mmc: rtsx_pci: Enable MMC_CAP_ERASE to allow erase/discard/trim requests
[linux/fpc-iii.git] / drivers / of / of_reserved_mem.c
blob216648233874fabdb3cd7d7a5c06072485af1508
1 /*
2 * Device tree based initialization code for reserved memory.
4 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
5 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com
7 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
8 * Author: Josh Cartwright <joshc@codeaurora.org>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License or (at your optional) any later version of the license.
16 #include <linux/err.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_platform.h>
20 #include <linux/mm.h>
21 #include <linux/sizes.h>
22 #include <linux/of_reserved_mem.h>
23 #include <linux/sort.h>
25 #define MAX_RESERVED_REGIONS 16
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
29 #if defined(CONFIG_HAVE_MEMBLOCK)
30 #include <linux/memblock.h>
31 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
32 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
33 phys_addr_t *res_base)
35 phys_addr_t base;
37 * We use __memblock_alloc_base() because memblock_alloc_base()
38 * panic()s on allocation failure.
40 end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
41 base = __memblock_alloc_base(size, align, end);
42 if (!base)
43 return -ENOMEM;
46 * Check if the allocated region fits in to start..end window
48 if (base < start) {
49 memblock_free(base, size);
50 return -ENOMEM;
53 *res_base = base;
54 if (nomap)
55 return memblock_remove(base, size);
56 return 0;
58 #else
59 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
60 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
61 phys_addr_t *res_base)
63 pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
64 size, nomap ? " (nomap)" : "");
65 return -ENOSYS;
67 #endif
69 /**
70 * res_mem_save_node() - save fdt node for second pass initialization
72 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
73 phys_addr_t base, phys_addr_t size)
75 struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
77 if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
78 pr_err("Reserved memory: not enough space all defined regions.\n");
79 return;
82 rmem->fdt_node = node;
83 rmem->name = uname;
84 rmem->base = base;
85 rmem->size = size;
87 reserved_mem_count++;
88 return;
91 /**
92 * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
93 * and 'alloc-ranges' properties
95 static int __init __reserved_mem_alloc_size(unsigned long node,
96 const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
98 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
99 phys_addr_t start = 0, end = 0;
100 phys_addr_t base = 0, align = 0, size;
101 int len;
102 const __be32 *prop;
103 int nomap;
104 int ret;
106 prop = of_get_flat_dt_prop(node, "size", &len);
107 if (!prop)
108 return -EINVAL;
110 if (len != dt_root_size_cells * sizeof(__be32)) {
111 pr_err("Reserved memory: invalid size property in '%s' node.\n",
112 uname);
113 return -EINVAL;
115 size = dt_mem_next_cell(dt_root_size_cells, &prop);
117 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
119 prop = of_get_flat_dt_prop(node, "alignment", &len);
120 if (prop) {
121 if (len != dt_root_addr_cells * sizeof(__be32)) {
122 pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
123 uname);
124 return -EINVAL;
126 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
129 /* Need adjust the alignment to satisfy the CMA requirement */
130 if (IS_ENABLED(CONFIG_CMA)
131 && of_flat_dt_is_compatible(node, "shared-dma-pool")
132 && of_get_flat_dt_prop(node, "reusable", NULL)
133 && !of_get_flat_dt_prop(node, "no-map", NULL)) {
134 unsigned long order =
135 max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
137 align = max(align, (phys_addr_t)PAGE_SIZE << order);
140 prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
141 if (prop) {
143 if (len % t_len != 0) {
144 pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
145 uname);
146 return -EINVAL;
149 base = 0;
151 while (len > 0) {
152 start = dt_mem_next_cell(dt_root_addr_cells, &prop);
153 end = start + dt_mem_next_cell(dt_root_size_cells,
154 &prop);
156 ret = early_init_dt_alloc_reserved_memory_arch(size,
157 align, start, end, nomap, &base);
158 if (ret == 0) {
159 pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
160 uname, &base,
161 (unsigned long)size / SZ_1M);
162 break;
164 len -= t_len;
167 } else {
168 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
169 0, 0, nomap, &base);
170 if (ret == 0)
171 pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
172 uname, &base, (unsigned long)size / SZ_1M);
175 if (base == 0) {
176 pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
177 uname);
178 return -ENOMEM;
181 *res_base = base;
182 *res_size = size;
184 return 0;
187 static const struct of_device_id __rmem_of_table_sentinel
188 __used __section(__reservedmem_of_table_end);
191 * res_mem_init_node() - call region specific reserved memory init code
193 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
195 extern const struct of_device_id __reservedmem_of_table[];
196 const struct of_device_id *i;
198 for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
199 reservedmem_of_init_fn initfn = i->data;
200 const char *compat = i->compatible;
202 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
203 continue;
205 if (initfn(rmem) == 0) {
206 pr_info("Reserved memory: initialized node %s, compatible id %s\n",
207 rmem->name, compat);
208 return 0;
211 return -ENOENT;
214 static int __init __rmem_cmp(const void *a, const void *b)
216 const struct reserved_mem *ra = a, *rb = b;
218 if (ra->base < rb->base)
219 return -1;
221 if (ra->base > rb->base)
222 return 1;
224 return 0;
227 static void __init __rmem_check_for_overlap(void)
229 int i;
231 if (reserved_mem_count < 2)
232 return;
234 sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
235 __rmem_cmp, NULL);
236 for (i = 0; i < reserved_mem_count - 1; i++) {
237 struct reserved_mem *this, *next;
239 this = &reserved_mem[i];
240 next = &reserved_mem[i + 1];
241 if (!(this->base && next->base))
242 continue;
243 if (this->base + this->size > next->base) {
244 phys_addr_t this_end, next_end;
246 this_end = this->base + this->size;
247 next_end = next->base + next->size;
248 pr_err("Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
249 this->name, &this->base, &this_end,
250 next->name, &next->base, &next_end);
256 * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
258 void __init fdt_init_reserved_mem(void)
260 int i;
262 /* check for overlapping reserved regions */
263 __rmem_check_for_overlap();
265 for (i = 0; i < reserved_mem_count; i++) {
266 struct reserved_mem *rmem = &reserved_mem[i];
267 unsigned long node = rmem->fdt_node;
268 int len;
269 const __be32 *prop;
270 int err = 0;
272 prop = of_get_flat_dt_prop(node, "phandle", &len);
273 if (!prop)
274 prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
275 if (prop)
276 rmem->phandle = of_read_number(prop, len/4);
278 if (rmem->size == 0)
279 err = __reserved_mem_alloc_size(node, rmem->name,
280 &rmem->base, &rmem->size);
281 if (err == 0)
282 __reserved_mem_init_node(rmem);
286 static inline struct reserved_mem *__find_rmem(struct device_node *node)
288 unsigned int i;
290 if (!node->phandle)
291 return NULL;
293 for (i = 0; i < reserved_mem_count; i++)
294 if (reserved_mem[i].phandle == node->phandle)
295 return &reserved_mem[i];
296 return NULL;
300 * of_reserved_mem_device_init() - assign reserved memory region to given device
302 * This function assign memory region pointed by "memory-region" device tree
303 * property to the given device.
305 int of_reserved_mem_device_init(struct device *dev)
307 struct reserved_mem *rmem;
308 struct device_node *np;
309 int ret;
311 np = of_parse_phandle(dev->of_node, "memory-region", 0);
312 if (!np)
313 return -ENODEV;
315 rmem = __find_rmem(np);
316 of_node_put(np);
318 if (!rmem || !rmem->ops || !rmem->ops->device_init)
319 return -EINVAL;
321 ret = rmem->ops->device_init(rmem, dev);
322 if (ret == 0)
323 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
325 return ret;
327 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init);
330 * of_reserved_mem_device_release() - release reserved memory device structures
332 * This function releases structures allocated for memory region handling for
333 * the given device.
335 void of_reserved_mem_device_release(struct device *dev)
337 struct reserved_mem *rmem;
338 struct device_node *np;
340 np = of_parse_phandle(dev->of_node, "memory-region", 0);
341 if (!np)
342 return;
344 rmem = __find_rmem(np);
345 of_node_put(np);
347 if (!rmem || !rmem->ops || !rmem->ops->device_release)
348 return;
350 rmem->ops->device_release(rmem, dev);
352 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);