mmc: rtsx_pci: Enable MMC_CAP_ERASE to allow erase/discard/trim requests
[linux/fpc-iii.git] / drivers / usb / storage / alauda.c
blob1d8b03c8103053ddc786a01774143d8a88fb7b19
1 /*
2 * Driver for Alauda-based card readers
4 * Current development and maintenance by:
5 * (c) 2005 Daniel Drake <dsd@gentoo.org>
7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
9 * Alauda implements a vendor-specific command set to access two media reader
10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11 * which are accepted by these devices.
13 * The driver was developed through reverse-engineering, with the help of the
14 * sddr09 driver which has many similarities, and with some help from the
15 * (very old) vendor-supplied GPL sma03 driver.
17 * For protocol info, see http://alauda.sourceforge.net
19 * This program is free software; you can redistribute it and/or modify it
20 * under the terms of the GNU General Public License as published by the
21 * Free Software Foundation; either version 2, or (at your option) any
22 * later version.
24 * This program is distributed in the hope that it will be useful, but
25 * WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * General Public License for more details.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/slab.h>
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
41 #include "usb.h"
42 #include "transport.h"
43 #include "protocol.h"
44 #include "debug.h"
45 #include "scsiglue.h"
47 #define DRV_NAME "ums-alauda"
49 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
50 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
51 MODULE_LICENSE("GPL");
54 * Status bytes
56 #define ALAUDA_STATUS_ERROR 0x01
57 #define ALAUDA_STATUS_READY 0x40
60 * Control opcodes (for request field)
62 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08
63 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98
64 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
65 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a
66 #define ALAUDA_GET_XD_MEDIA_SIG 0x86
67 #define ALAUDA_GET_SM_MEDIA_SIG 0x96
70 * Bulk command identity (byte 0)
72 #define ALAUDA_BULK_CMD 0x40
75 * Bulk opcodes (byte 1)
77 #define ALAUDA_BULK_GET_REDU_DATA 0x85
78 #define ALAUDA_BULK_READ_BLOCK 0x94
79 #define ALAUDA_BULK_ERASE_BLOCK 0xa3
80 #define ALAUDA_BULK_WRITE_BLOCK 0xb4
81 #define ALAUDA_BULK_GET_STATUS2 0xb7
82 #define ALAUDA_BULK_RESET_MEDIA 0xe0
85 * Port to operate on (byte 8)
87 #define ALAUDA_PORT_XD 0x00
88 #define ALAUDA_PORT_SM 0x01
91 * LBA and PBA are unsigned ints. Special values.
93 #define UNDEF 0xffff
94 #define SPARE 0xfffe
95 #define UNUSABLE 0xfffd
97 struct alauda_media_info {
98 unsigned long capacity; /* total media size in bytes */
99 unsigned int pagesize; /* page size in bytes */
100 unsigned int blocksize; /* number of pages per block */
101 unsigned int uzonesize; /* number of usable blocks per zone */
102 unsigned int zonesize; /* number of blocks per zone */
103 unsigned int blockmask; /* mask to get page from address */
105 unsigned char pageshift;
106 unsigned char blockshift;
107 unsigned char zoneshift;
109 u16 **lba_to_pba; /* logical to physical block map */
110 u16 **pba_to_lba; /* physical to logical block map */
113 struct alauda_info {
114 struct alauda_media_info port[2];
115 int wr_ep; /* endpoint to write data out of */
117 unsigned char sense_key;
118 unsigned long sense_asc; /* additional sense code */
119 unsigned long sense_ascq; /* additional sense code qualifier */
122 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
123 #define LSB_of(s) ((s)&0xFF)
124 #define MSB_of(s) ((s)>>8)
126 #define MEDIA_PORT(us) us->srb->device->lun
127 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
129 #define PBA_LO(pba) ((pba & 0xF) << 5)
130 #define PBA_HI(pba) (pba >> 3)
131 #define PBA_ZONE(pba) (pba >> 11)
133 static int init_alauda(struct us_data *us);
137 * The table of devices
139 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
140 vendorName, productName, useProtocol, useTransport, \
141 initFunction, flags) \
142 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
143 .driver_info = (flags) }
145 static struct usb_device_id alauda_usb_ids[] = {
146 # include "unusual_alauda.h"
147 { } /* Terminating entry */
149 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
151 #undef UNUSUAL_DEV
154 * The flags table
156 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
157 vendor_name, product_name, use_protocol, use_transport, \
158 init_function, Flags) \
160 .vendorName = vendor_name, \
161 .productName = product_name, \
162 .useProtocol = use_protocol, \
163 .useTransport = use_transport, \
164 .initFunction = init_function, \
167 static struct us_unusual_dev alauda_unusual_dev_list[] = {
168 # include "unusual_alauda.h"
169 { } /* Terminating entry */
172 #undef UNUSUAL_DEV
176 * Media handling
179 struct alauda_card_info {
180 unsigned char id; /* id byte */
181 unsigned char chipshift; /* 1<<cs bytes total capacity */
182 unsigned char pageshift; /* 1<<ps bytes in a page */
183 unsigned char blockshift; /* 1<<bs pages per block */
184 unsigned char zoneshift; /* 1<<zs blocks per zone */
187 static struct alauda_card_info alauda_card_ids[] = {
188 /* NAND flash */
189 { 0x6e, 20, 8, 4, 8}, /* 1 MB */
190 { 0xe8, 20, 8, 4, 8}, /* 1 MB */
191 { 0xec, 20, 8, 4, 8}, /* 1 MB */
192 { 0x64, 21, 8, 4, 9}, /* 2 MB */
193 { 0xea, 21, 8, 4, 9}, /* 2 MB */
194 { 0x6b, 22, 9, 4, 9}, /* 4 MB */
195 { 0xe3, 22, 9, 4, 9}, /* 4 MB */
196 { 0xe5, 22, 9, 4, 9}, /* 4 MB */
197 { 0xe6, 23, 9, 4, 10}, /* 8 MB */
198 { 0x73, 24, 9, 5, 10}, /* 16 MB */
199 { 0x75, 25, 9, 5, 10}, /* 32 MB */
200 { 0x76, 26, 9, 5, 10}, /* 64 MB */
201 { 0x79, 27, 9, 5, 10}, /* 128 MB */
202 { 0x71, 28, 9, 5, 10}, /* 256 MB */
204 /* MASK ROM */
205 { 0x5d, 21, 9, 4, 8}, /* 2 MB */
206 { 0xd5, 22, 9, 4, 9}, /* 4 MB */
207 { 0xd6, 23, 9, 4, 10}, /* 8 MB */
208 { 0x57, 24, 9, 4, 11}, /* 16 MB */
209 { 0x58, 25, 9, 4, 12}, /* 32 MB */
210 { 0,}
213 static struct alauda_card_info *alauda_card_find_id(unsigned char id)
215 int i;
217 for (i = 0; alauda_card_ids[i].id != 0; i++)
218 if (alauda_card_ids[i].id == id)
219 return &(alauda_card_ids[i]);
220 return NULL;
224 * ECC computation.
227 static unsigned char parity[256];
228 static unsigned char ecc2[256];
230 static void nand_init_ecc(void)
232 int i, j, a;
234 parity[0] = 0;
235 for (i = 1; i < 256; i++)
236 parity[i] = (parity[i&(i-1)] ^ 1);
238 for (i = 0; i < 256; i++) {
239 a = 0;
240 for (j = 0; j < 8; j++) {
241 if (i & (1<<j)) {
242 if ((j & 1) == 0)
243 a ^= 0x04;
244 if ((j & 2) == 0)
245 a ^= 0x10;
246 if ((j & 4) == 0)
247 a ^= 0x40;
250 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
254 /* compute 3-byte ecc on 256 bytes */
255 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
257 int i, j, a;
258 unsigned char par = 0, bit, bits[8] = {0};
260 /* collect 16 checksum bits */
261 for (i = 0; i < 256; i++) {
262 par ^= data[i];
263 bit = parity[data[i]];
264 for (j = 0; j < 8; j++)
265 if ((i & (1<<j)) == 0)
266 bits[j] ^= bit;
269 /* put 4+4+4 = 12 bits in the ecc */
270 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
271 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
273 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
274 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
276 ecc[2] = ecc2[par];
279 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
281 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
284 static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
286 memcpy(data, ecc, 3);
290 * Alauda driver
294 * Forget our PBA <---> LBA mappings for a particular port
296 static void alauda_free_maps (struct alauda_media_info *media_info)
298 unsigned int shift = media_info->zoneshift
299 + media_info->blockshift + media_info->pageshift;
300 unsigned int num_zones = media_info->capacity >> shift;
301 unsigned int i;
303 if (media_info->lba_to_pba != NULL)
304 for (i = 0; i < num_zones; i++) {
305 kfree(media_info->lba_to_pba[i]);
306 media_info->lba_to_pba[i] = NULL;
309 if (media_info->pba_to_lba != NULL)
310 for (i = 0; i < num_zones; i++) {
311 kfree(media_info->pba_to_lba[i]);
312 media_info->pba_to_lba[i] = NULL;
317 * Returns 2 bytes of status data
318 * The first byte describes media status, and second byte describes door status
320 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
322 int rc;
323 unsigned char command;
325 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
326 command = ALAUDA_GET_XD_MEDIA_STATUS;
327 else
328 command = ALAUDA_GET_SM_MEDIA_STATUS;
330 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
331 command, 0xc0, 0, 1, data, 2);
333 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
335 return rc;
339 * Clears the "media was changed" bit so that we know when it changes again
340 * in the future.
342 static int alauda_ack_media(struct us_data *us)
344 unsigned char command;
346 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
347 command = ALAUDA_ACK_XD_MEDIA_CHANGE;
348 else
349 command = ALAUDA_ACK_SM_MEDIA_CHANGE;
351 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
352 command, 0x40, 0, 1, NULL, 0);
356 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
357 * and some other details.
359 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
361 unsigned char command;
363 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
364 command = ALAUDA_GET_XD_MEDIA_SIG;
365 else
366 command = ALAUDA_GET_SM_MEDIA_SIG;
368 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
369 command, 0xc0, 0, 0, data, 4);
373 * Resets the media status (but not the whole device?)
375 static int alauda_reset_media(struct us_data *us)
377 unsigned char *command = us->iobuf;
379 memset(command, 0, 9);
380 command[0] = ALAUDA_BULK_CMD;
381 command[1] = ALAUDA_BULK_RESET_MEDIA;
382 command[8] = MEDIA_PORT(us);
384 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
385 command, 9, NULL);
389 * Examines the media and deduces capacity, etc.
391 static int alauda_init_media(struct us_data *us)
393 unsigned char *data = us->iobuf;
394 int ready = 0;
395 struct alauda_card_info *media_info;
396 unsigned int num_zones;
398 while (ready == 0) {
399 msleep(20);
401 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
402 return USB_STOR_TRANSPORT_ERROR;
404 if (data[0] & 0x10)
405 ready = 1;
408 usb_stor_dbg(us, "We are ready for action!\n");
410 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
411 return USB_STOR_TRANSPORT_ERROR;
413 msleep(10);
415 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
416 return USB_STOR_TRANSPORT_ERROR;
418 if (data[0] != 0x14) {
419 usb_stor_dbg(us, "Media not ready after ack\n");
420 return USB_STOR_TRANSPORT_ERROR;
423 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
424 return USB_STOR_TRANSPORT_ERROR;
426 usb_stor_dbg(us, "Media signature: %4ph\n", data);
427 media_info = alauda_card_find_id(data[1]);
428 if (media_info == NULL) {
429 pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
430 data);
431 return USB_STOR_TRANSPORT_ERROR;
434 MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
435 usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
436 MEDIA_INFO(us).capacity >> 20);
438 MEDIA_INFO(us).pageshift = media_info->pageshift;
439 MEDIA_INFO(us).blockshift = media_info->blockshift;
440 MEDIA_INFO(us).zoneshift = media_info->zoneshift;
442 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
443 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
444 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
446 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
447 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
449 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
450 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
451 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
452 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
454 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
455 return USB_STOR_TRANSPORT_ERROR;
457 return USB_STOR_TRANSPORT_GOOD;
461 * Examines the media status and does the right thing when the media has gone,
462 * appeared, or changed.
464 static int alauda_check_media(struct us_data *us)
466 struct alauda_info *info = (struct alauda_info *) us->extra;
467 unsigned char status[2];
468 int rc;
470 rc = alauda_get_media_status(us, status);
472 /* Check for no media or door open */
473 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
474 || ((status[1] & 0x01) == 0)) {
475 usb_stor_dbg(us, "No media, or door open\n");
476 alauda_free_maps(&MEDIA_INFO(us));
477 info->sense_key = 0x02;
478 info->sense_asc = 0x3A;
479 info->sense_ascq = 0x00;
480 return USB_STOR_TRANSPORT_FAILED;
483 /* Check for media change */
484 if (status[0] & 0x08) {
485 usb_stor_dbg(us, "Media change detected\n");
486 alauda_free_maps(&MEDIA_INFO(us));
487 alauda_init_media(us);
489 info->sense_key = UNIT_ATTENTION;
490 info->sense_asc = 0x28;
491 info->sense_ascq = 0x00;
492 return USB_STOR_TRANSPORT_FAILED;
495 return USB_STOR_TRANSPORT_GOOD;
499 * Checks the status from the 2nd status register
500 * Returns 3 bytes of status data, only the first is known
502 static int alauda_check_status2(struct us_data *us)
504 int rc;
505 unsigned char command[] = {
506 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
507 0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
509 unsigned char data[3];
511 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
512 command, 9, NULL);
513 if (rc != USB_STOR_XFER_GOOD)
514 return rc;
516 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
517 data, 3, NULL);
518 if (rc != USB_STOR_XFER_GOOD)
519 return rc;
521 usb_stor_dbg(us, "%3ph\n", data);
522 if (data[0] & ALAUDA_STATUS_ERROR)
523 return USB_STOR_XFER_ERROR;
525 return USB_STOR_XFER_GOOD;
529 * Gets the redundancy data for the first page of a PBA
530 * Returns 16 bytes.
532 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
534 int rc;
535 unsigned char command[] = {
536 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
537 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
540 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
541 command, 9, NULL);
542 if (rc != USB_STOR_XFER_GOOD)
543 return rc;
545 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
546 data, 16, NULL);
550 * Finds the first unused PBA in a zone
551 * Returns the absolute PBA of an unused PBA, or 0 if none found.
553 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
554 unsigned int zone)
556 u16 *pba_to_lba = info->pba_to_lba[zone];
557 unsigned int i;
559 for (i = 0; i < info->zonesize; i++)
560 if (pba_to_lba[i] == UNDEF)
561 return (zone << info->zoneshift) + i;
563 return 0;
567 * Reads the redundancy data for all PBA's in a zone
568 * Produces lba <--> pba mappings
570 static int alauda_read_map(struct us_data *us, unsigned int zone)
572 unsigned char *data = us->iobuf;
573 int result;
574 int i, j;
575 unsigned int zonesize = MEDIA_INFO(us).zonesize;
576 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
577 unsigned int lba_offset, lba_real, blocknum;
578 unsigned int zone_base_lba = zone * uzonesize;
579 unsigned int zone_base_pba = zone * zonesize;
580 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
581 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
582 if (lba_to_pba == NULL || pba_to_lba == NULL) {
583 result = USB_STOR_TRANSPORT_ERROR;
584 goto error;
587 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
589 /* 1024 PBA's per zone */
590 for (i = 0; i < zonesize; i++)
591 lba_to_pba[i] = pba_to_lba[i] = UNDEF;
593 for (i = 0; i < zonesize; i++) {
594 blocknum = zone_base_pba + i;
596 result = alauda_get_redu_data(us, blocknum, data);
597 if (result != USB_STOR_XFER_GOOD) {
598 result = USB_STOR_TRANSPORT_ERROR;
599 goto error;
602 /* special PBAs have control field 0^16 */
603 for (j = 0; j < 16; j++)
604 if (data[j] != 0)
605 goto nonz;
606 pba_to_lba[i] = UNUSABLE;
607 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
608 continue;
610 nonz:
611 /* unwritten PBAs have control field FF^16 */
612 for (j = 0; j < 16; j++)
613 if (data[j] != 0xff)
614 goto nonff;
615 continue;
617 nonff:
618 /* normal PBAs start with six FFs */
619 if (j < 6) {
620 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
621 blocknum,
622 data[0], data[1], data[2], data[3],
623 data[4], data[5]);
624 pba_to_lba[i] = UNUSABLE;
625 continue;
628 if ((data[6] >> 4) != 0x01) {
629 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
630 blocknum, data[6], data[7],
631 data[11], data[12]);
632 pba_to_lba[i] = UNUSABLE;
633 continue;
636 /* check even parity */
637 if (parity[data[6] ^ data[7]]) {
638 printk(KERN_WARNING
639 "alauda_read_map: Bad parity in LBA for block %d"
640 " (%02X %02X)\n", i, data[6], data[7]);
641 pba_to_lba[i] = UNUSABLE;
642 continue;
645 lba_offset = short_pack(data[7], data[6]);
646 lba_offset = (lba_offset & 0x07FF) >> 1;
647 lba_real = lba_offset + zone_base_lba;
650 * Every 1024 physical blocks ("zone"), the LBA numbers
651 * go back to zero, but are within a higher block of LBA's.
652 * Also, there is a maximum of 1000 LBA's per zone.
653 * In other words, in PBA 1024-2047 you will find LBA 0-999
654 * which are really LBA 1000-1999. This allows for 24 bad
655 * or special physical blocks per zone.
658 if (lba_offset >= uzonesize) {
659 printk(KERN_WARNING
660 "alauda_read_map: Bad low LBA %d for block %d\n",
661 lba_real, blocknum);
662 continue;
665 if (lba_to_pba[lba_offset] != UNDEF) {
666 printk(KERN_WARNING
667 "alauda_read_map: "
668 "LBA %d seen for PBA %d and %d\n",
669 lba_real, lba_to_pba[lba_offset], blocknum);
670 continue;
673 pba_to_lba[i] = lba_real;
674 lba_to_pba[lba_offset] = blocknum;
675 continue;
678 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
679 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
680 result = 0;
681 goto out;
683 error:
684 kfree(lba_to_pba);
685 kfree(pba_to_lba);
686 out:
687 return result;
691 * Checks to see whether we have already mapped a certain zone
692 * If we haven't, the map is generated
694 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
696 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
697 || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
698 alauda_read_map(us, zone);
702 * Erases an entire block
704 static int alauda_erase_block(struct us_data *us, u16 pba)
706 int rc;
707 unsigned char command[] = {
708 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
709 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
711 unsigned char buf[2];
713 usb_stor_dbg(us, "Erasing PBA %d\n", pba);
715 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
716 command, 9, NULL);
717 if (rc != USB_STOR_XFER_GOOD)
718 return rc;
720 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
721 buf, 2, NULL);
722 if (rc != USB_STOR_XFER_GOOD)
723 return rc;
725 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
726 return rc;
730 * Reads data from a certain offset page inside a PBA, including interleaved
731 * redundancy data. Returns (pagesize+64)*pages bytes in data.
733 static int alauda_read_block_raw(struct us_data *us, u16 pba,
734 unsigned int page, unsigned int pages, unsigned char *data)
736 int rc;
737 unsigned char command[] = {
738 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
739 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
742 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
744 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
745 command, 9, NULL);
746 if (rc != USB_STOR_XFER_GOOD)
747 return rc;
749 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
750 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
754 * Reads data from a certain offset page inside a PBA, excluding redundancy
755 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
756 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
757 * trailing bytes outside this function.
759 static int alauda_read_block(struct us_data *us, u16 pba,
760 unsigned int page, unsigned int pages, unsigned char *data)
762 int i, rc;
763 unsigned int pagesize = MEDIA_INFO(us).pagesize;
765 rc = alauda_read_block_raw(us, pba, page, pages, data);
766 if (rc != USB_STOR_XFER_GOOD)
767 return rc;
769 /* Cut out the redundancy data */
770 for (i = 0; i < pages; i++) {
771 int dest_offset = i * pagesize;
772 int src_offset = i * (pagesize + 64);
773 memmove(data + dest_offset, data + src_offset, pagesize);
776 return rc;
780 * Writes an entire block of data and checks status after write.
781 * Redundancy data must be already included in data. Data should be
782 * (pagesize+64)*blocksize bytes in length.
784 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
786 int rc;
787 struct alauda_info *info = (struct alauda_info *) us->extra;
788 unsigned char command[] = {
789 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
790 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
793 usb_stor_dbg(us, "pba %d\n", pba);
795 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
796 command, 9, NULL);
797 if (rc != USB_STOR_XFER_GOOD)
798 return rc;
800 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
801 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
802 NULL);
803 if (rc != USB_STOR_XFER_GOOD)
804 return rc;
806 return alauda_check_status2(us);
810 * Write some data to a specific LBA.
812 static int alauda_write_lba(struct us_data *us, u16 lba,
813 unsigned int page, unsigned int pages,
814 unsigned char *ptr, unsigned char *blockbuffer)
816 u16 pba, lbap, new_pba;
817 unsigned char *bptr, *cptr, *xptr;
818 unsigned char ecc[3];
819 int i, result;
820 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
821 unsigned int zonesize = MEDIA_INFO(us).zonesize;
822 unsigned int pagesize = MEDIA_INFO(us).pagesize;
823 unsigned int blocksize = MEDIA_INFO(us).blocksize;
824 unsigned int lba_offset = lba % uzonesize;
825 unsigned int new_pba_offset;
826 unsigned int zone = lba / uzonesize;
828 alauda_ensure_map_for_zone(us, zone);
830 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
831 if (pba == 1) {
833 * Maybe it is impossible to write to PBA 1.
834 * Fake success, but don't do anything.
836 printk(KERN_WARNING
837 "alauda_write_lba: avoid writing to pba 1\n");
838 return USB_STOR_TRANSPORT_GOOD;
841 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
842 if (!new_pba) {
843 printk(KERN_WARNING
844 "alauda_write_lba: Out of unused blocks\n");
845 return USB_STOR_TRANSPORT_ERROR;
848 /* read old contents */
849 if (pba != UNDEF) {
850 result = alauda_read_block_raw(us, pba, 0,
851 blocksize, blockbuffer);
852 if (result != USB_STOR_XFER_GOOD)
853 return result;
854 } else {
855 memset(blockbuffer, 0, blocksize * (pagesize + 64));
858 lbap = (lba_offset << 1) | 0x1000;
859 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
860 lbap ^= 1;
862 /* check old contents and fill lba */
863 for (i = 0; i < blocksize; i++) {
864 bptr = blockbuffer + (i * (pagesize + 64));
865 cptr = bptr + pagesize;
866 nand_compute_ecc(bptr, ecc);
867 if (!nand_compare_ecc(cptr+13, ecc)) {
868 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
869 i, pba);
870 nand_store_ecc(cptr+13, ecc);
872 nand_compute_ecc(bptr + (pagesize / 2), ecc);
873 if (!nand_compare_ecc(cptr+8, ecc)) {
874 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
875 i, pba);
876 nand_store_ecc(cptr+8, ecc);
878 cptr[6] = cptr[11] = MSB_of(lbap);
879 cptr[7] = cptr[12] = LSB_of(lbap);
882 /* copy in new stuff and compute ECC */
883 xptr = ptr;
884 for (i = page; i < page+pages; i++) {
885 bptr = blockbuffer + (i * (pagesize + 64));
886 cptr = bptr + pagesize;
887 memcpy(bptr, xptr, pagesize);
888 xptr += pagesize;
889 nand_compute_ecc(bptr, ecc);
890 nand_store_ecc(cptr+13, ecc);
891 nand_compute_ecc(bptr + (pagesize / 2), ecc);
892 nand_store_ecc(cptr+8, ecc);
895 result = alauda_write_block(us, new_pba, blockbuffer);
896 if (result != USB_STOR_XFER_GOOD)
897 return result;
899 new_pba_offset = new_pba - (zone * zonesize);
900 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
901 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
902 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
904 if (pba != UNDEF) {
905 unsigned int pba_offset = pba - (zone * zonesize);
906 result = alauda_erase_block(us, pba);
907 if (result != USB_STOR_XFER_GOOD)
908 return result;
909 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
912 return USB_STOR_TRANSPORT_GOOD;
916 * Read data from a specific sector address
918 static int alauda_read_data(struct us_data *us, unsigned long address,
919 unsigned int sectors)
921 unsigned char *buffer;
922 u16 lba, max_lba;
923 unsigned int page, len, offset;
924 unsigned int blockshift = MEDIA_INFO(us).blockshift;
925 unsigned int pageshift = MEDIA_INFO(us).pageshift;
926 unsigned int blocksize = MEDIA_INFO(us).blocksize;
927 unsigned int pagesize = MEDIA_INFO(us).pagesize;
928 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
929 struct scatterlist *sg;
930 int result;
933 * Since we only read in one block at a time, we have to create
934 * a bounce buffer and move the data a piece at a time between the
935 * bounce buffer and the actual transfer buffer.
936 * We make this buffer big enough to hold temporary redundancy data,
937 * which we use when reading the data blocks.
940 len = min(sectors, blocksize) * (pagesize + 64);
941 buffer = kmalloc(len, GFP_NOIO);
942 if (buffer == NULL) {
943 printk(KERN_WARNING "alauda_read_data: Out of memory\n");
944 return USB_STOR_TRANSPORT_ERROR;
947 /* Figure out the initial LBA and page */
948 lba = address >> blockshift;
949 page = (address & MEDIA_INFO(us).blockmask);
950 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
952 result = USB_STOR_TRANSPORT_GOOD;
953 offset = 0;
954 sg = NULL;
956 while (sectors > 0) {
957 unsigned int zone = lba / uzonesize; /* integer division */
958 unsigned int lba_offset = lba - (zone * uzonesize);
959 unsigned int pages;
960 u16 pba;
961 alauda_ensure_map_for_zone(us, zone);
963 /* Not overflowing capacity? */
964 if (lba >= max_lba) {
965 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
966 lba, max_lba);
967 result = USB_STOR_TRANSPORT_ERROR;
968 break;
971 /* Find number of pages we can read in this block */
972 pages = min(sectors, blocksize - page);
973 len = pages << pageshift;
975 /* Find where this lba lives on disk */
976 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
978 if (pba == UNDEF) { /* this lba was never written */
979 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
980 pages, lba, page);
983 * This is not really an error. It just means
984 * that the block has never been written.
985 * Instead of returning USB_STOR_TRANSPORT_ERROR
986 * it is better to return all zero data.
989 memset(buffer, 0, len);
990 } else {
991 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
992 pages, pba, lba, page);
994 result = alauda_read_block(us, pba, page, pages, buffer);
995 if (result != USB_STOR_TRANSPORT_GOOD)
996 break;
999 /* Store the data in the transfer buffer */
1000 usb_stor_access_xfer_buf(buffer, len, us->srb,
1001 &sg, &offset, TO_XFER_BUF);
1003 page = 0;
1004 lba++;
1005 sectors -= pages;
1008 kfree(buffer);
1009 return result;
1013 * Write data to a specific sector address
1015 static int alauda_write_data(struct us_data *us, unsigned long address,
1016 unsigned int sectors)
1018 unsigned char *buffer, *blockbuffer;
1019 unsigned int page, len, offset;
1020 unsigned int blockshift = MEDIA_INFO(us).blockshift;
1021 unsigned int pageshift = MEDIA_INFO(us).pageshift;
1022 unsigned int blocksize = MEDIA_INFO(us).blocksize;
1023 unsigned int pagesize = MEDIA_INFO(us).pagesize;
1024 struct scatterlist *sg;
1025 u16 lba, max_lba;
1026 int result;
1029 * Since we don't write the user data directly to the device,
1030 * we have to create a bounce buffer and move the data a piece
1031 * at a time between the bounce buffer and the actual transfer buffer.
1034 len = min(sectors, blocksize) * pagesize;
1035 buffer = kmalloc(len, GFP_NOIO);
1036 if (buffer == NULL) {
1037 printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1038 return USB_STOR_TRANSPORT_ERROR;
1042 * We also need a temporary block buffer, where we read in the old data,
1043 * overwrite parts with the new data, and manipulate the redundancy data
1045 blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1046 if (blockbuffer == NULL) {
1047 printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1048 kfree(buffer);
1049 return USB_STOR_TRANSPORT_ERROR;
1052 /* Figure out the initial LBA and page */
1053 lba = address >> blockshift;
1054 page = (address & MEDIA_INFO(us).blockmask);
1055 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1057 result = USB_STOR_TRANSPORT_GOOD;
1058 offset = 0;
1059 sg = NULL;
1061 while (sectors > 0) {
1062 /* Write as many sectors as possible in this block */
1063 unsigned int pages = min(sectors, blocksize - page);
1064 len = pages << pageshift;
1066 /* Not overflowing capacity? */
1067 if (lba >= max_lba) {
1068 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1069 lba, max_lba);
1070 result = USB_STOR_TRANSPORT_ERROR;
1071 break;
1074 /* Get the data from the transfer buffer */
1075 usb_stor_access_xfer_buf(buffer, len, us->srb,
1076 &sg, &offset, FROM_XFER_BUF);
1078 result = alauda_write_lba(us, lba, page, pages, buffer,
1079 blockbuffer);
1080 if (result != USB_STOR_TRANSPORT_GOOD)
1081 break;
1083 page = 0;
1084 lba++;
1085 sectors -= pages;
1088 kfree(buffer);
1089 kfree(blockbuffer);
1090 return result;
1094 * Our interface with the rest of the world
1097 static void alauda_info_destructor(void *extra)
1099 struct alauda_info *info = (struct alauda_info *) extra;
1100 int port;
1102 if (!info)
1103 return;
1105 for (port = 0; port < 2; port++) {
1106 struct alauda_media_info *media_info = &info->port[port];
1108 alauda_free_maps(media_info);
1109 kfree(media_info->lba_to_pba);
1110 kfree(media_info->pba_to_lba);
1115 * Initialize alauda_info struct and find the data-write endpoint
1117 static int init_alauda(struct us_data *us)
1119 struct alauda_info *info;
1120 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1121 nand_init_ecc();
1123 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1124 if (!us->extra)
1125 return USB_STOR_TRANSPORT_ERROR;
1127 info = (struct alauda_info *) us->extra;
1128 us->extra_destructor = alauda_info_destructor;
1130 info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1131 altsetting->endpoint[0].desc.bEndpointAddress
1132 & USB_ENDPOINT_NUMBER_MASK);
1134 return USB_STOR_TRANSPORT_GOOD;
1137 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1139 int rc;
1140 struct alauda_info *info = (struct alauda_info *) us->extra;
1141 unsigned char *ptr = us->iobuf;
1142 static unsigned char inquiry_response[36] = {
1143 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1146 if (srb->cmnd[0] == INQUIRY) {
1147 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1148 memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1149 fill_inquiry_response(us, ptr, 36);
1150 return USB_STOR_TRANSPORT_GOOD;
1153 if (srb->cmnd[0] == TEST_UNIT_READY) {
1154 usb_stor_dbg(us, "TEST_UNIT_READY\n");
1155 return alauda_check_media(us);
1158 if (srb->cmnd[0] == READ_CAPACITY) {
1159 unsigned int num_zones;
1160 unsigned long capacity;
1162 rc = alauda_check_media(us);
1163 if (rc != USB_STOR_TRANSPORT_GOOD)
1164 return rc;
1166 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1167 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1169 capacity = num_zones * MEDIA_INFO(us).uzonesize
1170 * MEDIA_INFO(us).blocksize;
1172 /* Report capacity and page size */
1173 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1174 ((__be32 *) ptr)[1] = cpu_to_be32(512);
1176 usb_stor_set_xfer_buf(ptr, 8, srb);
1177 return USB_STOR_TRANSPORT_GOOD;
1180 if (srb->cmnd[0] == READ_10) {
1181 unsigned int page, pages;
1183 rc = alauda_check_media(us);
1184 if (rc != USB_STOR_TRANSPORT_GOOD)
1185 return rc;
1187 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1188 page <<= 16;
1189 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1190 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1192 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1194 return alauda_read_data(us, page, pages);
1197 if (srb->cmnd[0] == WRITE_10) {
1198 unsigned int page, pages;
1200 rc = alauda_check_media(us);
1201 if (rc != USB_STOR_TRANSPORT_GOOD)
1202 return rc;
1204 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1205 page <<= 16;
1206 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1207 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1209 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1211 return alauda_write_data(us, page, pages);
1214 if (srb->cmnd[0] == REQUEST_SENSE) {
1215 usb_stor_dbg(us, "REQUEST_SENSE\n");
1217 memset(ptr, 0, 18);
1218 ptr[0] = 0xF0;
1219 ptr[2] = info->sense_key;
1220 ptr[7] = 11;
1221 ptr[12] = info->sense_asc;
1222 ptr[13] = info->sense_ascq;
1223 usb_stor_set_xfer_buf(ptr, 18, srb);
1225 return USB_STOR_TRANSPORT_GOOD;
1228 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1230 * sure. whatever. not like we can stop the user from popping
1231 * the media out of the device (no locking doors, etc)
1233 return USB_STOR_TRANSPORT_GOOD;
1236 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1237 srb->cmnd[0], srb->cmnd[0]);
1238 info->sense_key = 0x05;
1239 info->sense_asc = 0x20;
1240 info->sense_ascq = 0x00;
1241 return USB_STOR_TRANSPORT_FAILED;
1244 static struct scsi_host_template alauda_host_template;
1246 static int alauda_probe(struct usb_interface *intf,
1247 const struct usb_device_id *id)
1249 struct us_data *us;
1250 int result;
1252 result = usb_stor_probe1(&us, intf, id,
1253 (id - alauda_usb_ids) + alauda_unusual_dev_list,
1254 &alauda_host_template);
1255 if (result)
1256 return result;
1258 us->transport_name = "Alauda Control/Bulk";
1259 us->transport = alauda_transport;
1260 us->transport_reset = usb_stor_Bulk_reset;
1261 us->max_lun = 1;
1263 result = usb_stor_probe2(us);
1264 return result;
1267 static struct usb_driver alauda_driver = {
1268 .name = DRV_NAME,
1269 .probe = alauda_probe,
1270 .disconnect = usb_stor_disconnect,
1271 .suspend = usb_stor_suspend,
1272 .resume = usb_stor_resume,
1273 .reset_resume = usb_stor_reset_resume,
1274 .pre_reset = usb_stor_pre_reset,
1275 .post_reset = usb_stor_post_reset,
1276 .id_table = alauda_usb_ids,
1277 .soft_unbind = 1,
1278 .no_dynamic_id = 1,
1281 module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);