2 * Copyright (C) 2005-2006 by Texas Instruments
4 * This file implements a DMA interface using TI's CPPI DMA.
5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
9 #include <linux/module.h>
10 #include <linux/platform_device.h>
11 #include <linux/slab.h>
12 #include <linux/usb.h>
14 #include "musb_core.h"
15 #include "musb_debug.h"
19 /* CPPI DMA status 7-mar-2006:
21 * - See musb_{host,gadget}.c for more info
23 * - Correct RX DMA generally forces the engine into irq-per-packet mode,
24 * which can easily saturate the CPU under non-mass-storage loads.
26 * NOTES 24-aug-2006 (2.6.18-rc4):
28 * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
29 * evidently after the 1 byte packet was received and acked, the queue
30 * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003,
31 * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
32 * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx
33 * of its next (512 byte) packet. IRQ issues?
35 * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will
36 * evidently also directly update the RX and TX CSRs ... so audit all
37 * host and peripheral side DMA code to avoid CSR access after DMA has
41 /* REVISIT now we can avoid preallocating these descriptors; or
42 * more simply, switch to a global freelist not per-channel ones.
43 * Note: at full speed, 64 descriptors == 4K bulk data.
45 #define NUM_TXCHAN_BD 64
46 #define NUM_RXCHAN_BD 64
48 static inline void cpu_drain_writebuffer(void)
51 #ifdef CONFIG_CPU_ARM926T
52 /* REVISIT this "should not be needed",
53 * but lack of it sure seemed to hurt ...
55 asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
59 static inline struct cppi_descriptor
*cppi_bd_alloc(struct cppi_channel
*c
)
61 struct cppi_descriptor
*bd
= c
->freelist
;
64 c
->freelist
= bd
->next
;
69 cppi_bd_free(struct cppi_channel
*c
, struct cppi_descriptor
*bd
)
73 bd
->next
= c
->freelist
;
78 * Start DMA controller
80 * Initialize the DMA controller as necessary.
83 /* zero out entire rx state RAM entry for the channel */
84 static void cppi_reset_rx(struct cppi_rx_stateram __iomem
*rx
)
86 musb_writel(&rx
->rx_skipbytes
, 0, 0);
87 musb_writel(&rx
->rx_head
, 0, 0);
88 musb_writel(&rx
->rx_sop
, 0, 0);
89 musb_writel(&rx
->rx_current
, 0, 0);
90 musb_writel(&rx
->rx_buf_current
, 0, 0);
91 musb_writel(&rx
->rx_len_len
, 0, 0);
92 musb_writel(&rx
->rx_cnt_cnt
, 0, 0);
95 /* zero out entire tx state RAM entry for the channel */
96 static void cppi_reset_tx(struct cppi_tx_stateram __iomem
*tx
, u32 ptr
)
98 musb_writel(&tx
->tx_head
, 0, 0);
99 musb_writel(&tx
->tx_buf
, 0, 0);
100 musb_writel(&tx
->tx_current
, 0, 0);
101 musb_writel(&tx
->tx_buf_current
, 0, 0);
102 musb_writel(&tx
->tx_info
, 0, 0);
103 musb_writel(&tx
->tx_rem_len
, 0, 0);
104 /* musb_writel(&tx->tx_dummy, 0, 0); */
105 musb_writel(&tx
->tx_complete
, 0, ptr
);
108 static void cppi_pool_init(struct cppi
*cppi
, struct cppi_channel
*c
)
112 /* initialize channel fields */
115 c
->last_processed
= NULL
;
116 c
->channel
.status
= MUSB_DMA_STATUS_UNKNOWN
;
117 c
->controller
= cppi
;
121 /* build the BD Free list for the channel */
122 for (j
= 0; j
< NUM_TXCHAN_BD
+ 1; j
++) {
123 struct cppi_descriptor
*bd
;
126 bd
= dma_pool_alloc(cppi
->pool
, GFP_KERNEL
, &dma
);
132 static int cppi_channel_abort(struct dma_channel
*);
134 static void cppi_pool_free(struct cppi_channel
*c
)
136 struct cppi
*cppi
= c
->controller
;
137 struct cppi_descriptor
*bd
;
139 (void) cppi_channel_abort(&c
->channel
);
140 c
->channel
.status
= MUSB_DMA_STATUS_UNKNOWN
;
141 c
->controller
= NULL
;
143 /* free all its bds */
144 bd
= c
->last_processed
;
147 dma_pool_free(cppi
->pool
, bd
, bd
->dma
);
148 bd
= cppi_bd_alloc(c
);
150 c
->last_processed
= NULL
;
153 static void cppi_controller_start(struct cppi
*controller
)
155 void __iomem
*tibase
;
158 /* do whatever is necessary to start controller */
159 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++) {
160 controller
->tx
[i
].transmit
= true;
161 controller
->tx
[i
].index
= i
;
163 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++) {
164 controller
->rx
[i
].transmit
= false;
165 controller
->rx
[i
].index
= i
;
168 /* setup BD list on a per channel basis */
169 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++)
170 cppi_pool_init(controller
, controller
->tx
+ i
);
171 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++)
172 cppi_pool_init(controller
, controller
->rx
+ i
);
174 tibase
= controller
->tibase
;
175 INIT_LIST_HEAD(&controller
->tx_complete
);
177 /* initialise tx/rx channel head pointers to zero */
178 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++) {
179 struct cppi_channel
*tx_ch
= controller
->tx
+ i
;
180 struct cppi_tx_stateram __iomem
*tx
;
182 INIT_LIST_HEAD(&tx_ch
->tx_complete
);
184 tx
= tibase
+ DAVINCI_TXCPPI_STATERAM_OFFSET(i
);
185 tx_ch
->state_ram
= tx
;
186 cppi_reset_tx(tx
, 0);
188 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++) {
189 struct cppi_channel
*rx_ch
= controller
->rx
+ i
;
190 struct cppi_rx_stateram __iomem
*rx
;
192 INIT_LIST_HEAD(&rx_ch
->tx_complete
);
194 rx
= tibase
+ DAVINCI_RXCPPI_STATERAM_OFFSET(i
);
195 rx_ch
->state_ram
= rx
;
199 /* enable individual cppi channels */
200 musb_writel(tibase
, DAVINCI_TXCPPI_INTENAB_REG
,
201 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
202 musb_writel(tibase
, DAVINCI_RXCPPI_INTENAB_REG
,
203 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
205 /* enable tx/rx CPPI control */
206 musb_writel(tibase
, DAVINCI_TXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_ENABLE
);
207 musb_writel(tibase
, DAVINCI_RXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_ENABLE
);
209 /* disable RNDIS mode, also host rx RNDIS autorequest */
210 musb_writel(tibase
, DAVINCI_RNDIS_REG
, 0);
211 musb_writel(tibase
, DAVINCI_AUTOREQ_REG
, 0);
215 * Stop DMA controller
217 * De-Init the DMA controller as necessary.
220 static void cppi_controller_stop(struct cppi
*controller
)
222 void __iomem
*tibase
;
226 musb
= controller
->musb
;
228 tibase
= controller
->tibase
;
229 /* DISABLE INDIVIDUAL CHANNEL Interrupts */
230 musb_writel(tibase
, DAVINCI_TXCPPI_INTCLR_REG
,
231 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
232 musb_writel(tibase
, DAVINCI_RXCPPI_INTCLR_REG
,
233 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
235 dev_dbg(musb
->controller
, "Tearing down RX and TX Channels\n");
236 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++) {
237 /* FIXME restructure of txdma to use bds like rxdma */
238 controller
->tx
[i
].last_processed
= NULL
;
239 cppi_pool_free(controller
->tx
+ i
);
241 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++)
242 cppi_pool_free(controller
->rx
+ i
);
244 /* in Tx Case proper teardown is supported. We resort to disabling
245 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
246 * complete TX CPPI cannot be disabled.
248 /*disable tx/rx cppi */
249 musb_writel(tibase
, DAVINCI_TXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_DISABLE
);
250 musb_writel(tibase
, DAVINCI_RXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_DISABLE
);
253 /* While dma channel is allocated, we only want the core irqs active
254 * for fault reports, otherwise we'd get irqs that we don't care about.
255 * Except for TX irqs, where dma done != fifo empty and reusable ...
257 * NOTE: docs don't say either way, but irq masking **enables** irqs.
259 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
261 static inline void core_rxirq_disable(void __iomem
*tibase
, unsigned epnum
)
263 musb_writel(tibase
, DAVINCI_USB_INT_MASK_CLR_REG
, 1 << (epnum
+ 8));
266 static inline void core_rxirq_enable(void __iomem
*tibase
, unsigned epnum
)
268 musb_writel(tibase
, DAVINCI_USB_INT_MASK_SET_REG
, 1 << (epnum
+ 8));
273 * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to
274 * each transfer direction of a non-control endpoint, so allocating
275 * (and deallocating) is mostly a way to notice bad housekeeping on
276 * the software side. We assume the irqs are always active.
278 static struct dma_channel
*
279 cppi_channel_allocate(struct dma_controller
*c
,
280 struct musb_hw_ep
*ep
, u8 transmit
)
282 struct cppi
*controller
;
284 struct cppi_channel
*cppi_ch
;
285 void __iomem
*tibase
;
288 controller
= container_of(c
, struct cppi
, controller
);
289 tibase
= controller
->tibase
;
290 musb
= controller
->musb
;
292 /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
293 index
= ep
->epnum
- 1;
295 /* return the corresponding CPPI Channel Handle, and
296 * probably disable the non-CPPI irq until we need it.
299 if (index
>= ARRAY_SIZE(controller
->tx
)) {
300 dev_dbg(musb
->controller
, "no %cX%d CPPI channel\n", 'T', index
);
303 cppi_ch
= controller
->tx
+ index
;
305 if (index
>= ARRAY_SIZE(controller
->rx
)) {
306 dev_dbg(musb
->controller
, "no %cX%d CPPI channel\n", 'R', index
);
309 cppi_ch
= controller
->rx
+ index
;
310 core_rxirq_disable(tibase
, ep
->epnum
);
313 /* REVISIT make this an error later once the same driver code works
314 * with the other DMA engine too
317 dev_dbg(musb
->controller
, "re-allocating DMA%d %cX channel %p\n",
318 index
, transmit
? 'T' : 'R', cppi_ch
);
320 cppi_ch
->channel
.status
= MUSB_DMA_STATUS_FREE
;
321 cppi_ch
->channel
.max_len
= 0x7fffffff;
323 dev_dbg(musb
->controller
, "Allocate CPPI%d %cX\n", index
, transmit
? 'T' : 'R');
324 return &cppi_ch
->channel
;
327 /* Release a CPPI Channel. */
328 static void cppi_channel_release(struct dma_channel
*channel
)
330 struct cppi_channel
*c
;
331 void __iomem
*tibase
;
333 /* REVISIT: for paranoia, check state and abort if needed... */
335 c
= container_of(channel
, struct cppi_channel
, channel
);
336 tibase
= c
->controller
->tibase
;
338 dev_dbg(c
->controller
->musb
->controller
,
339 "releasing idle DMA channel %p\n", c
);
340 else if (!c
->transmit
)
341 core_rxirq_enable(tibase
, c
->index
+ 1);
343 /* for now, leave its cppi IRQ enabled (we won't trigger it) */
345 channel
->status
= MUSB_DMA_STATUS_UNKNOWN
;
348 /* Context: controller irqlocked */
350 cppi_dump_rx(int level
, struct cppi_channel
*c
, const char *tag
)
352 void __iomem
*base
= c
->controller
->mregs
;
353 struct cppi_rx_stateram __iomem
*rx
= c
->state_ram
;
355 musb_ep_select(base
, c
->index
+ 1);
357 dev_dbg(c
->controller
->musb
->controller
,
358 "RX DMA%d%s: %d left, csr %04x, "
359 "%08x H%08x S%08x C%08x, "
360 "B%08x L%08x %08x .. %08x"
363 musb_readl(c
->controller
->tibase
,
364 DAVINCI_RXCPPI_BUFCNT0_REG
+ 4 * c
->index
),
365 musb_readw(c
->hw_ep
->regs
, MUSB_RXCSR
),
367 musb_readl(&rx
->rx_skipbytes
, 0),
368 musb_readl(&rx
->rx_head
, 0),
369 musb_readl(&rx
->rx_sop
, 0),
370 musb_readl(&rx
->rx_current
, 0),
372 musb_readl(&rx
->rx_buf_current
, 0),
373 musb_readl(&rx
->rx_len_len
, 0),
374 musb_readl(&rx
->rx_cnt_cnt
, 0),
375 musb_readl(&rx
->rx_complete
, 0)
379 /* Context: controller irqlocked */
381 cppi_dump_tx(int level
, struct cppi_channel
*c
, const char *tag
)
383 void __iomem
*base
= c
->controller
->mregs
;
384 struct cppi_tx_stateram __iomem
*tx
= c
->state_ram
;
386 musb_ep_select(base
, c
->index
+ 1);
388 dev_dbg(c
->controller
->musb
->controller
,
389 "TX DMA%d%s: csr %04x, "
390 "H%08x S%08x C%08x %08x, "
391 "F%08x L%08x .. %08x"
394 musb_readw(c
->hw_ep
->regs
, MUSB_TXCSR
),
396 musb_readl(&tx
->tx_head
, 0),
397 musb_readl(&tx
->tx_buf
, 0),
398 musb_readl(&tx
->tx_current
, 0),
399 musb_readl(&tx
->tx_buf_current
, 0),
401 musb_readl(&tx
->tx_info
, 0),
402 musb_readl(&tx
->tx_rem_len
, 0),
403 /* dummy/unused word 6 */
404 musb_readl(&tx
->tx_complete
, 0)
408 /* Context: controller irqlocked */
410 cppi_rndis_update(struct cppi_channel
*c
, int is_rx
,
411 void __iomem
*tibase
, int is_rndis
)
413 /* we may need to change the rndis flag for this cppi channel */
414 if (c
->is_rndis
!= is_rndis
) {
415 u32 value
= musb_readl(tibase
, DAVINCI_RNDIS_REG
);
416 u32 temp
= 1 << (c
->index
);
424 musb_writel(tibase
, DAVINCI_RNDIS_REG
, value
);
425 c
->is_rndis
= is_rndis
;
429 static void cppi_dump_rxbd(const char *tag
, struct cppi_descriptor
*bd
)
431 pr_debug("RXBD/%s %08x: "
432 "nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
434 bd
->hw_next
, bd
->hw_bufp
, bd
->hw_off_len
,
438 static void cppi_dump_rxq(int level
, const char *tag
, struct cppi_channel
*rx
)
440 struct cppi_descriptor
*bd
;
442 cppi_dump_rx(level
, rx
, tag
);
443 if (rx
->last_processed
)
444 cppi_dump_rxbd("last", rx
->last_processed
);
445 for (bd
= rx
->head
; bd
; bd
= bd
->next
)
446 cppi_dump_rxbd("active", bd
);
450 /* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
451 * so we won't ever use it (see "CPPI RX Woes" below).
453 static inline int cppi_autoreq_update(struct cppi_channel
*rx
,
454 void __iomem
*tibase
, int onepacket
, unsigned n_bds
)
458 #ifdef RNDIS_RX_IS_USABLE
460 /* assert(is_host_active(musb)) */
462 /* start from "AutoReq never" */
463 tmp
= musb_readl(tibase
, DAVINCI_AUTOREQ_REG
);
464 val
= tmp
& ~((0x3) << (rx
->index
* 2));
466 /* HCD arranged reqpkt for packet #1. we arrange int
467 * for all but the last one, maybe in two segments.
471 /* use two segments, autoreq "all" then the last "never" */
472 val
|= ((0x3) << (rx
->index
* 2));
475 /* one segment, autoreq "all-but-last" */
476 val
|= ((0x1) << (rx
->index
* 2));
483 /* make sure that autoreq is updated before continuing */
484 musb_writel(tibase
, DAVINCI_AUTOREQ_REG
, val
);
486 tmp
= musb_readl(tibase
, DAVINCI_AUTOREQ_REG
);
494 /* REQPKT is turned off after each segment */
495 if (n_bds
&& rx
->channel
.actual_len
) {
496 void __iomem
*regs
= rx
->hw_ep
->regs
;
498 val
= musb_readw(regs
, MUSB_RXCSR
);
499 if (!(val
& MUSB_RXCSR_H_REQPKT
)) {
500 val
|= MUSB_RXCSR_H_REQPKT
| MUSB_RXCSR_H_WZC_BITS
;
501 musb_writew(regs
, MUSB_RXCSR
, val
);
502 /* flush writebuffer */
503 val
= musb_readw(regs
, MUSB_RXCSR
);
510 /* Buffer enqueuing Logic:
512 * - RX builds new queues each time, to help handle routine "early
513 * termination" cases (faults, including errors and short reads)
516 * - for now, TX reuses the same queue of BDs every time
518 * REVISIT long term, we want a normal dynamic model.
519 * ... the goal will be to append to the
520 * existing queue, processing completed "dma buffers" (segments) on the fly.
522 * Otherwise we force an IRQ latency between requests, which slows us a lot
523 * (especially in "transparent" dma). Unfortunately that model seems to be
524 * inherent in the DMA model from the Mentor code, except in the rare case
525 * of transfers big enough (~128+ KB) that we could append "middle" segments
526 * in the TX paths. (RX can't do this, see below.)
528 * That's true even in the CPPI- friendly iso case, where most urbs have
529 * several small segments provided in a group and where the "packet at a time"
530 * "transparent" DMA model is always correct, even on the RX side.
536 * TX is a lot more reasonable than RX; it doesn't need to run in
537 * irq-per-packet mode very often. RNDIS mode seems to behave too
538 * (except how it handles the exactly-N-packets case). Building a
539 * txdma queue with multiple requests (urb or usb_request) looks
540 * like it would work ... but fault handling would need much testing.
542 * The main issue with TX mode RNDIS relates to transfer lengths that
543 * are an exact multiple of the packet length. It appears that there's
544 * a hiccup in that case (maybe the DMA completes before the ZLP gets
545 * written?) boiling down to not being able to rely on CPPI writing any
546 * terminating zero length packet before the next transfer is written.
547 * So that's punted to PIO; better yet, gadget drivers can avoid it.
549 * Plus, there's allegedly an undocumented constraint that rndis transfer
550 * length be a multiple of 64 bytes ... but the chip doesn't act that
551 * way, and we really don't _want_ that behavior anyway.
553 * On TX, "transparent" mode works ... although experiments have shown
554 * problems trying to use the SOP/EOP bits in different USB packets.
556 * REVISIT try to handle terminating zero length packets using CPPI
557 * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet
558 * links avoid that issue by forcing them to avoid zlps.)
561 cppi_next_tx_segment(struct musb
*musb
, struct cppi_channel
*tx
)
563 unsigned maxpacket
= tx
->maxpacket
;
564 dma_addr_t addr
= tx
->buf_dma
+ tx
->offset
;
565 size_t length
= tx
->buf_len
- tx
->offset
;
566 struct cppi_descriptor
*bd
;
569 struct cppi_tx_stateram __iomem
*tx_ram
= tx
->state_ram
;
572 /* TX can use the CPPI "rndis" mode, where we can probably fit this
573 * transfer in one BD and one IRQ. The only time we would NOT want
574 * to use it is when hardware constraints prevent it, or if we'd
575 * trigger the "send a ZLP?" confusion.
577 rndis
= (maxpacket
& 0x3f) == 0
578 && length
> maxpacket
580 && (length
% maxpacket
) != 0;
586 n_bds
= length
/ maxpacket
;
587 if (!length
|| (length
% maxpacket
))
589 n_bds
= min(n_bds
, (unsigned) NUM_TXCHAN_BD
);
590 length
= min(n_bds
* maxpacket
, length
);
593 dev_dbg(musb
->controller
, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u\n",
596 rndis
? "rndis" : "transparent",
598 (unsigned long long)addr
, length
);
600 cppi_rndis_update(tx
, 0, musb
->ctrl_base
, rndis
);
602 /* assuming here that channel_program is called during
603 * transfer initiation ... current code maintains state
604 * for one outstanding request only (no queues, not even
605 * the implicit ones of an iso urb).
610 tx
->last_processed
= NULL
;
612 /* FIXME use BD pool like RX side does, and just queue
613 * the minimum number for this request.
616 /* Prepare queue of BDs first, then hand it to hardware.
617 * All BDs except maybe the last should be of full packet
618 * size; for RNDIS there _is_ only that last packet.
620 for (i
= 0; i
< n_bds
; ) {
621 if (++i
< n_bds
&& bd
->next
)
622 bd
->hw_next
= bd
->next
->dma
;
626 bd
->hw_bufp
= tx
->buf_dma
+ tx
->offset
;
628 /* FIXME set EOP only on the last packet,
629 * SOP only on the first ... avoid IRQs
631 if ((tx
->offset
+ maxpacket
) <= tx
->buf_len
) {
632 tx
->offset
+= maxpacket
;
633 bd
->hw_off_len
= maxpacket
;
634 bd
->hw_options
= CPPI_SOP_SET
| CPPI_EOP_SET
635 | CPPI_OWN_SET
| maxpacket
;
637 /* only this one may be a partial USB Packet */
640 partial_len
= tx
->buf_len
- tx
->offset
;
641 tx
->offset
= tx
->buf_len
;
642 bd
->hw_off_len
= partial_len
;
644 bd
->hw_options
= CPPI_SOP_SET
| CPPI_EOP_SET
645 | CPPI_OWN_SET
| partial_len
;
646 if (partial_len
== 0)
647 bd
->hw_options
|= CPPI_ZERO_SET
;
650 dev_dbg(musb
->controller
, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
651 bd
, bd
->hw_next
, bd
->hw_bufp
,
652 bd
->hw_off_len
, bd
->hw_options
);
654 /* update the last BD enqueued to the list */
659 /* BDs live in DMA-coherent memory, but writes might be pending */
660 cpu_drain_writebuffer();
662 /* Write to the HeadPtr in state RAM to trigger */
663 musb_writel(&tx_ram
->tx_head
, 0, (u32
)tx
->freelist
->dma
);
665 cppi_dump_tx(5, tx
, "/S");
671 * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte
672 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
673 * (Full speed transfers have similar scenarios.)
675 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
676 * and the next packet goes into a buffer that's queued later; while (b) fills
677 * the buffer with 1024 bytes. How to do that with CPPI?
679 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
680 * (b) loses **BADLY** because nothing (!) happens when that second packet
681 * fills the buffer, much less when a third one arrives. (Which makes this
682 * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination
683 * is optional, and it's fine if peripherals -- not hosts! -- pad messages
684 * out to end-of-buffer. Standard PCI host controller DMA descriptors
685 * implement that mode by default ... which is no accident.)
687 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
688 * converse problems: (b) is handled right, but (a) loses badly. CPPI RX
689 * ignores SOP/EOP markings and processes both of those BDs; so both packets
690 * are loaded into the buffer (with a 212 byte gap between them), and the next
691 * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
692 * are intended as outputs for RX queues, not inputs...)
694 * - A variant of "transparent" mode -- one BD at a time -- is the only way to
695 * reliably make both cases work, with software handling both cases correctly
696 * and at the significant penalty of needing an IRQ per packet. (The lack of
697 * I/O overlap can be slightly ameliorated by enabling double buffering.)
699 * So how to get rid of IRQ-per-packet? The transparent multi-BD case could
700 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
701 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
702 * with guaranteed driver level fault recovery and scrubbing out what's left
703 * of that garbaged datastream.
705 * But there seems to be no way to identify the cases where CPPI RNDIS mode
706 * is appropriate -- which do NOT include RNDIS host drivers, but do include
707 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
708 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
709 * that applies best on the peripheral side (and which could fail rudely).
711 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
712 * cases other than mass storage class. Otherwise we're correct but slow,
713 * since CPPI penalizes our need for a "true RNDIS" default mode.
717 /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
720 * (a) peripheral mode ... since rndis peripherals could pad their
721 * writes to hosts, causing i/o failure; or we'd have to cope with
722 * a largely unknowable variety of host side protocol variants
723 * (b) and short reads are NOT errors ... since full reads would
724 * cause those same i/o failures
725 * (c) and read length is
726 * - less than 64KB (max per cppi descriptor)
727 * - not a multiple of 4096 (g_zero default, full reads typical)
728 * - N (>1) packets long, ditto (full reads not EXPECTED)
732 * Cost of heuristic failing: RXDMA wedges at the end of transfers that
733 * fill out the whole buffer. Buggy host side usb network drivers could
734 * trigger that, but "in the field" such bugs seem to be all but unknown.
736 * So this module parameter lets the heuristic be disabled. When using
737 * gadgetfs, the heuristic will probably need to be disabled.
739 static bool cppi_rx_rndis
= 1;
741 module_param(cppi_rx_rndis
, bool, 0);
742 MODULE_PARM_DESC(cppi_rx_rndis
, "enable/disable RX RNDIS heuristic");
746 * cppi_next_rx_segment - dma read for the next chunk of a buffer
747 * @musb: the controller
749 * @onepacket: true unless caller treats short reads as errors, and
750 * performs fault recovery above usbcore.
751 * Context: controller irqlocked
753 * See above notes about why we can't use multi-BD RX queues except in
754 * rare cases (mass storage class), and can never use the hardware "rndis"
755 * mode (since it's not a "true" RNDIS mode) with complete safety..
757 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
758 * code to recover from corrupted datastreams after each short transfer.
761 cppi_next_rx_segment(struct musb
*musb
, struct cppi_channel
*rx
, int onepacket
)
763 unsigned maxpacket
= rx
->maxpacket
;
764 dma_addr_t addr
= rx
->buf_dma
+ rx
->offset
;
765 size_t length
= rx
->buf_len
- rx
->offset
;
766 struct cppi_descriptor
*bd
, *tail
;
769 void __iomem
*tibase
= musb
->ctrl_base
;
771 struct cppi_rx_stateram __iomem
*rx_ram
= rx
->state_ram
;
772 struct cppi_descriptor
*d
;
775 /* almost every USB driver, host or peripheral side */
778 /* maybe apply the heuristic above */
780 && is_peripheral_active(musb
)
781 && length
> maxpacket
782 && (length
& ~0xffff) == 0
783 && (length
& 0x0fff) != 0
784 && (length
& (maxpacket
- 1)) == 0) {
789 /* virtually nothing except mass storage class */
790 if (length
> 0xffff) {
791 n_bds
= 0xffff / maxpacket
;
792 length
= n_bds
* maxpacket
;
794 n_bds
= length
/ maxpacket
;
795 if (length
% maxpacket
)
801 n_bds
= min(n_bds
, (unsigned) NUM_RXCHAN_BD
);
804 /* In host mode, autorequest logic can generate some IN tokens; it's
805 * tricky since we can't leave REQPKT set in RXCSR after the transfer
806 * finishes. So: multipacket transfers involve two or more segments.
807 * And always at least two IRQs ... RNDIS mode is not an option.
809 if (is_host_active(musb
))
810 n_bds
= cppi_autoreq_update(rx
, tibase
, onepacket
, n_bds
);
812 cppi_rndis_update(rx
, 1, musb
->ctrl_base
, is_rndis
);
814 length
= min(n_bds
* maxpacket
, length
);
816 dev_dbg(musb
->controller
, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
817 "dma 0x%llx len %u %u/%u\n",
818 rx
->index
, maxpacket
,
820 ? (is_rndis
? "rndis" : "onepacket")
824 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4))
826 (unsigned long long)addr
, length
,
827 rx
->channel
.actual_len
, rx
->buf_len
);
829 /* only queue one segment at a time, since the hardware prevents
830 * correct queue shutdown after unexpected short packets
832 bd
= cppi_bd_alloc(rx
);
835 /* Build BDs for all packets in this segment */
836 for (i
= 0, tail
= NULL
; bd
&& i
< n_bds
; i
++, tail
= bd
) {
840 bd
= cppi_bd_alloc(rx
);
844 tail
->hw_next
= bd
->dma
;
848 /* all but the last packet will be maxpacket size */
849 if (maxpacket
< length
)
856 rx
->offset
+= bd_len
;
858 bd
->hw_off_len
= (0 /*offset*/ << 16) + bd_len
;
861 bd
->hw_options
= CPPI_OWN_SET
| (i
== 0 ? length
: 0);
865 /* we always expect at least one reusable BD! */
867 WARNING("rx dma%d -- no BDs? need %d\n", rx
->index
, n_bds
);
869 } else if (i
< n_bds
)
870 WARNING("rx dma%d -- only %d of %d BDs\n", rx
->index
, i
, n_bds
);
878 /* short reads and other faults should terminate this entire
879 * dma segment. we want one "dma packet" per dma segment, not
880 * one per USB packet, terminating the whole queue at once...
881 * NOTE that current hardware seems to ignore SOP and EOP.
883 bd
->hw_options
|= CPPI_SOP_SET
;
884 tail
->hw_options
|= CPPI_EOP_SET
;
886 for (d
= rx
->head
; d
; d
= d
->next
)
887 cppi_dump_rxbd("S", d
);
889 /* in case the preceding transfer left some state... */
890 tail
= rx
->last_processed
;
893 tail
->hw_next
= bd
->dma
;
896 core_rxirq_enable(tibase
, rx
->index
+ 1);
898 /* BDs live in DMA-coherent memory, but writes might be pending */
899 cpu_drain_writebuffer();
901 /* REVISIT specs say to write this AFTER the BUFCNT register
902 * below ... but that loses badly.
904 musb_writel(&rx_ram
->rx_head
, 0, bd
->dma
);
906 /* bufferCount must be at least 3, and zeroes on completion
907 * unless it underflows below zero, or stops at two, or keeps
910 i
= musb_readl(tibase
,
911 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4))
916 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4),
918 else if (n_bds
> (i
- 3))
920 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4),
923 i
= musb_readl(tibase
,
924 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4))
926 if (i
< (2 + n_bds
)) {
927 dev_dbg(musb
->controller
, "bufcnt%d underrun - %d (for %d)\n",
928 rx
->index
, i
, n_bds
);
930 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4),
934 cppi_dump_rx(4, rx
, "/S");
938 * cppi_channel_program - program channel for data transfer
940 * @maxpacket: max packet size
941 * @mode: For RX, 1 unless the usb protocol driver promised to treat
942 * all short reads as errors and kick in high level fault recovery.
943 * For TX, ignored because of RNDIS mode races/glitches.
944 * @dma_addr: dma address of buffer
945 * @len: length of buffer
946 * Context: controller irqlocked
948 static int cppi_channel_program(struct dma_channel
*ch
,
949 u16 maxpacket
, u8 mode
,
950 dma_addr_t dma_addr
, u32 len
)
952 struct cppi_channel
*cppi_ch
;
953 struct cppi
*controller
;
956 cppi_ch
= container_of(ch
, struct cppi_channel
, channel
);
957 controller
= cppi_ch
->controller
;
958 musb
= controller
->musb
;
960 switch (ch
->status
) {
961 case MUSB_DMA_STATUS_BUS_ABORT
:
962 case MUSB_DMA_STATUS_CORE_ABORT
:
963 /* fault irq handler should have handled cleanup */
964 WARNING("%cX DMA%d not cleaned up after abort!\n",
965 cppi_ch
->transmit
? 'T' : 'R',
969 case MUSB_DMA_STATUS_BUSY
:
970 WARNING("program active channel? %cX DMA%d\n",
971 cppi_ch
->transmit
? 'T' : 'R',
975 case MUSB_DMA_STATUS_UNKNOWN
:
976 dev_dbg(musb
->controller
, "%cX DMA%d not allocated!\n",
977 cppi_ch
->transmit
? 'T' : 'R',
980 case MUSB_DMA_STATUS_FREE
:
984 ch
->status
= MUSB_DMA_STATUS_BUSY
;
986 /* set transfer parameters, then queue up its first segment */
987 cppi_ch
->buf_dma
= dma_addr
;
989 cppi_ch
->maxpacket
= maxpacket
;
990 cppi_ch
->buf_len
= len
;
991 cppi_ch
->channel
.actual_len
= 0;
993 /* TX channel? or RX? */
994 if (cppi_ch
->transmit
)
995 cppi_next_tx_segment(musb
, cppi_ch
);
997 cppi_next_rx_segment(musb
, cppi_ch
, mode
);
1002 static bool cppi_rx_scan(struct cppi
*cppi
, unsigned ch
)
1004 struct cppi_channel
*rx
= &cppi
->rx
[ch
];
1005 struct cppi_rx_stateram __iomem
*state
= rx
->state_ram
;
1006 struct cppi_descriptor
*bd
;
1007 struct cppi_descriptor
*last
= rx
->last_processed
;
1008 bool completed
= false;
1011 dma_addr_t safe2ack
;
1012 void __iomem
*regs
= rx
->hw_ep
->regs
;
1013 struct musb
*musb
= cppi
->musb
;
1015 cppi_dump_rx(6, rx
, "/K");
1017 bd
= last
? last
->next
: rx
->head
;
1021 /* run through all completed BDs */
1022 for (i
= 0, safe2ack
= musb_readl(&state
->rx_complete
, 0);
1023 (safe2ack
|| completed
) && bd
&& i
< NUM_RXCHAN_BD
;
1024 i
++, bd
= bd
->next
) {
1027 /* catch latest BD writes from CPPI */
1029 if (!completed
&& (bd
->hw_options
& CPPI_OWN_SET
))
1032 dev_dbg(musb
->controller
, "C/RXBD %llx: nxt %08x buf %08x "
1033 "off.len %08x opt.len %08x (%d)\n",
1034 (unsigned long long)bd
->dma
, bd
->hw_next
, bd
->hw_bufp
,
1035 bd
->hw_off_len
, bd
->hw_options
,
1036 rx
->channel
.actual_len
);
1038 /* actual packet received length */
1039 if ((bd
->hw_options
& CPPI_SOP_SET
) && !completed
)
1040 len
= bd
->hw_off_len
& CPPI_RECV_PKTLEN_MASK
;
1044 if (bd
->hw_options
& CPPI_EOQ_MASK
)
1047 if (!completed
&& len
< bd
->buflen
) {
1048 /* NOTE: when we get a short packet, RXCSR_H_REQPKT
1049 * must have been cleared, and no more DMA packets may
1050 * active be in the queue... TI docs didn't say, but
1051 * CPPI ignores those BDs even though OWN is still set.
1054 dev_dbg(musb
->controller
, "rx short %d/%d (%d)\n",
1056 rx
->channel
.actual_len
);
1059 /* If we got here, we expect to ack at least one BD; meanwhile
1060 * CPPI may completing other BDs while we scan this list...
1062 * RACE: we can notice OWN cleared before CPPI raises the
1063 * matching irq by writing that BD as the completion pointer.
1064 * In such cases, stop scanning and wait for the irq, avoiding
1065 * lost acks and states where BD ownership is unclear.
1067 if (bd
->dma
== safe2ack
) {
1068 musb_writel(&state
->rx_complete
, 0, safe2ack
);
1069 safe2ack
= musb_readl(&state
->rx_complete
, 0);
1071 if (bd
->dma
== safe2ack
)
1075 rx
->channel
.actual_len
+= len
;
1077 cppi_bd_free(rx
, last
);
1080 /* stop scanning on end-of-segment */
1081 if (bd
->hw_next
== 0)
1084 rx
->last_processed
= last
;
1086 /* dma abort, lost ack, or ... */
1087 if (!acked
&& last
) {
1090 if (safe2ack
== 0 || safe2ack
== rx
->last_processed
->dma
)
1091 musb_writel(&state
->rx_complete
, 0, safe2ack
);
1092 if (safe2ack
== 0) {
1093 cppi_bd_free(rx
, last
);
1094 rx
->last_processed
= NULL
;
1096 /* if we land here on the host side, H_REQPKT will
1097 * be clear and we need to restart the queue...
1101 musb_ep_select(cppi
->mregs
, rx
->index
+ 1);
1102 csr
= musb_readw(regs
, MUSB_RXCSR
);
1103 if (csr
& MUSB_RXCSR_DMAENAB
) {
1104 dev_dbg(musb
->controller
, "list%d %p/%p, last %llx%s, csr %04x\n",
1108 ? (unsigned long long)
1109 rx
->last_processed
->dma
1111 completed
? ", completed" : "",
1113 cppi_dump_rxq(4, "/what?", rx
);
1121 /* REVISIT seems like "autoreq all but EOP" doesn't...
1122 * setting it here "should" be racey, but seems to work
1124 csr
= musb_readw(rx
->hw_ep
->regs
, MUSB_RXCSR
);
1125 if (is_host_active(cppi
->musb
)
1127 && !(csr
& MUSB_RXCSR_H_REQPKT
)) {
1128 csr
|= MUSB_RXCSR_H_REQPKT
;
1129 musb_writew(regs
, MUSB_RXCSR
,
1130 MUSB_RXCSR_H_WZC_BITS
| csr
);
1131 csr
= musb_readw(rx
->hw_ep
->regs
, MUSB_RXCSR
);
1138 cppi_dump_rx(6, rx
, completed
? "/completed" : "/cleaned");
1142 irqreturn_t
cppi_interrupt(int irq
, void *dev_id
)
1144 struct musb
*musb
= dev_id
;
1146 void __iomem
*tibase
;
1147 struct musb_hw_ep
*hw_ep
= NULL
;
1150 unsigned long uninitialized_var(flags
);
1152 cppi
= container_of(musb
->dma_controller
, struct cppi
, controller
);
1154 spin_lock_irqsave(&musb
->lock
, flags
);
1156 tibase
= musb
->ctrl_base
;
1158 tx
= musb_readl(tibase
, DAVINCI_TXCPPI_MASKED_REG
);
1159 rx
= musb_readl(tibase
, DAVINCI_RXCPPI_MASKED_REG
);
1163 spin_unlock_irqrestore(&musb
->lock
, flags
);
1167 dev_dbg(musb
->controller
, "CPPI IRQ Tx%x Rx%x\n", tx
, rx
);
1169 /* process TX channels */
1170 for (index
= 0; tx
; tx
= tx
>> 1, index
++) {
1171 struct cppi_channel
*tx_ch
;
1172 struct cppi_tx_stateram __iomem
*tx_ram
;
1173 bool completed
= false;
1174 struct cppi_descriptor
*bd
;
1179 tx_ch
= cppi
->tx
+ index
;
1180 tx_ram
= tx_ch
->state_ram
;
1182 /* FIXME need a cppi_tx_scan() routine, which
1183 * can also be called from abort code
1186 cppi_dump_tx(5, tx_ch
, "/E");
1191 * If Head is null then this could mean that a abort interrupt
1192 * that needs to be acknowledged.
1195 dev_dbg(musb
->controller
, "null BD\n");
1196 musb_writel(&tx_ram
->tx_complete
, 0, 0);
1200 /* run through all completed BDs */
1201 for (i
= 0; !completed
&& bd
&& i
< NUM_TXCHAN_BD
;
1202 i
++, bd
= bd
->next
) {
1205 /* catch latest BD writes from CPPI */
1207 if (bd
->hw_options
& CPPI_OWN_SET
)
1210 dev_dbg(musb
->controller
, "C/TXBD %p n %x b %x off %x opt %x\n",
1211 bd
, bd
->hw_next
, bd
->hw_bufp
,
1212 bd
->hw_off_len
, bd
->hw_options
);
1214 len
= bd
->hw_off_len
& CPPI_BUFFER_LEN_MASK
;
1215 tx_ch
->channel
.actual_len
+= len
;
1217 tx_ch
->last_processed
= bd
;
1219 /* write completion register to acknowledge
1220 * processing of completed BDs, and possibly
1221 * release the IRQ; EOQ might not be set ...
1223 * REVISIT use the same ack strategy as rx
1225 * REVISIT have observed bit 18 set; huh??
1227 /* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1228 musb_writel(&tx_ram
->tx_complete
, 0, bd
->dma
);
1230 /* stop scanning on end-of-segment */
1231 if (bd
->hw_next
== 0)
1235 /* on end of segment, maybe go to next one */
1237 /* cppi_dump_tx(4, tx_ch, "/complete"); */
1239 /* transfer more, or report completion */
1240 if (tx_ch
->offset
>= tx_ch
->buf_len
) {
1243 tx_ch
->channel
.status
= MUSB_DMA_STATUS_FREE
;
1245 hw_ep
= tx_ch
->hw_ep
;
1247 musb_dma_completion(musb
, index
+ 1, 1);
1250 /* Bigger transfer than we could fit in
1251 * that first batch of descriptors...
1253 cppi_next_tx_segment(musb
, tx_ch
);
1259 /* Start processing the RX block */
1260 for (index
= 0; rx
; rx
= rx
>> 1, index
++) {
1263 struct cppi_channel
*rx_ch
;
1265 rx_ch
= cppi
->rx
+ index
;
1267 /* let incomplete dma segments finish */
1268 if (!cppi_rx_scan(cppi
, index
))
1271 /* start another dma segment if needed */
1272 if (rx_ch
->channel
.actual_len
!= rx_ch
->buf_len
1273 && rx_ch
->channel
.actual_len
1275 cppi_next_rx_segment(musb
, rx_ch
, 1);
1279 /* all segments completed! */
1280 rx_ch
->channel
.status
= MUSB_DMA_STATUS_FREE
;
1282 hw_ep
= rx_ch
->hw_ep
;
1284 core_rxirq_disable(tibase
, index
+ 1);
1285 musb_dma_completion(musb
, index
+ 1, 0);
1289 /* write to CPPI EOI register to re-enable interrupts */
1290 musb_writel(tibase
, DAVINCI_CPPI_EOI_REG
, 0);
1293 spin_unlock_irqrestore(&musb
->lock
, flags
);
1297 EXPORT_SYMBOL_GPL(cppi_interrupt
);
1299 /* Instantiate a software object representing a DMA controller. */
1300 struct dma_controller
*
1301 cppi_dma_controller_create(struct musb
*musb
, void __iomem
*mregs
)
1303 struct cppi
*controller
;
1304 struct device
*dev
= musb
->controller
;
1305 struct platform_device
*pdev
= to_platform_device(dev
);
1306 int irq
= platform_get_irq_byname(pdev
, "dma");
1308 controller
= kzalloc(sizeof *controller
, GFP_KERNEL
);
1312 controller
->mregs
= mregs
;
1313 controller
->tibase
= mregs
- DAVINCI_BASE_OFFSET
;
1315 controller
->musb
= musb
;
1316 controller
->controller
.channel_alloc
= cppi_channel_allocate
;
1317 controller
->controller
.channel_release
= cppi_channel_release
;
1318 controller
->controller
.channel_program
= cppi_channel_program
;
1319 controller
->controller
.channel_abort
= cppi_channel_abort
;
1321 /* NOTE: allocating from on-chip SRAM would give the least
1322 * contention for memory access, if that ever matters here.
1325 /* setup BufferPool */
1326 controller
->pool
= dma_pool_create("cppi",
1327 controller
->musb
->controller
,
1328 sizeof(struct cppi_descriptor
),
1329 CPPI_DESCRIPTOR_ALIGN
, 0);
1330 if (!controller
->pool
) {
1336 if (request_irq(irq
, cppi_interrupt
, 0, "cppi-dma", musb
)) {
1337 dev_err(dev
, "request_irq %d failed!\n", irq
);
1338 musb_dma_controller_destroy(&controller
->controller
);
1341 controller
->irq
= irq
;
1344 cppi_controller_start(controller
);
1345 return &controller
->controller
;
1347 EXPORT_SYMBOL_GPL(cppi_dma_controller_create
);
1350 * Destroy a previously-instantiated DMA controller.
1352 void cppi_dma_controller_destroy(struct dma_controller
*c
)
1356 cppi
= container_of(c
, struct cppi
, controller
);
1358 cppi_controller_stop(cppi
);
1361 free_irq(cppi
->irq
, cppi
->musb
);
1363 /* assert: caller stopped the controller first */
1364 dma_pool_destroy(cppi
->pool
);
1368 EXPORT_SYMBOL_GPL(cppi_dma_controller_destroy
);
1371 * Context: controller irqlocked, endpoint selected
1373 static int cppi_channel_abort(struct dma_channel
*channel
)
1375 struct cppi_channel
*cppi_ch
;
1376 struct cppi
*controller
;
1377 void __iomem
*mbase
;
1378 void __iomem
*tibase
;
1381 struct cppi_descriptor
*queue
;
1383 cppi_ch
= container_of(channel
, struct cppi_channel
, channel
);
1385 controller
= cppi_ch
->controller
;
1387 switch (channel
->status
) {
1388 case MUSB_DMA_STATUS_BUS_ABORT
:
1389 case MUSB_DMA_STATUS_CORE_ABORT
:
1390 /* from RX or TX fault irq handler */
1391 case MUSB_DMA_STATUS_BUSY
:
1392 /* the hardware needs shutting down */
1393 regs
= cppi_ch
->hw_ep
->regs
;
1395 case MUSB_DMA_STATUS_UNKNOWN
:
1396 case MUSB_DMA_STATUS_FREE
:
1402 if (!cppi_ch
->transmit
&& cppi_ch
->head
)
1403 cppi_dump_rxq(3, "/abort", cppi_ch
);
1405 mbase
= controller
->mregs
;
1406 tibase
= controller
->tibase
;
1408 queue
= cppi_ch
->head
;
1409 cppi_ch
->head
= NULL
;
1410 cppi_ch
->tail
= NULL
;
1412 /* REVISIT should rely on caller having done this,
1413 * and caller should rely on us not changing it.
1414 * peripheral code is safe ... check host too.
1416 musb_ep_select(mbase
, cppi_ch
->index
+ 1);
1418 if (cppi_ch
->transmit
) {
1419 struct cppi_tx_stateram __iomem
*tx_ram
;
1420 /* REVISIT put timeouts on these controller handshakes */
1422 cppi_dump_tx(6, cppi_ch
, " (teardown)");
1424 /* teardown DMA engine then usb core */
1426 value
= musb_readl(tibase
, DAVINCI_TXCPPI_TEAR_REG
);
1427 } while (!(value
& CPPI_TEAR_READY
));
1428 musb_writel(tibase
, DAVINCI_TXCPPI_TEAR_REG
, cppi_ch
->index
);
1430 tx_ram
= cppi_ch
->state_ram
;
1432 value
= musb_readl(&tx_ram
->tx_complete
, 0);
1433 } while (0xFFFFFFFC != value
);
1435 /* FIXME clean up the transfer state ... here?
1436 * the completion routine should get called with
1437 * an appropriate status code.
1440 value
= musb_readw(regs
, MUSB_TXCSR
);
1441 value
&= ~MUSB_TXCSR_DMAENAB
;
1442 value
|= MUSB_TXCSR_FLUSHFIFO
;
1443 musb_writew(regs
, MUSB_TXCSR
, value
);
1444 musb_writew(regs
, MUSB_TXCSR
, value
);
1447 * 1. Write to completion Ptr value 0x1(bit 0 set)
1449 * 2. Wait for abort interrupt and then put the channel in
1450 * compare mode by writing 1 to the tx_complete register.
1452 cppi_reset_tx(tx_ram
, 1);
1453 cppi_ch
->head
= NULL
;
1454 musb_writel(&tx_ram
->tx_complete
, 0, 1);
1455 cppi_dump_tx(5, cppi_ch
, " (done teardown)");
1457 /* REVISIT tx side _should_ clean up the same way
1458 * as the RX side ... this does no cleanup at all!
1464 /* NOTE: docs don't guarantee any of this works ... we
1465 * expect that if the usb core stops telling the cppi core
1466 * to pull more data from it, then it'll be safe to flush
1467 * current RX DMA state iff any pending fifo transfer is done.
1470 core_rxirq_disable(tibase
, cppi_ch
->index
+ 1);
1472 /* for host, ensure ReqPkt is never set again */
1473 if (is_host_active(cppi_ch
->controller
->musb
)) {
1474 value
= musb_readl(tibase
, DAVINCI_AUTOREQ_REG
);
1475 value
&= ~((0x3) << (cppi_ch
->index
* 2));
1476 musb_writel(tibase
, DAVINCI_AUTOREQ_REG
, value
);
1479 csr
= musb_readw(regs
, MUSB_RXCSR
);
1481 /* for host, clear (just) ReqPkt at end of current packet(s) */
1482 if (is_host_active(cppi_ch
->controller
->musb
)) {
1483 csr
|= MUSB_RXCSR_H_WZC_BITS
;
1484 csr
&= ~MUSB_RXCSR_H_REQPKT
;
1486 csr
|= MUSB_RXCSR_P_WZC_BITS
;
1488 /* clear dma enable */
1489 csr
&= ~(MUSB_RXCSR_DMAENAB
);
1490 musb_writew(regs
, MUSB_RXCSR
, csr
);
1491 csr
= musb_readw(regs
, MUSB_RXCSR
);
1493 /* Quiesce: wait for current dma to finish (if not cleanup).
1494 * We can't use bit zero of stateram->rx_sop, since that
1495 * refers to an entire "DMA packet" not just emptying the
1496 * current fifo. Most segments need multiple usb packets.
1498 if (channel
->status
== MUSB_DMA_STATUS_BUSY
)
1501 /* scan the current list, reporting any data that was
1502 * transferred and acking any IRQ
1504 cppi_rx_scan(controller
, cppi_ch
->index
);
1506 /* clobber the existing state once it's idle
1508 * NOTE: arguably, we should also wait for all the other
1509 * RX channels to quiesce (how??) and then temporarily
1510 * disable RXCPPI_CTRL_REG ... but it seems that we can
1511 * rely on the controller restarting from state ram, with
1512 * only RXCPPI_BUFCNT state being bogus. BUFCNT will
1513 * correct itself after the next DMA transfer though.
1515 * REVISIT does using rndis mode change that?
1517 cppi_reset_rx(cppi_ch
->state_ram
);
1519 /* next DMA request _should_ load cppi head ptr */
1521 /* ... we don't "free" that list, only mutate it in place. */
1522 cppi_dump_rx(5, cppi_ch
, " (done abort)");
1524 /* clean up previously pending bds */
1525 cppi_bd_free(cppi_ch
, cppi_ch
->last_processed
);
1526 cppi_ch
->last_processed
= NULL
;
1529 struct cppi_descriptor
*tmp
= queue
->next
;
1531 cppi_bd_free(cppi_ch
, queue
);
1536 channel
->status
= MUSB_DMA_STATUS_FREE
;
1537 cppi_ch
->buf_dma
= 0;
1538 cppi_ch
->offset
= 0;
1539 cppi_ch
->buf_len
= 0;
1540 cppi_ch
->maxpacket
= 0;
1546 * Power Management ... probably turn off cppi during suspend, restart;
1547 * check state ram? Clocking is presumably shared with usb core.