pointer, then walking the chain of vmas it holds. It returns the number
829 * of references it found.
831 * This function is only called from page_referenced for object-based pages.
833 static int page_referenced_file(struct page *page,
834 struct mem_cgroup *mem_cont,
835 unsigned long *vm_flags)
837 unsigned int mapcount;
838 struct address_space *mapping = page->mapping;
839 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
840 struct vm_area_struct *vma;
841 struct prio_tree_iter iter;
842 int referenced = 0;
845 * The caller's checks on page->mapping and !PageAnon have made
846 * sure that this is a file page: the check for page->mapping
847 * excludes the case just before it gets set on an anon page.
849 BUG_ON(PageAnon(page));
852 * The page lock not only makes sure that page->mapping cannot
853 * suddenly be NULLified by truncation, it makes sure that the
854 * structure at mapping cannot be freed and reused yet,
855 * so we can safely take mapping->i_mmap_mutex.
857 BUG_ON(!PageLocked(page));
859 mutex_lock(&mapping->i_mmap_mutex);
862 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
863 * is more likely to be accurate if we note it after spinning.
865 mapcount = page_mapcount(page);
867 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
868 unsigned long address = vma_address(page, vma);
869 if (address == -EFAULT)
870 continue;
872 * If we are reclaiming on behalf of a cgroup, skip
873 * counting on behalf of references from different
874 * cgroups
876 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
877 continue;
878 referenced += page_referenced_one(page, vma, address,
879 &mapcount, vm_flags);
880 if (!mapcount)
881 break;
884 mutex_unlock(&mapping->i_mmap_mutex);
885 return referenced;
889 * page_referenced - test if the page was referenced
890 * @page: the page to test
891 * @is_locked: caller holds lock on the page
892 * @mem_cont: target memory controller
893 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
895 * Quick test_and_clear_referenced for all mappings to a page,
896 * returns the number of ptes which referenced the page.
898 int page_referenced(struct page *page,
899 int is_locked,
900 struct mem_cgroup *mem_cont,
901 unsigned long *vm_flags)
903 int referenced = 0;
904 int we_locked = 0;
906 *vm_flags = 0;
907 if (page_mapped(page) && page_rmapping(page)) {
908 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
909 we_locked = trylock_page(page);
910 if (!we_locked) {
911 referenced++;
912 goto out;
915 if (unlikely(PageKsm(page)))
916 referenced += page_referenced_ksm(page, mem_cont,
917 vm_flags);
918 else if (PageAnon(page))
919 referenced += page_referenced_anon(page, mem_cont,
920 vm_flags);
921 else if (page->mapping)
922 referenced += page_referenced_file(page, mem_cont,
923 vm_flags);
924 if (we_locked)
925 unlock_page(page);
927 if (page_test_and_clear_young(page_to_pfn(page)))
928 referenced++;
930 out:
931 return referenced;
934 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
935 unsigned long address)
937 struct mm_struct *mm = vma->vm_mm;
938 pte_t *pte;
939 spinlock_t *ptl;
940 int ret = 0;
942 pte = page_check_address(page, mm, address, &ptl, 1);
943 if (!pte)
944 goto out;
946 if (pte_dirty(*pte) || pte_write(*pte)) {
947 pte_t entry;
949 flush_cache_page(vma, address, pte_pfn(*pte));
950 entry = ptep_clear_flush_notify(vma, address, pte);
951 entry = pte_wrprotect(entry);
952 entry = pte_mkclean(entry);
953 set_pte_at(mm, address, pte, entry);
954 ret = 1;
957 pte_unmap_unlock(pte, ptl);
958 out:
959 return ret;
962 static int page_mkclean_file(struct address_space *mapping, struct page *page)
964 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
965 struct vm_area_struct *vma;
966 struct prio_tree_iter iter;
967 int ret = 0;
969 BUG_ON(PageAnon(page));
971 mutex_lock(&mapping->i_mmap_mutex);
972 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
973 if (vma->vm_flags & VM_SHARED) {
974 unsigned long address = vma_address(page, vma);
975 if (address == -EFAULT)
976 continue;
977 ret += page_mkclean_one(page, vma, address);
980 mutex_unlock(&mapping->i_mmap_mutex);
981 return ret;
984 int page_mkclean(struct page *page)
986 int ret = 0;
988 BUG_ON(!PageLocked(page));
990 if (page_mapped(page)) {
991 struct address_space *mapping = page_mapping(page);
992 if (mapping)
993 ret = page_mkclean_file(mapping, page);
996 return ret;
998 EXPORT_SYMBOL_GPL(page_mkclean);
1001 * page_move_anon_rmap - move a page to our anon_vma
1002 * @page: the page to move to our anon_vma
1003 * @vma: the vma the page belongs to
1004 * @address: the user virtual address mapped
1006 * When a page belongs exclusively to one process after a COW event,
1007 * that page can be moved into the anon_vma that belongs to just that
1008 * process, so the rmap code will not search the parent or sibling
1009 * processes.
1011 void page_move_anon_rmap(struct page *page,
1012 struct vm_area_struct *vma, unsigned long address)
1014 struct anon_vma *anon_vma = vma->anon_vma;
1016 VM_BUG_ON(!PageLocked(page));
1017 VM_BUG_ON(!anon_vma);
1018 VM_BUG_ON(page->index != linear_page_index(vma, address));
1020 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1021 page->mapping = (struct address_space *) anon_vma;
1025 * __page_set_anon_rmap - set up new anonymous rmap
1026 * @page: Page to add to rmap
1027 * @vma: VM area to add page to.
1028 * @address: User virtual address of the mapping
1029 * @exclusive: the page is exclusively owned by the current process
1031 static void __page_set_anon_rmap(struct page *page,
1032 struct vm_area_struct *vma, unsigned long address, int exclusive)
1034 struct anon_vma *anon_vma = vma->anon_vma;
1036 BUG_ON(!anon_vma);
1038 if (PageAnon(page))
1039 return;
1042 * If the page isn't exclusively mapped into this vma,
1043 * we must use the _oldest_ possible anon_vma for the
1044 * page mapping!
1046 if (!exclusive)
1047 anon_vma = anon_vma->root;
1049 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1050 page->mapping = (struct address_space *) anon_vma;
1051 page->index = linear_page_index(vma, address);
1055 * __page_check_anon_rmap - sanity check anonymous rmap addition
1056 * @page: the page to add the mapping to
1057 * @vma: the vm area in which the mapping is added
1058 * @address: the user virtual address mapped
1060 static void __page_check_anon_rmap(struct page *page,
1061 struct vm_area_struct *vma, unsigned long address)
1063 #ifdef CONFIG_DEBUG_VM
1065 * The page's anon-rmap details (mapping and index) are guaranteed to
1066 * be set up correctly at this point.
1068 * We have exclusion against page_add_anon_rmap because the caller
1069 * always holds the page locked, except if called from page_dup_rmap,
1070 * in which case the page is already known to be setup.
1072 * We have exclusion against page_add_new_anon_rmap because those pages
1073 * are initially only visible via the pagetables, and the pte is locked
1074 * over the call to page_add_new_anon_rmap.
1076 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1077 BUG_ON(page->index != linear_page_index(vma, address));
1078 #endif
1082 * page_add_anon_rmap - add pte mapping to an anonymous page
1083 * @page: the page to add the mapping to
1084 * @vma: the vm area in which the mapping is added
1085 * @address: the user virtual address mapped
1087 * The caller needs to hold the pte lock, and the page must be locked in
1088 * the anon_vma case: to serialize mapping,index checking after setting,
1089 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1090 * (but PageKsm is never downgraded to PageAnon).
1092 void page_add_anon_rmap(struct page *page,
1093 struct vm_area_struct *vma, unsigned long address)
1095 do_page_add_anon_rmap(page, vma, address, 0);
1099 * Special version of the above for do_swap_page, which often runs
1100 * into pages that are exclusively owned by the current process.
1101 * Everybody else should continue to use page_add_anon_rmap above.
1103 void do_page_add_anon_rmap(struct page *page,
1104 struct vm_area_struct *vma, unsigned long address, int exclusive)
1106 int first = atomic_inc_and_test(&page->_mapcount);
1107 if (first) {
1108 if (!PageTransHuge(page))
1109 __inc_zone_page_state(page, NR_ANON_PAGES);
1110 else
1111 __inc_zone_page_state(page,
1112 NR_ANON_TRANSPARENT_HUGEPAGES);
1114 if (unlikely(PageKsm(page)))
1115 return;
1117 VM_BUG_ON(!PageLocked(page));
1118 /* address might be in next vma when migration races vma_adjust */
1119 if (first)
1120 __page_set_anon_rmap(page, vma, address, exclusive);
1121 else
1122 __page_check_anon_rmap(page, vma, address);
1126 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1127 * @page: the page to add the mapping to
1128 * @vma: the vm area in which the mapping is added
1129 * @address: the user virtual address mapped
1131 * Same as page_add_anon_rmap but must only be called on *new* pages.
1132 * This means the inc-and-test can be bypassed.
1133 * Page does not have to be locked.
1135 void page_add_new_anon_rmap(struct page *page,
1136 struct vm_area_struct *vma, unsigned long address)
1138 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1139 SetPageSwapBacked(page);
1140 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1141 if (!PageTransHuge(page))
1142 __inc_zone_page_state(page, NR_ANON_PAGES);
1143 else
1144 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1145 __page_set_anon_rmap(page, vma, address, 1);
1146 if (page_evictable(page, vma))
1147 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1148 else
1149 add_page_to_unevictable_list(page);
1153 * page_add_file_rmap - add pte mapping to a file page
1154 * @page: the page to add the mapping to
1156 * The caller needs to hold the pte lock.
1158 void page_add_file_rmap(struct page *page)
1160 if (atomic_inc_and_test(&page->_mapcount)) {
1161 __inc_zone_page_state(page, NR_FILE_MAPPED);
1162 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1167 * page_remove_rmap - take down pte mapping from a page
1168 * @page: page to remove mapping from
1170 * The caller needs to hold the pte lock.
1172 void page_remove_rmap(struct page *page)
1174 struct address_space *mapping = page_mapping(page);
1176 /* page still mapped by someone else? */
1177 if (!atomic_add_negative(-1, &page->_mapcount))
1178 return;
1181 * Now that the last pte has gone, s390 must transfer dirty
1182 * flag from storage key to struct page. We can usually skip
1183 * this if the page is anon, so about to be freed; but perhaps
1184 * not if it's in swapcache - there might be another pte slot
1185 * containing the swap entry, but page not yet written to swap.
1187 * And we can skip it on file pages, so long as the filesystem
1188 * participates in dirty tracking; but need to catch shm and tmpfs
1189 * and ramfs pages which have been modified since creation by read
1190 * fault.
1192 * Note that mapping must be decided above, before decrementing
1193 * mapcount (which luckily provides a barrier): once page is unmapped,
1194 * it could be truncated and page->mapping reset to NULL at any moment.
1195 * Note also that we are relying on page_mapping(page) to set mapping
1196 * to &swapper_space when PageSwapCache(page).
1198 if (mapping && !mapping_cap_account_dirty(mapping) &&
1199 page_test_and_clear_dirty(page_to_pfn(page), 1))
1200 set_page_dirty(page);
1202 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1203 * and not charged by memcg for now.
1205 if (unlikely(PageHuge(page)))
1206 return;
1207 if (PageAnon(page)) {
1208 mem_cgroup_uncharge_page(page);
1209 if (!PageTransHuge(page))
1210 __dec_zone_page_state(page, NR_ANON_PAGES);
1211 else
1212 __dec_zone_page_state(page,
1213 NR_ANON_TRANSPARENT_HUGEPAGES);
1214 } else {
1215 __dec_zone_page_state(page, NR_FILE_MAPPED);
1216 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1219 * It would be tidy to reset the PageAnon mapping here,
1220 * but that might overwrite a racing page_add_anon_rmap
1221 * which increments mapcount after us but sets mapping
1222 * before us: so leave the reset to free_hot_cold_page,
1223 * and remember that it's only reliable while mapped.
1224 * Leaving it set also helps swapoff to reinstate ptes
1225 * faster for those pages still in swapcache.
1230 * Subfunctions of try_to_unmap: try_to_unmap_one called
1231 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1233 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1234 unsigned long address, enum ttu_flags flags)
1236 struct mm_struct *mm = vma->vm_mm;
1237 pte_t *pte;
1238 pte_t pteval;
1239 spinlock_t *ptl;
1240 int ret = SWAP_AGAIN;
1242 pte = page_check_address(page, mm, address, &ptl, 0);
1243 if (!pte)
1244 goto out;
1247 * If the page is mlock()d, we cannot swap it out.
1248 * If it's recently referenced (perhaps page_referenced
1249 * skipped over this mm) then we should reactivate it.
1251 if (!(flags & TTU_IGNORE_MLOCK)) {
1252 if (vma->vm_flags & VM_LOCKED)
1253 goto out_mlock;
1255 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1256 goto out_unmap;
1258 if (!(flags & TTU_IGNORE_ACCESS)) {
1259 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1260 ret = SWAP_FAIL;
1261 goto out_unmap;
1265 /* Nuke the page table entry. */
1266 flush_cache_page(vma, address, page_to_pfn(page));
1267 pteval = ptep_clear_flush_notify(vma, address, pte);
1269 /* Move the dirty bit to the physical page now the pte is gone. */
1270 if (pte_dirty(pteval))
1271 set_page_dirty(page);
1273 /* Update high watermark before we lower rss */
1274 update_hiwater_rss(mm);
1276 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1277 if (PageAnon(page))
1278 dec_mm_counter(mm, MM_ANONPAGES);
1279 else
1280 dec_mm_counter(mm, MM_FILEPAGES);
1281 set_pte_at(mm, address, pte,
1282 swp_entry_to_pte(make_hwpoison_entry(page)));
1283 } else if (PageAnon(page)) {
1284 swp_entry_t entry = { .val = page_private(page) };
1286 if (PageSwapCache(page)) {
1288 * Store the swap location in the pte.
1289 * See handle_pte_fault() ...
1291 if (swap_duplicate(entry) < 0) {
1292 set_pte_at(mm, address, pte, pteval);
1293 ret = SWAP_FAIL;
1294 goto out_unmap;
1296 if (list_empty(&mm->mmlist)) {
1297 spin_lock(&mmlist_lock);
1298 if (list_empty(&mm->mmlist))
1299 list_add(&mm->mmlist, &init_mm.mmlist);
1300 spin_unlock(&mmlist_lock);
1302 dec_mm_counter(mm, MM_ANONPAGES);
1303 inc_mm_counter(mm, MM_SWAPENTS);
1304 } else if (PAGE_MIGRATION) {
1306 * Store the pfn of the page in a special migration
1307 * pte. do_swap_page() will wait until the migration
1308 * pte is removed and then restart fault handling.
1310 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1311 entry = make_migration_entry(page, pte_write(pteval));
1313 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1314 BUG_ON(pte_file(*pte));
1315 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1316 /* Establish migration entry for a file page */
1317 swp_entry_t entry;
1318 entry = make_migration_entry(page, pte_write(pteval));
1319 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1320 } else
1321 dec_mm_counter(mm, MM_FILEPAGES);
1323 page_remove_rmap(page);
1324 page_cache_release(page);
1326 out_unmap:
1327 pte_unmap_unlock(pte, ptl);
1328 out:
1329 return ret;
1331 out_mlock:
1332 pte_unmap_unlock(pte, ptl);
1336 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1337 * unstable result and race. Plus, We can't wait here because
1338 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1339 * if trylock failed, the page remain in evictable lru and later
1340 * vmscan could retry to move the page to unevictable lru if the
1341 * page is actually mlocked.
1343 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1344 if (vma->vm_flags & VM_LOCKED) {
1345 mlock_vma_page(page);
1346 ret = SWAP_MLOCK;
1348 up_read(&vma->vm_mm->mmap_sem);
1350 return ret;
1354 * objrmap doesn't work for nonlinear VMAs because the assumption that
1355 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1356 * Consequently, given a particular page and its ->index, we cannot locate the
1357 * ptes which are mapping that page without an exhaustive linear search.
1359 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1360 * maps the file to which the target page belongs. The ->vm_private_data field
1361 * holds the current cursor into that scan. Successive searches will circulate
1362 * around the vma's virtual address space.
1364 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1365 * more scanning pressure is placed against them as well. Eventually pages
1366 * will become fully unmapped and are eligible for eviction.
1368 * For very sparsely populated VMAs this is a little inefficient - chances are
1369 * there there won't be many ptes located within the scan cluster. In this case
1370 * maybe we could scan further - to the end of the pte page, perhaps.
1372 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1373 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1374 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1375 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1377 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1378 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1380 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1381 struct vm_area_struct *vma, struct page *check_page)
1383 struct mm_struct *mm = vma->vm_mm;
1384 pgd_t *pgd;
1385 pud_t *pud;
1386 pmd_t *pmd;
1387 pte_t *pte;
1388 pte_t pteval;
1389 spinlock_t *ptl;
1390 struct page *page;
1391 unsigned long address;
1392 unsigned long end;
1393 int ret = SWAP_AGAIN;
1394 int locked_vma = 0;
1396 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1397 end = address + CLUSTER_SIZE;
1398 if (address < vma->vm_start)
1399 address = vma->vm_start;
1400 if (end > vma->vm_end)
1401 end = vma->vm_end;
1403 pgd = pgd_offset(mm, address);
1404 if (!pgd_present(*pgd))
1405 return ret;
1407 pud = pud_offset(pgd, address);
1408 if (!pud_present(*pud))
1409 return ret;
1411 pmd = pmd_offset(pud, address);
1412 if (!pmd_present(*pmd))
1413 return ret;
1416 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1417 * keep the sem while scanning the cluster for mlocking pages.
1419 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1420 locked_vma = (vma->vm_flags & VM_LOCKED);
1421 if (!locked_vma)
1422 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1425 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1427 /* Update high watermark before we lower rss */
1428 update_hiwater_rss(mm);
1430 for (; address < end; pte++, address += PAGE_SIZE) {
1431 if (!pte_present(*pte))
1432 continue;
1433 page = vm_normal_page(vma, address, *pte);
1434 BUG_ON(!page || PageAnon(page));
1436 if (locked_vma) {
1437 if (page == check_page) {
1438 /* we know we have check_page locked */
1439 mlock_vma_page(page);
1440 ret = SWAP_MLOCK;
1441 } else if (trylock_page(page)) {
1443 * If we can lock the page, perform mlock.
1444 * Otherwise leave the page alone, it will be
1445 * eventually encountered again later.
1447 mlock_vma_page(page);
1448 unlock_page(page);
1450 continue; /* don't unmap */
1453 if (ptep_clear_flush_young_notify(vma, address, pte))
1454 continue;
1456 /* Nuke the page table entry. */
1457 flush_cache_page(vma, address, pte_pfn(*pte));
1458 pteval = ptep_clear_flush_notify(vma, address, pte);
1460 /* If nonlinear, store the file page offset in the pte. */
1461 if (page->index != linear_page_index(vma, address))
1462 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1464 /* Move the dirty bit to the physical page now the pte is gone. */
1465 if (pte_dirty(pteval))
1466 set_page_dirty(page);
1468 page_remove_rmap(page);
1469 page_cache_release(page);
1470 dec_mm_counter(mm, MM_FILEPAGES);
1471 (*mapcount)--;
1473 pte_unmap_unlock(pte - 1, ptl);
1474 if (locked_vma)
1475 up_read(&vma->vm_mm->mmap_sem);
1476 return ret;
1479 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1481 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1483 if (!maybe_stack)
1484 return false;
1486 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1487 VM_STACK_INCOMPLETE_SETUP)
1488 return true;
1490 return false;
1494 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1495 * rmap method
1496 * @page: the page to unmap/unlock
1497 * @flags: action and flags
1499 * Find all the mappings of a page using the mapping pointer and the vma chains
1500 * contained in the anon_vma struct it points to.
1502 * This function is only called from try_to_unmap/try_to_munlock for
1503 * anonymous pages.
1504 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1505 * where the page was found will be held for write. So, we won't recheck
1506 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1507 * 'LOCKED.
1509 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1511 struct anon_vma *anon_vma;
1512 struct anon_vma_chain *avc;
1513 int ret = SWAP_AGAIN;
1515 anon_vma = page_lock_anon_vma(page);
1516 if (!anon_vma)
1517 return ret;
1519 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1520 struct vm_area_struct *vma = avc->vma;
1521 unsigned long address;
1524 * During exec, a temporary VMA is setup and later moved.
1525 * The VMA is moved under the anon_vma lock but not the
1526 * page tables leading to a race where migration cannot
1527 * find the migration ptes. Rather than increasing the
1528 * locking requirements of exec(), migration skips
1529 * temporary VMAs until after exec() completes.
1531 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1532 is_vma_temporary_stack(vma))
1533 continue;
1535 address = vma_address(page, vma);
1536 if (address == -EFAULT)
1537 continue;
1538 ret = try_to_unmap_one(page, vma, address, flags);
1539 if (ret != SWAP_AGAIN || !page_mapped(page))
1540 break;
1543 page_unlock_anon_vma(anon_vma);
1544 return ret;
1548 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1549 * @page: the page to unmap/unlock
1550 * @flags: action and flags
1552 * Find all the mappings of a page using the mapping pointer and the vma chains
1553 * contained in the address_space struct it points to.
1555 * This function is only called from try_to_unmap/try_to_munlock for
1556 * object-based pages.
1557 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1558 * where the page was found will be held for write. So, we won't recheck
1559 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1560 * 'LOCKED.
1562 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1564 struct address_space *mapping = page->mapping;
1565 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1566 struct vm_area_struct *vma;
1567 struct prio_tree_iter iter;
1568 int ret = SWAP_AGAIN;
1569 unsigned long cursor;
1570 unsigned long max_nl_cursor = 0;
1571 unsigned long max_nl_size = 0;
1572 unsigned int mapcount;
1574 mutex_lock(&mapping->i_mmap_mutex);
1575 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1576 unsigned long address = vma_address(page, vma);
1577 if (address == -EFAULT)
1578 continue;
1579 ret = try_to_unmap_one(page, vma, address, flags);
1580 if (ret != SWAP_AGAIN || !page_mapped(page))
1581 goto out;
1584 if (list_empty(&mapping->i_mmap_nonlinear))
1585 goto out;
1588 * We don't bother to try to find the munlocked page in nonlinears.
1589 * It's costly. Instead, later, page reclaim logic may call
1590 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1592 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1593 goto out;
1595 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1596 shared.vm_set.list) {
1597 cursor = (unsigned long) vma->vm_private_data;
1598 if (cursor > max_nl_cursor)
1599 max_nl_cursor = cursor;
1600 cursor = vma->vm_end - vma->vm_start;
1601 if (cursor > max_nl_size)
1602 max_nl_size = cursor;
1605 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1606 ret = SWAP_FAIL;
1607 goto out;
1611 * We don't try to search for this page in the nonlinear vmas,
1612 * and page_referenced wouldn't have found it anyway. Instead
1613 * just walk the nonlinear vmas trying to age and unmap some.
1614 * The mapcount of the page we came in with is irrelevant,
1615 * but even so use it as a guide to how hard we should try?
1617 mapcount = page_mapcount(page);
1618 if (!mapcount)
1619 goto out;
1620 cond_resched();
1622 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1623 if (max_nl_cursor == 0)
1624 max_nl_cursor = CLUSTER_SIZE;
1626 do {
1627 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1628 shared.vm_set.list) {
1629 cursor = (unsigned long) vma->vm_private_data;
1630 while ( cursor < max_nl_cursor &&
1631 cursor < vma->vm_end - vma->vm_start) {
1632 if (try_to_unmap_cluster(cursor, &mapcount,
1633 vma, page) == SWAP_MLOCK)
1634 ret = SWAP_MLOCK;
1635 cursor += CLUSTER_SIZE;
1636 vma->vm_private_data = (void *) cursor;
1637 if ((int)mapcount <= 0)
1638 goto out;
1640 vma->vm_private_data = (void *) max_nl_cursor;
1642 cond_resched();
1643 max_nl_cursor += CLUSTER_SIZE;
1644 } while (max_nl_cursor <= max_nl_size);
1647 * Don't loop forever (perhaps all the remaining pages are
1648 * in locked vmas). Reset cursor on all unreserved nonlinear
1649 * vmas, now forgetting on which ones it had fallen behind.
1651 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1652 vma->vm_private_data = NULL;
1653 out:
1654 mutex_unlock(&mapping->i_mmap_mutex);
1655 return ret;
1659 * try_to_unmap - try to remove all page table mappings to a page
1660 * @page: the page to get unmapped
1661 * @flags: action and flags
1663 * Tries to remove all the page table entries which are mapping this
1664 * page, used in the pageout path. Caller must hold the page lock.
1665 * Return values are:
1667 * SWAP_SUCCESS - we succeeded in removing all mappings
1668 * SWAP_AGAIN - we missed a mapping, try again later
1669 * SWAP_FAIL - the page is unswappable
1670 * SWAP_MLOCK - page is mlocked.
1672 int try_to_unmap(struct page *page, enum ttu_flags flags)
1674 int ret;
1676 BUG_ON(!PageLocked(page));
1677 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1679 if (unlikely(PageKsm(page)))
1680 ret = try_to_unmap_ksm(page, flags);
1681 else if (PageAnon(page))
1682 ret = try_to_unmap_anon(page, flags);
1683 else
1684 ret = try_to_unmap_file(page, flags);
1685 if (ret != SWAP_MLOCK && !page_mapped(page))
1686 ret = SWAP_SUCCESS;
1687 return ret;
1691 * try_to_munlock - try to munlock a page
1692 * @page: the page to be munlocked
1694 * Called from munlock code. Checks all of the VMAs mapping the page
1695 * to make sure nobody else has this page mlocked. The page will be
1696 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1698 * Return values are:
1700 * SWAP_AGAIN - no vma is holding page mlocked, or,
1701 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1702 * SWAP_FAIL - page cannot be located at present
1703 * SWAP_MLOCK - page is now mlocked.
1705 int try_to_munlock(struct page *page)
1707 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1709 if (unlikely(PageKsm(page)))
1710 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1711 else if (PageAnon(page))
1712 return try_to_unmap_anon(page, TTU_MUNLOCK);
1713 else
1714 return try_to_unmap_file(page, TTU_MUNLOCK);
1717 void __put_anon_vma(struct anon_vma *anon_vma)
1719 struct anon_vma *root = anon_vma->root;
1721 anon_vma_free(anon_vma);
1722 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1723 anon_vma_free(root);
1726 #ifdef CONFIG_MIGRATION
1728 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1729 * Called by migrate.c to remove migration ptes, but might be used more later.
1731 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1732 struct vm_area_struct *, unsigned long, void *), void *arg)
1734 struct anon_vma *anon_vma;
1735 struct anon_vma_chain *avc;
1736 int ret = SWAP_AGAIN;
1739 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1740 * because that depends on page_mapped(); but not all its usages
1741 * are holding mmap_sem. Users without mmap_sem are required to
1742 * take a reference count to prevent the anon_vma disappearing
1744 anon_vma = page_anon_vma(page);
1745 if (!anon_vma)
1746 return ret;
1747 anon_vma_lock(anon_vma);
1748 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1749 struct vm_area_struct *vma = avc->vma;
1750 unsigned long address = vma_address(page, vma);
1751 if (address == -EFAULT)
1752 continue;
1753 ret = rmap_one(page, vma, address, arg);
1754 if (ret != SWAP_AGAIN)
1755 break;
1757 anon_vma_unlock(anon_vma);
1758 return ret;
1761 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1762 struct vm_area_struct *, unsigned long, void *), void *arg)
1764 struct address_space *mapping = page->mapping;
1765 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1766 struct vm_area_struct *vma;
1767 struct prio_tree_iter iter;
1768 int ret = SWAP_AGAIN;
1770 if (!mapping)
1771 return ret;
1772 mutex_lock(&mapping->i_mmap_mutex);
1773 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1774 unsigned long address = vma_address(page, vma);
1775 if (address == -EFAULT)
1776 continue;
1777 ret = rmap_one(page, vma, address, arg);
1778 if (ret != SWAP_AGAIN)
1779 break;
1782 * No nonlinear handling: being always shared, nonlinear vmas
1783 * never contain migration ptes. Decide what to do about this
1784 * limitation to linear when we need rmap_walk() on nonlinear.
1786 mutex_unlock(&mapping->i_mmap_mutex);
1787 return ret;
1790 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1791 struct vm_area_struct *, unsigned long, void *), void *arg)
1793 VM_BUG_ON(!PageLocked(page));
1795 if (unlikely(PageKsm(page)))
1796 return rmap_walk_ksm(page, rmap_one, arg);
1797 else if (PageAnon(page))
1798 return rmap_walk_anon(page, rmap_one, arg);
1799 else
1800 return rmap_walk_file(page, rmap_one, arg);
1802 #endif /* CONFIG_MIGRATION */
1804 #ifdef CONFIG_HUGETLB_PAGE
1806 * The following three functions are for anonymous (private mapped) hugepages.
1807 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1808 * and no lru code, because we handle hugepages differently from common pages.
1810 static void __hugepage_set_anon_rmap(struct page *page,
1811 struct vm_area_struct *vma, unsigned long address, int exclusive)
1813 struct anon_vma *anon_vma = vma->anon_vma;
1815 BUG_ON(!anon_vma);
1817 if (PageAnon(page))
1818 return;
1819 if (!exclusive)
1820 anon_vma = anon_vma->root;
1822 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1823 page->mapping = (struct address_space *) anon_vma;
1824 page->index = linear_page_index(vma, address);
1827 void hugepage_add_anon_rmap(struct page *page,
1828 struct vm_area_struct *vma, unsigned long address)
1830 struct anon_vma *anon_vma = vma->anon_vma;
1831 int first;
1833 BUG_ON(!PageLocked(page));
1834 BUG_ON(!anon_vma);
1835 /* address might be in next vma when migration races vma_adjust */
1836 first = atomic_inc_and_test(&page->_mapcount);
1837 if (first)
1838 __hugepage_set_anon_rmap(page, vma, address, 0);
1841 void hugepage_add_new_anon_rmap(struct page *page,
1842 struct vm_area_struct *vma, unsigned long address)
1844 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1845 atomic_set(&page->_mapcount, 0);
1846 __hugepage_set_anon_rmap(page, vma, address, 1);
1848 #endif /* CONFIG_HUGETLB_PAGE */