2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
35 #include <trace/events/kmem.h>
41 * 1. slab_mutex (Global Mutex)
43 * 3. slab_lock(page) (Only on some arches and for debugging)
47 * The role of the slab_mutex is to protect the list of all the slabs
48 * and to synchronize major metadata changes to slab cache structures.
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
84 * freed then the slab will show up again on the partial lists.
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
92 * Overloading of page flags that are otherwise used for LRU management.
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
106 * freelist that allows lockless access to
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
112 * the fast path and disables lockless freelists.
115 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
118 static inline int kmem_cache_debug(struct kmem_cache
*s
)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
128 * Issues still to be resolved:
130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
132 * - Variable sizing of the per node arrays
135 /* Enable to test recovery from slab corruption on boot */
136 #undef SLUB_RESILIENCY_TEST
138 /* Enable to log cmpxchg failures */
139 #undef SLUB_DEBUG_CMPXCHG
142 * Mininum number of partial slabs. These will be left on the partial
143 * lists even if they are empty. kmem_cache_shrink may reclaim them.
145 #define MIN_PARTIAL 5
148 * Maximum number of desirable partial slabs.
149 * The existence of more partial slabs makes kmem_cache_shrink
150 * sort the partial list by the number of objects in the.
152 #define MAX_PARTIAL 10
154 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
158 * Debugging flags that require metadata to be stored in the slab. These get
159 * disabled when slub_debug=O is used and a cache's min order increases with
162 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
165 * Set of flags that will prevent slab merging
167 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
171 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
172 SLAB_CACHE_DMA | SLAB_NOTRACK)
175 #define OO_MASK ((1 << OO_SHIFT) - 1)
176 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
178 /* Internal SLUB flags */
179 #define __OBJECT_POISON 0x80000000UL /* Poison object */
180 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
182 static int kmem_size
= sizeof(struct kmem_cache
);
185 static struct notifier_block slab_notifier
;
189 * Tracking user of a slab.
191 #define TRACK_ADDRS_COUNT 16
193 unsigned long addr
; /* Called from address */
194 #ifdef CONFIG_STACKTRACE
195 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
197 int cpu
; /* Was running on cpu */
198 int pid
; /* Pid context */
199 unsigned long when
; /* When did the operation occur */
202 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
205 static int sysfs_slab_add(struct kmem_cache
*);
206 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
207 static void sysfs_slab_remove(struct kmem_cache
*);
210 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
213 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
221 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
223 #ifdef CONFIG_SLUB_STATS
224 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
228 /********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
232 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
234 return s
->node
[node
];
237 /* Verify that a pointer has an address that is valid within a slab page */
238 static inline int check_valid_pointer(struct kmem_cache
*s
,
239 struct page
*page
, const void *object
)
246 base
= page_address(page
);
247 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
248 (object
- base
) % s
->size
) {
255 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
257 return *(void **)(object
+ s
->offset
);
260 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
262 prefetch(object
+ s
->offset
);
265 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
269 #ifdef CONFIG_DEBUG_PAGEALLOC
270 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
272 p
= get_freepointer(s
, object
);
277 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
279 *(void **)(object
+ s
->offset
) = fp
;
282 /* Loop over all objects in a slab */
283 #define for_each_object(__p, __s, __addr, __objects) \
284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
287 /* Determine object index from a given position */
288 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
290 return (p
- addr
) / s
->size
;
293 static inline size_t slab_ksize(const struct kmem_cache
*s
)
295 #ifdef CONFIG_SLUB_DEBUG
297 * Debugging requires use of the padding between object
298 * and whatever may come after it.
300 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
301 return s
->object_size
;
305 * If we have the need to store the freelist pointer
306 * back there or track user information then we can
307 * only use the space before that information.
309 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
312 * Else we can use all the padding etc for the allocation
317 static inline int order_objects(int order
, unsigned long size
, int reserved
)
319 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
322 static inline struct kmem_cache_order_objects
oo_make(int order
,
323 unsigned long size
, int reserved
)
325 struct kmem_cache_order_objects x
= {
326 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
332 static inline int oo_order(struct kmem_cache_order_objects x
)
334 return x
.x
>> OO_SHIFT
;
337 static inline int oo_objects(struct kmem_cache_order_objects x
)
339 return x
.x
& OO_MASK
;
343 * Per slab locking using the pagelock
345 static __always_inline
void slab_lock(struct page
*page
)
347 bit_spin_lock(PG_locked
, &page
->flags
);
350 static __always_inline
void slab_unlock(struct page
*page
)
352 __bit_spin_unlock(PG_locked
, &page
->flags
);
355 /* Interrupts must be disabled (for the fallback code to work right) */
356 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
357 void *freelist_old
, unsigned long counters_old
,
358 void *freelist_new
, unsigned long counters_new
,
361 VM_BUG_ON(!irqs_disabled());
362 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
363 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
364 if (s
->flags
& __CMPXCHG_DOUBLE
) {
365 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
366 freelist_old
, counters_old
,
367 freelist_new
, counters_new
))
373 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
374 page
->freelist
= freelist_new
;
375 page
->counters
= counters_new
;
383 stat(s
, CMPXCHG_DOUBLE_FAIL
);
385 #ifdef SLUB_DEBUG_CMPXCHG
386 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
392 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
393 void *freelist_old
, unsigned long counters_old
,
394 void *freelist_new
, unsigned long counters_new
,
397 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
398 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
399 if (s
->flags
& __CMPXCHG_DOUBLE
) {
400 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
401 freelist_old
, counters_old
,
402 freelist_new
, counters_new
))
409 local_irq_save(flags
);
411 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
412 page
->freelist
= freelist_new
;
413 page
->counters
= counters_new
;
415 local_irq_restore(flags
);
419 local_irq_restore(flags
);
423 stat(s
, CMPXCHG_DOUBLE_FAIL
);
425 #ifdef SLUB_DEBUG_CMPXCHG
426 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
432 #ifdef CONFIG_SLUB_DEBUG
434 * Determine a map of object in use on a page.
436 * Node listlock must be held to guarantee that the page does
437 * not vanish from under us.
439 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
442 void *addr
= page_address(page
);
444 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
445 set_bit(slab_index(p
, s
, addr
), map
);
451 #ifdef CONFIG_SLUB_DEBUG_ON
452 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
454 static int slub_debug
;
457 static char *slub_debug_slabs
;
458 static int disable_higher_order_debug
;
463 static void print_section(char *text
, u8
*addr
, unsigned int length
)
465 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
469 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
470 enum track_item alloc
)
475 p
= object
+ s
->offset
+ sizeof(void *);
477 p
= object
+ s
->inuse
;
482 static void set_track(struct kmem_cache
*s
, void *object
,
483 enum track_item alloc
, unsigned long addr
)
485 struct track
*p
= get_track(s
, object
, alloc
);
488 #ifdef CONFIG_STACKTRACE
489 struct stack_trace trace
;
492 trace
.nr_entries
= 0;
493 trace
.max_entries
= TRACK_ADDRS_COUNT
;
494 trace
.entries
= p
->addrs
;
496 save_stack_trace(&trace
);
498 /* See rant in lockdep.c */
499 if (trace
.nr_entries
!= 0 &&
500 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
503 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
507 p
->cpu
= smp_processor_id();
508 p
->pid
= current
->pid
;
511 memset(p
, 0, sizeof(struct track
));
514 static void init_tracking(struct kmem_cache
*s
, void *object
)
516 if (!(s
->flags
& SLAB_STORE_USER
))
519 set_track(s
, object
, TRACK_FREE
, 0UL);
520 set_track(s
, object
, TRACK_ALLOC
, 0UL);
523 static void print_track(const char *s
, struct track
*t
)
528 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
529 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
530 #ifdef CONFIG_STACKTRACE
533 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
535 printk(KERN_ERR
"\t%pS\n", (void *)t
->addrs
[i
]);
542 static void print_tracking(struct kmem_cache
*s
, void *object
)
544 if (!(s
->flags
& SLAB_STORE_USER
))
547 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
548 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
551 static void print_page_info(struct page
*page
)
553 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
554 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
558 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
564 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
566 printk(KERN_ERR
"========================================"
567 "=====================================\n");
568 printk(KERN_ERR
"BUG %s (%s): %s\n", s
->name
, print_tainted(), buf
);
569 printk(KERN_ERR
"----------------------------------------"
570 "-------------------------------------\n\n");
573 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
579 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
581 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
584 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
586 unsigned int off
; /* Offset of last byte */
587 u8
*addr
= page_address(page
);
589 print_tracking(s
, p
);
591 print_page_info(page
);
593 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
594 p
, p
- addr
, get_freepointer(s
, p
));
597 print_section("Bytes b4 ", p
- 16, 16);
599 print_section("Object ", p
, min_t(unsigned long, s
->object_size
,
601 if (s
->flags
& SLAB_RED_ZONE
)
602 print_section("Redzone ", p
+ s
->object_size
,
603 s
->inuse
- s
->object_size
);
606 off
= s
->offset
+ sizeof(void *);
610 if (s
->flags
& SLAB_STORE_USER
)
611 off
+= 2 * sizeof(struct track
);
614 /* Beginning of the filler is the free pointer */
615 print_section("Padding ", p
+ off
, s
->size
- off
);
620 static void object_err(struct kmem_cache
*s
, struct page
*page
,
621 u8
*object
, char *reason
)
623 slab_bug(s
, "%s", reason
);
624 print_trailer(s
, page
, object
);
627 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
633 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
635 slab_bug(s
, "%s", buf
);
636 print_page_info(page
);
640 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
644 if (s
->flags
& __OBJECT_POISON
) {
645 memset(p
, POISON_FREE
, s
->object_size
- 1);
646 p
[s
->object_size
- 1] = POISON_END
;
649 if (s
->flags
& SLAB_RED_ZONE
)
650 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
653 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
654 void *from
, void *to
)
656 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
657 memset(from
, data
, to
- from
);
660 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
661 u8
*object
, char *what
,
662 u8
*start
, unsigned int value
, unsigned int bytes
)
667 fault
= memchr_inv(start
, value
, bytes
);
672 while (end
> fault
&& end
[-1] == value
)
675 slab_bug(s
, "%s overwritten", what
);
676 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
677 fault
, end
- 1, fault
[0], value
);
678 print_trailer(s
, page
, object
);
680 restore_bytes(s
, what
, value
, fault
, end
);
688 * Bytes of the object to be managed.
689 * If the freepointer may overlay the object then the free
690 * pointer is the first word of the object.
692 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
695 * object + s->object_size
696 * Padding to reach word boundary. This is also used for Redzoning.
697 * Padding is extended by another word if Redzoning is enabled and
698 * object_size == inuse.
700 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
701 * 0xcc (RED_ACTIVE) for objects in use.
704 * Meta data starts here.
706 * A. Free pointer (if we cannot overwrite object on free)
707 * B. Tracking data for SLAB_STORE_USER
708 * C. Padding to reach required alignment boundary or at mininum
709 * one word if debugging is on to be able to detect writes
710 * before the word boundary.
712 * Padding is done using 0x5a (POISON_INUSE)
715 * Nothing is used beyond s->size.
717 * If slabcaches are merged then the object_size and inuse boundaries are mostly
718 * ignored. And therefore no slab options that rely on these boundaries
719 * may be used with merged slabcaches.
722 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
724 unsigned long off
= s
->inuse
; /* The end of info */
727 /* Freepointer is placed after the object. */
728 off
+= sizeof(void *);
730 if (s
->flags
& SLAB_STORE_USER
)
731 /* We also have user information there */
732 off
+= 2 * sizeof(struct track
);
737 return check_bytes_and_report(s
, page
, p
, "Object padding",
738 p
+ off
, POISON_INUSE
, s
->size
- off
);
741 /* Check the pad bytes at the end of a slab page */
742 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
750 if (!(s
->flags
& SLAB_POISON
))
753 start
= page_address(page
);
754 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
755 end
= start
+ length
;
756 remainder
= length
% s
->size
;
760 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
763 while (end
> fault
&& end
[-1] == POISON_INUSE
)
766 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
767 print_section("Padding ", end
- remainder
, remainder
);
769 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
773 static int check_object(struct kmem_cache
*s
, struct page
*page
,
774 void *object
, u8 val
)
777 u8
*endobject
= object
+ s
->object_size
;
779 if (s
->flags
& SLAB_RED_ZONE
) {
780 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
781 endobject
, val
, s
->inuse
- s
->object_size
))
784 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
785 check_bytes_and_report(s
, page
, p
, "Alignment padding",
786 endobject
, POISON_INUSE
, s
->inuse
- s
->object_size
);
790 if (s
->flags
& SLAB_POISON
) {
791 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
792 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
793 POISON_FREE
, s
->object_size
- 1) ||
794 !check_bytes_and_report(s
, page
, p
, "Poison",
795 p
+ s
->object_size
- 1, POISON_END
, 1)))
798 * check_pad_bytes cleans up on its own.
800 check_pad_bytes(s
, page
, p
);
803 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
805 * Object and freepointer overlap. Cannot check
806 * freepointer while object is allocated.
810 /* Check free pointer validity */
811 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
812 object_err(s
, page
, p
, "Freepointer corrupt");
814 * No choice but to zap it and thus lose the remainder
815 * of the free objects in this slab. May cause
816 * another error because the object count is now wrong.
818 set_freepointer(s
, p
, NULL
);
824 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
828 VM_BUG_ON(!irqs_disabled());
830 if (!PageSlab(page
)) {
831 slab_err(s
, page
, "Not a valid slab page");
835 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
836 if (page
->objects
> maxobj
) {
837 slab_err(s
, page
, "objects %u > max %u",
838 s
->name
, page
->objects
, maxobj
);
841 if (page
->inuse
> page
->objects
) {
842 slab_err(s
, page
, "inuse %u > max %u",
843 s
->name
, page
->inuse
, page
->objects
);
846 /* Slab_pad_check fixes things up after itself */
847 slab_pad_check(s
, page
);
852 * Determine if a certain object on a page is on the freelist. Must hold the
853 * slab lock to guarantee that the chains are in a consistent state.
855 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
860 unsigned long max_objects
;
863 while (fp
&& nr
<= page
->objects
) {
866 if (!check_valid_pointer(s
, page
, fp
)) {
868 object_err(s
, page
, object
,
869 "Freechain corrupt");
870 set_freepointer(s
, object
, NULL
);
873 slab_err(s
, page
, "Freepointer corrupt");
874 page
->freelist
= NULL
;
875 page
->inuse
= page
->objects
;
876 slab_fix(s
, "Freelist cleared");
882 fp
= get_freepointer(s
, object
);
886 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
887 if (max_objects
> MAX_OBJS_PER_PAGE
)
888 max_objects
= MAX_OBJS_PER_PAGE
;
890 if (page
->objects
!= max_objects
) {
891 slab_err(s
, page
, "Wrong number of objects. Found %d but "
892 "should be %d", page
->objects
, max_objects
);
893 page
->objects
= max_objects
;
894 slab_fix(s
, "Number of objects adjusted.");
896 if (page
->inuse
!= page
->objects
- nr
) {
897 slab_err(s
, page
, "Wrong object count. Counter is %d but "
898 "counted were %d", page
->inuse
, page
->objects
- nr
);
899 page
->inuse
= page
->objects
- nr
;
900 slab_fix(s
, "Object count adjusted.");
902 return search
== NULL
;
905 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
908 if (s
->flags
& SLAB_TRACE
) {
909 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
911 alloc
? "alloc" : "free",
916 print_section("Object ", (void *)object
, s
->object_size
);
923 * Hooks for other subsystems that check memory allocations. In a typical
924 * production configuration these hooks all should produce no code at all.
926 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
928 flags
&= gfp_allowed_mask
;
929 lockdep_trace_alloc(flags
);
930 might_sleep_if(flags
& __GFP_WAIT
);
932 return should_failslab(s
->object_size
, flags
, s
->flags
);
935 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
937 flags
&= gfp_allowed_mask
;
938 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
939 kmemleak_alloc_recursive(object
, s
->object_size
, 1, s
->flags
, flags
);
942 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
944 kmemleak_free_recursive(x
, s
->flags
);
947 * Trouble is that we may no longer disable interupts in the fast path
948 * So in order to make the debug calls that expect irqs to be
949 * disabled we need to disable interrupts temporarily.
951 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
955 local_irq_save(flags
);
956 kmemcheck_slab_free(s
, x
, s
->object_size
);
957 debug_check_no_locks_freed(x
, s
->object_size
);
958 local_irq_restore(flags
);
961 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
962 debug_check_no_obj_freed(x
, s
->object_size
);
966 * Tracking of fully allocated slabs for debugging purposes.
968 * list_lock must be held.
970 static void add_full(struct kmem_cache
*s
,
971 struct kmem_cache_node
*n
, struct page
*page
)
973 if (!(s
->flags
& SLAB_STORE_USER
))
976 list_add(&page
->lru
, &n
->full
);
980 * list_lock must be held.
982 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
984 if (!(s
->flags
& SLAB_STORE_USER
))
987 list_del(&page
->lru
);
990 /* Tracking of the number of slabs for debugging purposes */
991 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
993 struct kmem_cache_node
*n
= get_node(s
, node
);
995 return atomic_long_read(&n
->nr_slabs
);
998 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1000 return atomic_long_read(&n
->nr_slabs
);
1003 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1005 struct kmem_cache_node
*n
= get_node(s
, node
);
1008 * May be called early in order to allocate a slab for the
1009 * kmem_cache_node structure. Solve the chicken-egg
1010 * dilemma by deferring the increment of the count during
1011 * bootstrap (see early_kmem_cache_node_alloc).
1014 atomic_long_inc(&n
->nr_slabs
);
1015 atomic_long_add(objects
, &n
->total_objects
);
1018 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1020 struct kmem_cache_node
*n
= get_node(s
, node
);
1022 atomic_long_dec(&n
->nr_slabs
);
1023 atomic_long_sub(objects
, &n
->total_objects
);
1026 /* Object debug checks for alloc/free paths */
1027 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1030 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1033 init_object(s
, object
, SLUB_RED_INACTIVE
);
1034 init_tracking(s
, object
);
1037 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
1038 void *object
, unsigned long addr
)
1040 if (!check_slab(s
, page
))
1043 if (!check_valid_pointer(s
, page
, object
)) {
1044 object_err(s
, page
, object
, "Freelist Pointer check fails");
1048 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1051 /* Success perform special debug activities for allocs */
1052 if (s
->flags
& SLAB_STORE_USER
)
1053 set_track(s
, object
, TRACK_ALLOC
, addr
);
1054 trace(s
, page
, object
, 1);
1055 init_object(s
, object
, SLUB_RED_ACTIVE
);
1059 if (PageSlab(page
)) {
1061 * If this is a slab page then lets do the best we can
1062 * to avoid issues in the future. Marking all objects
1063 * as used avoids touching the remaining objects.
1065 slab_fix(s
, "Marking all objects used");
1066 page
->inuse
= page
->objects
;
1067 page
->freelist
= NULL
;
1072 static noinline
int free_debug_processing(struct kmem_cache
*s
,
1073 struct page
*page
, void *object
, unsigned long addr
)
1075 unsigned long flags
;
1078 local_irq_save(flags
);
1081 if (!check_slab(s
, page
))
1084 if (!check_valid_pointer(s
, page
, object
)) {
1085 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1089 if (on_freelist(s
, page
, object
)) {
1090 object_err(s
, page
, object
, "Object already free");
1094 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1097 if (unlikely(s
!= page
->slab
)) {
1098 if (!PageSlab(page
)) {
1099 slab_err(s
, page
, "Attempt to free object(0x%p) "
1100 "outside of slab", object
);
1101 } else if (!page
->slab
) {
1103 "SLUB <none>: no slab for object 0x%p.\n",
1107 object_err(s
, page
, object
,
1108 "page slab pointer corrupt.");
1112 if (s
->flags
& SLAB_STORE_USER
)
1113 set_track(s
, object
, TRACK_FREE
, addr
);
1114 trace(s
, page
, object
, 0);
1115 init_object(s
, object
, SLUB_RED_INACTIVE
);
1119 local_irq_restore(flags
);
1123 slab_fix(s
, "Object at 0x%p not freed", object
);
1127 static int __init
setup_slub_debug(char *str
)
1129 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1130 if (*str
++ != '=' || !*str
)
1132 * No options specified. Switch on full debugging.
1138 * No options but restriction on slabs. This means full
1139 * debugging for slabs matching a pattern.
1143 if (tolower(*str
) == 'o') {
1145 * Avoid enabling debugging on caches if its minimum order
1146 * would increase as a result.
1148 disable_higher_order_debug
= 1;
1155 * Switch off all debugging measures.
1160 * Determine which debug features should be switched on
1162 for (; *str
&& *str
!= ','; str
++) {
1163 switch (tolower(*str
)) {
1165 slub_debug
|= SLAB_DEBUG_FREE
;
1168 slub_debug
|= SLAB_RED_ZONE
;
1171 slub_debug
|= SLAB_POISON
;
1174 slub_debug
|= SLAB_STORE_USER
;
1177 slub_debug
|= SLAB_TRACE
;
1180 slub_debug
|= SLAB_FAILSLAB
;
1183 printk(KERN_ERR
"slub_debug option '%c' "
1184 "unknown. skipped\n", *str
);
1190 slub_debug_slabs
= str
+ 1;
1195 __setup("slub_debug", setup_slub_debug
);
1197 static unsigned long kmem_cache_flags(unsigned long object_size
,
1198 unsigned long flags
, const char *name
,
1199 void (*ctor
)(void *))
1202 * Enable debugging if selected on the kernel commandline.
1204 if (slub_debug
&& (!slub_debug_slabs
||
1205 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1206 flags
|= slub_debug
;
1211 static inline void setup_object_debug(struct kmem_cache
*s
,
1212 struct page
*page
, void *object
) {}
1214 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1215 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1217 static inline int free_debug_processing(struct kmem_cache
*s
,
1218 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1220 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1222 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1223 void *object
, u8 val
) { return 1; }
1224 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1225 struct page
*page
) {}
1226 static inline void remove_full(struct kmem_cache
*s
, struct page
*page
) {}
1227 static inline unsigned long kmem_cache_flags(unsigned long object_size
,
1228 unsigned long flags
, const char *name
,
1229 void (*ctor
)(void *))
1233 #define slub_debug 0
1235 #define disable_higher_order_debug 0
1237 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1239 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1241 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1243 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1246 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1249 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1252 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1254 #endif /* CONFIG_SLUB_DEBUG */
1257 * Slab allocation and freeing
1259 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1260 struct kmem_cache_order_objects oo
)
1262 int order
= oo_order(oo
);
1264 flags
|= __GFP_NOTRACK
;
1266 if (node
== NUMA_NO_NODE
)
1267 return alloc_pages(flags
, order
);
1269 return alloc_pages_exact_node(node
, flags
, order
);
1272 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1275 struct kmem_cache_order_objects oo
= s
->oo
;
1278 flags
&= gfp_allowed_mask
;
1280 if (flags
& __GFP_WAIT
)
1283 flags
|= s
->allocflags
;
1286 * Let the initial higher-order allocation fail under memory pressure
1287 * so we fall-back to the minimum order allocation.
1289 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1291 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1292 if (unlikely(!page
)) {
1295 * Allocation may have failed due to fragmentation.
1296 * Try a lower order alloc if possible
1298 page
= alloc_slab_page(flags
, node
, oo
);
1301 stat(s
, ORDER_FALLBACK
);
1304 if (kmemcheck_enabled
&& page
1305 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1306 int pages
= 1 << oo_order(oo
);
1308 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1311 * Objects from caches that have a constructor don't get
1312 * cleared when they're allocated, so we need to do it here.
1315 kmemcheck_mark_uninitialized_pages(page
, pages
);
1317 kmemcheck_mark_unallocated_pages(page
, pages
);
1320 if (flags
& __GFP_WAIT
)
1321 local_irq_disable();
1325 page
->objects
= oo_objects(oo
);
1326 mod_zone_page_state(page_zone(page
),
1327 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1328 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1334 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1337 setup_object_debug(s
, page
, object
);
1338 if (unlikely(s
->ctor
))
1342 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1349 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1351 page
= allocate_slab(s
,
1352 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1356 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1358 __SetPageSlab(page
);
1359 if (page
->pfmemalloc
)
1360 SetPageSlabPfmemalloc(page
);
1362 start
= page_address(page
);
1364 if (unlikely(s
->flags
& SLAB_POISON
))
1365 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1368 for_each_object(p
, s
, start
, page
->objects
) {
1369 setup_object(s
, page
, last
);
1370 set_freepointer(s
, last
, p
);
1373 setup_object(s
, page
, last
);
1374 set_freepointer(s
, last
, NULL
);
1376 page
->freelist
= start
;
1377 page
->inuse
= page
->objects
;
1383 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1385 int order
= compound_order(page
);
1386 int pages
= 1 << order
;
1388 if (kmem_cache_debug(s
)) {
1391 slab_pad_check(s
, page
);
1392 for_each_object(p
, s
, page_address(page
),
1394 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1397 kmemcheck_free_shadow(page
, compound_order(page
));
1399 mod_zone_page_state(page_zone(page
),
1400 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1401 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1404 __ClearPageSlabPfmemalloc(page
);
1405 __ClearPageSlab(page
);
1406 reset_page_mapcount(page
);
1407 if (current
->reclaim_state
)
1408 current
->reclaim_state
->reclaimed_slab
+= pages
;
1409 __free_pages(page
, order
);
1412 #define need_reserve_slab_rcu \
1413 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1415 static void rcu_free_slab(struct rcu_head
*h
)
1419 if (need_reserve_slab_rcu
)
1420 page
= virt_to_head_page(h
);
1422 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1424 __free_slab(page
->slab
, page
);
1427 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1429 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1430 struct rcu_head
*head
;
1432 if (need_reserve_slab_rcu
) {
1433 int order
= compound_order(page
);
1434 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1436 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1437 head
= page_address(page
) + offset
;
1440 * RCU free overloads the RCU head over the LRU
1442 head
= (void *)&page
->lru
;
1445 call_rcu(head
, rcu_free_slab
);
1447 __free_slab(s
, page
);
1450 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1452 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1457 * Management of partially allocated slabs.
1459 * list_lock must be held.
1461 static inline void add_partial(struct kmem_cache_node
*n
,
1462 struct page
*page
, int tail
)
1465 if (tail
== DEACTIVATE_TO_TAIL
)
1466 list_add_tail(&page
->lru
, &n
->partial
);
1468 list_add(&page
->lru
, &n
->partial
);
1472 * list_lock must be held.
1474 static inline void remove_partial(struct kmem_cache_node
*n
,
1477 list_del(&page
->lru
);
1482 * Remove slab from the partial list, freeze it and
1483 * return the pointer to the freelist.
1485 * Returns a list of objects or NULL if it fails.
1487 * Must hold list_lock since we modify the partial list.
1489 static inline void *acquire_slab(struct kmem_cache
*s
,
1490 struct kmem_cache_node
*n
, struct page
*page
,
1494 unsigned long counters
;
1498 * Zap the freelist and set the frozen bit.
1499 * The old freelist is the list of objects for the
1500 * per cpu allocation list.
1502 freelist
= page
->freelist
;
1503 counters
= page
->counters
;
1504 new.counters
= counters
;
1506 new.inuse
= page
->objects
;
1507 new.freelist
= NULL
;
1509 new.freelist
= freelist
;
1512 VM_BUG_ON(new.frozen
);
1515 if (!__cmpxchg_double_slab(s
, page
,
1517 new.freelist
, new.counters
,
1521 remove_partial(n
, page
);
1526 static int put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1529 * Try to allocate a partial slab from a specific node.
1531 static void *get_partial_node(struct kmem_cache
*s
,
1532 struct kmem_cache_node
*n
, struct kmem_cache_cpu
*c
)
1534 struct page
*page
, *page2
;
1535 void *object
= NULL
;
1538 * Racy check. If we mistakenly see no partial slabs then we
1539 * just allocate an empty slab. If we mistakenly try to get a
1540 * partial slab and there is none available then get_partials()
1543 if (!n
|| !n
->nr_partial
)
1546 spin_lock(&n
->list_lock
);
1547 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1548 void *t
= acquire_slab(s
, n
, page
, object
== NULL
);
1556 stat(s
, ALLOC_FROM_PARTIAL
);
1558 available
= page
->objects
- page
->inuse
;
1560 available
= put_cpu_partial(s
, page
, 0);
1561 stat(s
, CPU_PARTIAL_NODE
);
1563 if (kmem_cache_debug(s
) || available
> s
->cpu_partial
/ 2)
1567 spin_unlock(&n
->list_lock
);
1572 * Get a page from somewhere. Search in increasing NUMA distances.
1574 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1575 struct kmem_cache_cpu
*c
)
1578 struct zonelist
*zonelist
;
1581 enum zone_type high_zoneidx
= gfp_zone(flags
);
1583 unsigned int cpuset_mems_cookie
;
1586 * The defrag ratio allows a configuration of the tradeoffs between
1587 * inter node defragmentation and node local allocations. A lower
1588 * defrag_ratio increases the tendency to do local allocations
1589 * instead of attempting to obtain partial slabs from other nodes.
1591 * If the defrag_ratio is set to 0 then kmalloc() always
1592 * returns node local objects. If the ratio is higher then kmalloc()
1593 * may return off node objects because partial slabs are obtained
1594 * from other nodes and filled up.
1596 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1597 * defrag_ratio = 1000) then every (well almost) allocation will
1598 * first attempt to defrag slab caches on other nodes. This means
1599 * scanning over all nodes to look for partial slabs which may be
1600 * expensive if we do it every time we are trying to find a slab
1601 * with available objects.
1603 if (!s
->remote_node_defrag_ratio
||
1604 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1608 cpuset_mems_cookie
= get_mems_allowed();
1609 zonelist
= node_zonelist(slab_node(), flags
);
1610 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1611 struct kmem_cache_node
*n
;
1613 n
= get_node(s
, zone_to_nid(zone
));
1615 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1616 n
->nr_partial
> s
->min_partial
) {
1617 object
= get_partial_node(s
, n
, c
);
1620 * Return the object even if
1621 * put_mems_allowed indicated that
1622 * the cpuset mems_allowed was
1623 * updated in parallel. It's a
1624 * harmless race between the alloc
1625 * and the cpuset update.
1627 put_mems_allowed(cpuset_mems_cookie
);
1632 } while (!put_mems_allowed(cpuset_mems_cookie
));
1638 * Get a partial page, lock it and return it.
1640 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1641 struct kmem_cache_cpu
*c
)
1644 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1646 object
= get_partial_node(s
, get_node(s
, searchnode
), c
);
1647 if (object
|| node
!= NUMA_NO_NODE
)
1650 return get_any_partial(s
, flags
, c
);
1653 #ifdef CONFIG_PREEMPT
1655 * Calculate the next globally unique transaction for disambiguiation
1656 * during cmpxchg. The transactions start with the cpu number and are then
1657 * incremented by CONFIG_NR_CPUS.
1659 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1662 * No preemption supported therefore also no need to check for
1668 static inline unsigned long next_tid(unsigned long tid
)
1670 return tid
+ TID_STEP
;
1673 static inline unsigned int tid_to_cpu(unsigned long tid
)
1675 return tid
% TID_STEP
;
1678 static inline unsigned long tid_to_event(unsigned long tid
)
1680 return tid
/ TID_STEP
;
1683 static inline unsigned int init_tid(int cpu
)
1688 static inline void note_cmpxchg_failure(const char *n
,
1689 const struct kmem_cache
*s
, unsigned long tid
)
1691 #ifdef SLUB_DEBUG_CMPXCHG
1692 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1694 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1696 #ifdef CONFIG_PREEMPT
1697 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1698 printk("due to cpu change %d -> %d\n",
1699 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1702 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1703 printk("due to cpu running other code. Event %ld->%ld\n",
1704 tid_to_event(tid
), tid_to_event(actual_tid
));
1706 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1707 actual_tid
, tid
, next_tid(tid
));
1709 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1712 void init_kmem_cache_cpus(struct kmem_cache
*s
)
1716 for_each_possible_cpu(cpu
)
1717 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1721 * Remove the cpu slab
1723 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
, void *freelist
)
1725 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1726 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1728 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1730 int tail
= DEACTIVATE_TO_HEAD
;
1734 if (page
->freelist
) {
1735 stat(s
, DEACTIVATE_REMOTE_FREES
);
1736 tail
= DEACTIVATE_TO_TAIL
;
1740 * Stage one: Free all available per cpu objects back
1741 * to the page freelist while it is still frozen. Leave the
1744 * There is no need to take the list->lock because the page
1747 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1749 unsigned long counters
;
1752 prior
= page
->freelist
;
1753 counters
= page
->counters
;
1754 set_freepointer(s
, freelist
, prior
);
1755 new.counters
= counters
;
1757 VM_BUG_ON(!new.frozen
);
1759 } while (!__cmpxchg_double_slab(s
, page
,
1761 freelist
, new.counters
,
1762 "drain percpu freelist"));
1764 freelist
= nextfree
;
1768 * Stage two: Ensure that the page is unfrozen while the
1769 * list presence reflects the actual number of objects
1772 * We setup the list membership and then perform a cmpxchg
1773 * with the count. If there is a mismatch then the page
1774 * is not unfrozen but the page is on the wrong list.
1776 * Then we restart the process which may have to remove
1777 * the page from the list that we just put it on again
1778 * because the number of objects in the slab may have
1783 old
.freelist
= page
->freelist
;
1784 old
.counters
= page
->counters
;
1785 VM_BUG_ON(!old
.frozen
);
1787 /* Determine target state of the slab */
1788 new.counters
= old
.counters
;
1791 set_freepointer(s
, freelist
, old
.freelist
);
1792 new.freelist
= freelist
;
1794 new.freelist
= old
.freelist
;
1798 if (!new.inuse
&& n
->nr_partial
> s
->min_partial
)
1800 else if (new.freelist
) {
1805 * Taking the spinlock removes the possiblity
1806 * that acquire_slab() will see a slab page that
1809 spin_lock(&n
->list_lock
);
1813 if (kmem_cache_debug(s
) && !lock
) {
1816 * This also ensures that the scanning of full
1817 * slabs from diagnostic functions will not see
1820 spin_lock(&n
->list_lock
);
1828 remove_partial(n
, page
);
1830 else if (l
== M_FULL
)
1832 remove_full(s
, page
);
1834 if (m
== M_PARTIAL
) {
1836 add_partial(n
, page
, tail
);
1839 } else if (m
== M_FULL
) {
1841 stat(s
, DEACTIVATE_FULL
);
1842 add_full(s
, n
, page
);
1848 if (!__cmpxchg_double_slab(s
, page
,
1849 old
.freelist
, old
.counters
,
1850 new.freelist
, new.counters
,
1855 spin_unlock(&n
->list_lock
);
1858 stat(s
, DEACTIVATE_EMPTY
);
1859 discard_slab(s
, page
);
1865 * Unfreeze all the cpu partial slabs.
1867 * This function must be called with interrupt disabled.
1869 static void unfreeze_partials(struct kmem_cache
*s
)
1871 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
1872 struct kmem_cache_cpu
*c
= this_cpu_ptr(s
->cpu_slab
);
1873 struct page
*page
, *discard_page
= NULL
;
1875 while ((page
= c
->partial
)) {
1879 c
->partial
= page
->next
;
1881 n2
= get_node(s
, page_to_nid(page
));
1884 spin_unlock(&n
->list_lock
);
1887 spin_lock(&n
->list_lock
);
1892 old
.freelist
= page
->freelist
;
1893 old
.counters
= page
->counters
;
1894 VM_BUG_ON(!old
.frozen
);
1896 new.counters
= old
.counters
;
1897 new.freelist
= old
.freelist
;
1901 } while (!__cmpxchg_double_slab(s
, page
,
1902 old
.freelist
, old
.counters
,
1903 new.freelist
, new.counters
,
1904 "unfreezing slab"));
1906 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
)) {
1907 page
->next
= discard_page
;
1908 discard_page
= page
;
1910 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
1911 stat(s
, FREE_ADD_PARTIAL
);
1916 spin_unlock(&n
->list_lock
);
1918 while (discard_page
) {
1919 page
= discard_page
;
1920 discard_page
= discard_page
->next
;
1922 stat(s
, DEACTIVATE_EMPTY
);
1923 discard_slab(s
, page
);
1929 * Put a page that was just frozen (in __slab_free) into a partial page
1930 * slot if available. This is done without interrupts disabled and without
1931 * preemption disabled. The cmpxchg is racy and may put the partial page
1932 * onto a random cpus partial slot.
1934 * If we did not find a slot then simply move all the partials to the
1935 * per node partial list.
1937 int put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
1939 struct page
*oldpage
;
1946 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
1949 pobjects
= oldpage
->pobjects
;
1950 pages
= oldpage
->pages
;
1951 if (drain
&& pobjects
> s
->cpu_partial
) {
1952 unsigned long flags
;
1954 * partial array is full. Move the existing
1955 * set to the per node partial list.
1957 local_irq_save(flags
);
1958 unfreeze_partials(s
);
1959 local_irq_restore(flags
);
1962 stat(s
, CPU_PARTIAL_DRAIN
);
1967 pobjects
+= page
->objects
- page
->inuse
;
1969 page
->pages
= pages
;
1970 page
->pobjects
= pobjects
;
1971 page
->next
= oldpage
;
1973 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
) != oldpage
);
1977 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1979 stat(s
, CPUSLAB_FLUSH
);
1980 deactivate_slab(s
, c
->page
, c
->freelist
);
1982 c
->tid
= next_tid(c
->tid
);
1990 * Called from IPI handler with interrupts disabled.
1992 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1994 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2000 unfreeze_partials(s
);
2004 static void flush_cpu_slab(void *d
)
2006 struct kmem_cache
*s
= d
;
2008 __flush_cpu_slab(s
, smp_processor_id());
2011 static bool has_cpu_slab(int cpu
, void *info
)
2013 struct kmem_cache
*s
= info
;
2014 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2016 return c
->page
|| c
->partial
;
2019 static void flush_all(struct kmem_cache
*s
)
2021 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2025 * Check if the objects in a per cpu structure fit numa
2026 * locality expectations.
2028 static inline int node_match(struct page
*page
, int node
)
2031 if (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
)
2037 static int count_free(struct page
*page
)
2039 return page
->objects
- page
->inuse
;
2042 static unsigned long count_partial(struct kmem_cache_node
*n
,
2043 int (*get_count
)(struct page
*))
2045 unsigned long flags
;
2046 unsigned long x
= 0;
2049 spin_lock_irqsave(&n
->list_lock
, flags
);
2050 list_for_each_entry(page
, &n
->partial
, lru
)
2051 x
+= get_count(page
);
2052 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2056 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2058 #ifdef CONFIG_SLUB_DEBUG
2059 return atomic_long_read(&n
->total_objects
);
2065 static noinline
void
2066 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2071 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2073 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
2074 "default order: %d, min order: %d\n", s
->name
, s
->object_size
,
2075 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
2077 if (oo_order(s
->min
) > get_order(s
->object_size
))
2078 printk(KERN_WARNING
" %s debugging increased min order, use "
2079 "slub_debug=O to disable.\n", s
->name
);
2081 for_each_online_node(node
) {
2082 struct kmem_cache_node
*n
= get_node(s
, node
);
2083 unsigned long nr_slabs
;
2084 unsigned long nr_objs
;
2085 unsigned long nr_free
;
2090 nr_free
= count_partial(n
, count_free
);
2091 nr_slabs
= node_nr_slabs(n
);
2092 nr_objs
= node_nr_objs(n
);
2095 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2096 node
, nr_slabs
, nr_objs
, nr_free
);
2100 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2101 int node
, struct kmem_cache_cpu
**pc
)
2104 struct kmem_cache_cpu
*c
= *pc
;
2107 freelist
= get_partial(s
, flags
, node
, c
);
2112 page
= new_slab(s
, flags
, node
);
2114 c
= __this_cpu_ptr(s
->cpu_slab
);
2119 * No other reference to the page yet so we can
2120 * muck around with it freely without cmpxchg
2122 freelist
= page
->freelist
;
2123 page
->freelist
= NULL
;
2125 stat(s
, ALLOC_SLAB
);
2134 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2136 if (unlikely(PageSlabPfmemalloc(page
)))
2137 return gfp_pfmemalloc_allowed(gfpflags
);
2143 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2144 * or deactivate the page.
2146 * The page is still frozen if the return value is not NULL.
2148 * If this function returns NULL then the page has been unfrozen.
2150 * This function must be called with interrupt disabled.
2152 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2155 unsigned long counters
;
2159 freelist
= page
->freelist
;
2160 counters
= page
->counters
;
2162 new.counters
= counters
;
2163 VM_BUG_ON(!new.frozen
);
2165 new.inuse
= page
->objects
;
2166 new.frozen
= freelist
!= NULL
;
2168 } while (!__cmpxchg_double_slab(s
, page
,
2177 * Slow path. The lockless freelist is empty or we need to perform
2180 * Processing is still very fast if new objects have been freed to the
2181 * regular freelist. In that case we simply take over the regular freelist
2182 * as the lockless freelist and zap the regular freelist.
2184 * If that is not working then we fall back to the partial lists. We take the
2185 * first element of the freelist as the object to allocate now and move the
2186 * rest of the freelist to the lockless freelist.
2188 * And if we were unable to get a new slab from the partial slab lists then
2189 * we need to allocate a new slab. This is the slowest path since it involves
2190 * a call to the page allocator and the setup of a new slab.
2192 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2193 unsigned long addr
, struct kmem_cache_cpu
*c
)
2197 unsigned long flags
;
2199 local_irq_save(flags
);
2200 #ifdef CONFIG_PREEMPT
2202 * We may have been preempted and rescheduled on a different
2203 * cpu before disabling interrupts. Need to reload cpu area
2206 c
= this_cpu_ptr(s
->cpu_slab
);
2214 if (unlikely(!node_match(page
, node
))) {
2215 stat(s
, ALLOC_NODE_MISMATCH
);
2216 deactivate_slab(s
, page
, c
->freelist
);
2223 * By rights, we should be searching for a slab page that was
2224 * PFMEMALLOC but right now, we are losing the pfmemalloc
2225 * information when the page leaves the per-cpu allocator
2227 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2228 deactivate_slab(s
, page
, c
->freelist
);
2234 /* must check again c->freelist in case of cpu migration or IRQ */
2235 freelist
= c
->freelist
;
2239 stat(s
, ALLOC_SLOWPATH
);
2241 freelist
= get_freelist(s
, page
);
2245 stat(s
, DEACTIVATE_BYPASS
);
2249 stat(s
, ALLOC_REFILL
);
2253 * freelist is pointing to the list of objects to be used.
2254 * page is pointing to the page from which the objects are obtained.
2255 * That page must be frozen for per cpu allocations to work.
2257 VM_BUG_ON(!c
->page
->frozen
);
2258 c
->freelist
= get_freepointer(s
, freelist
);
2259 c
->tid
= next_tid(c
->tid
);
2260 local_irq_restore(flags
);
2266 page
= c
->page
= c
->partial
;
2267 c
->partial
= page
->next
;
2268 stat(s
, CPU_PARTIAL_ALLOC
);
2273 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2275 if (unlikely(!freelist
)) {
2276 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
2277 slab_out_of_memory(s
, gfpflags
, node
);
2279 local_irq_restore(flags
);
2284 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2287 /* Only entered in the debug case */
2288 if (kmem_cache_debug(s
) && !alloc_debug_processing(s
, page
, freelist
, addr
))
2289 goto new_slab
; /* Slab failed checks. Next slab needed */
2291 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2294 local_irq_restore(flags
);
2299 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2300 * have the fastpath folded into their functions. So no function call
2301 * overhead for requests that can be satisfied on the fastpath.
2303 * The fastpath works by first checking if the lockless freelist can be used.
2304 * If not then __slab_alloc is called for slow processing.
2306 * Otherwise we can simply pick the next object from the lockless free list.
2308 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2309 gfp_t gfpflags
, int node
, unsigned long addr
)
2312 struct kmem_cache_cpu
*c
;
2316 if (slab_pre_alloc_hook(s
, gfpflags
))
2322 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2323 * enabled. We may switch back and forth between cpus while
2324 * reading from one cpu area. That does not matter as long
2325 * as we end up on the original cpu again when doing the cmpxchg.
2327 c
= __this_cpu_ptr(s
->cpu_slab
);
2330 * The transaction ids are globally unique per cpu and per operation on
2331 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2332 * occurs on the right processor and that there was no operation on the
2333 * linked list in between.
2338 object
= c
->freelist
;
2340 if (unlikely(!object
|| !node_match(page
, node
)))
2341 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2344 void *next_object
= get_freepointer_safe(s
, object
);
2347 * The cmpxchg will only match if there was no additional
2348 * operation and if we are on the right processor.
2350 * The cmpxchg does the following atomically (without lock semantics!)
2351 * 1. Relocate first pointer to the current per cpu area.
2352 * 2. Verify that tid and freelist have not been changed
2353 * 3. If they were not changed replace tid and freelist
2355 * Since this is without lock semantics the protection is only against
2356 * code executing on this cpu *not* from access by other cpus.
2358 if (unlikely(!this_cpu_cmpxchg_double(
2359 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2361 next_object
, next_tid(tid
)))) {
2363 note_cmpxchg_failure("slab_alloc", s
, tid
);
2366 prefetch_freepointer(s
, next_object
);
2367 stat(s
, ALLOC_FASTPATH
);
2370 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2371 memset(object
, 0, s
->object_size
);
2373 slab_post_alloc_hook(s
, gfpflags
, object
);
2378 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2380 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
2382 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
, s
->size
, gfpflags
);
2386 EXPORT_SYMBOL(kmem_cache_alloc
);
2388 #ifdef CONFIG_TRACING
2389 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2391 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
2392 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2395 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2397 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
2399 void *ret
= kmalloc_order(size
, flags
, order
);
2400 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
2403 EXPORT_SYMBOL(kmalloc_order_trace
);
2407 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2409 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2411 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2412 s
->object_size
, s
->size
, gfpflags
, node
);
2416 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2418 #ifdef CONFIG_TRACING
2419 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2421 int node
, size_t size
)
2423 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2425 trace_kmalloc_node(_RET_IP_
, ret
,
2426 size
, s
->size
, gfpflags
, node
);
2429 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2434 * Slow patch handling. This may still be called frequently since objects
2435 * have a longer lifetime than the cpu slabs in most processing loads.
2437 * So we still attempt to reduce cache line usage. Just take the slab
2438 * lock and free the item. If there is no additional partial page
2439 * handling required then we can return immediately.
2441 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2442 void *x
, unsigned long addr
)
2445 void **object
= (void *)x
;
2449 unsigned long counters
;
2450 struct kmem_cache_node
*n
= NULL
;
2451 unsigned long uninitialized_var(flags
);
2453 stat(s
, FREE_SLOWPATH
);
2455 if (kmem_cache_debug(s
) && !free_debug_processing(s
, page
, x
, addr
))
2459 prior
= page
->freelist
;
2460 counters
= page
->counters
;
2461 set_freepointer(s
, object
, prior
);
2462 new.counters
= counters
;
2463 was_frozen
= new.frozen
;
2465 if ((!new.inuse
|| !prior
) && !was_frozen
&& !n
) {
2467 if (!kmem_cache_debug(s
) && !prior
)
2470 * Slab was on no list before and will be partially empty
2471 * We can defer the list move and instead freeze it.
2475 else { /* Needs to be taken off a list */
2477 n
= get_node(s
, page_to_nid(page
));
2479 * Speculatively acquire the list_lock.
2480 * If the cmpxchg does not succeed then we may
2481 * drop the list_lock without any processing.
2483 * Otherwise the list_lock will synchronize with
2484 * other processors updating the list of slabs.
2486 spin_lock_irqsave(&n
->list_lock
, flags
);
2492 } while (!cmpxchg_double_slab(s
, page
,
2494 object
, new.counters
,
2500 * If we just froze the page then put it onto the
2501 * per cpu partial list.
2503 if (new.frozen
&& !was_frozen
) {
2504 put_cpu_partial(s
, page
, 1);
2505 stat(s
, CPU_PARTIAL_FREE
);
2508 * The list lock was not taken therefore no list
2509 * activity can be necessary.
2512 stat(s
, FREE_FROZEN
);
2517 * was_frozen may have been set after we acquired the list_lock in
2518 * an earlier loop. So we need to check it here again.
2521 stat(s
, FREE_FROZEN
);
2523 if (unlikely(!inuse
&& n
->nr_partial
> s
->min_partial
))
2527 * Objects left in the slab. If it was not on the partial list before
2530 if (unlikely(!prior
)) {
2531 remove_full(s
, page
);
2532 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2533 stat(s
, FREE_ADD_PARTIAL
);
2536 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2542 * Slab on the partial list.
2544 remove_partial(n
, page
);
2545 stat(s
, FREE_REMOVE_PARTIAL
);
2547 /* Slab must be on the full list */
2548 remove_full(s
, page
);
2550 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2552 discard_slab(s
, page
);
2556 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2557 * can perform fastpath freeing without additional function calls.
2559 * The fastpath is only possible if we are freeing to the current cpu slab
2560 * of this processor. This typically the case if we have just allocated
2563 * If fastpath is not possible then fall back to __slab_free where we deal
2564 * with all sorts of special processing.
2566 static __always_inline
void slab_free(struct kmem_cache
*s
,
2567 struct page
*page
, void *x
, unsigned long addr
)
2569 void **object
= (void *)x
;
2570 struct kmem_cache_cpu
*c
;
2573 slab_free_hook(s
, x
);
2577 * Determine the currently cpus per cpu slab.
2578 * The cpu may change afterward. However that does not matter since
2579 * data is retrieved via this pointer. If we are on the same cpu
2580 * during the cmpxchg then the free will succedd.
2582 c
= __this_cpu_ptr(s
->cpu_slab
);
2587 if (likely(page
== c
->page
)) {
2588 set_freepointer(s
, object
, c
->freelist
);
2590 if (unlikely(!this_cpu_cmpxchg_double(
2591 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2593 object
, next_tid(tid
)))) {
2595 note_cmpxchg_failure("slab_free", s
, tid
);
2598 stat(s
, FREE_FASTPATH
);
2600 __slab_free(s
, page
, x
, addr
);
2604 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2608 page
= virt_to_head_page(x
);
2610 slab_free(s
, page
, x
, _RET_IP_
);
2612 trace_kmem_cache_free(_RET_IP_
, x
);
2614 EXPORT_SYMBOL(kmem_cache_free
);
2617 * Object placement in a slab is made very easy because we always start at
2618 * offset 0. If we tune the size of the object to the alignment then we can
2619 * get the required alignment by putting one properly sized object after
2622 * Notice that the allocation order determines the sizes of the per cpu
2623 * caches. Each processor has always one slab available for allocations.
2624 * Increasing the allocation order reduces the number of times that slabs
2625 * must be moved on and off the partial lists and is therefore a factor in
2630 * Mininum / Maximum order of slab pages. This influences locking overhead
2631 * and slab fragmentation. A higher order reduces the number of partial slabs
2632 * and increases the number of allocations possible without having to
2633 * take the list_lock.
2635 static int slub_min_order
;
2636 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2637 static int slub_min_objects
;
2640 * Merge control. If this is set then no merging of slab caches will occur.
2641 * (Could be removed. This was introduced to pacify the merge skeptics.)
2643 static int slub_nomerge
;
2646 * Calculate the order of allocation given an slab object size.
2648 * The order of allocation has significant impact on performance and other
2649 * system components. Generally order 0 allocations should be preferred since
2650 * order 0 does not cause fragmentation in the page allocator. Larger objects
2651 * be problematic to put into order 0 slabs because there may be too much
2652 * unused space left. We go to a higher order if more than 1/16th of the slab
2655 * In order to reach satisfactory performance we must ensure that a minimum
2656 * number of objects is in one slab. Otherwise we may generate too much
2657 * activity on the partial lists which requires taking the list_lock. This is
2658 * less a concern for large slabs though which are rarely used.
2660 * slub_max_order specifies the order where we begin to stop considering the
2661 * number of objects in a slab as critical. If we reach slub_max_order then
2662 * we try to keep the page order as low as possible. So we accept more waste
2663 * of space in favor of a small page order.
2665 * Higher order allocations also allow the placement of more objects in a
2666 * slab and thereby reduce object handling overhead. If the user has
2667 * requested a higher mininum order then we start with that one instead of
2668 * the smallest order which will fit the object.
2670 static inline int slab_order(int size
, int min_objects
,
2671 int max_order
, int fract_leftover
, int reserved
)
2675 int min_order
= slub_min_order
;
2677 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2678 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2680 for (order
= max(min_order
,
2681 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2682 order
<= max_order
; order
++) {
2684 unsigned long slab_size
= PAGE_SIZE
<< order
;
2686 if (slab_size
< min_objects
* size
+ reserved
)
2689 rem
= (slab_size
- reserved
) % size
;
2691 if (rem
<= slab_size
/ fract_leftover
)
2699 static inline int calculate_order(int size
, int reserved
)
2707 * Attempt to find best configuration for a slab. This
2708 * works by first attempting to generate a layout with
2709 * the best configuration and backing off gradually.
2711 * First we reduce the acceptable waste in a slab. Then
2712 * we reduce the minimum objects required in a slab.
2714 min_objects
= slub_min_objects
;
2716 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2717 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2718 min_objects
= min(min_objects
, max_objects
);
2720 while (min_objects
> 1) {
2722 while (fraction
>= 4) {
2723 order
= slab_order(size
, min_objects
,
2724 slub_max_order
, fraction
, reserved
);
2725 if (order
<= slub_max_order
)
2733 * We were unable to place multiple objects in a slab. Now
2734 * lets see if we can place a single object there.
2736 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2737 if (order
<= slub_max_order
)
2741 * Doh this slab cannot be placed using slub_max_order.
2743 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2744 if (order
< MAX_ORDER
)
2750 * Figure out what the alignment of the objects will be.
2752 static unsigned long calculate_alignment(unsigned long flags
,
2753 unsigned long align
, unsigned long size
)
2756 * If the user wants hardware cache aligned objects then follow that
2757 * suggestion if the object is sufficiently large.
2759 * The hardware cache alignment cannot override the specified
2760 * alignment though. If that is greater then use it.
2762 if (flags
& SLAB_HWCACHE_ALIGN
) {
2763 unsigned long ralign
= cache_line_size();
2764 while (size
<= ralign
/ 2)
2766 align
= max(align
, ralign
);
2769 if (align
< ARCH_SLAB_MINALIGN
)
2770 align
= ARCH_SLAB_MINALIGN
;
2772 return ALIGN(align
, sizeof(void *));
2776 init_kmem_cache_node(struct kmem_cache_node
*n
)
2779 spin_lock_init(&n
->list_lock
);
2780 INIT_LIST_HEAD(&n
->partial
);
2781 #ifdef CONFIG_SLUB_DEBUG
2782 atomic_long_set(&n
->nr_slabs
, 0);
2783 atomic_long_set(&n
->total_objects
, 0);
2784 INIT_LIST_HEAD(&n
->full
);
2788 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2790 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2791 SLUB_PAGE_SHIFT
* sizeof(struct kmem_cache_cpu
));
2794 * Must align to double word boundary for the double cmpxchg
2795 * instructions to work; see __pcpu_double_call_return_bool().
2797 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2798 2 * sizeof(void *));
2803 init_kmem_cache_cpus(s
);
2808 static struct kmem_cache
*kmem_cache_node
;
2811 * No kmalloc_node yet so do it by hand. We know that this is the first
2812 * slab on the node for this slabcache. There are no concurrent accesses
2815 * Note that this function only works on the kmalloc_node_cache
2816 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2817 * memory on a fresh node that has no slab structures yet.
2819 static void early_kmem_cache_node_alloc(int node
)
2822 struct kmem_cache_node
*n
;
2824 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2826 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2829 if (page_to_nid(page
) != node
) {
2830 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2832 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2833 "in order to be able to continue\n");
2838 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2841 kmem_cache_node
->node
[node
] = n
;
2842 #ifdef CONFIG_SLUB_DEBUG
2843 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2844 init_tracking(kmem_cache_node
, n
);
2846 init_kmem_cache_node(n
);
2847 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2849 add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
2852 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2856 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2857 struct kmem_cache_node
*n
= s
->node
[node
];
2860 kmem_cache_free(kmem_cache_node
, n
);
2862 s
->node
[node
] = NULL
;
2866 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2870 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2871 struct kmem_cache_node
*n
;
2873 if (slab_state
== DOWN
) {
2874 early_kmem_cache_node_alloc(node
);
2877 n
= kmem_cache_alloc_node(kmem_cache_node
,
2881 free_kmem_cache_nodes(s
);
2886 init_kmem_cache_node(n
);
2891 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2893 if (min
< MIN_PARTIAL
)
2895 else if (min
> MAX_PARTIAL
)
2897 s
->min_partial
= min
;
2901 * calculate_sizes() determines the order and the distribution of data within
2904 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2906 unsigned long flags
= s
->flags
;
2907 unsigned long size
= s
->object_size
;
2908 unsigned long align
= s
->align
;
2912 * Round up object size to the next word boundary. We can only
2913 * place the free pointer at word boundaries and this determines
2914 * the possible location of the free pointer.
2916 size
= ALIGN(size
, sizeof(void *));
2918 #ifdef CONFIG_SLUB_DEBUG
2920 * Determine if we can poison the object itself. If the user of
2921 * the slab may touch the object after free or before allocation
2922 * then we should never poison the object itself.
2924 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2926 s
->flags
|= __OBJECT_POISON
;
2928 s
->flags
&= ~__OBJECT_POISON
;
2932 * If we are Redzoning then check if there is some space between the
2933 * end of the object and the free pointer. If not then add an
2934 * additional word to have some bytes to store Redzone information.
2936 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
2937 size
+= sizeof(void *);
2941 * With that we have determined the number of bytes in actual use
2942 * by the object. This is the potential offset to the free pointer.
2946 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2949 * Relocate free pointer after the object if it is not
2950 * permitted to overwrite the first word of the object on
2953 * This is the case if we do RCU, have a constructor or
2954 * destructor or are poisoning the objects.
2957 size
+= sizeof(void *);
2960 #ifdef CONFIG_SLUB_DEBUG
2961 if (flags
& SLAB_STORE_USER
)
2963 * Need to store information about allocs and frees after
2966 size
+= 2 * sizeof(struct track
);
2968 if (flags
& SLAB_RED_ZONE
)
2970 * Add some empty padding so that we can catch
2971 * overwrites from earlier objects rather than let
2972 * tracking information or the free pointer be
2973 * corrupted if a user writes before the start
2976 size
+= sizeof(void *);
2980 * Determine the alignment based on various parameters that the
2981 * user specified and the dynamic determination of cache line size
2984 align
= calculate_alignment(flags
, align
, s
->object_size
);
2988 * SLUB stores one object immediately after another beginning from
2989 * offset 0. In order to align the objects we have to simply size
2990 * each object to conform to the alignment.
2992 size
= ALIGN(size
, align
);
2994 if (forced_order
>= 0)
2995 order
= forced_order
;
2997 order
= calculate_order(size
, s
->reserved
);
3004 s
->allocflags
|= __GFP_COMP
;
3006 if (s
->flags
& SLAB_CACHE_DMA
)
3007 s
->allocflags
|= SLUB_DMA
;
3009 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3010 s
->allocflags
|= __GFP_RECLAIMABLE
;
3013 * Determine the number of objects per slab
3015 s
->oo
= oo_make(order
, size
, s
->reserved
);
3016 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3017 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3020 return !!oo_objects(s
->oo
);
3024 static int kmem_cache_open(struct kmem_cache
*s
,
3025 const char *name
, size_t size
,
3026 size_t align
, unsigned long flags
,
3027 void (*ctor
)(void *))
3029 memset(s
, 0, kmem_size
);
3032 s
->object_size
= size
;
3034 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
3037 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3038 s
->reserved
= sizeof(struct rcu_head
);
3040 if (!calculate_sizes(s
, -1))
3042 if (disable_higher_order_debug
) {
3044 * Disable debugging flags that store metadata if the min slab
3047 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3048 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3050 if (!calculate_sizes(s
, -1))
3055 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3056 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3057 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
3058 /* Enable fast mode */
3059 s
->flags
|= __CMPXCHG_DOUBLE
;
3063 * The larger the object size is, the more pages we want on the partial
3064 * list to avoid pounding the page allocator excessively.
3066 set_min_partial(s
, ilog2(s
->size
) / 2);
3069 * cpu_partial determined the maximum number of objects kept in the
3070 * per cpu partial lists of a processor.
3072 * Per cpu partial lists mainly contain slabs that just have one
3073 * object freed. If they are used for allocation then they can be
3074 * filled up again with minimal effort. The slab will never hit the
3075 * per node partial lists and therefore no locking will be required.
3077 * This setting also determines
3079 * A) The number of objects from per cpu partial slabs dumped to the
3080 * per node list when we reach the limit.
3081 * B) The number of objects in cpu partial slabs to extract from the
3082 * per node list when we run out of per cpu objects. We only fetch 50%
3083 * to keep some capacity around for frees.
3085 if (kmem_cache_debug(s
))
3087 else if (s
->size
>= PAGE_SIZE
)
3089 else if (s
->size
>= 1024)
3091 else if (s
->size
>= 256)
3092 s
->cpu_partial
= 13;
3094 s
->cpu_partial
= 30;
3098 s
->remote_node_defrag_ratio
= 1000;
3100 if (!init_kmem_cache_nodes(s
))
3103 if (alloc_kmem_cache_cpus(s
))
3106 free_kmem_cache_nodes(s
);
3108 if (flags
& SLAB_PANIC
)
3109 panic("Cannot create slab %s size=%lu realsize=%u "
3110 "order=%u offset=%u flags=%lx\n",
3111 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
3117 * Determine the size of a slab object
3119 unsigned int kmem_cache_size(struct kmem_cache
*s
)
3121 return s
->object_size
;
3123 EXPORT_SYMBOL(kmem_cache_size
);
3125 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3128 #ifdef CONFIG_SLUB_DEBUG
3129 void *addr
= page_address(page
);
3131 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3132 sizeof(long), GFP_ATOMIC
);
3135 slab_err(s
, page
, "%s", text
);
3138 get_map(s
, page
, map
);
3139 for_each_object(p
, s
, addr
, page
->objects
) {
3141 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3142 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
3144 print_tracking(s
, p
);
3153 * Attempt to free all partial slabs on a node.
3154 * This is called from kmem_cache_close(). We must be the last thread
3155 * using the cache and therefore we do not need to lock anymore.
3157 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3159 struct page
*page
, *h
;
3161 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3163 remove_partial(n
, page
);
3164 discard_slab(s
, page
);
3166 list_slab_objects(s
, page
,
3167 "Objects remaining on kmem_cache_close()");
3173 * Release all resources used by a slab cache.
3175 static inline int kmem_cache_close(struct kmem_cache
*s
)
3180 free_percpu(s
->cpu_slab
);
3181 /* Attempt to free all objects */
3182 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3183 struct kmem_cache_node
*n
= get_node(s
, node
);
3186 if (n
->nr_partial
|| slabs_node(s
, node
))
3189 free_kmem_cache_nodes(s
);
3194 * Close a cache and release the kmem_cache structure
3195 * (must be used for caches created using kmem_cache_create)
3197 void kmem_cache_destroy(struct kmem_cache
*s
)
3199 mutex_lock(&slab_mutex
);
3203 mutex_unlock(&slab_mutex
);
3204 if (kmem_cache_close(s
)) {
3205 printk(KERN_ERR
"SLUB %s: %s called for cache that "
3206 "still has objects.\n", s
->name
, __func__
);
3209 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
3211 sysfs_slab_remove(s
);
3213 mutex_unlock(&slab_mutex
);
3215 EXPORT_SYMBOL(kmem_cache_destroy
);
3217 /********************************************************************
3219 *******************************************************************/
3221 struct kmem_cache
*kmalloc_caches
[SLUB_PAGE_SHIFT
];
3222 EXPORT_SYMBOL(kmalloc_caches
);
3224 static struct kmem_cache
*kmem_cache
;
3226 #ifdef CONFIG_ZONE_DMA
3227 static struct kmem_cache
*kmalloc_dma_caches
[SLUB_PAGE_SHIFT
];
3230 static int __init
setup_slub_min_order(char *str
)
3232 get_option(&str
, &slub_min_order
);
3237 __setup("slub_min_order=", setup_slub_min_order
);
3239 static int __init
setup_slub_max_order(char *str
)
3241 get_option(&str
, &slub_max_order
);
3242 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3247 __setup("slub_max_order=", setup_slub_max_order
);
3249 static int __init
setup_slub_min_objects(char *str
)
3251 get_option(&str
, &slub_min_objects
);
3256 __setup("slub_min_objects=", setup_slub_min_objects
);
3258 static int __init
setup_slub_nomerge(char *str
)
3264 __setup("slub_nomerge", setup_slub_nomerge
);
3266 static struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
3267 int size
, unsigned int flags
)
3269 struct kmem_cache
*s
;
3271 s
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3274 * This function is called with IRQs disabled during early-boot on
3275 * single CPU so there's no need to take slab_mutex here.
3277 if (!kmem_cache_open(s
, name
, size
, ARCH_KMALLOC_MINALIGN
,
3281 list_add(&s
->list
, &slab_caches
);
3285 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
3290 * Conversion table for small slabs sizes / 8 to the index in the
3291 * kmalloc array. This is necessary for slabs < 192 since we have non power
3292 * of two cache sizes there. The size of larger slabs can be determined using
3295 static s8 size_index
[24] = {
3322 static inline int size_index_elem(size_t bytes
)
3324 return (bytes
- 1) / 8;
3327 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
3333 return ZERO_SIZE_PTR
;
3335 index
= size_index
[size_index_elem(size
)];
3337 index
= fls(size
- 1);
3339 #ifdef CONFIG_ZONE_DMA
3340 if (unlikely((flags
& SLUB_DMA
)))
3341 return kmalloc_dma_caches
[index
];
3344 return kmalloc_caches
[index
];
3347 void *__kmalloc(size_t size
, gfp_t flags
)
3349 struct kmem_cache
*s
;
3352 if (unlikely(size
> SLUB_MAX_SIZE
))
3353 return kmalloc_large(size
, flags
);
3355 s
= get_slab(size
, flags
);
3357 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3360 ret
= slab_alloc(s
, flags
, NUMA_NO_NODE
, _RET_IP_
);
3362 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3366 EXPORT_SYMBOL(__kmalloc
);
3369 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3374 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3375 page
= alloc_pages_node(node
, flags
, get_order(size
));
3377 ptr
= page_address(page
);
3379 kmemleak_alloc(ptr
, size
, 1, flags
);
3383 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3385 struct kmem_cache
*s
;
3388 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3389 ret
= kmalloc_large_node(size
, flags
, node
);
3391 trace_kmalloc_node(_RET_IP_
, ret
,
3392 size
, PAGE_SIZE
<< get_order(size
),
3398 s
= get_slab(size
, flags
);
3400 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3403 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
3405 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3409 EXPORT_SYMBOL(__kmalloc_node
);
3412 size_t ksize(const void *object
)
3416 if (unlikely(object
== ZERO_SIZE_PTR
))
3419 page
= virt_to_head_page(object
);
3421 if (unlikely(!PageSlab(page
))) {
3422 WARN_ON(!PageCompound(page
));
3423 return PAGE_SIZE
<< compound_order(page
);
3426 return slab_ksize(page
->slab
);
3428 EXPORT_SYMBOL(ksize
);
3430 #ifdef CONFIG_SLUB_DEBUG
3431 bool verify_mem_not_deleted(const void *x
)
3434 void *object
= (void *)x
;
3435 unsigned long flags
;
3438 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3441 local_irq_save(flags
);
3443 page
= virt_to_head_page(x
);
3444 if (unlikely(!PageSlab(page
))) {
3445 /* maybe it was from stack? */
3451 if (on_freelist(page
->slab
, page
, object
)) {
3452 object_err(page
->slab
, page
, object
, "Object is on free-list");
3460 local_irq_restore(flags
);
3463 EXPORT_SYMBOL(verify_mem_not_deleted
);
3466 void kfree(const void *x
)
3469 void *object
= (void *)x
;
3471 trace_kfree(_RET_IP_
, x
);
3473 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3476 page
= virt_to_head_page(x
);
3477 if (unlikely(!PageSlab(page
))) {
3478 BUG_ON(!PageCompound(page
));
3483 slab_free(page
->slab
, page
, object
, _RET_IP_
);
3485 EXPORT_SYMBOL(kfree
);
3488 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3489 * the remaining slabs by the number of items in use. The slabs with the
3490 * most items in use come first. New allocations will then fill those up
3491 * and thus they can be removed from the partial lists.
3493 * The slabs with the least items are placed last. This results in them
3494 * being allocated from last increasing the chance that the last objects
3495 * are freed in them.
3497 int kmem_cache_shrink(struct kmem_cache
*s
)
3501 struct kmem_cache_node
*n
;
3504 int objects
= oo_objects(s
->max
);
3505 struct list_head
*slabs_by_inuse
=
3506 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3507 unsigned long flags
;
3509 if (!slabs_by_inuse
)
3513 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3514 n
= get_node(s
, node
);
3519 for (i
= 0; i
< objects
; i
++)
3520 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3522 spin_lock_irqsave(&n
->list_lock
, flags
);
3525 * Build lists indexed by the items in use in each slab.
3527 * Note that concurrent frees may occur while we hold the
3528 * list_lock. page->inuse here is the upper limit.
3530 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3531 list_move(&page
->lru
, slabs_by_inuse
+ page
->inuse
);
3537 * Rebuild the partial list with the slabs filled up most
3538 * first and the least used slabs at the end.
3540 for (i
= objects
- 1; i
> 0; i
--)
3541 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3543 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3545 /* Release empty slabs */
3546 list_for_each_entry_safe(page
, t
, slabs_by_inuse
, lru
)
3547 discard_slab(s
, page
);
3550 kfree(slabs_by_inuse
);
3553 EXPORT_SYMBOL(kmem_cache_shrink
);
3555 #if defined(CONFIG_MEMORY_HOTPLUG)
3556 static int slab_mem_going_offline_callback(void *arg
)
3558 struct kmem_cache
*s
;
3560 mutex_lock(&slab_mutex
);
3561 list_for_each_entry(s
, &slab_caches
, list
)
3562 kmem_cache_shrink(s
);
3563 mutex_unlock(&slab_mutex
);
3568 static void slab_mem_offline_callback(void *arg
)
3570 struct kmem_cache_node
*n
;
3571 struct kmem_cache
*s
;
3572 struct memory_notify
*marg
= arg
;
3575 offline_node
= marg
->status_change_nid
;
3578 * If the node still has available memory. we need kmem_cache_node
3581 if (offline_node
< 0)
3584 mutex_lock(&slab_mutex
);
3585 list_for_each_entry(s
, &slab_caches
, list
) {
3586 n
= get_node(s
, offline_node
);
3589 * if n->nr_slabs > 0, slabs still exist on the node
3590 * that is going down. We were unable to free them,
3591 * and offline_pages() function shouldn't call this
3592 * callback. So, we must fail.
3594 BUG_ON(slabs_node(s
, offline_node
));
3596 s
->node
[offline_node
] = NULL
;
3597 kmem_cache_free(kmem_cache_node
, n
);
3600 mutex_unlock(&slab_mutex
);
3603 static int slab_mem_going_online_callback(void *arg
)
3605 struct kmem_cache_node
*n
;
3606 struct kmem_cache
*s
;
3607 struct memory_notify
*marg
= arg
;
3608 int nid
= marg
->status_change_nid
;
3612 * If the node's memory is already available, then kmem_cache_node is
3613 * already created. Nothing to do.
3619 * We are bringing a node online. No memory is available yet. We must
3620 * allocate a kmem_cache_node structure in order to bring the node
3623 mutex_lock(&slab_mutex
);
3624 list_for_each_entry(s
, &slab_caches
, list
) {
3626 * XXX: kmem_cache_alloc_node will fallback to other nodes
3627 * since memory is not yet available from the node that
3630 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3635 init_kmem_cache_node(n
);
3639 mutex_unlock(&slab_mutex
);
3643 static int slab_memory_callback(struct notifier_block
*self
,
3644 unsigned long action
, void *arg
)
3649 case MEM_GOING_ONLINE
:
3650 ret
= slab_mem_going_online_callback(arg
);
3652 case MEM_GOING_OFFLINE
:
3653 ret
= slab_mem_going_offline_callback(arg
);
3656 case MEM_CANCEL_ONLINE
:
3657 slab_mem_offline_callback(arg
);
3660 case MEM_CANCEL_OFFLINE
:
3664 ret
= notifier_from_errno(ret
);
3670 #endif /* CONFIG_MEMORY_HOTPLUG */
3672 /********************************************************************
3673 * Basic setup of slabs
3674 *******************************************************************/
3677 * Used for early kmem_cache structures that were allocated using
3678 * the page allocator
3681 static void __init
kmem_cache_bootstrap_fixup(struct kmem_cache
*s
)
3685 list_add(&s
->list
, &slab_caches
);
3688 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3689 struct kmem_cache_node
*n
= get_node(s
, node
);
3693 list_for_each_entry(p
, &n
->partial
, lru
)
3696 #ifdef CONFIG_SLUB_DEBUG
3697 list_for_each_entry(p
, &n
->full
, lru
)
3704 void __init
kmem_cache_init(void)
3708 struct kmem_cache
*temp_kmem_cache
;
3710 struct kmem_cache
*temp_kmem_cache_node
;
3711 unsigned long kmalloc_size
;
3713 if (debug_guardpage_minorder())
3716 kmem_size
= offsetof(struct kmem_cache
, node
) +
3717 nr_node_ids
* sizeof(struct kmem_cache_node
*);
3719 /* Allocate two kmem_caches from the page allocator */
3720 kmalloc_size
= ALIGN(kmem_size
, cache_line_size());
3721 order
= get_order(2 * kmalloc_size
);
3722 kmem_cache
= (void *)__get_free_pages(GFP_NOWAIT
, order
);
3725 * Must first have the slab cache available for the allocations of the
3726 * struct kmem_cache_node's. There is special bootstrap code in
3727 * kmem_cache_open for slab_state == DOWN.
3729 kmem_cache_node
= (void *)kmem_cache
+ kmalloc_size
;
3731 kmem_cache_open(kmem_cache_node
, "kmem_cache_node",
3732 sizeof(struct kmem_cache_node
),
3733 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3735 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3737 /* Able to allocate the per node structures */
3738 slab_state
= PARTIAL
;
3740 temp_kmem_cache
= kmem_cache
;
3741 kmem_cache_open(kmem_cache
, "kmem_cache", kmem_size
,
3742 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3743 kmem_cache
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3744 memcpy(kmem_cache
, temp_kmem_cache
, kmem_size
);
3747 * Allocate kmem_cache_node properly from the kmem_cache slab.
3748 * kmem_cache_node is separately allocated so no need to
3749 * update any list pointers.
3751 temp_kmem_cache_node
= kmem_cache_node
;
3753 kmem_cache_node
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3754 memcpy(kmem_cache_node
, temp_kmem_cache_node
, kmem_size
);
3756 kmem_cache_bootstrap_fixup(kmem_cache_node
);
3759 kmem_cache_bootstrap_fixup(kmem_cache
);
3761 /* Free temporary boot structure */
3762 free_pages((unsigned long)temp_kmem_cache
, order
);
3764 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3767 * Patch up the size_index table if we have strange large alignment
3768 * requirements for the kmalloc array. This is only the case for
3769 * MIPS it seems. The standard arches will not generate any code here.
3771 * Largest permitted alignment is 256 bytes due to the way we
3772 * handle the index determination for the smaller caches.
3774 * Make sure that nothing crazy happens if someone starts tinkering
3775 * around with ARCH_KMALLOC_MINALIGN
3777 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3778 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3780 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3781 int elem
= size_index_elem(i
);
3782 if (elem
>= ARRAY_SIZE(size_index
))
3784 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3787 if (KMALLOC_MIN_SIZE
== 64) {
3789 * The 96 byte size cache is not used if the alignment
3792 for (i
= 64 + 8; i
<= 96; i
+= 8)
3793 size_index
[size_index_elem(i
)] = 7;
3794 } else if (KMALLOC_MIN_SIZE
== 128) {
3796 * The 192 byte sized cache is not used if the alignment
3797 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3800 for (i
= 128 + 8; i
<= 192; i
+= 8)
3801 size_index
[size_index_elem(i
)] = 8;
3804 /* Caches that are not of the two-to-the-power-of size */
3805 if (KMALLOC_MIN_SIZE
<= 32) {
3806 kmalloc_caches
[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3810 if (KMALLOC_MIN_SIZE
<= 64) {
3811 kmalloc_caches
[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3815 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3816 kmalloc_caches
[i
] = create_kmalloc_cache("kmalloc", 1 << i
, 0);
3822 /* Provide the correct kmalloc names now that the caches are up */
3823 if (KMALLOC_MIN_SIZE
<= 32) {
3824 kmalloc_caches
[1]->name
= kstrdup(kmalloc_caches
[1]->name
, GFP_NOWAIT
);
3825 BUG_ON(!kmalloc_caches
[1]->name
);
3828 if (KMALLOC_MIN_SIZE
<= 64) {
3829 kmalloc_caches
[2]->name
= kstrdup(kmalloc_caches
[2]->name
, GFP_NOWAIT
);
3830 BUG_ON(!kmalloc_caches
[2]->name
);
3833 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3834 char *s
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3837 kmalloc_caches
[i
]->name
= s
;
3841 register_cpu_notifier(&slab_notifier
);
3844 #ifdef CONFIG_ZONE_DMA
3845 for (i
= 0; i
< SLUB_PAGE_SHIFT
; i
++) {
3846 struct kmem_cache
*s
= kmalloc_caches
[i
];
3849 char *name
= kasprintf(GFP_NOWAIT
,
3850 "dma-kmalloc-%d", s
->object_size
);
3853 kmalloc_dma_caches
[i
] = create_kmalloc_cache(name
,
3854 s
->object_size
, SLAB_CACHE_DMA
);
3859 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3860 " CPUs=%d, Nodes=%d\n",
3861 caches
, cache_line_size(),
3862 slub_min_order
, slub_max_order
, slub_min_objects
,
3863 nr_cpu_ids
, nr_node_ids
);
3866 void __init
kmem_cache_init_late(void)
3871 * Find a mergeable slab cache
3873 static int slab_unmergeable(struct kmem_cache
*s
)
3875 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3882 * We may have set a slab to be unmergeable during bootstrap.
3884 if (s
->refcount
< 0)
3890 static struct kmem_cache
*find_mergeable(size_t size
,
3891 size_t align
, unsigned long flags
, const char *name
,
3892 void (*ctor
)(void *))
3894 struct kmem_cache
*s
;
3896 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3902 size
= ALIGN(size
, sizeof(void *));
3903 align
= calculate_alignment(flags
, align
, size
);
3904 size
= ALIGN(size
, align
);
3905 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3907 list_for_each_entry(s
, &slab_caches
, list
) {
3908 if (slab_unmergeable(s
))
3914 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3917 * Check if alignment is compatible.
3918 * Courtesy of Adrian Drzewiecki
3920 if ((s
->size
& ~(align
- 1)) != s
->size
)
3923 if (s
->size
- size
>= sizeof(void *))
3931 struct kmem_cache
*__kmem_cache_create(const char *name
, size_t size
,
3932 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3934 struct kmem_cache
*s
;
3937 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3941 * Adjust the object sizes so that we clear
3942 * the complete object on kzalloc.
3944 s
->object_size
= max(s
->object_size
, (int)size
);
3945 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3947 if (sysfs_slab_alias(s
, name
)) {
3954 n
= kstrdup(name
, GFP_KERNEL
);
3958 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3960 if (kmem_cache_open(s
, n
,
3961 size
, align
, flags
, ctor
)) {
3964 list_add(&s
->list
, &slab_caches
);
3965 mutex_unlock(&slab_mutex
);
3966 r
= sysfs_slab_add(s
);
3967 mutex_lock(&slab_mutex
);
3973 kmem_cache_close(s
);
3983 * Use the cpu notifier to insure that the cpu slabs are flushed when
3986 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3987 unsigned long action
, void *hcpu
)
3989 long cpu
= (long)hcpu
;
3990 struct kmem_cache
*s
;
3991 unsigned long flags
;
3994 case CPU_UP_CANCELED
:
3995 case CPU_UP_CANCELED_FROZEN
:
3997 case CPU_DEAD_FROZEN
:
3998 mutex_lock(&slab_mutex
);
3999 list_for_each_entry(s
, &slab_caches
, list
) {
4000 local_irq_save(flags
);
4001 __flush_cpu_slab(s
, cpu
);
4002 local_irq_restore(flags
);
4004 mutex_unlock(&slab_mutex
);
4012 static struct notifier_block __cpuinitdata slab_notifier
= {
4013 .notifier_call
= slab_cpuup_callback
4018 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4020 struct kmem_cache
*s
;
4023 if (unlikely(size
> SLUB_MAX_SIZE
))
4024 return kmalloc_large(size
, gfpflags
);
4026 s
= get_slab(size
, gfpflags
);
4028 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4031 ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, caller
);
4033 /* Honor the call site pointer we received. */
4034 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4040 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4041 int node
, unsigned long caller
)
4043 struct kmem_cache
*s
;
4046 if (unlikely(size
> SLUB_MAX_SIZE
)) {
4047 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4049 trace_kmalloc_node(caller
, ret
,
4050 size
, PAGE_SIZE
<< get_order(size
),
4056 s
= get_slab(size
, gfpflags
);
4058 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4061 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
4063 /* Honor the call site pointer we received. */
4064 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4071 static int count_inuse(struct page
*page
)
4076 static int count_total(struct page
*page
)
4078 return page
->objects
;
4082 #ifdef CONFIG_SLUB_DEBUG
4083 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4087 void *addr
= page_address(page
);
4089 if (!check_slab(s
, page
) ||
4090 !on_freelist(s
, page
, NULL
))
4093 /* Now we know that a valid freelist exists */
4094 bitmap_zero(map
, page
->objects
);
4096 get_map(s
, page
, map
);
4097 for_each_object(p
, s
, addr
, page
->objects
) {
4098 if (test_bit(slab_index(p
, s
, addr
), map
))
4099 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4103 for_each_object(p
, s
, addr
, page
->objects
)
4104 if (!test_bit(slab_index(p
, s
, addr
), map
))
4105 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4110 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4114 validate_slab(s
, page
, map
);
4118 static int validate_slab_node(struct kmem_cache
*s
,
4119 struct kmem_cache_node
*n
, unsigned long *map
)
4121 unsigned long count
= 0;
4123 unsigned long flags
;
4125 spin_lock_irqsave(&n
->list_lock
, flags
);
4127 list_for_each_entry(page
, &n
->partial
, lru
) {
4128 validate_slab_slab(s
, page
, map
);
4131 if (count
!= n
->nr_partial
)
4132 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
4133 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
4135 if (!(s
->flags
& SLAB_STORE_USER
))
4138 list_for_each_entry(page
, &n
->full
, lru
) {
4139 validate_slab_slab(s
, page
, map
);
4142 if (count
!= atomic_long_read(&n
->nr_slabs
))
4143 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
4144 "counter=%ld\n", s
->name
, count
,
4145 atomic_long_read(&n
->nr_slabs
));
4148 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4152 static long validate_slab_cache(struct kmem_cache
*s
)
4155 unsigned long count
= 0;
4156 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4157 sizeof(unsigned long), GFP_KERNEL
);
4163 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4164 struct kmem_cache_node
*n
= get_node(s
, node
);
4166 count
+= validate_slab_node(s
, n
, map
);
4172 * Generate lists of code addresses where slabcache objects are allocated
4177 unsigned long count
;
4184 DECLARE_BITMAP(cpus
, NR_CPUS
);
4190 unsigned long count
;
4191 struct location
*loc
;
4194 static void free_loc_track(struct loc_track
*t
)
4197 free_pages((unsigned long)t
->loc
,
4198 get_order(sizeof(struct location
) * t
->max
));
4201 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4206 order
= get_order(sizeof(struct location
) * max
);
4208 l
= (void *)__get_free_pages(flags
, order
);
4213 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4221 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4222 const struct track
*track
)
4224 long start
, end
, pos
;
4226 unsigned long caddr
;
4227 unsigned long age
= jiffies
- track
->when
;
4233 pos
= start
+ (end
- start
+ 1) / 2;
4236 * There is nothing at "end". If we end up there
4237 * we need to add something to before end.
4242 caddr
= t
->loc
[pos
].addr
;
4243 if (track
->addr
== caddr
) {
4249 if (age
< l
->min_time
)
4251 if (age
> l
->max_time
)
4254 if (track
->pid
< l
->min_pid
)
4255 l
->min_pid
= track
->pid
;
4256 if (track
->pid
> l
->max_pid
)
4257 l
->max_pid
= track
->pid
;
4259 cpumask_set_cpu(track
->cpu
,
4260 to_cpumask(l
->cpus
));
4262 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4266 if (track
->addr
< caddr
)
4273 * Not found. Insert new tracking element.
4275 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4281 (t
->count
- pos
) * sizeof(struct location
));
4284 l
->addr
= track
->addr
;
4288 l
->min_pid
= track
->pid
;
4289 l
->max_pid
= track
->pid
;
4290 cpumask_clear(to_cpumask(l
->cpus
));
4291 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4292 nodes_clear(l
->nodes
);
4293 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4297 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4298 struct page
*page
, enum track_item alloc
,
4301 void *addr
= page_address(page
);
4304 bitmap_zero(map
, page
->objects
);
4305 get_map(s
, page
, map
);
4307 for_each_object(p
, s
, addr
, page
->objects
)
4308 if (!test_bit(slab_index(p
, s
, addr
), map
))
4309 add_location(t
, s
, get_track(s
, p
, alloc
));
4312 static int list_locations(struct kmem_cache
*s
, char *buf
,
4313 enum track_item alloc
)
4317 struct loc_track t
= { 0, 0, NULL
};
4319 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4320 sizeof(unsigned long), GFP_KERNEL
);
4322 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4325 return sprintf(buf
, "Out of memory\n");
4327 /* Push back cpu slabs */
4330 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4331 struct kmem_cache_node
*n
= get_node(s
, node
);
4332 unsigned long flags
;
4335 if (!atomic_long_read(&n
->nr_slabs
))
4338 spin_lock_irqsave(&n
->list_lock
, flags
);
4339 list_for_each_entry(page
, &n
->partial
, lru
)
4340 process_slab(&t
, s
, page
, alloc
, map
);
4341 list_for_each_entry(page
, &n
->full
, lru
)
4342 process_slab(&t
, s
, page
, alloc
, map
);
4343 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4346 for (i
= 0; i
< t
.count
; i
++) {
4347 struct location
*l
= &t
.loc
[i
];
4349 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4351 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4354 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4356 len
+= sprintf(buf
+ len
, "<not-available>");
4358 if (l
->sum_time
!= l
->min_time
) {
4359 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4361 (long)div_u64(l
->sum_time
, l
->count
),
4364 len
+= sprintf(buf
+ len
, " age=%ld",
4367 if (l
->min_pid
!= l
->max_pid
)
4368 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4369 l
->min_pid
, l
->max_pid
);
4371 len
+= sprintf(buf
+ len
, " pid=%ld",
4374 if (num_online_cpus() > 1 &&
4375 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4376 len
< PAGE_SIZE
- 60) {
4377 len
+= sprintf(buf
+ len
, " cpus=");
4378 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4379 to_cpumask(l
->cpus
));
4382 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4383 len
< PAGE_SIZE
- 60) {
4384 len
+= sprintf(buf
+ len
, " nodes=");
4385 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4389 len
+= sprintf(buf
+ len
, "\n");
4395 len
+= sprintf(buf
, "No data\n");
4400 #ifdef SLUB_RESILIENCY_TEST
4401 static void resiliency_test(void)
4405 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || SLUB_PAGE_SHIFT
< 10);
4407 printk(KERN_ERR
"SLUB resiliency testing\n");
4408 printk(KERN_ERR
"-----------------------\n");
4409 printk(KERN_ERR
"A. Corruption after allocation\n");
4411 p
= kzalloc(16, GFP_KERNEL
);
4413 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
4414 " 0x12->0x%p\n\n", p
+ 16);
4416 validate_slab_cache(kmalloc_caches
[4]);
4418 /* Hmmm... The next two are dangerous */
4419 p
= kzalloc(32, GFP_KERNEL
);
4420 p
[32 + sizeof(void *)] = 0x34;
4421 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
4422 " 0x34 -> -0x%p\n", p
);
4424 "If allocated object is overwritten then not detectable\n\n");
4426 validate_slab_cache(kmalloc_caches
[5]);
4427 p
= kzalloc(64, GFP_KERNEL
);
4428 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4430 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4433 "If allocated object is overwritten then not detectable\n\n");
4434 validate_slab_cache(kmalloc_caches
[6]);
4436 printk(KERN_ERR
"\nB. Corruption after free\n");
4437 p
= kzalloc(128, GFP_KERNEL
);
4440 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4441 validate_slab_cache(kmalloc_caches
[7]);
4443 p
= kzalloc(256, GFP_KERNEL
);
4446 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4448 validate_slab_cache(kmalloc_caches
[8]);
4450 p
= kzalloc(512, GFP_KERNEL
);
4453 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4454 validate_slab_cache(kmalloc_caches
[9]);
4458 static void resiliency_test(void) {};
4463 enum slab_stat_type
{
4464 SL_ALL
, /* All slabs */
4465 SL_PARTIAL
, /* Only partially allocated slabs */
4466 SL_CPU
, /* Only slabs used for cpu caches */
4467 SL_OBJECTS
, /* Determine allocated objects not slabs */
4468 SL_TOTAL
/* Determine object capacity not slabs */
4471 #define SO_ALL (1 << SL_ALL)
4472 #define SO_PARTIAL (1 << SL_PARTIAL)
4473 #define SO_CPU (1 << SL_CPU)
4474 #define SO_OBJECTS (1 << SL_OBJECTS)
4475 #define SO_TOTAL (1 << SL_TOTAL)
4477 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4478 char *buf
, unsigned long flags
)
4480 unsigned long total
= 0;
4483 unsigned long *nodes
;
4484 unsigned long *per_cpu
;
4486 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4489 per_cpu
= nodes
+ nr_node_ids
;
4491 if (flags
& SO_CPU
) {
4494 for_each_possible_cpu(cpu
) {
4495 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
4499 page
= ACCESS_ONCE(c
->page
);
4503 node
= page_to_nid(page
);
4504 if (flags
& SO_TOTAL
)
4506 else if (flags
& SO_OBJECTS
)
4514 page
= ACCESS_ONCE(c
->partial
);
4525 lock_memory_hotplug();
4526 #ifdef CONFIG_SLUB_DEBUG
4527 if (flags
& SO_ALL
) {
4528 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4529 struct kmem_cache_node
*n
= get_node(s
, node
);
4531 if (flags
& SO_TOTAL
)
4532 x
= atomic_long_read(&n
->total_objects
);
4533 else if (flags
& SO_OBJECTS
)
4534 x
= atomic_long_read(&n
->total_objects
) -
4535 count_partial(n
, count_free
);
4538 x
= atomic_long_read(&n
->nr_slabs
);
4545 if (flags
& SO_PARTIAL
) {
4546 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4547 struct kmem_cache_node
*n
= get_node(s
, node
);
4549 if (flags
& SO_TOTAL
)
4550 x
= count_partial(n
, count_total
);
4551 else if (flags
& SO_OBJECTS
)
4552 x
= count_partial(n
, count_inuse
);
4559 x
= sprintf(buf
, "%lu", total
);
4561 for_each_node_state(node
, N_NORMAL_MEMORY
)
4563 x
+= sprintf(buf
+ x
, " N%d=%lu",
4566 unlock_memory_hotplug();
4568 return x
+ sprintf(buf
+ x
, "\n");
4571 #ifdef CONFIG_SLUB_DEBUG
4572 static int any_slab_objects(struct kmem_cache
*s
)
4576 for_each_online_node(node
) {
4577 struct kmem_cache_node
*n
= get_node(s
, node
);
4582 if (atomic_long_read(&n
->total_objects
))
4589 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4590 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4592 struct slab_attribute
{
4593 struct attribute attr
;
4594 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4595 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4598 #define SLAB_ATTR_RO(_name) \
4599 static struct slab_attribute _name##_attr = \
4600 __ATTR(_name, 0400, _name##_show, NULL)
4602 #define SLAB_ATTR(_name) \
4603 static struct slab_attribute _name##_attr = \
4604 __ATTR(_name, 0600, _name##_show, _name##_store)
4606 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4608 return sprintf(buf
, "%d\n", s
->size
);
4610 SLAB_ATTR_RO(slab_size
);
4612 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4614 return sprintf(buf
, "%d\n", s
->align
);
4616 SLAB_ATTR_RO(align
);
4618 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4620 return sprintf(buf
, "%d\n", s
->object_size
);
4622 SLAB_ATTR_RO(object_size
);
4624 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4626 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4628 SLAB_ATTR_RO(objs_per_slab
);
4630 static ssize_t
order_store(struct kmem_cache
*s
,
4631 const char *buf
, size_t length
)
4633 unsigned long order
;
4636 err
= strict_strtoul(buf
, 10, &order
);
4640 if (order
> slub_max_order
|| order
< slub_min_order
)
4643 calculate_sizes(s
, order
);
4647 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4649 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4653 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4655 return sprintf(buf
, "%lu\n", s
->min_partial
);
4658 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4664 err
= strict_strtoul(buf
, 10, &min
);
4668 set_min_partial(s
, min
);
4671 SLAB_ATTR(min_partial
);
4673 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4675 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4678 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4681 unsigned long objects
;
4684 err
= strict_strtoul(buf
, 10, &objects
);
4687 if (objects
&& kmem_cache_debug(s
))
4690 s
->cpu_partial
= objects
;
4694 SLAB_ATTR(cpu_partial
);
4696 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4700 return sprintf(buf
, "%pS\n", s
->ctor
);
4704 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4706 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4708 SLAB_ATTR_RO(aliases
);
4710 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4712 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4714 SLAB_ATTR_RO(partial
);
4716 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4718 return show_slab_objects(s
, buf
, SO_CPU
);
4720 SLAB_ATTR_RO(cpu_slabs
);
4722 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4724 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4726 SLAB_ATTR_RO(objects
);
4728 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4730 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4732 SLAB_ATTR_RO(objects_partial
);
4734 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4741 for_each_online_cpu(cpu
) {
4742 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4745 pages
+= page
->pages
;
4746 objects
+= page
->pobjects
;
4750 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4753 for_each_online_cpu(cpu
) {
4754 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4756 if (page
&& len
< PAGE_SIZE
- 20)
4757 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4758 page
->pobjects
, page
->pages
);
4761 return len
+ sprintf(buf
+ len
, "\n");
4763 SLAB_ATTR_RO(slabs_cpu_partial
);
4765 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4767 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4770 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4771 const char *buf
, size_t length
)
4773 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4775 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4778 SLAB_ATTR(reclaim_account
);
4780 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4782 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4784 SLAB_ATTR_RO(hwcache_align
);
4786 #ifdef CONFIG_ZONE_DMA
4787 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4789 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4791 SLAB_ATTR_RO(cache_dma
);
4794 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4796 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4798 SLAB_ATTR_RO(destroy_by_rcu
);
4800 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4802 return sprintf(buf
, "%d\n", s
->reserved
);
4804 SLAB_ATTR_RO(reserved
);
4806 #ifdef CONFIG_SLUB_DEBUG
4807 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4809 return show_slab_objects(s
, buf
, SO_ALL
);
4811 SLAB_ATTR_RO(slabs
);
4813 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4815 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4817 SLAB_ATTR_RO(total_objects
);
4819 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4821 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4824 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4825 const char *buf
, size_t length
)
4827 s
->flags
&= ~SLAB_DEBUG_FREE
;
4828 if (buf
[0] == '1') {
4829 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4830 s
->flags
|= SLAB_DEBUG_FREE
;
4834 SLAB_ATTR(sanity_checks
);
4836 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4838 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4841 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4844 s
->flags
&= ~SLAB_TRACE
;
4845 if (buf
[0] == '1') {
4846 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4847 s
->flags
|= SLAB_TRACE
;
4853 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4855 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4858 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4859 const char *buf
, size_t length
)
4861 if (any_slab_objects(s
))
4864 s
->flags
&= ~SLAB_RED_ZONE
;
4865 if (buf
[0] == '1') {
4866 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4867 s
->flags
|= SLAB_RED_ZONE
;
4869 calculate_sizes(s
, -1);
4872 SLAB_ATTR(red_zone
);
4874 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4876 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4879 static ssize_t
poison_store(struct kmem_cache
*s
,
4880 const char *buf
, size_t length
)
4882 if (any_slab_objects(s
))
4885 s
->flags
&= ~SLAB_POISON
;
4886 if (buf
[0] == '1') {
4887 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4888 s
->flags
|= SLAB_POISON
;
4890 calculate_sizes(s
, -1);
4895 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4897 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4900 static ssize_t
store_user_store(struct kmem_cache
*s
,
4901 const char *buf
, size_t length
)
4903 if (any_slab_objects(s
))
4906 s
->flags
&= ~SLAB_STORE_USER
;
4907 if (buf
[0] == '1') {
4908 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4909 s
->flags
|= SLAB_STORE_USER
;
4911 calculate_sizes(s
, -1);
4914 SLAB_ATTR(store_user
);
4916 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4921 static ssize_t
validate_store(struct kmem_cache
*s
,
4922 const char *buf
, size_t length
)
4926 if (buf
[0] == '1') {
4927 ret
= validate_slab_cache(s
);
4933 SLAB_ATTR(validate
);
4935 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4937 if (!(s
->flags
& SLAB_STORE_USER
))
4939 return list_locations(s
, buf
, TRACK_ALLOC
);
4941 SLAB_ATTR_RO(alloc_calls
);
4943 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4945 if (!(s
->flags
& SLAB_STORE_USER
))
4947 return list_locations(s
, buf
, TRACK_FREE
);
4949 SLAB_ATTR_RO(free_calls
);
4950 #endif /* CONFIG_SLUB_DEBUG */
4952 #ifdef CONFIG_FAILSLAB
4953 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4955 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4958 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4961 s
->flags
&= ~SLAB_FAILSLAB
;
4963 s
->flags
|= SLAB_FAILSLAB
;
4966 SLAB_ATTR(failslab
);
4969 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4974 static ssize_t
shrink_store(struct kmem_cache
*s
,
4975 const char *buf
, size_t length
)
4977 if (buf
[0] == '1') {
4978 int rc
= kmem_cache_shrink(s
);
4989 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4991 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4994 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4995 const char *buf
, size_t length
)
4997 unsigned long ratio
;
5000 err
= strict_strtoul(buf
, 10, &ratio
);
5005 s
->remote_node_defrag_ratio
= ratio
* 10;
5009 SLAB_ATTR(remote_node_defrag_ratio
);
5012 #ifdef CONFIG_SLUB_STATS
5013 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5015 unsigned long sum
= 0;
5018 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5023 for_each_online_cpu(cpu
) {
5024 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5030 len
= sprintf(buf
, "%lu", sum
);
5033 for_each_online_cpu(cpu
) {
5034 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5035 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5039 return len
+ sprintf(buf
+ len
, "\n");
5042 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5046 for_each_online_cpu(cpu
)
5047 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5050 #define STAT_ATTR(si, text) \
5051 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5053 return show_stat(s, buf, si); \
5055 static ssize_t text##_store(struct kmem_cache *s, \
5056 const char *buf, size_t length) \
5058 if (buf[0] != '0') \
5060 clear_stat(s, si); \
5065 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5066 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5067 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5068 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5069 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5070 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5071 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5072 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5073 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5074 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5075 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5076 STAT_ATTR(FREE_SLAB
, free_slab
);
5077 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5078 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5079 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5080 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5081 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5082 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5083 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5084 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5085 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5086 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5087 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5088 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5089 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5090 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5093 static struct attribute
*slab_attrs
[] = {
5094 &slab_size_attr
.attr
,
5095 &object_size_attr
.attr
,
5096 &objs_per_slab_attr
.attr
,
5098 &min_partial_attr
.attr
,
5099 &cpu_partial_attr
.attr
,
5101 &objects_partial_attr
.attr
,
5103 &cpu_slabs_attr
.attr
,
5107 &hwcache_align_attr
.attr
,
5108 &reclaim_account_attr
.attr
,
5109 &destroy_by_rcu_attr
.attr
,
5111 &reserved_attr
.attr
,
5112 &slabs_cpu_partial_attr
.attr
,
5113 #ifdef CONFIG_SLUB_DEBUG
5114 &total_objects_attr
.attr
,
5116 &sanity_checks_attr
.attr
,
5118 &red_zone_attr
.attr
,
5120 &store_user_attr
.attr
,
5121 &validate_attr
.attr
,
5122 &alloc_calls_attr
.attr
,
5123 &free_calls_attr
.attr
,
5125 #ifdef CONFIG_ZONE_DMA
5126 &cache_dma_attr
.attr
,
5129 &remote_node_defrag_ratio_attr
.attr
,
5131 #ifdef CONFIG_SLUB_STATS
5132 &alloc_fastpath_attr
.attr
,
5133 &alloc_slowpath_attr
.attr
,
5134 &free_fastpath_attr
.attr
,
5135 &free_slowpath_attr
.attr
,
5136 &free_frozen_attr
.attr
,
5137 &free_add_partial_attr
.attr
,
5138 &free_remove_partial_attr
.attr
,
5139 &alloc_from_partial_attr
.attr
,
5140 &alloc_slab_attr
.attr
,
5141 &alloc_refill_attr
.attr
,
5142 &alloc_node_mismatch_attr
.attr
,
5143 &free_slab_attr
.attr
,
5144 &cpuslab_flush_attr
.attr
,
5145 &deactivate_full_attr
.attr
,
5146 &deactivate_empty_attr
.attr
,
5147 &deactivate_to_head_attr
.attr
,
5148 &deactivate_to_tail_attr
.attr
,
5149 &deactivate_remote_frees_attr
.attr
,
5150 &deactivate_bypass_attr
.attr
,
5151 &order_fallback_attr
.attr
,
5152 &cmpxchg_double_fail_attr
.attr
,
5153 &cmpxchg_double_cpu_fail_attr
.attr
,
5154 &cpu_partial_alloc_attr
.attr
,
5155 &cpu_partial_free_attr
.attr
,
5156 &cpu_partial_node_attr
.attr
,
5157 &cpu_partial_drain_attr
.attr
,
5159 #ifdef CONFIG_FAILSLAB
5160 &failslab_attr
.attr
,
5166 static struct attribute_group slab_attr_group
= {
5167 .attrs
= slab_attrs
,
5170 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5171 struct attribute
*attr
,
5174 struct slab_attribute
*attribute
;
5175 struct kmem_cache
*s
;
5178 attribute
= to_slab_attr(attr
);
5181 if (!attribute
->show
)
5184 err
= attribute
->show(s
, buf
);
5189 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5190 struct attribute
*attr
,
5191 const char *buf
, size_t len
)
5193 struct slab_attribute
*attribute
;
5194 struct kmem_cache
*s
;
5197 attribute
= to_slab_attr(attr
);
5200 if (!attribute
->store
)
5203 err
= attribute
->store(s
, buf
, len
);
5208 static void kmem_cache_release(struct kobject
*kobj
)
5210 struct kmem_cache
*s
= to_slab(kobj
);
5216 static const struct sysfs_ops slab_sysfs_ops
= {
5217 .show
= slab_attr_show
,
5218 .store
= slab_attr_store
,
5221 static struct kobj_type slab_ktype
= {
5222 .sysfs_ops
= &slab_sysfs_ops
,
5223 .release
= kmem_cache_release
5226 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5228 struct kobj_type
*ktype
= get_ktype(kobj
);
5230 if (ktype
== &slab_ktype
)
5235 static const struct kset_uevent_ops slab_uevent_ops
= {
5236 .filter
= uevent_filter
,
5239 static struct kset
*slab_kset
;
5241 #define ID_STR_LENGTH 64
5243 /* Create a unique string id for a slab cache:
5245 * Format :[flags-]size
5247 static char *create_unique_id(struct kmem_cache
*s
)
5249 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5256 * First flags affecting slabcache operations. We will only
5257 * get here for aliasable slabs so we do not need to support
5258 * too many flags. The flags here must cover all flags that
5259 * are matched during merging to guarantee that the id is
5262 if (s
->flags
& SLAB_CACHE_DMA
)
5264 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5266 if (s
->flags
& SLAB_DEBUG_FREE
)
5268 if (!(s
->flags
& SLAB_NOTRACK
))
5272 p
+= sprintf(p
, "%07d", s
->size
);
5273 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5277 static int sysfs_slab_add(struct kmem_cache
*s
)
5283 if (slab_state
< FULL
)
5284 /* Defer until later */
5287 unmergeable
= slab_unmergeable(s
);
5290 * Slabcache can never be merged so we can use the name proper.
5291 * This is typically the case for debug situations. In that
5292 * case we can catch duplicate names easily.
5294 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5298 * Create a unique name for the slab as a target
5301 name
= create_unique_id(s
);
5304 s
->kobj
.kset
= slab_kset
;
5305 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
5307 kobject_put(&s
->kobj
);
5311 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5313 kobject_del(&s
->kobj
);
5314 kobject_put(&s
->kobj
);
5317 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5319 /* Setup first alias */
5320 sysfs_slab_alias(s
, s
->name
);
5326 static void sysfs_slab_remove(struct kmem_cache
*s
)
5328 if (slab_state
< FULL
)
5330 * Sysfs has not been setup yet so no need to remove the
5335 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5336 kobject_del(&s
->kobj
);
5337 kobject_put(&s
->kobj
);
5341 * Need to buffer aliases during bootup until sysfs becomes
5342 * available lest we lose that information.
5344 struct saved_alias
{
5345 struct kmem_cache
*s
;
5347 struct saved_alias
*next
;
5350 static struct saved_alias
*alias_list
;
5352 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5354 struct saved_alias
*al
;
5356 if (slab_state
== FULL
) {
5358 * If we have a leftover link then remove it.
5360 sysfs_remove_link(&slab_kset
->kobj
, name
);
5361 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5364 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5370 al
->next
= alias_list
;
5375 static int __init
slab_sysfs_init(void)
5377 struct kmem_cache
*s
;
5380 mutex_lock(&slab_mutex
);
5382 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5384 mutex_unlock(&slab_mutex
);
5385 printk(KERN_ERR
"Cannot register slab subsystem.\n");
5391 list_for_each_entry(s
, &slab_caches
, list
) {
5392 err
= sysfs_slab_add(s
);
5394 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
5395 " to sysfs\n", s
->name
);
5398 while (alias_list
) {
5399 struct saved_alias
*al
= alias_list
;
5401 alias_list
= alias_list
->next
;
5402 err
= sysfs_slab_alias(al
->s
, al
->name
);
5404 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
5405 " %s to sysfs\n", al
->name
);
5409 mutex_unlock(&slab_mutex
);
5414 __initcall(slab_sysfs_init
);
5415 #endif /* CONFIG_SYSFS */
5418 * The /proc/slabinfo ABI
5420 #ifdef CONFIG_SLABINFO
5421 static void print_slabinfo_header(struct seq_file
*m
)
5423 seq_puts(m
, "slabinfo - version: 2.1\n");
5424 seq_puts(m
, "# name <active_objs> <num_objs> <object_size> "
5425 "<objperslab> <pagesperslab>");
5426 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
5427 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5431 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
5435 mutex_lock(&slab_mutex
);
5437 print_slabinfo_header(m
);
5439 return seq_list_start(&slab_caches
, *pos
);
5442 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
5444 return seq_list_next(p
, &slab_caches
, pos
);
5447 static void s_stop(struct seq_file
*m
, void *p
)
5449 mutex_unlock(&slab_mutex
);
5452 static int s_show(struct seq_file
*m
, void *p
)
5454 unsigned long nr_partials
= 0;
5455 unsigned long nr_slabs
= 0;
5456 unsigned long nr_inuse
= 0;
5457 unsigned long nr_objs
= 0;
5458 unsigned long nr_free
= 0;
5459 struct kmem_cache
*s
;
5462 s
= list_entry(p
, struct kmem_cache
, list
);
5464 for_each_online_node(node
) {
5465 struct kmem_cache_node
*n
= get_node(s
, node
);
5470 nr_partials
+= n
->nr_partial
;
5471 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
5472 nr_objs
+= atomic_long_read(&n
->total_objects
);
5473 nr_free
+= count_partial(n
, count_free
);
5476 nr_inuse
= nr_objs
- nr_free
;
5478 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
5479 nr_objs
, s
->size
, oo_objects(s
->oo
),
5480 (1 << oo_order(s
->oo
)));
5481 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
5482 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
5488 static const struct seq_operations slabinfo_op
= {
5495 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
5497 return seq_open(file
, &slabinfo_op
);
5500 static const struct file_operations proc_slabinfo_operations
= {
5501 .open
= slabinfo_open
,
5503 .llseek
= seq_lseek
,
5504 .release
= seq_release
,
5507 static int __init
slab_proc_init(void)
5509 proc_create("slabinfo", S_IRUSR
, NULL
, &proc_slabinfo_operations
);
5512 module_init(slab_proc_init
);
5513 #endif /* CONFIG_SLABINFO */