2 * hcd.h - DesignWare HS OTG Controller host-mode declarations
4 * Copyright (C) 2004-2013 Synopsys, Inc.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 #ifndef __DWC2_HCD_H__
37 #define __DWC2_HCD_H__
40 * This file contains the structures, constants, and interfaces for the
41 * Host Contoller Driver (HCD)
43 * The Host Controller Driver (HCD) is responsible for translating requests
44 * from the USB Driver into the appropriate actions on the DWC_otg controller.
45 * It isolates the USBD from the specifics of the controller by providing an
52 * struct dwc2_host_chan - Software host channel descriptor
54 * @hc_num: Host channel number, used for register address lookup
55 * @dev_addr: Address of the device
56 * @ep_num: Endpoint of the device
57 * @ep_is_in: Endpoint direction
58 * @speed: Device speed. One of the following values:
62 * @ep_type: Endpoint type. One of the following values:
63 * - USB_ENDPOINT_XFER_CONTROL: 0
64 * - USB_ENDPOINT_XFER_ISOC: 1
65 * - USB_ENDPOINT_XFER_BULK: 2
66 * - USB_ENDPOINT_XFER_INTR: 3
67 * @max_packet: Max packet size in bytes
68 * @data_pid_start: PID for initial transaction.
72 * 3: MDATA (non-Control EP),
74 * @multi_count: Number of additional periodic transactions per
76 * @xfer_buf: Pointer to current transfer buffer position
77 * @xfer_dma: DMA address of xfer_buf
78 * @xfer_len: Total number of bytes to transfer
79 * @xfer_count: Number of bytes transferred so far
80 * @start_pkt_count: Packet count at start of transfer
81 * @xfer_started: True if the transfer has been started
82 * @ping: True if a PING request should be issued on this channel
83 * @error_state: True if the error count for this transaction is non-zero
84 * @halt_on_queue: True if this channel should be halted the next time a
85 * request is queued for the channel. This is necessary in
86 * slave mode if no request queue space is available when
87 * an attempt is made to halt the channel.
88 * @halt_pending: True if the host channel has been halted, but the core
89 * is not finished flushing queued requests
90 * @do_split: Enable split for the channel
91 * @complete_split: Enable complete split
92 * @hub_addr: Address of high speed hub for the split
93 * @hub_port: Port of the low/full speed device for the split
94 * @xact_pos: Split transaction position. One of the following values:
95 * - DWC2_HCSPLT_XACTPOS_MID
96 * - DWC2_HCSPLT_XACTPOS_BEGIN
97 * - DWC2_HCSPLT_XACTPOS_END
98 * - DWC2_HCSPLT_XACTPOS_ALL
99 * @requests: Number of requests issued for this channel since it was
100 * assigned to the current transfer (not counting PINGs)
101 * @schinfo: Scheduling micro-frame bitmap
102 * @ntd: Number of transfer descriptors for the transfer
103 * @halt_status: Reason for halting the host channel
104 * @hcint Contents of the HCINT register when the interrupt came
105 * @qh: QH for the transfer being processed by this channel
106 * @hc_list_entry: For linking to list of host channels
107 * @desc_list_addr: Current QH's descriptor list DMA address
108 * @desc_list_sz: Current QH's descriptor list size
109 * @split_order_list_entry: List entry for keeping track of the order of splits
111 * This structure represents the state of a single host channel when acting in
112 * host mode. It contains the data items needed to transfer packets to an
113 * endpoint via a host channel.
115 struct dwc2_host_chan
{
123 unsigned max_packet
:11;
124 unsigned data_pid_start
:2;
125 #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
126 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
127 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
128 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
129 #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
131 unsigned multi_count
:2;
148 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
149 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
150 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
151 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
156 enum dwc2_halt_status halt_status
;
159 struct list_head hc_list_entry
;
160 dma_addr_t desc_list_addr
;
162 struct list_head split_order_list_entry
;
165 struct dwc2_hcd_pipe_info
{
173 struct dwc2_hcd_iso_packet_desc
{
182 struct dwc2_hcd_urb
{
184 struct dwc2_qtd
*qtd
;
188 dma_addr_t setup_dma
;
196 struct dwc2_hcd_pipe_info pipe_info
;
197 struct dwc2_hcd_iso_packet_desc iso_descs
[0];
200 /* Phases for control transfers */
201 enum dwc2_control_phase
{
207 /* Transaction types */
208 enum dwc2_transaction_type
{
209 DWC2_TRANSACTION_NONE
,
210 DWC2_TRANSACTION_PERIODIC
,
211 DWC2_TRANSACTION_NON_PERIODIC
,
212 DWC2_TRANSACTION_ALL
,
215 /* The number of elements per LS bitmap (per port on multi_tt) */
216 #define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
220 * struct dwc2_tt - dwc2 data associated with a usb_tt
222 * @refcount: Number of Queue Heads (QHs) holding a reference.
223 * @usb_tt: Pointer back to the official usb_tt.
224 * @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted
225 * for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP
226 * elements (so sizeof(long) times that in bytes).
228 * This structure is stored in the hcpriv of the official usb_tt.
232 struct usb_tt
*usb_tt
;
233 unsigned long periodic_bitmaps
[];
237 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
239 * @start_schedule_usecs: The start time on the main bus schedule. Note that
240 * the main bus schedule is tightly packed and this
241 * time should be interpreted as tightly packed (so
242 * uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
243 * instead of 125 us).
244 * @duration_us: How long this transfer goes.
247 struct dwc2_hs_transfer_time
{
248 u32 start_schedule_us
;
253 * struct dwc2_qh - Software queue head structure
255 * @hsotg: The HCD state structure for the DWC OTG controller
256 * @ep_type: Endpoint type. One of the following values:
257 * - USB_ENDPOINT_XFER_CONTROL
258 * - USB_ENDPOINT_XFER_BULK
259 * - USB_ENDPOINT_XFER_INT
260 * - USB_ENDPOINT_XFER_ISOC
261 * @ep_is_in: Endpoint direction
262 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
263 * @dev_speed: Device speed. One of the following values:
267 * @data_toggle: Determines the PID of the next data packet for
268 * non-controltransfers. Ignored for control transfers.
269 * One of the following values:
270 * - DWC2_HC_PID_DATA0
271 * - DWC2_HC_PID_DATA1
272 * @ping_state: Ping state
273 * @do_split: Full/low speed endpoint on high-speed hub requires split
274 * @td_first: Index of first activated isochronous transfer descriptor
275 * @td_last: Index of last activated isochronous transfer descriptor
276 * @host_us: Bandwidth in microseconds per transfer as seen by host
277 * @device_us: Bandwidth in microseconds per transfer as seen by device
278 * @host_interval: Interval between transfers as seen by the host. If
279 * the host is high speed and the device is low speed this
280 * will be 8 times device interval.
281 * @device_interval: Interval between transfers as seen by the device.
283 * @next_active_frame: (Micro)frame _before_ we next need to put something on
284 * the bus. We'll move the qh to active here. If the
285 * host is in high speed mode this will be a uframe. If
286 * the host is in low speed mode this will be a full frame.
287 * @start_active_frame: If we are partway through a split transfer, this will be
288 * what next_active_frame was when we started. Otherwise
289 * it should always be the same as next_active_frame.
290 * @num_hs_transfers: Number of transfers in hs_transfers.
291 * Normally this is 1 but can be more than one for splits.
292 * Always >= 1 unless the host is in low/full speed mode.
293 * @hs_transfers: Transfers that are scheduled as seen by the high speed
294 * bus. Not used if host is in low or full speed mode (but
295 * note that it IS USED if the device is low or full speed
296 * as long as the HOST is in high speed mode).
297 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
298 * schedule that's being used by this device. This
299 * will be on the periodic_bitmap in a
300 * "struct dwc2_tt". Not used if this device is high
301 * speed. Note that this is in "schedule slice" which
303 * @ls_duration_us: Duration on the low speed bus schedule.
304 * @ntd: Actual number of transfer descriptors in a list
305 * @qtd_list: List of QTDs for this QH
306 * @channel: Host channel currently processing transfers for this QH
307 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
309 * @desc_list: List of transfer descriptors
310 * @desc_list_dma: Physical address of desc_list
311 * @desc_list_sz: Size of descriptors list
312 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
313 * descriptor and indicates original XferSize value for the
315 * @unreserve_timer: Timer for releasing periodic reservation.
316 * @dwc2_tt: Pointer to our tt info (or NULL if no tt).
317 * @ttport: Port number within our tt.
318 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
319 * @unreserve_pending: True if we planned to unreserve but haven't yet.
320 * @schedule_low_speed: True if we have a low/full speed component (either the
321 * host is in low/full speed mode or do_split).
323 * A Queue Head (QH) holds the static characteristics of an endpoint and
324 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
325 * be entered in either the non-periodic or periodic schedule.
328 struct dwc2_hsotg
*hsotg
;
342 u16 next_active_frame
;
343 u16 start_active_frame
;
344 s16 num_hs_transfers
;
345 struct dwc2_hs_transfer_time hs_transfers
[DWC2_HS_SCHEDULE_UFRAMES
];
346 u32 ls_start_schedule_slice
;
348 struct list_head qtd_list
;
349 struct dwc2_host_chan
*channel
;
350 struct list_head qh_list_entry
;
351 struct dwc2_hcd_dma_desc
*desc_list
;
352 dma_addr_t desc_list_dma
;
355 struct timer_list unreserve_timer
;
356 struct dwc2_tt
*dwc_tt
;
358 unsigned tt_buffer_dirty
:1;
359 unsigned unreserve_pending
:1;
360 unsigned schedule_low_speed
:1;
364 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
366 * @control_phase: Current phase for control transfers (Setup, Data, or
368 * @in_process: Indicates if this QTD is currently processed by HW
369 * @data_toggle: Determines the PID of the next data packet for the
370 * data phase of control transfers. Ignored for other
371 * transfer types. One of the following values:
372 * - DWC2_HC_PID_DATA0
373 * - DWC2_HC_PID_DATA1
374 * @complete_split: Keeps track of the current split type for FS/LS
375 * endpoints on a HS Hub
376 * @isoc_split_pos: Position of the ISOC split in full/low speed
377 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
378 * transfer. A frame descriptor describes the buffer
379 * position and length of the data to be transferred in the
380 * next scheduled (micro)frame of an isochronous transfer.
381 * It also holds status for that transaction. The frame
383 * @isoc_split_offset: Position of the ISOC split in the buffer for the
385 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
386 * @error_count: Holds the number of bus errors that have occurred for
387 * a transaction within this transfer
388 * @n_desc: Number of DMA descriptors for this QTD
389 * @isoc_frame_index_last: Last activated frame (packet) index, used in
390 * descriptor DMA mode only
391 * @urb: URB for this transfer
392 * @qh: Queue head for this QTD
393 * @qtd_list_entry: For linking to the QH's list of QTDs
395 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
396 * interrupt, or isochronous transfer. A single QTD is created for each URB
397 * (of one of these types) submitted to the HCD. The transfer associated with
398 * a QTD may require one or multiple transactions.
400 * A QTD is linked to a Queue Head, which is entered in either the
401 * non-periodic or periodic schedule for execution. When a QTD is chosen for
402 * execution, some or all of its transactions may be executed. After
403 * execution, the state of the QTD is updated. The QTD may be retired if all
404 * its transactions are complete or if an error occurred. Otherwise, it
405 * remains in the schedule so more transactions can be executed later.
408 enum dwc2_control_phase control_phase
;
413 u16 isoc_frame_index
;
414 u16 isoc_split_offset
;
417 u32 ssplit_out_xfer_count
;
420 u16 isoc_frame_index_last
;
421 struct dwc2_hcd_urb
*urb
;
423 struct list_head qtd_list_entry
;
427 struct hc_xfer_info
{
428 struct dwc2_hsotg
*hsotg
;
429 struct dwc2_host_chan
*chan
;
433 u32
dwc2_calc_frame_interval(struct dwc2_hsotg
*hsotg
);
435 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
436 static inline struct usb_hcd
*dwc2_hsotg_to_hcd(struct dwc2_hsotg
*hsotg
)
438 return (struct usb_hcd
*)hsotg
->priv
;
442 * Inline used to disable one channel interrupt. Channel interrupts are
443 * disabled when the channel is halted or released by the interrupt handler.
444 * There is no need to handle further interrupts of that type until the
445 * channel is re-assigned. In fact, subsequent handling may cause crashes
446 * because the channel structures are cleaned up when the channel is released.
448 static inline void disable_hc_int(struct dwc2_hsotg
*hsotg
, int chnum
, u32 intr
)
450 u32 mask
= dwc2_readl(hsotg
->regs
+ HCINTMSK(chnum
));
453 dwc2_writel(mask
, hsotg
->regs
+ HCINTMSK(chnum
));
456 void dwc2_hc_cleanup(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
);
457 void dwc2_hc_halt(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
,
458 enum dwc2_halt_status halt_status
);
459 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg
*hsotg
,
460 struct dwc2_host_chan
*chan
);
463 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
464 * are read as 1, they won't clear when written back.
466 static inline u32
dwc2_read_hprt0(struct dwc2_hsotg
*hsotg
)
468 u32 hprt0
= dwc2_readl(hsotg
->regs
+ HPRT0
);
470 hprt0
&= ~(HPRT0_ENA
| HPRT0_CONNDET
| HPRT0_ENACHG
| HPRT0_OVRCURRCHG
);
474 static inline u8
dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info
*pipe
)
479 static inline u8
dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info
*pipe
)
481 return pipe
->pipe_type
;
484 static inline u16
dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info
*pipe
)
489 static inline u8
dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info
*pipe
)
491 return pipe
->dev_addr
;
494 static inline u8
dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info
*pipe
)
496 return pipe
->pipe_type
== USB_ENDPOINT_XFER_ISOC
;
499 static inline u8
dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info
*pipe
)
501 return pipe
->pipe_type
== USB_ENDPOINT_XFER_INT
;
504 static inline u8
dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info
*pipe
)
506 return pipe
->pipe_type
== USB_ENDPOINT_XFER_BULK
;
509 static inline u8
dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info
*pipe
)
511 return pipe
->pipe_type
== USB_ENDPOINT_XFER_CONTROL
;
514 static inline u8
dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info
*pipe
)
516 return pipe
->pipe_dir
== USB_DIR_IN
;
519 static inline u8
dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info
*pipe
)
521 return !dwc2_hcd_is_pipe_in(pipe
);
524 extern int dwc2_hcd_init(struct dwc2_hsotg
*hsotg
, int irq
);
525 extern void dwc2_hcd_remove(struct dwc2_hsotg
*hsotg
);
527 /* Transaction Execution Functions */
528 extern enum dwc2_transaction_type
dwc2_hcd_select_transactions(
529 struct dwc2_hsotg
*hsotg
);
530 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg
*hsotg
,
531 enum dwc2_transaction_type tr_type
);
533 /* Schedule Queue Functions */
534 /* Implemented in hcd_queue.c */
535 extern struct dwc2_qh
*dwc2_hcd_qh_create(struct dwc2_hsotg
*hsotg
,
536 struct dwc2_hcd_urb
*urb
,
538 extern void dwc2_hcd_qh_free(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
539 extern int dwc2_hcd_qh_add(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
540 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
541 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
544 extern void dwc2_hcd_qtd_init(struct dwc2_qtd
*qtd
, struct dwc2_hcd_urb
*urb
);
545 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg
*hsotg
, struct dwc2_qtd
*qtd
,
548 /* Unlinks and frees a QTD */
549 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg
*hsotg
,
550 struct dwc2_qtd
*qtd
,
553 list_del(&qtd
->qtd_list_entry
);
558 /* Descriptor DMA support functions */
559 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg
*hsotg
,
561 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg
*hsotg
,
562 struct dwc2_host_chan
*chan
, int chnum
,
563 enum dwc2_halt_status halt_status
);
565 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
567 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
569 /* Check if QH is non-periodic */
570 #define dwc2_qh_is_non_per(_qh_ptr_) \
571 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
572 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
574 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
575 static inline bool dbg_hc(struct dwc2_host_chan
*hc
) { return true; }
576 static inline bool dbg_qh(struct dwc2_qh
*qh
) { return true; }
577 static inline bool dbg_urb(struct urb
*urb
) { return true; }
578 static inline bool dbg_perio(void) { return true; }
579 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
580 static inline bool dbg_hc(struct dwc2_host_chan
*hc
)
582 return hc
->ep_type
== USB_ENDPOINT_XFER_BULK
||
583 hc
->ep_type
== USB_ENDPOINT_XFER_CONTROL
;
586 static inline bool dbg_qh(struct dwc2_qh
*qh
)
588 return qh
->ep_type
== USB_ENDPOINT_XFER_BULK
||
589 qh
->ep_type
== USB_ENDPOINT_XFER_CONTROL
;
592 static inline bool dbg_urb(struct urb
*urb
)
594 return usb_pipetype(urb
->pipe
) == PIPE_BULK
||
595 usb_pipetype(urb
->pipe
) == PIPE_CONTROL
;
598 static inline bool dbg_perio(void) { return false; }
601 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
602 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
604 /* Packet size for any kind of endpoint descriptor */
605 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
608 * Returns true if frame1 index is greater than frame2 index. The comparison
609 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
610 * frame number when the max index frame number is reached.
612 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1
, u16 fr_idx2
)
614 u16 diff
= fr_idx1
- fr_idx2
;
615 u16 sign
= diff
& (FRLISTEN_64_SIZE
>> 1);
617 return diff
&& !sign
;
621 * Returns true if frame1 is less than or equal to frame2. The comparison is
622 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
623 * frame number when the max frame number is reached.
625 static inline int dwc2_frame_num_le(u16 frame1
, u16 frame2
)
627 return ((frame2
- frame1
) & HFNUM_MAX_FRNUM
) <= (HFNUM_MAX_FRNUM
>> 1);
631 * Returns true if frame1 is greater than frame2. The comparison is done
632 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
633 * number when the max frame number is reached.
635 static inline int dwc2_frame_num_gt(u16 frame1
, u16 frame2
)
637 return (frame1
!= frame2
) &&
638 ((frame1
- frame2
) & HFNUM_MAX_FRNUM
) < (HFNUM_MAX_FRNUM
>> 1);
642 * Increments frame by the amount specified by inc. The addition is done
643 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
645 static inline u16
dwc2_frame_num_inc(u16 frame
, u16 inc
)
647 return (frame
+ inc
) & HFNUM_MAX_FRNUM
;
650 static inline u16
dwc2_frame_num_dec(u16 frame
, u16 dec
)
652 return (frame
+ HFNUM_MAX_FRNUM
+ 1 - dec
) & HFNUM_MAX_FRNUM
;
655 static inline u16
dwc2_full_frame_num(u16 frame
)
657 return (frame
& HFNUM_MAX_FRNUM
) >> 3;
660 static inline u16
dwc2_micro_frame_num(u16 frame
)
666 * Returns the Core Interrupt Status register contents, ANDed with the Core
667 * Interrupt Mask register contents
669 static inline u32
dwc2_read_core_intr(struct dwc2_hsotg
*hsotg
)
671 return dwc2_readl(hsotg
->regs
+ GINTSTS
) &
672 dwc2_readl(hsotg
->regs
+ GINTMSK
);
675 static inline u32
dwc2_hcd_urb_get_status(struct dwc2_hcd_urb
*dwc2_urb
)
677 return dwc2_urb
->status
;
680 static inline u32
dwc2_hcd_urb_get_actual_length(
681 struct dwc2_hcd_urb
*dwc2_urb
)
683 return dwc2_urb
->actual_length
;
686 static inline u32
dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb
*dwc2_urb
)
688 return dwc2_urb
->error_count
;
691 static inline void dwc2_hcd_urb_set_iso_desc_params(
692 struct dwc2_hcd_urb
*dwc2_urb
, int desc_num
, u32 offset
,
695 dwc2_urb
->iso_descs
[desc_num
].offset
= offset
;
696 dwc2_urb
->iso_descs
[desc_num
].length
= length
;
699 static inline u32
dwc2_hcd_urb_get_iso_desc_status(
700 struct dwc2_hcd_urb
*dwc2_urb
, int desc_num
)
702 return dwc2_urb
->iso_descs
[desc_num
].status
;
705 static inline u32
dwc2_hcd_urb_get_iso_desc_actual_length(
706 struct dwc2_hcd_urb
*dwc2_urb
, int desc_num
)
708 return dwc2_urb
->iso_descs
[desc_num
].actual_length
;
711 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg
*hsotg
,
712 struct usb_host_endpoint
*ep
)
714 struct dwc2_qh
*qh
= ep
->hcpriv
;
716 if (qh
&& !list_empty(&qh
->qh_list_entry
))
722 static inline u16
dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg
*hsotg
,
723 struct usb_host_endpoint
*ep
)
725 struct dwc2_qh
*qh
= ep
->hcpriv
;
735 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg
*hsotg
,
736 struct dwc2_host_chan
*chan
, int chnum
,
737 struct dwc2_qtd
*qtd
);
742 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
744 * @hsotg: The DWC2 HCD
746 * Returns IRQ_HANDLED if interrupt is handled
747 * Return IRQ_NONE if interrupt is not handled
749 extern irqreturn_t
dwc2_handle_hcd_intr(struct dwc2_hsotg
*hsotg
);
752 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
754 * @hsotg: The DWC2 HCD
756 extern void dwc2_hcd_stop(struct dwc2_hsotg
*hsotg
);
759 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
762 * @hsotg: The DWC2 HCD
764 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg
*hsotg
);
767 * dwc2_hcd_dump_state() - Dumps hsotg state
769 * @hsotg: The DWC2 HCD
771 * NOTE: This function will be removed once the peripheral controller code
772 * is integrated and the driver is stable
774 extern void dwc2_hcd_dump_state(struct dwc2_hsotg
*hsotg
);
777 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
779 * @hsotg: The DWC2 HCD
781 * This can be used to determine average interrupt latency. Frame remaining is
782 * also shown for start transfer and two additional sample points.
784 * NOTE: This function will be removed once the peripheral controller code
785 * is integrated and the driver is stable
787 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg
*hsotg
);
792 #define URB_GIVEBACK_ASAP 0x1
793 #define URB_SEND_ZERO_PACKET 0x2
795 /* Host driver callbacks */
797 extern void dwc2_host_start(struct dwc2_hsotg
*hsotg
);
798 extern void dwc2_host_disconnect(struct dwc2_hsotg
*hsotg
);
799 extern void dwc2_host_hub_info(struct dwc2_hsotg
*hsotg
, void *context
,
800 int *hub_addr
, int *hub_port
);
801 extern struct dwc2_tt
*dwc2_host_get_tt_info(struct dwc2_hsotg
*hsotg
,
802 void *context
, gfp_t mem_flags
,
805 extern void dwc2_host_put_tt_info(struct dwc2_hsotg
*hsotg
,
806 struct dwc2_tt
*dwc_tt
);
807 extern int dwc2_host_get_speed(struct dwc2_hsotg
*hsotg
, void *context
);
808 extern void dwc2_host_complete(struct dwc2_hsotg
*hsotg
, struct dwc2_qtd
*qtd
,
813 * Macro to sample the remaining PHY clocks left in the current frame. This
814 * may be used during debugging to determine the average time it takes to
815 * execute sections of code. There are two possible sample points, "a" and
816 * "b", so the _letter_ argument must be one of these values.
818 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
819 * example, "cat /sys/devices/lm0/hcd_frrem".
821 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
823 struct hfnum_data _hfnum_; \
824 struct dwc2_qtd *_qtd_; \
826 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
828 if (usb_pipeint(_qtd_->urb->pipe) && \
829 (_qh_)->start_active_frame != 0 && !_qtd_->complete_split) { \
830 _hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM); \
831 switch (_hfnum_.b.frnum & 0x7) { \
833 (_hcd_)->hfnum_7_samples_##_letter_++; \
834 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
838 (_hcd_)->hfnum_0_samples_##_letter_++; \
839 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
843 (_hcd_)->hfnum_other_samples_##_letter_++; \
844 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
851 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
854 #endif /* __DWC2_HCD_H__ */