serial: sh-sci: Neaten dev_<level> uses
[linux/fpc-iii.git] / fs / f2fs / checkpoint.c
blob293d0486a40f7e8560b25d012a7a2398ef4e955c
1 /*
2 * fs/f2fs/checkpoint.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
29 * We guarantee no failure on the returned page.
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
42 /* We wait writeback only inside grab_meta_page() */
43 wait_on_page_writeback(page);
44 SetPageUptodate(page);
45 return page;
49 * We guarantee no failure on the returned page.
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
53 struct address_space *mapping = META_MAPPING(sbi);
54 struct page *page;
55 repeat:
56 page = grab_cache_page(mapping, index);
57 if (!page) {
58 cond_resched();
59 goto repeat;
61 if (PageUptodate(page))
62 goto out;
64 if (f2fs_submit_page_bio(sbi, page, index,
65 READ_SYNC | REQ_META | REQ_PRIO))
66 goto repeat;
68 lock_page(page);
69 if (unlikely(page->mapping != mapping)) {
70 f2fs_put_page(page, 1);
71 goto repeat;
73 out:
74 mark_page_accessed(page);
75 return page;
78 static int f2fs_write_meta_page(struct page *page,
79 struct writeback_control *wbc)
81 struct inode *inode = page->mapping->host;
82 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
84 /* Should not write any meta pages, if any IO error was occurred */
85 if (unlikely(sbi->por_doing ||
86 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
87 goto redirty_out;
89 if (wbc->for_reclaim)
90 goto redirty_out;
92 wait_on_page_writeback(page);
94 write_meta_page(sbi, page);
95 dec_page_count(sbi, F2FS_DIRTY_META);
96 unlock_page(page);
97 return 0;
99 redirty_out:
100 dec_page_count(sbi, F2FS_DIRTY_META);
101 wbc->pages_skipped++;
102 set_page_dirty(page);
103 return AOP_WRITEPAGE_ACTIVATE;
106 static int f2fs_write_meta_pages(struct address_space *mapping,
107 struct writeback_control *wbc)
109 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
110 int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
111 long written;
113 if (wbc->for_kupdate)
114 return 0;
116 /* collect a number of dirty meta pages and write together */
117 if (get_pages(sbi, F2FS_DIRTY_META) < nrpages)
118 return 0;
120 /* if mounting is failed, skip writing node pages */
121 mutex_lock(&sbi->cp_mutex);
122 written = sync_meta_pages(sbi, META, nrpages);
123 mutex_unlock(&sbi->cp_mutex);
124 wbc->nr_to_write -= written;
125 return 0;
128 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
129 long nr_to_write)
131 struct address_space *mapping = META_MAPPING(sbi);
132 pgoff_t index = 0, end = LONG_MAX;
133 struct pagevec pvec;
134 long nwritten = 0;
135 struct writeback_control wbc = {
136 .for_reclaim = 0,
139 pagevec_init(&pvec, 0);
141 while (index <= end) {
142 int i, nr_pages;
143 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
144 PAGECACHE_TAG_DIRTY,
145 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
146 if (unlikely(nr_pages == 0))
147 break;
149 for (i = 0; i < nr_pages; i++) {
150 struct page *page = pvec.pages[i];
151 lock_page(page);
152 f2fs_bug_on(page->mapping != mapping);
153 f2fs_bug_on(!PageDirty(page));
154 clear_page_dirty_for_io(page);
155 if (f2fs_write_meta_page(page, &wbc)) {
156 unlock_page(page);
157 break;
159 nwritten++;
160 if (unlikely(nwritten >= nr_to_write))
161 break;
163 pagevec_release(&pvec);
164 cond_resched();
167 if (nwritten)
168 f2fs_submit_merged_bio(sbi, type, WRITE);
170 return nwritten;
173 static int f2fs_set_meta_page_dirty(struct page *page)
175 struct address_space *mapping = page->mapping;
176 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
178 trace_f2fs_set_page_dirty(page, META);
180 SetPageUptodate(page);
181 if (!PageDirty(page)) {
182 __set_page_dirty_nobuffers(page);
183 inc_page_count(sbi, F2FS_DIRTY_META);
184 return 1;
186 return 0;
189 const struct address_space_operations f2fs_meta_aops = {
190 .writepage = f2fs_write_meta_page,
191 .writepages = f2fs_write_meta_pages,
192 .set_page_dirty = f2fs_set_meta_page_dirty,
195 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
197 int err = 0;
199 spin_lock(&sbi->orphan_inode_lock);
200 if (unlikely(sbi->n_orphans >= sbi->max_orphans))
201 err = -ENOSPC;
202 else
203 sbi->n_orphans++;
204 spin_unlock(&sbi->orphan_inode_lock);
206 return err;
209 void release_orphan_inode(struct f2fs_sb_info *sbi)
211 spin_lock(&sbi->orphan_inode_lock);
212 f2fs_bug_on(sbi->n_orphans == 0);
213 sbi->n_orphans--;
214 spin_unlock(&sbi->orphan_inode_lock);
217 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
219 struct list_head *head, *this;
220 struct orphan_inode_entry *new = NULL, *orphan = NULL;
222 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
223 new->ino = ino;
225 spin_lock(&sbi->orphan_inode_lock);
226 head = &sbi->orphan_inode_list;
227 list_for_each(this, head) {
228 orphan = list_entry(this, struct orphan_inode_entry, list);
229 if (orphan->ino == ino) {
230 spin_unlock(&sbi->orphan_inode_lock);
231 kmem_cache_free(orphan_entry_slab, new);
232 return;
235 if (orphan->ino > ino)
236 break;
237 orphan = NULL;
240 /* add new_oentry into list which is sorted by inode number */
241 if (orphan)
242 list_add(&new->list, this->prev);
243 else
244 list_add_tail(&new->list, head);
245 spin_unlock(&sbi->orphan_inode_lock);
248 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
250 struct list_head *head;
251 struct orphan_inode_entry *orphan;
253 spin_lock(&sbi->orphan_inode_lock);
254 head = &sbi->orphan_inode_list;
255 list_for_each_entry(orphan, head, list) {
256 if (orphan->ino == ino) {
257 list_del(&orphan->list);
258 kmem_cache_free(orphan_entry_slab, orphan);
259 f2fs_bug_on(sbi->n_orphans == 0);
260 sbi->n_orphans--;
261 break;
264 spin_unlock(&sbi->orphan_inode_lock);
267 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
269 struct inode *inode = f2fs_iget(sbi->sb, ino);
270 f2fs_bug_on(IS_ERR(inode));
271 clear_nlink(inode);
273 /* truncate all the data during iput */
274 iput(inode);
277 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
279 block_t start_blk, orphan_blkaddr, i, j;
281 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
282 return;
284 sbi->por_doing = true;
285 start_blk = __start_cp_addr(sbi) + 1;
286 orphan_blkaddr = __start_sum_addr(sbi) - 1;
288 for (i = 0; i < orphan_blkaddr; i++) {
289 struct page *page = get_meta_page(sbi, start_blk + i);
290 struct f2fs_orphan_block *orphan_blk;
292 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
293 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
294 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
295 recover_orphan_inode(sbi, ino);
297 f2fs_put_page(page, 1);
299 /* clear Orphan Flag */
300 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
301 sbi->por_doing = false;
302 return;
305 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
307 struct list_head *head;
308 struct f2fs_orphan_block *orphan_blk = NULL;
309 unsigned int nentries = 0;
310 unsigned short index;
311 unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
312 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
313 struct page *page = NULL;
314 struct orphan_inode_entry *orphan = NULL;
316 for (index = 0; index < orphan_blocks; index++)
317 grab_meta_page(sbi, start_blk + index);
319 index = 1;
320 spin_lock(&sbi->orphan_inode_lock);
321 head = &sbi->orphan_inode_list;
323 /* loop for each orphan inode entry and write them in Jornal block */
324 list_for_each_entry(orphan, head, list) {
325 if (!page) {
326 page = find_get_page(META_MAPPING(sbi), start_blk++);
327 f2fs_bug_on(!page);
328 orphan_blk =
329 (struct f2fs_orphan_block *)page_address(page);
330 memset(orphan_blk, 0, sizeof(*orphan_blk));
331 f2fs_put_page(page, 0);
334 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
336 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
338 * an orphan block is full of 1020 entries,
339 * then we need to flush current orphan blocks
340 * and bring another one in memory
342 orphan_blk->blk_addr = cpu_to_le16(index);
343 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
344 orphan_blk->entry_count = cpu_to_le32(nentries);
345 set_page_dirty(page);
346 f2fs_put_page(page, 1);
347 index++;
348 nentries = 0;
349 page = NULL;
353 if (page) {
354 orphan_blk->blk_addr = cpu_to_le16(index);
355 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
356 orphan_blk->entry_count = cpu_to_le32(nentries);
357 set_page_dirty(page);
358 f2fs_put_page(page, 1);
361 spin_unlock(&sbi->orphan_inode_lock);
364 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
365 block_t cp_addr, unsigned long long *version)
367 struct page *cp_page_1, *cp_page_2 = NULL;
368 unsigned long blk_size = sbi->blocksize;
369 struct f2fs_checkpoint *cp_block;
370 unsigned long long cur_version = 0, pre_version = 0;
371 size_t crc_offset;
372 __u32 crc = 0;
374 /* Read the 1st cp block in this CP pack */
375 cp_page_1 = get_meta_page(sbi, cp_addr);
377 /* get the version number */
378 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
379 crc_offset = le32_to_cpu(cp_block->checksum_offset);
380 if (crc_offset >= blk_size)
381 goto invalid_cp1;
383 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
384 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
385 goto invalid_cp1;
387 pre_version = cur_cp_version(cp_block);
389 /* Read the 2nd cp block in this CP pack */
390 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
391 cp_page_2 = get_meta_page(sbi, cp_addr);
393 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
394 crc_offset = le32_to_cpu(cp_block->checksum_offset);
395 if (crc_offset >= blk_size)
396 goto invalid_cp2;
398 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
399 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
400 goto invalid_cp2;
402 cur_version = cur_cp_version(cp_block);
404 if (cur_version == pre_version) {
405 *version = cur_version;
406 f2fs_put_page(cp_page_2, 1);
407 return cp_page_1;
409 invalid_cp2:
410 f2fs_put_page(cp_page_2, 1);
411 invalid_cp1:
412 f2fs_put_page(cp_page_1, 1);
413 return NULL;
416 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
418 struct f2fs_checkpoint *cp_block;
419 struct f2fs_super_block *fsb = sbi->raw_super;
420 struct page *cp1, *cp2, *cur_page;
421 unsigned long blk_size = sbi->blocksize;
422 unsigned long long cp1_version = 0, cp2_version = 0;
423 unsigned long long cp_start_blk_no;
425 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
426 if (!sbi->ckpt)
427 return -ENOMEM;
429 * Finding out valid cp block involves read both
430 * sets( cp pack1 and cp pack 2)
432 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
433 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
435 /* The second checkpoint pack should start at the next segment */
436 cp_start_blk_no += ((unsigned long long)1) <<
437 le32_to_cpu(fsb->log_blocks_per_seg);
438 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
440 if (cp1 && cp2) {
441 if (ver_after(cp2_version, cp1_version))
442 cur_page = cp2;
443 else
444 cur_page = cp1;
445 } else if (cp1) {
446 cur_page = cp1;
447 } else if (cp2) {
448 cur_page = cp2;
449 } else {
450 goto fail_no_cp;
453 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
454 memcpy(sbi->ckpt, cp_block, blk_size);
456 f2fs_put_page(cp1, 1);
457 f2fs_put_page(cp2, 1);
458 return 0;
460 fail_no_cp:
461 kfree(sbi->ckpt);
462 return -EINVAL;
465 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
467 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
468 struct list_head *head = &sbi->dir_inode_list;
469 struct list_head *this;
471 list_for_each(this, head) {
472 struct dir_inode_entry *entry;
473 entry = list_entry(this, struct dir_inode_entry, list);
474 if (unlikely(entry->inode == inode))
475 return -EEXIST;
477 list_add_tail(&new->list, head);
478 stat_inc_dirty_dir(sbi);
479 return 0;
482 void set_dirty_dir_page(struct inode *inode, struct page *page)
484 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
485 struct dir_inode_entry *new;
487 if (!S_ISDIR(inode->i_mode))
488 return;
490 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
491 new->inode = inode;
492 INIT_LIST_HEAD(&new->list);
494 spin_lock(&sbi->dir_inode_lock);
495 if (__add_dirty_inode(inode, new))
496 kmem_cache_free(inode_entry_slab, new);
498 inc_page_count(sbi, F2FS_DIRTY_DENTS);
499 inode_inc_dirty_dents(inode);
500 SetPagePrivate(page);
501 spin_unlock(&sbi->dir_inode_lock);
504 void add_dirty_dir_inode(struct inode *inode)
506 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
507 struct dir_inode_entry *new =
508 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
510 new->inode = inode;
511 INIT_LIST_HEAD(&new->list);
513 spin_lock(&sbi->dir_inode_lock);
514 if (__add_dirty_inode(inode, new))
515 kmem_cache_free(inode_entry_slab, new);
516 spin_unlock(&sbi->dir_inode_lock);
519 void remove_dirty_dir_inode(struct inode *inode)
521 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
523 struct list_head *this, *head;
525 if (!S_ISDIR(inode->i_mode))
526 return;
528 spin_lock(&sbi->dir_inode_lock);
529 if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
530 spin_unlock(&sbi->dir_inode_lock);
531 return;
534 head = &sbi->dir_inode_list;
535 list_for_each(this, head) {
536 struct dir_inode_entry *entry;
537 entry = list_entry(this, struct dir_inode_entry, list);
538 if (entry->inode == inode) {
539 list_del(&entry->list);
540 kmem_cache_free(inode_entry_slab, entry);
541 stat_dec_dirty_dir(sbi);
542 break;
545 spin_unlock(&sbi->dir_inode_lock);
547 /* Only from the recovery routine */
548 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
549 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
550 iput(inode);
554 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
557 struct list_head *this, *head;
558 struct inode *inode = NULL;
560 spin_lock(&sbi->dir_inode_lock);
562 head = &sbi->dir_inode_list;
563 list_for_each(this, head) {
564 struct dir_inode_entry *entry;
565 entry = list_entry(this, struct dir_inode_entry, list);
566 if (entry->inode->i_ino == ino) {
567 inode = entry->inode;
568 break;
571 spin_unlock(&sbi->dir_inode_lock);
572 return inode;
575 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
577 struct list_head *head;
578 struct dir_inode_entry *entry;
579 struct inode *inode;
580 retry:
581 spin_lock(&sbi->dir_inode_lock);
583 head = &sbi->dir_inode_list;
584 if (list_empty(head)) {
585 spin_unlock(&sbi->dir_inode_lock);
586 return;
588 entry = list_entry(head->next, struct dir_inode_entry, list);
589 inode = igrab(entry->inode);
590 spin_unlock(&sbi->dir_inode_lock);
591 if (inode) {
592 filemap_flush(inode->i_mapping);
593 iput(inode);
594 } else {
596 * We should submit bio, since it exists several
597 * wribacking dentry pages in the freeing inode.
599 f2fs_submit_merged_bio(sbi, DATA, WRITE);
601 goto retry;
605 * Freeze all the FS-operations for checkpoint.
607 static void block_operations(struct f2fs_sb_info *sbi)
609 struct writeback_control wbc = {
610 .sync_mode = WB_SYNC_ALL,
611 .nr_to_write = LONG_MAX,
612 .for_reclaim = 0,
614 struct blk_plug plug;
616 blk_start_plug(&plug);
618 retry_flush_dents:
619 f2fs_lock_all(sbi);
620 /* write all the dirty dentry pages */
621 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
622 f2fs_unlock_all(sbi);
623 sync_dirty_dir_inodes(sbi);
624 goto retry_flush_dents;
628 * POR: we should ensure that there is no dirty node pages
629 * until finishing nat/sit flush.
631 retry_flush_nodes:
632 mutex_lock(&sbi->node_write);
634 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
635 mutex_unlock(&sbi->node_write);
636 sync_node_pages(sbi, 0, &wbc);
637 goto retry_flush_nodes;
639 blk_finish_plug(&plug);
642 static void unblock_operations(struct f2fs_sb_info *sbi)
644 mutex_unlock(&sbi->node_write);
645 f2fs_unlock_all(sbi);
648 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
650 DEFINE_WAIT(wait);
652 for (;;) {
653 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
655 if (!get_pages(sbi, F2FS_WRITEBACK))
656 break;
658 io_schedule();
660 finish_wait(&sbi->cp_wait, &wait);
663 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
665 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
666 nid_t last_nid = 0;
667 block_t start_blk;
668 struct page *cp_page;
669 unsigned int data_sum_blocks, orphan_blocks;
670 __u32 crc32 = 0;
671 void *kaddr;
672 int i;
674 /* Flush all the NAT/SIT pages */
675 while (get_pages(sbi, F2FS_DIRTY_META))
676 sync_meta_pages(sbi, META, LONG_MAX);
678 next_free_nid(sbi, &last_nid);
681 * modify checkpoint
682 * version number is already updated
684 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
685 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
686 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
687 for (i = 0; i < 3; i++) {
688 ckpt->cur_node_segno[i] =
689 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
690 ckpt->cur_node_blkoff[i] =
691 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
692 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
693 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
695 for (i = 0; i < 3; i++) {
696 ckpt->cur_data_segno[i] =
697 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
698 ckpt->cur_data_blkoff[i] =
699 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
700 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
701 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
704 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
705 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
706 ckpt->next_free_nid = cpu_to_le32(last_nid);
708 /* 2 cp + n data seg summary + orphan inode blocks */
709 data_sum_blocks = npages_for_summary_flush(sbi);
710 if (data_sum_blocks < 3)
711 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
712 else
713 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
715 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
716 / F2FS_ORPHANS_PER_BLOCK;
717 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
719 if (is_umount) {
720 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
721 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
722 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
723 } else {
724 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
725 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
726 data_sum_blocks + orphan_blocks);
729 if (sbi->n_orphans)
730 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
731 else
732 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
734 /* update SIT/NAT bitmap */
735 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
736 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
738 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
739 *((__le32 *)((unsigned char *)ckpt +
740 le32_to_cpu(ckpt->checksum_offset)))
741 = cpu_to_le32(crc32);
743 start_blk = __start_cp_addr(sbi);
745 /* write out checkpoint buffer at block 0 */
746 cp_page = grab_meta_page(sbi, start_blk++);
747 kaddr = page_address(cp_page);
748 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
749 set_page_dirty(cp_page);
750 f2fs_put_page(cp_page, 1);
752 if (sbi->n_orphans) {
753 write_orphan_inodes(sbi, start_blk);
754 start_blk += orphan_blocks;
757 write_data_summaries(sbi, start_blk);
758 start_blk += data_sum_blocks;
759 if (is_umount) {
760 write_node_summaries(sbi, start_blk);
761 start_blk += NR_CURSEG_NODE_TYPE;
764 /* writeout checkpoint block */
765 cp_page = grab_meta_page(sbi, start_blk);
766 kaddr = page_address(cp_page);
767 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
768 set_page_dirty(cp_page);
769 f2fs_put_page(cp_page, 1);
771 /* wait for previous submitted node/meta pages writeback */
772 wait_on_all_pages_writeback(sbi);
774 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
775 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
777 /* update user_block_counts */
778 sbi->last_valid_block_count = sbi->total_valid_block_count;
779 sbi->alloc_valid_block_count = 0;
781 /* Here, we only have one bio having CP pack */
782 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
784 if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
785 clear_prefree_segments(sbi);
786 F2FS_RESET_SB_DIRT(sbi);
791 * We guarantee that this checkpoint procedure should not fail.
793 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
795 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
796 unsigned long long ckpt_ver;
798 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
800 mutex_lock(&sbi->cp_mutex);
801 block_operations(sbi);
803 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
805 f2fs_submit_merged_bio(sbi, DATA, WRITE);
806 f2fs_submit_merged_bio(sbi, NODE, WRITE);
807 f2fs_submit_merged_bio(sbi, META, WRITE);
810 * update checkpoint pack index
811 * Increase the version number so that
812 * SIT entries and seg summaries are written at correct place
814 ckpt_ver = cur_cp_version(ckpt);
815 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
817 /* write cached NAT/SIT entries to NAT/SIT area */
818 flush_nat_entries(sbi);
819 flush_sit_entries(sbi);
821 /* unlock all the fs_lock[] in do_checkpoint() */
822 do_checkpoint(sbi, is_umount);
824 unblock_operations(sbi);
825 mutex_unlock(&sbi->cp_mutex);
827 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
830 void init_orphan_info(struct f2fs_sb_info *sbi)
832 spin_lock_init(&sbi->orphan_inode_lock);
833 INIT_LIST_HEAD(&sbi->orphan_inode_list);
834 sbi->n_orphans = 0;
836 * considering 512 blocks in a segment 8 blocks are needed for cp
837 * and log segment summaries. Remaining blocks are used to keep
838 * orphan entries with the limitation one reserved segment
839 * for cp pack we can have max 1020*504 orphan entries
841 sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
842 * F2FS_ORPHANS_PER_BLOCK;
845 int __init create_checkpoint_caches(void)
847 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
848 sizeof(struct orphan_inode_entry), NULL);
849 if (!orphan_entry_slab)
850 return -ENOMEM;
851 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
852 sizeof(struct dir_inode_entry), NULL);
853 if (!inode_entry_slab) {
854 kmem_cache_destroy(orphan_entry_slab);
855 return -ENOMEM;
857 return 0;
860 void destroy_checkpoint_caches(void)
862 kmem_cache_destroy(orphan_entry_slab);
863 kmem_cache_destroy(inode_entry_slab);