4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 static struct kmem_cache
*orphan_entry_slab
;
26 static struct kmem_cache
*inode_entry_slab
;
29 * We guarantee no failure on the returned page.
31 struct page
*grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
33 struct address_space
*mapping
= META_MAPPING(sbi
);
34 struct page
*page
= NULL
;
36 page
= grab_cache_page(mapping
, index
);
42 /* We wait writeback only inside grab_meta_page() */
43 wait_on_page_writeback(page
);
44 SetPageUptodate(page
);
49 * We guarantee no failure on the returned page.
51 struct page
*get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
53 struct address_space
*mapping
= META_MAPPING(sbi
);
56 page
= grab_cache_page(mapping
, index
);
61 if (PageUptodate(page
))
64 if (f2fs_submit_page_bio(sbi
, page
, index
,
65 READ_SYNC
| REQ_META
| REQ_PRIO
))
69 if (unlikely(page
->mapping
!= mapping
)) {
70 f2fs_put_page(page
, 1);
74 mark_page_accessed(page
);
78 static int f2fs_write_meta_page(struct page
*page
,
79 struct writeback_control
*wbc
)
81 struct inode
*inode
= page
->mapping
->host
;
82 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
84 /* Should not write any meta pages, if any IO error was occurred */
85 if (unlikely(sbi
->por_doing
||
86 is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_ERROR_FLAG
)))
92 wait_on_page_writeback(page
);
94 write_meta_page(sbi
, page
);
95 dec_page_count(sbi
, F2FS_DIRTY_META
);
100 dec_page_count(sbi
, F2FS_DIRTY_META
);
101 wbc
->pages_skipped
++;
102 set_page_dirty(page
);
103 return AOP_WRITEPAGE_ACTIVATE
;
106 static int f2fs_write_meta_pages(struct address_space
*mapping
,
107 struct writeback_control
*wbc
)
109 struct f2fs_sb_info
*sbi
= F2FS_SB(mapping
->host
->i_sb
);
110 int nrpages
= MAX_BIO_BLOCKS(max_hw_blocks(sbi
));
113 if (wbc
->for_kupdate
)
116 /* collect a number of dirty meta pages and write together */
117 if (get_pages(sbi
, F2FS_DIRTY_META
) < nrpages
)
120 /* if mounting is failed, skip writing node pages */
121 mutex_lock(&sbi
->cp_mutex
);
122 written
= sync_meta_pages(sbi
, META
, nrpages
);
123 mutex_unlock(&sbi
->cp_mutex
);
124 wbc
->nr_to_write
-= written
;
128 long sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
131 struct address_space
*mapping
= META_MAPPING(sbi
);
132 pgoff_t index
= 0, end
= LONG_MAX
;
135 struct writeback_control wbc
= {
139 pagevec_init(&pvec
, 0);
141 while (index
<= end
) {
143 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
145 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
146 if (unlikely(nr_pages
== 0))
149 for (i
= 0; i
< nr_pages
; i
++) {
150 struct page
*page
= pvec
.pages
[i
];
152 f2fs_bug_on(page
->mapping
!= mapping
);
153 f2fs_bug_on(!PageDirty(page
));
154 clear_page_dirty_for_io(page
);
155 if (f2fs_write_meta_page(page
, &wbc
)) {
160 if (unlikely(nwritten
>= nr_to_write
))
163 pagevec_release(&pvec
);
168 f2fs_submit_merged_bio(sbi
, type
, WRITE
);
173 static int f2fs_set_meta_page_dirty(struct page
*page
)
175 struct address_space
*mapping
= page
->mapping
;
176 struct f2fs_sb_info
*sbi
= F2FS_SB(mapping
->host
->i_sb
);
178 trace_f2fs_set_page_dirty(page
, META
);
180 SetPageUptodate(page
);
181 if (!PageDirty(page
)) {
182 __set_page_dirty_nobuffers(page
);
183 inc_page_count(sbi
, F2FS_DIRTY_META
);
189 const struct address_space_operations f2fs_meta_aops
= {
190 .writepage
= f2fs_write_meta_page
,
191 .writepages
= f2fs_write_meta_pages
,
192 .set_page_dirty
= f2fs_set_meta_page_dirty
,
195 int acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
199 spin_lock(&sbi
->orphan_inode_lock
);
200 if (unlikely(sbi
->n_orphans
>= sbi
->max_orphans
))
204 spin_unlock(&sbi
->orphan_inode_lock
);
209 void release_orphan_inode(struct f2fs_sb_info
*sbi
)
211 spin_lock(&sbi
->orphan_inode_lock
);
212 f2fs_bug_on(sbi
->n_orphans
== 0);
214 spin_unlock(&sbi
->orphan_inode_lock
);
217 void add_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
219 struct list_head
*head
, *this;
220 struct orphan_inode_entry
*new = NULL
, *orphan
= NULL
;
222 new = f2fs_kmem_cache_alloc(orphan_entry_slab
, GFP_ATOMIC
);
225 spin_lock(&sbi
->orphan_inode_lock
);
226 head
= &sbi
->orphan_inode_list
;
227 list_for_each(this, head
) {
228 orphan
= list_entry(this, struct orphan_inode_entry
, list
);
229 if (orphan
->ino
== ino
) {
230 spin_unlock(&sbi
->orphan_inode_lock
);
231 kmem_cache_free(orphan_entry_slab
, new);
235 if (orphan
->ino
> ino
)
240 /* add new_oentry into list which is sorted by inode number */
242 list_add(&new->list
, this->prev
);
244 list_add_tail(&new->list
, head
);
245 spin_unlock(&sbi
->orphan_inode_lock
);
248 void remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
250 struct list_head
*head
;
251 struct orphan_inode_entry
*orphan
;
253 spin_lock(&sbi
->orphan_inode_lock
);
254 head
= &sbi
->orphan_inode_list
;
255 list_for_each_entry(orphan
, head
, list
) {
256 if (orphan
->ino
== ino
) {
257 list_del(&orphan
->list
);
258 kmem_cache_free(orphan_entry_slab
, orphan
);
259 f2fs_bug_on(sbi
->n_orphans
== 0);
264 spin_unlock(&sbi
->orphan_inode_lock
);
267 static void recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
269 struct inode
*inode
= f2fs_iget(sbi
->sb
, ino
);
270 f2fs_bug_on(IS_ERR(inode
));
273 /* truncate all the data during iput */
277 void recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
279 block_t start_blk
, orphan_blkaddr
, i
, j
;
281 if (!is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
))
284 sbi
->por_doing
= true;
285 start_blk
= __start_cp_addr(sbi
) + 1;
286 orphan_blkaddr
= __start_sum_addr(sbi
) - 1;
288 for (i
= 0; i
< orphan_blkaddr
; i
++) {
289 struct page
*page
= get_meta_page(sbi
, start_blk
+ i
);
290 struct f2fs_orphan_block
*orphan_blk
;
292 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
293 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
294 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
295 recover_orphan_inode(sbi
, ino
);
297 f2fs_put_page(page
, 1);
299 /* clear Orphan Flag */
300 clear_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
);
301 sbi
->por_doing
= false;
305 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
307 struct list_head
*head
;
308 struct f2fs_orphan_block
*orphan_blk
= NULL
;
309 unsigned int nentries
= 0;
310 unsigned short index
;
311 unsigned short orphan_blocks
= (unsigned short)((sbi
->n_orphans
+
312 (F2FS_ORPHANS_PER_BLOCK
- 1)) / F2FS_ORPHANS_PER_BLOCK
);
313 struct page
*page
= NULL
;
314 struct orphan_inode_entry
*orphan
= NULL
;
316 for (index
= 0; index
< orphan_blocks
; index
++)
317 grab_meta_page(sbi
, start_blk
+ index
);
320 spin_lock(&sbi
->orphan_inode_lock
);
321 head
= &sbi
->orphan_inode_list
;
323 /* loop for each orphan inode entry and write them in Jornal block */
324 list_for_each_entry(orphan
, head
, list
) {
326 page
= find_get_page(META_MAPPING(sbi
), start_blk
++);
329 (struct f2fs_orphan_block
*)page_address(page
);
330 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
331 f2fs_put_page(page
, 0);
334 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
336 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
338 * an orphan block is full of 1020 entries,
339 * then we need to flush current orphan blocks
340 * and bring another one in memory
342 orphan_blk
->blk_addr
= cpu_to_le16(index
);
343 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
344 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
345 set_page_dirty(page
);
346 f2fs_put_page(page
, 1);
354 orphan_blk
->blk_addr
= cpu_to_le16(index
);
355 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
356 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
357 set_page_dirty(page
);
358 f2fs_put_page(page
, 1);
361 spin_unlock(&sbi
->orphan_inode_lock
);
364 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
365 block_t cp_addr
, unsigned long long *version
)
367 struct page
*cp_page_1
, *cp_page_2
= NULL
;
368 unsigned long blk_size
= sbi
->blocksize
;
369 struct f2fs_checkpoint
*cp_block
;
370 unsigned long long cur_version
= 0, pre_version
= 0;
374 /* Read the 1st cp block in this CP pack */
375 cp_page_1
= get_meta_page(sbi
, cp_addr
);
377 /* get the version number */
378 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_1
);
379 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
380 if (crc_offset
>= blk_size
)
383 crc
= le32_to_cpu(*((__u32
*)((unsigned char *)cp_block
+ crc_offset
)));
384 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
387 pre_version
= cur_cp_version(cp_block
);
389 /* Read the 2nd cp block in this CP pack */
390 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
391 cp_page_2
= get_meta_page(sbi
, cp_addr
);
393 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_2
);
394 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
395 if (crc_offset
>= blk_size
)
398 crc
= le32_to_cpu(*((__u32
*)((unsigned char *)cp_block
+ crc_offset
)));
399 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
402 cur_version
= cur_cp_version(cp_block
);
404 if (cur_version
== pre_version
) {
405 *version
= cur_version
;
406 f2fs_put_page(cp_page_2
, 1);
410 f2fs_put_page(cp_page_2
, 1);
412 f2fs_put_page(cp_page_1
, 1);
416 int get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
418 struct f2fs_checkpoint
*cp_block
;
419 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
420 struct page
*cp1
, *cp2
, *cur_page
;
421 unsigned long blk_size
= sbi
->blocksize
;
422 unsigned long long cp1_version
= 0, cp2_version
= 0;
423 unsigned long long cp_start_blk_no
;
425 sbi
->ckpt
= kzalloc(blk_size
, GFP_KERNEL
);
429 * Finding out valid cp block involves read both
430 * sets( cp pack1 and cp pack 2)
432 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
433 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
435 /* The second checkpoint pack should start at the next segment */
436 cp_start_blk_no
+= ((unsigned long long)1) <<
437 le32_to_cpu(fsb
->log_blocks_per_seg
);
438 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
441 if (ver_after(cp2_version
, cp1_version
))
453 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
454 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
456 f2fs_put_page(cp1
, 1);
457 f2fs_put_page(cp2
, 1);
465 static int __add_dirty_inode(struct inode
*inode
, struct dir_inode_entry
*new)
467 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
468 struct list_head
*head
= &sbi
->dir_inode_list
;
469 struct list_head
*this;
471 list_for_each(this, head
) {
472 struct dir_inode_entry
*entry
;
473 entry
= list_entry(this, struct dir_inode_entry
, list
);
474 if (unlikely(entry
->inode
== inode
))
477 list_add_tail(&new->list
, head
);
478 stat_inc_dirty_dir(sbi
);
482 void set_dirty_dir_page(struct inode
*inode
, struct page
*page
)
484 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
485 struct dir_inode_entry
*new;
487 if (!S_ISDIR(inode
->i_mode
))
490 new = f2fs_kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
492 INIT_LIST_HEAD(&new->list
);
494 spin_lock(&sbi
->dir_inode_lock
);
495 if (__add_dirty_inode(inode
, new))
496 kmem_cache_free(inode_entry_slab
, new);
498 inc_page_count(sbi
, F2FS_DIRTY_DENTS
);
499 inode_inc_dirty_dents(inode
);
500 SetPagePrivate(page
);
501 spin_unlock(&sbi
->dir_inode_lock
);
504 void add_dirty_dir_inode(struct inode
*inode
)
506 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
507 struct dir_inode_entry
*new =
508 f2fs_kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
511 INIT_LIST_HEAD(&new->list
);
513 spin_lock(&sbi
->dir_inode_lock
);
514 if (__add_dirty_inode(inode
, new))
515 kmem_cache_free(inode_entry_slab
, new);
516 spin_unlock(&sbi
->dir_inode_lock
);
519 void remove_dirty_dir_inode(struct inode
*inode
)
521 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
523 struct list_head
*this, *head
;
525 if (!S_ISDIR(inode
->i_mode
))
528 spin_lock(&sbi
->dir_inode_lock
);
529 if (atomic_read(&F2FS_I(inode
)->dirty_dents
)) {
530 spin_unlock(&sbi
->dir_inode_lock
);
534 head
= &sbi
->dir_inode_list
;
535 list_for_each(this, head
) {
536 struct dir_inode_entry
*entry
;
537 entry
= list_entry(this, struct dir_inode_entry
, list
);
538 if (entry
->inode
== inode
) {
539 list_del(&entry
->list
);
540 kmem_cache_free(inode_entry_slab
, entry
);
541 stat_dec_dirty_dir(sbi
);
545 spin_unlock(&sbi
->dir_inode_lock
);
547 /* Only from the recovery routine */
548 if (is_inode_flag_set(F2FS_I(inode
), FI_DELAY_IPUT
)) {
549 clear_inode_flag(F2FS_I(inode
), FI_DELAY_IPUT
);
554 struct inode
*check_dirty_dir_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
557 struct list_head
*this, *head
;
558 struct inode
*inode
= NULL
;
560 spin_lock(&sbi
->dir_inode_lock
);
562 head
= &sbi
->dir_inode_list
;
563 list_for_each(this, head
) {
564 struct dir_inode_entry
*entry
;
565 entry
= list_entry(this, struct dir_inode_entry
, list
);
566 if (entry
->inode
->i_ino
== ino
) {
567 inode
= entry
->inode
;
571 spin_unlock(&sbi
->dir_inode_lock
);
575 void sync_dirty_dir_inodes(struct f2fs_sb_info
*sbi
)
577 struct list_head
*head
;
578 struct dir_inode_entry
*entry
;
581 spin_lock(&sbi
->dir_inode_lock
);
583 head
= &sbi
->dir_inode_list
;
584 if (list_empty(head
)) {
585 spin_unlock(&sbi
->dir_inode_lock
);
588 entry
= list_entry(head
->next
, struct dir_inode_entry
, list
);
589 inode
= igrab(entry
->inode
);
590 spin_unlock(&sbi
->dir_inode_lock
);
592 filemap_flush(inode
->i_mapping
);
596 * We should submit bio, since it exists several
597 * wribacking dentry pages in the freeing inode.
599 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
605 * Freeze all the FS-operations for checkpoint.
607 static void block_operations(struct f2fs_sb_info
*sbi
)
609 struct writeback_control wbc
= {
610 .sync_mode
= WB_SYNC_ALL
,
611 .nr_to_write
= LONG_MAX
,
614 struct blk_plug plug
;
616 blk_start_plug(&plug
);
620 /* write all the dirty dentry pages */
621 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
622 f2fs_unlock_all(sbi
);
623 sync_dirty_dir_inodes(sbi
);
624 goto retry_flush_dents
;
628 * POR: we should ensure that there is no dirty node pages
629 * until finishing nat/sit flush.
632 mutex_lock(&sbi
->node_write
);
634 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
635 mutex_unlock(&sbi
->node_write
);
636 sync_node_pages(sbi
, 0, &wbc
);
637 goto retry_flush_nodes
;
639 blk_finish_plug(&plug
);
642 static void unblock_operations(struct f2fs_sb_info
*sbi
)
644 mutex_unlock(&sbi
->node_write
);
645 f2fs_unlock_all(sbi
);
648 static void wait_on_all_pages_writeback(struct f2fs_sb_info
*sbi
)
653 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
655 if (!get_pages(sbi
, F2FS_WRITEBACK
))
660 finish_wait(&sbi
->cp_wait
, &wait
);
663 static void do_checkpoint(struct f2fs_sb_info
*sbi
, bool is_umount
)
665 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
668 struct page
*cp_page
;
669 unsigned int data_sum_blocks
, orphan_blocks
;
674 /* Flush all the NAT/SIT pages */
675 while (get_pages(sbi
, F2FS_DIRTY_META
))
676 sync_meta_pages(sbi
, META
, LONG_MAX
);
678 next_free_nid(sbi
, &last_nid
);
682 * version number is already updated
684 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
));
685 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
686 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
687 for (i
= 0; i
< 3; i
++) {
688 ckpt
->cur_node_segno
[i
] =
689 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
690 ckpt
->cur_node_blkoff
[i
] =
691 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
692 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
693 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
695 for (i
= 0; i
< 3; i
++) {
696 ckpt
->cur_data_segno
[i
] =
697 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
698 ckpt
->cur_data_blkoff
[i
] =
699 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
700 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
701 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
704 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
705 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
706 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
708 /* 2 cp + n data seg summary + orphan inode blocks */
709 data_sum_blocks
= npages_for_summary_flush(sbi
);
710 if (data_sum_blocks
< 3)
711 set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
713 clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
715 orphan_blocks
= (sbi
->n_orphans
+ F2FS_ORPHANS_PER_BLOCK
- 1)
716 / F2FS_ORPHANS_PER_BLOCK
;
717 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + orphan_blocks
);
720 set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
721 ckpt
->cp_pack_total_block_count
= cpu_to_le32(2 +
722 data_sum_blocks
+ orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
724 clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
725 ckpt
->cp_pack_total_block_count
= cpu_to_le32(2 +
726 data_sum_blocks
+ orphan_blocks
);
730 set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
732 clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
734 /* update SIT/NAT bitmap */
735 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
736 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
738 crc32
= f2fs_crc32(ckpt
, le32_to_cpu(ckpt
->checksum_offset
));
739 *((__le32
*)((unsigned char *)ckpt
+
740 le32_to_cpu(ckpt
->checksum_offset
)))
741 = cpu_to_le32(crc32
);
743 start_blk
= __start_cp_addr(sbi
);
745 /* write out checkpoint buffer at block 0 */
746 cp_page
= grab_meta_page(sbi
, start_blk
++);
747 kaddr
= page_address(cp_page
);
748 memcpy(kaddr
, ckpt
, (1 << sbi
->log_blocksize
));
749 set_page_dirty(cp_page
);
750 f2fs_put_page(cp_page
, 1);
752 if (sbi
->n_orphans
) {
753 write_orphan_inodes(sbi
, start_blk
);
754 start_blk
+= orphan_blocks
;
757 write_data_summaries(sbi
, start_blk
);
758 start_blk
+= data_sum_blocks
;
760 write_node_summaries(sbi
, start_blk
);
761 start_blk
+= NR_CURSEG_NODE_TYPE
;
764 /* writeout checkpoint block */
765 cp_page
= grab_meta_page(sbi
, start_blk
);
766 kaddr
= page_address(cp_page
);
767 memcpy(kaddr
, ckpt
, (1 << sbi
->log_blocksize
));
768 set_page_dirty(cp_page
);
769 f2fs_put_page(cp_page
, 1);
771 /* wait for previous submitted node/meta pages writeback */
772 wait_on_all_pages_writeback(sbi
);
774 filemap_fdatawait_range(NODE_MAPPING(sbi
), 0, LONG_MAX
);
775 filemap_fdatawait_range(META_MAPPING(sbi
), 0, LONG_MAX
);
777 /* update user_block_counts */
778 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
779 sbi
->alloc_valid_block_count
= 0;
781 /* Here, we only have one bio having CP pack */
782 sync_meta_pages(sbi
, META_FLUSH
, LONG_MAX
);
784 if (unlikely(!is_set_ckpt_flags(ckpt
, CP_ERROR_FLAG
))) {
785 clear_prefree_segments(sbi
);
786 F2FS_RESET_SB_DIRT(sbi
);
791 * We guarantee that this checkpoint procedure should not fail.
793 void write_checkpoint(struct f2fs_sb_info
*sbi
, bool is_umount
)
795 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
796 unsigned long long ckpt_ver
;
798 trace_f2fs_write_checkpoint(sbi
->sb
, is_umount
, "start block_ops");
800 mutex_lock(&sbi
->cp_mutex
);
801 block_operations(sbi
);
803 trace_f2fs_write_checkpoint(sbi
->sb
, is_umount
, "finish block_ops");
805 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
806 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
807 f2fs_submit_merged_bio(sbi
, META
, WRITE
);
810 * update checkpoint pack index
811 * Increase the version number so that
812 * SIT entries and seg summaries are written at correct place
814 ckpt_ver
= cur_cp_version(ckpt
);
815 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
817 /* write cached NAT/SIT entries to NAT/SIT area */
818 flush_nat_entries(sbi
);
819 flush_sit_entries(sbi
);
821 /* unlock all the fs_lock[] in do_checkpoint() */
822 do_checkpoint(sbi
, is_umount
);
824 unblock_operations(sbi
);
825 mutex_unlock(&sbi
->cp_mutex
);
827 trace_f2fs_write_checkpoint(sbi
->sb
, is_umount
, "finish checkpoint");
830 void init_orphan_info(struct f2fs_sb_info
*sbi
)
832 spin_lock_init(&sbi
->orphan_inode_lock
);
833 INIT_LIST_HEAD(&sbi
->orphan_inode_list
);
836 * considering 512 blocks in a segment 8 blocks are needed for cp
837 * and log segment summaries. Remaining blocks are used to keep
838 * orphan entries with the limitation one reserved segment
839 * for cp pack we can have max 1020*504 orphan entries
841 sbi
->max_orphans
= (sbi
->blocks_per_seg
- 2 - NR_CURSEG_TYPE
)
842 * F2FS_ORPHANS_PER_BLOCK
;
845 int __init
create_checkpoint_caches(void)
847 orphan_entry_slab
= f2fs_kmem_cache_create("f2fs_orphan_entry",
848 sizeof(struct orphan_inode_entry
), NULL
);
849 if (!orphan_entry_slab
)
851 inode_entry_slab
= f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
852 sizeof(struct dir_inode_entry
), NULL
);
853 if (!inode_entry_slab
) {
854 kmem_cache_destroy(orphan_entry_slab
);
860 void destroy_checkpoint_caches(void)
862 kmem_cache_destroy(orphan_entry_slab
);
863 kmem_cache_destroy(inode_entry_slab
);