uprobes/x86: Do not (ab)use TIF_SINGLESTEP/user_*_single_step() for single-stepping
[linux/fpc-iii.git] / mm / vmscan.c
blob8d01243d9560e0ea8d8a04cf51cd4087ed8b280d
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
49 #include <linux/swapops.h>
51 #include "internal.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
56 struct scan_control {
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
66 unsigned long hibernation_mode;
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
71 int may_writepage;
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
79 int order;
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
88 struct mem_cgroup *target_mem_cgroup;
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
94 nodemask_t *nodemask;
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
128 * From 0 .. 100. Higher means more swappy.
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
139 return !sc->target_mem_cgroup;
141 #else
142 static bool global_reclaim(struct scan_control *sc)
144 return true;
146 #endif
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 if (!mem_cgroup_disabled())
151 return mem_cgroup_get_lru_size(lruvec, lru);
153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
157 * Add a shrinker callback to be called from the vm
159 void register_shrinker(struct shrinker *shrinker)
161 atomic_long_set(&shrinker->nr_in_batch, 0);
162 down_write(&shrinker_rwsem);
163 list_add_tail(&shrinker->list, &shrinker_list);
164 up_write(&shrinker_rwsem);
166 EXPORT_SYMBOL(register_shrinker);
169 * Remove one
171 void unregister_shrinker(struct shrinker *shrinker)
173 down_write(&shrinker_rwsem);
174 list_del(&shrinker->list);
175 up_write(&shrinker_rwsem);
177 EXPORT_SYMBOL(unregister_shrinker);
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 struct shrink_control *sc,
181 unsigned long nr_to_scan)
183 sc->nr_to_scan = nr_to_scan;
184 return (*shrinker->shrink)(shrinker, sc);
187 #define SHRINK_BATCH 128
189 * Call the shrink functions to age shrinkable caches
191 * Here we assume it costs one seek to replace a lru page and that it also
192 * takes a seek to recreate a cache object. With this in mind we age equal
193 * percentages of the lru and ageable caches. This should balance the seeks
194 * generated by these structures.
196 * If the vm encountered mapped pages on the LRU it increase the pressure on
197 * slab to avoid swapping.
199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201 * `lru_pages' represents the number of on-LRU pages in all the zones which
202 * are eligible for the caller's allocation attempt. It is used for balancing
203 * slab reclaim versus page reclaim.
205 * Returns the number of slab objects which we shrunk.
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 unsigned long nr_pages_scanned,
209 unsigned long lru_pages)
211 struct shrinker *shrinker;
212 unsigned long ret = 0;
214 if (nr_pages_scanned == 0)
215 nr_pages_scanned = SWAP_CLUSTER_MAX;
217 if (!down_read_trylock(&shrinker_rwsem)) {
218 /* Assume we'll be able to shrink next time */
219 ret = 1;
220 goto out;
223 list_for_each_entry(shrinker, &shrinker_list, list) {
224 unsigned long long delta;
225 long total_scan;
226 long max_pass;
227 int shrink_ret = 0;
228 long nr;
229 long new_nr;
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
233 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 if (max_pass <= 0)
235 continue;
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244 total_scan = nr;
245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 delta *= max_pass;
247 do_div(delta, lru_pages + 1);
248 total_scan += delta;
249 if (total_scan < 0) {
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 "delete nr=%ld\n",
252 shrinker->shrink, total_scan);
253 total_scan = max_pass;
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
279 trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
283 while (total_scan >= batch_size) {
284 int nr_before;
286 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 batch_size);
289 if (shrink_ret == -1)
290 break;
291 if (shrink_ret < nr_before)
292 ret += nr_before - shrink_ret;
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
296 cond_resched();
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_in_batch);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312 up_read(&shrinker_rwsem);
313 out:
314 cond_resched();
315 return ret;
318 static inline int is_page_cache_freeable(struct page *page)
321 * A freeable page cache page is referenced only by the caller
322 * that isolated the page, the page cache radix tree and
323 * optional buffer heads at page->private.
325 return page_count(page) - page_has_private(page) == 2;
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 struct scan_control *sc)
331 if (current->flags & PF_SWAPWRITE)
332 return 1;
333 if (!bdi_write_congested(bdi))
334 return 1;
335 if (bdi == current->backing_dev_info)
336 return 1;
337 return 0;
341 * We detected a synchronous write error writing a page out. Probably
342 * -ENOSPC. We need to propagate that into the address_space for a subsequent
343 * fsync(), msync() or close().
345 * The tricky part is that after writepage we cannot touch the mapping: nothing
346 * prevents it from being freed up. But we have a ref on the page and once
347 * that page is locked, the mapping is pinned.
349 * We're allowed to run sleeping lock_page() here because we know the caller has
350 * __GFP_FS.
352 static void handle_write_error(struct address_space *mapping,
353 struct page *page, int error)
355 lock_page(page);
356 if (page_mapping(page) == mapping)
357 mapping_set_error(mapping, error);
358 unlock_page(page);
361 /* possible outcome of pageout() */
362 typedef enum {
363 /* failed to write page out, page is locked */
364 PAGE_KEEP,
365 /* move page to the active list, page is locked */
366 PAGE_ACTIVATE,
367 /* page has been sent to the disk successfully, page is unlocked */
368 PAGE_SUCCESS,
369 /* page is clean and locked */
370 PAGE_CLEAN,
371 } pageout_t;
374 * pageout is called by shrink_page_list() for each dirty page.
375 * Calls ->writepage().
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 struct scan_control *sc)
381 * If the page is dirty, only perform writeback if that write
382 * will be non-blocking. To prevent this allocation from being
383 * stalled by pagecache activity. But note that there may be
384 * stalls if we need to run get_block(). We could test
385 * PagePrivate for that.
387 * If this process is currently in __generic_file_aio_write() against
388 * this page's queue, we can perform writeback even if that
389 * will block.
391 * If the page is swapcache, write it back even if that would
392 * block, for some throttling. This happens by accident, because
393 * swap_backing_dev_info is bust: it doesn't reflect the
394 * congestion state of the swapdevs. Easy to fix, if needed.
396 if (!is_page_cache_freeable(page))
397 return PAGE_KEEP;
398 if (!mapping) {
400 * Some data journaling orphaned pages can have
401 * page->mapping == NULL while being dirty with clean buffers.
403 if (page_has_private(page)) {
404 if (try_to_free_buffers(page)) {
405 ClearPageDirty(page);
406 printk("%s: orphaned page\n", __func__);
407 return PAGE_CLEAN;
410 return PAGE_KEEP;
412 if (mapping->a_ops->writepage == NULL)
413 return PAGE_ACTIVATE;
414 if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 return PAGE_KEEP;
417 if (clear_page_dirty_for_io(page)) {
418 int res;
419 struct writeback_control wbc = {
420 .sync_mode = WB_SYNC_NONE,
421 .nr_to_write = SWAP_CLUSTER_MAX,
422 .range_start = 0,
423 .range_end = LLONG_MAX,
424 .for_reclaim = 1,
427 SetPageReclaim(page);
428 res = mapping->a_ops->writepage(page, &wbc);
429 if (res < 0)
430 handle_write_error(mapping, page, res);
431 if (res == AOP_WRITEPAGE_ACTIVATE) {
432 ClearPageReclaim(page);
433 return PAGE_ACTIVATE;
436 if (!PageWriteback(page)) {
437 /* synchronous write or broken a_ops? */
438 ClearPageReclaim(page);
440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 return PAGE_SUCCESS;
445 return PAGE_CLEAN;
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 BUG_ON(!PageLocked(page));
455 BUG_ON(mapping != page_mapping(page));
457 spin_lock_irq(&mapping->tree_lock);
459 * The non racy check for a busy page.
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
466 * get_user_pages(&page);
467 * [user mapping goes away]
468 * write_to(page);
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
471 * put_page(page);
472 * !page_count(page) [good, discard it]
474 * [oops, our write_to data is lost]
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
483 if (!page_freeze_refs(page, 2))
484 goto cannot_free;
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page))) {
487 page_unfreeze_refs(page, 2);
488 goto cannot_free;
491 if (PageSwapCache(page)) {
492 swp_entry_t swap = { .val = page_private(page) };
493 __delete_from_swap_cache(page);
494 spin_unlock_irq(&mapping->tree_lock);
495 swapcache_free(swap, page);
496 } else {
497 void (*freepage)(struct page *);
499 freepage = mapping->a_ops->freepage;
501 __delete_from_page_cache(page);
502 spin_unlock_irq(&mapping->tree_lock);
503 mem_cgroup_uncharge_cache_page(page);
505 if (freepage != NULL)
506 freepage(page);
509 return 1;
511 cannot_free:
512 spin_unlock_irq(&mapping->tree_lock);
513 return 0;
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
520 * this page.
522 int remove_mapping(struct address_space *mapping, struct page *page)
524 if (__remove_mapping(mapping, page)) {
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
528 * atomic operation.
530 page_unfreeze_refs(page, 1);
531 return 1;
533 return 0;
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
543 * lru_lock must not be held, interrupts must be enabled.
545 void putback_lru_page(struct page *page)
547 int lru;
548 int active = !!TestClearPageActive(page);
549 int was_unevictable = PageUnevictable(page);
551 VM_BUG_ON(PageLRU(page));
553 redo:
554 ClearPageUnevictable(page);
556 if (page_evictable(page, NULL)) {
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
563 lru = active + page_lru_base_type(page);
564 lru_cache_add_lru(page, lru);
565 } else {
567 * Put unevictable pages directly on zone's unevictable
568 * list.
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
576 * isolation/check_move_unevictable_pages,
577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 * the page back to the evictable list.
580 * The other side is TestClearPageMlocked() or shmem_lock().
582 smp_mb();
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
590 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
606 put_page(page); /* drop ref from isolate */
609 enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
612 PAGEREF_KEEP,
613 PAGEREF_ACTIVATE,
616 static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
619 int referenced_ptes, referenced_page;
620 unsigned long vm_flags;
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
624 referenced_page = TestClearPageReferenced(page);
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
633 if (referenced_ptes) {
634 if (PageSwapBacked(page))
635 return PAGEREF_ACTIVATE;
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
650 SetPageReferenced(page);
652 if (referenced_page || referenced_ptes > 1)
653 return PAGEREF_ACTIVATE;
656 * Activate file-backed executable pages after first usage.
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
661 return PAGEREF_KEEP;
664 /* Reclaim if clean, defer dirty pages to writeback */
665 if (referenced_page && !PageSwapBacked(page))
666 return PAGEREF_RECLAIM_CLEAN;
668 return PAGEREF_RECLAIM;
672 * shrink_page_list() returns the number of reclaimed pages
674 static unsigned long shrink_page_list(struct list_head *page_list,
675 struct zone *zone,
676 struct scan_control *sc,
677 unsigned long *ret_nr_dirty,
678 unsigned long *ret_nr_writeback)
680 LIST_HEAD(ret_pages);
681 LIST_HEAD(free_pages);
682 int pgactivate = 0;
683 unsigned long nr_dirty = 0;
684 unsigned long nr_congested = 0;
685 unsigned long nr_reclaimed = 0;
686 unsigned long nr_writeback = 0;
688 cond_resched();
690 mem_cgroup_uncharge_start();
691 while (!list_empty(page_list)) {
692 enum page_references references;
693 struct address_space *mapping;
694 struct page *page;
695 int may_enter_fs;
697 cond_resched();
699 page = lru_to_page(page_list);
700 list_del(&page->lru);
702 if (!trylock_page(page))
703 goto keep;
705 VM_BUG_ON(PageActive(page));
706 VM_BUG_ON(page_zone(page) != zone);
708 sc->nr_scanned++;
710 if (unlikely(!page_evictable(page, NULL)))
711 goto cull_mlocked;
713 if (!sc->may_unmap && page_mapped(page))
714 goto keep_locked;
716 /* Double the slab pressure for mapped and swapcache pages */
717 if (page_mapped(page) || PageSwapCache(page))
718 sc->nr_scanned++;
720 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
721 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
723 if (PageWriteback(page)) {
725 * memcg doesn't have any dirty pages throttling so we
726 * could easily OOM just because too many pages are in
727 * writeback and there is nothing else to reclaim.
729 * Check __GFP_IO, certainly because a loop driver
730 * thread might enter reclaim, and deadlock if it waits
731 * on a page for which it is needed to do the write
732 * (loop masks off __GFP_IO|__GFP_FS for this reason);
733 * but more thought would probably show more reasons.
735 * Don't require __GFP_FS, since we're not going into
736 * the FS, just waiting on its writeback completion.
737 * Worryingly, ext4 gfs2 and xfs allocate pages with
738 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
739 * testing may_enter_fs here is liable to OOM on them.
741 if (global_reclaim(sc) ||
742 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
744 * This is slightly racy - end_page_writeback()
745 * might have just cleared PageReclaim, then
746 * setting PageReclaim here end up interpreted
747 * as PageReadahead - but that does not matter
748 * enough to care. What we do want is for this
749 * page to have PageReclaim set next time memcg
750 * reclaim reaches the tests above, so it will
751 * then wait_on_page_writeback() to avoid OOM;
752 * and it's also appropriate in global reclaim.
754 SetPageReclaim(page);
755 nr_writeback++;
756 goto keep_locked;
758 wait_on_page_writeback(page);
761 references = page_check_references(page, sc);
762 switch (references) {
763 case PAGEREF_ACTIVATE:
764 goto activate_locked;
765 case PAGEREF_KEEP:
766 goto keep_locked;
767 case PAGEREF_RECLAIM:
768 case PAGEREF_RECLAIM_CLEAN:
769 ; /* try to reclaim the page below */
773 * Anonymous process memory has backing store?
774 * Try to allocate it some swap space here.
776 if (PageAnon(page) && !PageSwapCache(page)) {
777 if (!(sc->gfp_mask & __GFP_IO))
778 goto keep_locked;
779 if (!add_to_swap(page))
780 goto activate_locked;
781 may_enter_fs = 1;
784 mapping = page_mapping(page);
787 * The page is mapped into the page tables of one or more
788 * processes. Try to unmap it here.
790 if (page_mapped(page) && mapping) {
791 switch (try_to_unmap(page, TTU_UNMAP)) {
792 case SWAP_FAIL:
793 goto activate_locked;
794 case SWAP_AGAIN:
795 goto keep_locked;
796 case SWAP_MLOCK:
797 goto cull_mlocked;
798 case SWAP_SUCCESS:
799 ; /* try to free the page below */
803 if (PageDirty(page)) {
804 nr_dirty++;
807 * Only kswapd can writeback filesystem pages to
808 * avoid risk of stack overflow but do not writeback
809 * unless under significant pressure.
811 if (page_is_file_cache(page) &&
812 (!current_is_kswapd() ||
813 sc->priority >= DEF_PRIORITY - 2)) {
815 * Immediately reclaim when written back.
816 * Similar in principal to deactivate_page()
817 * except we already have the page isolated
818 * and know it's dirty
820 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
821 SetPageReclaim(page);
823 goto keep_locked;
826 if (references == PAGEREF_RECLAIM_CLEAN)
827 goto keep_locked;
828 if (!may_enter_fs)
829 goto keep_locked;
830 if (!sc->may_writepage)
831 goto keep_locked;
833 /* Page is dirty, try to write it out here */
834 switch (pageout(page, mapping, sc)) {
835 case PAGE_KEEP:
836 nr_congested++;
837 goto keep_locked;
838 case PAGE_ACTIVATE:
839 goto activate_locked;
840 case PAGE_SUCCESS:
841 if (PageWriteback(page))
842 goto keep;
843 if (PageDirty(page))
844 goto keep;
847 * A synchronous write - probably a ramdisk. Go
848 * ahead and try to reclaim the page.
850 if (!trylock_page(page))
851 goto keep;
852 if (PageDirty(page) || PageWriteback(page))
853 goto keep_locked;
854 mapping = page_mapping(page);
855 case PAGE_CLEAN:
856 ; /* try to free the page below */
861 * If the page has buffers, try to free the buffer mappings
862 * associated with this page. If we succeed we try to free
863 * the page as well.
865 * We do this even if the page is PageDirty().
866 * try_to_release_page() does not perform I/O, but it is
867 * possible for a page to have PageDirty set, but it is actually
868 * clean (all its buffers are clean). This happens if the
869 * buffers were written out directly, with submit_bh(). ext3
870 * will do this, as well as the blockdev mapping.
871 * try_to_release_page() will discover that cleanness and will
872 * drop the buffers and mark the page clean - it can be freed.
874 * Rarely, pages can have buffers and no ->mapping. These are
875 * the pages which were not successfully invalidated in
876 * truncate_complete_page(). We try to drop those buffers here
877 * and if that worked, and the page is no longer mapped into
878 * process address space (page_count == 1) it can be freed.
879 * Otherwise, leave the page on the LRU so it is swappable.
881 if (page_has_private(page)) {
882 if (!try_to_release_page(page, sc->gfp_mask))
883 goto activate_locked;
884 if (!mapping && page_count(page) == 1) {
885 unlock_page(page);
886 if (put_page_testzero(page))
887 goto free_it;
888 else {
890 * rare race with speculative reference.
891 * the speculative reference will free
892 * this page shortly, so we may
893 * increment nr_reclaimed here (and
894 * leave it off the LRU).
896 nr_reclaimed++;
897 continue;
902 if (!mapping || !__remove_mapping(mapping, page))
903 goto keep_locked;
906 * At this point, we have no other references and there is
907 * no way to pick any more up (removed from LRU, removed
908 * from pagecache). Can use non-atomic bitops now (and
909 * we obviously don't have to worry about waking up a process
910 * waiting on the page lock, because there are no references.
912 __clear_page_locked(page);
913 free_it:
914 nr_reclaimed++;
917 * Is there need to periodically free_page_list? It would
918 * appear not as the counts should be low
920 list_add(&page->lru, &free_pages);
921 continue;
923 cull_mlocked:
924 if (PageSwapCache(page))
925 try_to_free_swap(page);
926 unlock_page(page);
927 putback_lru_page(page);
928 continue;
930 activate_locked:
931 /* Not a candidate for swapping, so reclaim swap space. */
932 if (PageSwapCache(page) && vm_swap_full())
933 try_to_free_swap(page);
934 VM_BUG_ON(PageActive(page));
935 SetPageActive(page);
936 pgactivate++;
937 keep_locked:
938 unlock_page(page);
939 keep:
940 list_add(&page->lru, &ret_pages);
941 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
945 * Tag a zone as congested if all the dirty pages encountered were
946 * backed by a congested BDI. In this case, reclaimers should just
947 * back off and wait for congestion to clear because further reclaim
948 * will encounter the same problem
950 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
951 zone_set_flag(zone, ZONE_CONGESTED);
953 free_hot_cold_page_list(&free_pages, 1);
955 list_splice(&ret_pages, page_list);
956 count_vm_events(PGACTIVATE, pgactivate);
957 mem_cgroup_uncharge_end();
958 *ret_nr_dirty += nr_dirty;
959 *ret_nr_writeback += nr_writeback;
960 return nr_reclaimed;
964 * Attempt to remove the specified page from its LRU. Only take this page
965 * if it is of the appropriate PageActive status. Pages which are being
966 * freed elsewhere are also ignored.
968 * page: page to consider
969 * mode: one of the LRU isolation modes defined above
971 * returns 0 on success, -ve errno on failure.
973 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
975 int ret = -EINVAL;
977 /* Only take pages on the LRU. */
978 if (!PageLRU(page))
979 return ret;
981 /* Do not give back unevictable pages for compaction */
982 if (PageUnevictable(page))
983 return ret;
985 ret = -EBUSY;
988 * To minimise LRU disruption, the caller can indicate that it only
989 * wants to isolate pages it will be able to operate on without
990 * blocking - clean pages for the most part.
992 * ISOLATE_CLEAN means that only clean pages should be isolated. This
993 * is used by reclaim when it is cannot write to backing storage
995 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
996 * that it is possible to migrate without blocking
998 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
999 /* All the caller can do on PageWriteback is block */
1000 if (PageWriteback(page))
1001 return ret;
1003 if (PageDirty(page)) {
1004 struct address_space *mapping;
1006 /* ISOLATE_CLEAN means only clean pages */
1007 if (mode & ISOLATE_CLEAN)
1008 return ret;
1011 * Only pages without mappings or that have a
1012 * ->migratepage callback are possible to migrate
1013 * without blocking
1015 mapping = page_mapping(page);
1016 if (mapping && !mapping->a_ops->migratepage)
1017 return ret;
1021 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1022 return ret;
1024 if (likely(get_page_unless_zero(page))) {
1026 * Be careful not to clear PageLRU until after we're
1027 * sure the page is not being freed elsewhere -- the
1028 * page release code relies on it.
1030 ClearPageLRU(page);
1031 ret = 0;
1034 return ret;
1038 * zone->lru_lock is heavily contended. Some of the functions that
1039 * shrink the lists perform better by taking out a batch of pages
1040 * and working on them outside the LRU lock.
1042 * For pagecache intensive workloads, this function is the hottest
1043 * spot in the kernel (apart from copy_*_user functions).
1045 * Appropriate locks must be held before calling this function.
1047 * @nr_to_scan: The number of pages to look through on the list.
1048 * @lruvec: The LRU vector to pull pages from.
1049 * @dst: The temp list to put pages on to.
1050 * @nr_scanned: The number of pages that were scanned.
1051 * @sc: The scan_control struct for this reclaim session
1052 * @mode: One of the LRU isolation modes
1053 * @lru: LRU list id for isolating
1055 * returns how many pages were moved onto *@dst.
1057 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1058 struct lruvec *lruvec, struct list_head *dst,
1059 unsigned long *nr_scanned, struct scan_control *sc,
1060 isolate_mode_t mode, enum lru_list lru)
1062 struct list_head *src = &lruvec->lists[lru];
1063 unsigned long nr_taken = 0;
1064 unsigned long scan;
1066 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1067 struct page *page;
1068 int nr_pages;
1070 page = lru_to_page(src);
1071 prefetchw_prev_lru_page(page, src, flags);
1073 VM_BUG_ON(!PageLRU(page));
1075 switch (__isolate_lru_page(page, mode)) {
1076 case 0:
1077 nr_pages = hpage_nr_pages(page);
1078 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1079 list_move(&page->lru, dst);
1080 nr_taken += nr_pages;
1081 break;
1083 case -EBUSY:
1084 /* else it is being freed elsewhere */
1085 list_move(&page->lru, src);
1086 continue;
1088 default:
1089 BUG();
1093 *nr_scanned = scan;
1094 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1095 nr_taken, mode, is_file_lru(lru));
1096 return nr_taken;
1100 * isolate_lru_page - tries to isolate a page from its LRU list
1101 * @page: page to isolate from its LRU list
1103 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1104 * vmstat statistic corresponding to whatever LRU list the page was on.
1106 * Returns 0 if the page was removed from an LRU list.
1107 * Returns -EBUSY if the page was not on an LRU list.
1109 * The returned page will have PageLRU() cleared. If it was found on
1110 * the active list, it will have PageActive set. If it was found on
1111 * the unevictable list, it will have the PageUnevictable bit set. That flag
1112 * may need to be cleared by the caller before letting the page go.
1114 * The vmstat statistic corresponding to the list on which the page was
1115 * found will be decremented.
1117 * Restrictions:
1118 * (1) Must be called with an elevated refcount on the page. This is a
1119 * fundamentnal difference from isolate_lru_pages (which is called
1120 * without a stable reference).
1121 * (2) the lru_lock must not be held.
1122 * (3) interrupts must be enabled.
1124 int isolate_lru_page(struct page *page)
1126 int ret = -EBUSY;
1128 VM_BUG_ON(!page_count(page));
1130 if (PageLRU(page)) {
1131 struct zone *zone = page_zone(page);
1132 struct lruvec *lruvec;
1134 spin_lock_irq(&zone->lru_lock);
1135 lruvec = mem_cgroup_page_lruvec(page, zone);
1136 if (PageLRU(page)) {
1137 int lru = page_lru(page);
1138 get_page(page);
1139 ClearPageLRU(page);
1140 del_page_from_lru_list(page, lruvec, lru);
1141 ret = 0;
1143 spin_unlock_irq(&zone->lru_lock);
1145 return ret;
1149 * Are there way too many processes in the direct reclaim path already?
1151 static int too_many_isolated(struct zone *zone, int file,
1152 struct scan_control *sc)
1154 unsigned long inactive, isolated;
1156 if (current_is_kswapd())
1157 return 0;
1159 if (!global_reclaim(sc))
1160 return 0;
1162 if (file) {
1163 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1164 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1165 } else {
1166 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1167 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1170 return isolated > inactive;
1173 static noinline_for_stack void
1174 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1176 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1177 struct zone *zone = lruvec_zone(lruvec);
1178 LIST_HEAD(pages_to_free);
1181 * Put back any unfreeable pages.
1183 while (!list_empty(page_list)) {
1184 struct page *page = lru_to_page(page_list);
1185 int lru;
1187 VM_BUG_ON(PageLRU(page));
1188 list_del(&page->lru);
1189 if (unlikely(!page_evictable(page, NULL))) {
1190 spin_unlock_irq(&zone->lru_lock);
1191 putback_lru_page(page);
1192 spin_lock_irq(&zone->lru_lock);
1193 continue;
1196 lruvec = mem_cgroup_page_lruvec(page, zone);
1198 SetPageLRU(page);
1199 lru = page_lru(page);
1200 add_page_to_lru_list(page, lruvec, lru);
1202 if (is_active_lru(lru)) {
1203 int file = is_file_lru(lru);
1204 int numpages = hpage_nr_pages(page);
1205 reclaim_stat->recent_rotated[file] += numpages;
1207 if (put_page_testzero(page)) {
1208 __ClearPageLRU(page);
1209 __ClearPageActive(page);
1210 del_page_from_lru_list(page, lruvec, lru);
1212 if (unlikely(PageCompound(page))) {
1213 spin_unlock_irq(&zone->lru_lock);
1214 (*get_compound_page_dtor(page))(page);
1215 spin_lock_irq(&zone->lru_lock);
1216 } else
1217 list_add(&page->lru, &pages_to_free);
1222 * To save our caller's stack, now use input list for pages to free.
1224 list_splice(&pages_to_free, page_list);
1228 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1229 * of reclaimed pages
1231 static noinline_for_stack unsigned long
1232 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1233 struct scan_control *sc, enum lru_list lru)
1235 LIST_HEAD(page_list);
1236 unsigned long nr_scanned;
1237 unsigned long nr_reclaimed = 0;
1238 unsigned long nr_taken;
1239 unsigned long nr_dirty = 0;
1240 unsigned long nr_writeback = 0;
1241 isolate_mode_t isolate_mode = 0;
1242 int file = is_file_lru(lru);
1243 struct zone *zone = lruvec_zone(lruvec);
1244 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1246 while (unlikely(too_many_isolated(zone, file, sc))) {
1247 congestion_wait(BLK_RW_ASYNC, HZ/10);
1249 /* We are about to die and free our memory. Return now. */
1250 if (fatal_signal_pending(current))
1251 return SWAP_CLUSTER_MAX;
1254 lru_add_drain();
1256 if (!sc->may_unmap)
1257 isolate_mode |= ISOLATE_UNMAPPED;
1258 if (!sc->may_writepage)
1259 isolate_mode |= ISOLATE_CLEAN;
1261 spin_lock_irq(&zone->lru_lock);
1263 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1264 &nr_scanned, sc, isolate_mode, lru);
1266 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1267 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1269 if (global_reclaim(sc)) {
1270 zone->pages_scanned += nr_scanned;
1271 if (current_is_kswapd())
1272 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1273 else
1274 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1276 spin_unlock_irq(&zone->lru_lock);
1278 if (nr_taken == 0)
1279 return 0;
1281 nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1282 &nr_dirty, &nr_writeback);
1284 spin_lock_irq(&zone->lru_lock);
1286 reclaim_stat->recent_scanned[file] += nr_taken;
1288 if (global_reclaim(sc)) {
1289 if (current_is_kswapd())
1290 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1291 nr_reclaimed);
1292 else
1293 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1294 nr_reclaimed);
1297 putback_inactive_pages(lruvec, &page_list);
1299 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1301 spin_unlock_irq(&zone->lru_lock);
1303 free_hot_cold_page_list(&page_list, 1);
1306 * If reclaim is isolating dirty pages under writeback, it implies
1307 * that the long-lived page allocation rate is exceeding the page
1308 * laundering rate. Either the global limits are not being effective
1309 * at throttling processes due to the page distribution throughout
1310 * zones or there is heavy usage of a slow backing device. The
1311 * only option is to throttle from reclaim context which is not ideal
1312 * as there is no guarantee the dirtying process is throttled in the
1313 * same way balance_dirty_pages() manages.
1315 * This scales the number of dirty pages that must be under writeback
1316 * before throttling depending on priority. It is a simple backoff
1317 * function that has the most effect in the range DEF_PRIORITY to
1318 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1319 * in trouble and reclaim is considered to be in trouble.
1321 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1322 * DEF_PRIORITY-1 50% must be PageWriteback
1323 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1324 * ...
1325 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1326 * isolated page is PageWriteback
1328 if (nr_writeback && nr_writeback >=
1329 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1330 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1332 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1333 zone_idx(zone),
1334 nr_scanned, nr_reclaimed,
1335 sc->priority,
1336 trace_shrink_flags(file));
1337 return nr_reclaimed;
1341 * This moves pages from the active list to the inactive list.
1343 * We move them the other way if the page is referenced by one or more
1344 * processes, from rmap.
1346 * If the pages are mostly unmapped, the processing is fast and it is
1347 * appropriate to hold zone->lru_lock across the whole operation. But if
1348 * the pages are mapped, the processing is slow (page_referenced()) so we
1349 * should drop zone->lru_lock around each page. It's impossible to balance
1350 * this, so instead we remove the pages from the LRU while processing them.
1351 * It is safe to rely on PG_active against the non-LRU pages in here because
1352 * nobody will play with that bit on a non-LRU page.
1354 * The downside is that we have to touch page->_count against each page.
1355 * But we had to alter page->flags anyway.
1358 static void move_active_pages_to_lru(struct lruvec *lruvec,
1359 struct list_head *list,
1360 struct list_head *pages_to_free,
1361 enum lru_list lru)
1363 struct zone *zone = lruvec_zone(lruvec);
1364 unsigned long pgmoved = 0;
1365 struct page *page;
1366 int nr_pages;
1368 while (!list_empty(list)) {
1369 page = lru_to_page(list);
1370 lruvec = mem_cgroup_page_lruvec(page, zone);
1372 VM_BUG_ON(PageLRU(page));
1373 SetPageLRU(page);
1375 nr_pages = hpage_nr_pages(page);
1376 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1377 list_move(&page->lru, &lruvec->lists[lru]);
1378 pgmoved += nr_pages;
1380 if (put_page_testzero(page)) {
1381 __ClearPageLRU(page);
1382 __ClearPageActive(page);
1383 del_page_from_lru_list(page, lruvec, lru);
1385 if (unlikely(PageCompound(page))) {
1386 spin_unlock_irq(&zone->lru_lock);
1387 (*get_compound_page_dtor(page))(page);
1388 spin_lock_irq(&zone->lru_lock);
1389 } else
1390 list_add(&page->lru, pages_to_free);
1393 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1394 if (!is_active_lru(lru))
1395 __count_vm_events(PGDEACTIVATE, pgmoved);
1398 static void shrink_active_list(unsigned long nr_to_scan,
1399 struct lruvec *lruvec,
1400 struct scan_control *sc,
1401 enum lru_list lru)
1403 unsigned long nr_taken;
1404 unsigned long nr_scanned;
1405 unsigned long vm_flags;
1406 LIST_HEAD(l_hold); /* The pages which were snipped off */
1407 LIST_HEAD(l_active);
1408 LIST_HEAD(l_inactive);
1409 struct page *page;
1410 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1411 unsigned long nr_rotated = 0;
1412 isolate_mode_t isolate_mode = 0;
1413 int file = is_file_lru(lru);
1414 struct zone *zone = lruvec_zone(lruvec);
1416 lru_add_drain();
1418 if (!sc->may_unmap)
1419 isolate_mode |= ISOLATE_UNMAPPED;
1420 if (!sc->may_writepage)
1421 isolate_mode |= ISOLATE_CLEAN;
1423 spin_lock_irq(&zone->lru_lock);
1425 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1426 &nr_scanned, sc, isolate_mode, lru);
1427 if (global_reclaim(sc))
1428 zone->pages_scanned += nr_scanned;
1430 reclaim_stat->recent_scanned[file] += nr_taken;
1432 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1433 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1434 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1435 spin_unlock_irq(&zone->lru_lock);
1437 while (!list_empty(&l_hold)) {
1438 cond_resched();
1439 page = lru_to_page(&l_hold);
1440 list_del(&page->lru);
1442 if (unlikely(!page_evictable(page, NULL))) {
1443 putback_lru_page(page);
1444 continue;
1447 if (unlikely(buffer_heads_over_limit)) {
1448 if (page_has_private(page) && trylock_page(page)) {
1449 if (page_has_private(page))
1450 try_to_release_page(page, 0);
1451 unlock_page(page);
1455 if (page_referenced(page, 0, sc->target_mem_cgroup,
1456 &vm_flags)) {
1457 nr_rotated += hpage_nr_pages(page);
1459 * Identify referenced, file-backed active pages and
1460 * give them one more trip around the active list. So
1461 * that executable code get better chances to stay in
1462 * memory under moderate memory pressure. Anon pages
1463 * are not likely to be evicted by use-once streaming
1464 * IO, plus JVM can create lots of anon VM_EXEC pages,
1465 * so we ignore them here.
1467 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1468 list_add(&page->lru, &l_active);
1469 continue;
1473 ClearPageActive(page); /* we are de-activating */
1474 list_add(&page->lru, &l_inactive);
1478 * Move pages back to the lru list.
1480 spin_lock_irq(&zone->lru_lock);
1482 * Count referenced pages from currently used mappings as rotated,
1483 * even though only some of them are actually re-activated. This
1484 * helps balance scan pressure between file and anonymous pages in
1485 * get_scan_ratio.
1487 reclaim_stat->recent_rotated[file] += nr_rotated;
1489 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1490 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1491 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1492 spin_unlock_irq(&zone->lru_lock);
1494 free_hot_cold_page_list(&l_hold, 1);
1497 #ifdef CONFIG_SWAP
1498 static int inactive_anon_is_low_global(struct zone *zone)
1500 unsigned long active, inactive;
1502 active = zone_page_state(zone, NR_ACTIVE_ANON);
1503 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1505 if (inactive * zone->inactive_ratio < active)
1506 return 1;
1508 return 0;
1512 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1513 * @lruvec: LRU vector to check
1515 * Returns true if the zone does not have enough inactive anon pages,
1516 * meaning some active anon pages need to be deactivated.
1518 static int inactive_anon_is_low(struct lruvec *lruvec)
1521 * If we don't have swap space, anonymous page deactivation
1522 * is pointless.
1524 if (!total_swap_pages)
1525 return 0;
1527 if (!mem_cgroup_disabled())
1528 return mem_cgroup_inactive_anon_is_low(lruvec);
1530 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1532 #else
1533 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1535 return 0;
1537 #endif
1539 static int inactive_file_is_low_global(struct zone *zone)
1541 unsigned long active, inactive;
1543 active = zone_page_state(zone, NR_ACTIVE_FILE);
1544 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1546 return (active > inactive);
1550 * inactive_file_is_low - check if file pages need to be deactivated
1551 * @lruvec: LRU vector to check
1553 * When the system is doing streaming IO, memory pressure here
1554 * ensures that active file pages get deactivated, until more
1555 * than half of the file pages are on the inactive list.
1557 * Once we get to that situation, protect the system's working
1558 * set from being evicted by disabling active file page aging.
1560 * This uses a different ratio than the anonymous pages, because
1561 * the page cache uses a use-once replacement algorithm.
1563 static int inactive_file_is_low(struct lruvec *lruvec)
1565 if (!mem_cgroup_disabled())
1566 return mem_cgroup_inactive_file_is_low(lruvec);
1568 return inactive_file_is_low_global(lruvec_zone(lruvec));
1571 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1573 if (is_file_lru(lru))
1574 return inactive_file_is_low(lruvec);
1575 else
1576 return inactive_anon_is_low(lruvec);
1579 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1580 struct lruvec *lruvec, struct scan_control *sc)
1582 if (is_active_lru(lru)) {
1583 if (inactive_list_is_low(lruvec, lru))
1584 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1585 return 0;
1588 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1591 static int vmscan_swappiness(struct scan_control *sc)
1593 if (global_reclaim(sc))
1594 return vm_swappiness;
1595 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1599 * Determine how aggressively the anon and file LRU lists should be
1600 * scanned. The relative value of each set of LRU lists is determined
1601 * by looking at the fraction of the pages scanned we did rotate back
1602 * onto the active list instead of evict.
1604 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1605 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1607 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1608 unsigned long *nr)
1610 unsigned long anon, file, free;
1611 unsigned long anon_prio, file_prio;
1612 unsigned long ap, fp;
1613 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1614 u64 fraction[2], denominator;
1615 enum lru_list lru;
1616 int noswap = 0;
1617 bool force_scan = false;
1618 struct zone *zone = lruvec_zone(lruvec);
1621 * If the zone or memcg is small, nr[l] can be 0. This
1622 * results in no scanning on this priority and a potential
1623 * priority drop. Global direct reclaim can go to the next
1624 * zone and tends to have no problems. Global kswapd is for
1625 * zone balancing and it needs to scan a minimum amount. When
1626 * reclaiming for a memcg, a priority drop can cause high
1627 * latencies, so it's better to scan a minimum amount there as
1628 * well.
1630 if (current_is_kswapd() && zone->all_unreclaimable)
1631 force_scan = true;
1632 if (!global_reclaim(sc))
1633 force_scan = true;
1635 /* If we have no swap space, do not bother scanning anon pages. */
1636 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1637 noswap = 1;
1638 fraction[0] = 0;
1639 fraction[1] = 1;
1640 denominator = 1;
1641 goto out;
1644 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1645 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1646 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1647 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1649 if (global_reclaim(sc)) {
1650 free = zone_page_state(zone, NR_FREE_PAGES);
1651 /* If we have very few page cache pages,
1652 force-scan anon pages. */
1653 if (unlikely(file + free <= high_wmark_pages(zone))) {
1654 fraction[0] = 1;
1655 fraction[1] = 0;
1656 denominator = 1;
1657 goto out;
1662 * With swappiness at 100, anonymous and file have the same priority.
1663 * This scanning priority is essentially the inverse of IO cost.
1665 anon_prio = vmscan_swappiness(sc);
1666 file_prio = 200 - anon_prio;
1669 * OK, so we have swap space and a fair amount of page cache
1670 * pages. We use the recently rotated / recently scanned
1671 * ratios to determine how valuable each cache is.
1673 * Because workloads change over time (and to avoid overflow)
1674 * we keep these statistics as a floating average, which ends
1675 * up weighing recent references more than old ones.
1677 * anon in [0], file in [1]
1679 spin_lock_irq(&zone->lru_lock);
1680 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1681 reclaim_stat->recent_scanned[0] /= 2;
1682 reclaim_stat->recent_rotated[0] /= 2;
1685 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1686 reclaim_stat->recent_scanned[1] /= 2;
1687 reclaim_stat->recent_rotated[1] /= 2;
1691 * The amount of pressure on anon vs file pages is inversely
1692 * proportional to the fraction of recently scanned pages on
1693 * each list that were recently referenced and in active use.
1695 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1696 ap /= reclaim_stat->recent_rotated[0] + 1;
1698 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1699 fp /= reclaim_stat->recent_rotated[1] + 1;
1700 spin_unlock_irq(&zone->lru_lock);
1702 fraction[0] = ap;
1703 fraction[1] = fp;
1704 denominator = ap + fp + 1;
1705 out:
1706 for_each_evictable_lru(lru) {
1707 int file = is_file_lru(lru);
1708 unsigned long scan;
1710 scan = get_lru_size(lruvec, lru);
1711 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1712 scan >>= sc->priority;
1713 if (!scan && force_scan)
1714 scan = SWAP_CLUSTER_MAX;
1715 scan = div64_u64(scan * fraction[file], denominator);
1717 nr[lru] = scan;
1721 /* Use reclaim/compaction for costly allocs or under memory pressure */
1722 static bool in_reclaim_compaction(struct scan_control *sc)
1724 if (COMPACTION_BUILD && sc->order &&
1725 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1726 sc->priority < DEF_PRIORITY - 2))
1727 return true;
1729 return false;
1733 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1734 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1735 * true if more pages should be reclaimed such that when the page allocator
1736 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1737 * It will give up earlier than that if there is difficulty reclaiming pages.
1739 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1740 unsigned long nr_reclaimed,
1741 unsigned long nr_scanned,
1742 struct scan_control *sc)
1744 unsigned long pages_for_compaction;
1745 unsigned long inactive_lru_pages;
1747 /* If not in reclaim/compaction mode, stop */
1748 if (!in_reclaim_compaction(sc))
1749 return false;
1751 /* Consider stopping depending on scan and reclaim activity */
1752 if (sc->gfp_mask & __GFP_REPEAT) {
1754 * For __GFP_REPEAT allocations, stop reclaiming if the
1755 * full LRU list has been scanned and we are still failing
1756 * to reclaim pages. This full LRU scan is potentially
1757 * expensive but a __GFP_REPEAT caller really wants to succeed
1759 if (!nr_reclaimed && !nr_scanned)
1760 return false;
1761 } else {
1763 * For non-__GFP_REPEAT allocations which can presumably
1764 * fail without consequence, stop if we failed to reclaim
1765 * any pages from the last SWAP_CLUSTER_MAX number of
1766 * pages that were scanned. This will return to the
1767 * caller faster at the risk reclaim/compaction and
1768 * the resulting allocation attempt fails
1770 if (!nr_reclaimed)
1771 return false;
1775 * If we have not reclaimed enough pages for compaction and the
1776 * inactive lists are large enough, continue reclaiming
1778 pages_for_compaction = (2UL << sc->order);
1779 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1780 if (nr_swap_pages > 0)
1781 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1782 if (sc->nr_reclaimed < pages_for_compaction &&
1783 inactive_lru_pages > pages_for_compaction)
1784 return true;
1786 /* If compaction would go ahead or the allocation would succeed, stop */
1787 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1788 case COMPACT_PARTIAL:
1789 case COMPACT_CONTINUE:
1790 return false;
1791 default:
1792 return true;
1797 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1799 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1801 unsigned long nr[NR_LRU_LISTS];
1802 unsigned long nr_to_scan;
1803 enum lru_list lru;
1804 unsigned long nr_reclaimed, nr_scanned;
1805 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1806 struct blk_plug plug;
1808 restart:
1809 nr_reclaimed = 0;
1810 nr_scanned = sc->nr_scanned;
1811 get_scan_count(lruvec, sc, nr);
1813 blk_start_plug(&plug);
1814 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1815 nr[LRU_INACTIVE_FILE]) {
1816 for_each_evictable_lru(lru) {
1817 if (nr[lru]) {
1818 nr_to_scan = min_t(unsigned long,
1819 nr[lru], SWAP_CLUSTER_MAX);
1820 nr[lru] -= nr_to_scan;
1822 nr_reclaimed += shrink_list(lru, nr_to_scan,
1823 lruvec, sc);
1827 * On large memory systems, scan >> priority can become
1828 * really large. This is fine for the starting priority;
1829 * we want to put equal scanning pressure on each zone.
1830 * However, if the VM has a harder time of freeing pages,
1831 * with multiple processes reclaiming pages, the total
1832 * freeing target can get unreasonably large.
1834 if (nr_reclaimed >= nr_to_reclaim &&
1835 sc->priority < DEF_PRIORITY)
1836 break;
1838 blk_finish_plug(&plug);
1839 sc->nr_reclaimed += nr_reclaimed;
1842 * Even if we did not try to evict anon pages at all, we want to
1843 * rebalance the anon lru active/inactive ratio.
1845 if (inactive_anon_is_low(lruvec))
1846 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1847 sc, LRU_ACTIVE_ANON);
1849 /* reclaim/compaction might need reclaim to continue */
1850 if (should_continue_reclaim(lruvec, nr_reclaimed,
1851 sc->nr_scanned - nr_scanned, sc))
1852 goto restart;
1854 throttle_vm_writeout(sc->gfp_mask);
1857 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1859 struct mem_cgroup *root = sc->target_mem_cgroup;
1860 struct mem_cgroup_reclaim_cookie reclaim = {
1861 .zone = zone,
1862 .priority = sc->priority,
1864 struct mem_cgroup *memcg;
1866 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1867 do {
1868 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1870 shrink_lruvec(lruvec, sc);
1873 * Limit reclaim has historically picked one memcg and
1874 * scanned it with decreasing priority levels until
1875 * nr_to_reclaim had been reclaimed. This priority
1876 * cycle is thus over after a single memcg.
1878 * Direct reclaim and kswapd, on the other hand, have
1879 * to scan all memory cgroups to fulfill the overall
1880 * scan target for the zone.
1882 if (!global_reclaim(sc)) {
1883 mem_cgroup_iter_break(root, memcg);
1884 break;
1886 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1887 } while (memcg);
1890 /* Returns true if compaction should go ahead for a high-order request */
1891 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1893 unsigned long balance_gap, watermark;
1894 bool watermark_ok;
1896 /* Do not consider compaction for orders reclaim is meant to satisfy */
1897 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1898 return false;
1901 * Compaction takes time to run and there are potentially other
1902 * callers using the pages just freed. Continue reclaiming until
1903 * there is a buffer of free pages available to give compaction
1904 * a reasonable chance of completing and allocating the page
1906 balance_gap = min(low_wmark_pages(zone),
1907 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1908 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1909 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1910 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1913 * If compaction is deferred, reclaim up to a point where
1914 * compaction will have a chance of success when re-enabled
1916 if (compaction_deferred(zone, sc->order))
1917 return watermark_ok;
1919 /* If compaction is not ready to start, keep reclaiming */
1920 if (!compaction_suitable(zone, sc->order))
1921 return false;
1923 return watermark_ok;
1927 * This is the direct reclaim path, for page-allocating processes. We only
1928 * try to reclaim pages from zones which will satisfy the caller's allocation
1929 * request.
1931 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1932 * Because:
1933 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1934 * allocation or
1935 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1936 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1937 * zone defense algorithm.
1939 * If a zone is deemed to be full of pinned pages then just give it a light
1940 * scan then give up on it.
1942 * This function returns true if a zone is being reclaimed for a costly
1943 * high-order allocation and compaction is ready to begin. This indicates to
1944 * the caller that it should consider retrying the allocation instead of
1945 * further reclaim.
1947 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1949 struct zoneref *z;
1950 struct zone *zone;
1951 unsigned long nr_soft_reclaimed;
1952 unsigned long nr_soft_scanned;
1953 bool aborted_reclaim = false;
1956 * If the number of buffer_heads in the machine exceeds the maximum
1957 * allowed level, force direct reclaim to scan the highmem zone as
1958 * highmem pages could be pinning lowmem pages storing buffer_heads
1960 if (buffer_heads_over_limit)
1961 sc->gfp_mask |= __GFP_HIGHMEM;
1963 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1964 gfp_zone(sc->gfp_mask), sc->nodemask) {
1965 if (!populated_zone(zone))
1966 continue;
1968 * Take care memory controller reclaiming has small influence
1969 * to global LRU.
1971 if (global_reclaim(sc)) {
1972 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1973 continue;
1974 if (zone->all_unreclaimable &&
1975 sc->priority != DEF_PRIORITY)
1976 continue; /* Let kswapd poll it */
1977 if (COMPACTION_BUILD) {
1979 * If we already have plenty of memory free for
1980 * compaction in this zone, don't free any more.
1981 * Even though compaction is invoked for any
1982 * non-zero order, only frequent costly order
1983 * reclamation is disruptive enough to become a
1984 * noticeable problem, like transparent huge
1985 * page allocations.
1987 if (compaction_ready(zone, sc)) {
1988 aborted_reclaim = true;
1989 continue;
1993 * This steals pages from memory cgroups over softlimit
1994 * and returns the number of reclaimed pages and
1995 * scanned pages. This works for global memory pressure
1996 * and balancing, not for a memcg's limit.
1998 nr_soft_scanned = 0;
1999 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2000 sc->order, sc->gfp_mask,
2001 &nr_soft_scanned);
2002 sc->nr_reclaimed += nr_soft_reclaimed;
2003 sc->nr_scanned += nr_soft_scanned;
2004 /* need some check for avoid more shrink_zone() */
2007 shrink_zone(zone, sc);
2010 return aborted_reclaim;
2013 static bool zone_reclaimable(struct zone *zone)
2015 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2018 /* All zones in zonelist are unreclaimable? */
2019 static bool all_unreclaimable(struct zonelist *zonelist,
2020 struct scan_control *sc)
2022 struct zoneref *z;
2023 struct zone *zone;
2025 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2026 gfp_zone(sc->gfp_mask), sc->nodemask) {
2027 if (!populated_zone(zone))
2028 continue;
2029 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2030 continue;
2031 if (!zone->all_unreclaimable)
2032 return false;
2035 return true;
2039 * This is the main entry point to direct page reclaim.
2041 * If a full scan of the inactive list fails to free enough memory then we
2042 * are "out of memory" and something needs to be killed.
2044 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2045 * high - the zone may be full of dirty or under-writeback pages, which this
2046 * caller can't do much about. We kick the writeback threads and take explicit
2047 * naps in the hope that some of these pages can be written. But if the
2048 * allocating task holds filesystem locks which prevent writeout this might not
2049 * work, and the allocation attempt will fail.
2051 * returns: 0, if no pages reclaimed
2052 * else, the number of pages reclaimed
2054 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2055 struct scan_control *sc,
2056 struct shrink_control *shrink)
2058 unsigned long total_scanned = 0;
2059 struct reclaim_state *reclaim_state = current->reclaim_state;
2060 struct zoneref *z;
2061 struct zone *zone;
2062 unsigned long writeback_threshold;
2063 bool aborted_reclaim;
2065 delayacct_freepages_start();
2067 if (global_reclaim(sc))
2068 count_vm_event(ALLOCSTALL);
2070 do {
2071 sc->nr_scanned = 0;
2072 aborted_reclaim = shrink_zones(zonelist, sc);
2075 * Don't shrink slabs when reclaiming memory from
2076 * over limit cgroups
2078 if (global_reclaim(sc)) {
2079 unsigned long lru_pages = 0;
2080 for_each_zone_zonelist(zone, z, zonelist,
2081 gfp_zone(sc->gfp_mask)) {
2082 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2083 continue;
2085 lru_pages += zone_reclaimable_pages(zone);
2088 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2089 if (reclaim_state) {
2090 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2091 reclaim_state->reclaimed_slab = 0;
2094 total_scanned += sc->nr_scanned;
2095 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2096 goto out;
2099 * Try to write back as many pages as we just scanned. This
2100 * tends to cause slow streaming writers to write data to the
2101 * disk smoothly, at the dirtying rate, which is nice. But
2102 * that's undesirable in laptop mode, where we *want* lumpy
2103 * writeout. So in laptop mode, write out the whole world.
2105 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2106 if (total_scanned > writeback_threshold) {
2107 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2108 WB_REASON_TRY_TO_FREE_PAGES);
2109 sc->may_writepage = 1;
2112 /* Take a nap, wait for some writeback to complete */
2113 if (!sc->hibernation_mode && sc->nr_scanned &&
2114 sc->priority < DEF_PRIORITY - 2) {
2115 struct zone *preferred_zone;
2117 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2118 &cpuset_current_mems_allowed,
2119 &preferred_zone);
2120 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2122 } while (--sc->priority >= 0);
2124 out:
2125 delayacct_freepages_end();
2127 if (sc->nr_reclaimed)
2128 return sc->nr_reclaimed;
2131 * As hibernation is going on, kswapd is freezed so that it can't mark
2132 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2133 * check.
2135 if (oom_killer_disabled)
2136 return 0;
2138 /* Aborted reclaim to try compaction? don't OOM, then */
2139 if (aborted_reclaim)
2140 return 1;
2142 /* top priority shrink_zones still had more to do? don't OOM, then */
2143 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2144 return 1;
2146 return 0;
2149 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2151 struct zone *zone;
2152 unsigned long pfmemalloc_reserve = 0;
2153 unsigned long free_pages = 0;
2154 int i;
2155 bool wmark_ok;
2157 for (i = 0; i <= ZONE_NORMAL; i++) {
2158 zone = &pgdat->node_zones[i];
2159 pfmemalloc_reserve += min_wmark_pages(zone);
2160 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2163 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2165 /* kswapd must be awake if processes are being throttled */
2166 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2167 pgdat->classzone_idx = min(pgdat->classzone_idx,
2168 (enum zone_type)ZONE_NORMAL);
2169 wake_up_interruptible(&pgdat->kswapd_wait);
2172 return wmark_ok;
2176 * Throttle direct reclaimers if backing storage is backed by the network
2177 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2178 * depleted. kswapd will continue to make progress and wake the processes
2179 * when the low watermark is reached
2181 static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2182 nodemask_t *nodemask)
2184 struct zone *zone;
2185 int high_zoneidx = gfp_zone(gfp_mask);
2186 pg_data_t *pgdat;
2189 * Kernel threads should not be throttled as they may be indirectly
2190 * responsible for cleaning pages necessary for reclaim to make forward
2191 * progress. kjournald for example may enter direct reclaim while
2192 * committing a transaction where throttling it could forcing other
2193 * processes to block on log_wait_commit().
2195 if (current->flags & PF_KTHREAD)
2196 return;
2198 /* Check if the pfmemalloc reserves are ok */
2199 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2200 pgdat = zone->zone_pgdat;
2201 if (pfmemalloc_watermark_ok(pgdat))
2202 return;
2204 /* Account for the throttling */
2205 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2208 * If the caller cannot enter the filesystem, it's possible that it
2209 * is due to the caller holding an FS lock or performing a journal
2210 * transaction in the case of a filesystem like ext[3|4]. In this case,
2211 * it is not safe to block on pfmemalloc_wait as kswapd could be
2212 * blocked waiting on the same lock. Instead, throttle for up to a
2213 * second before continuing.
2215 if (!(gfp_mask & __GFP_FS)) {
2216 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2217 pfmemalloc_watermark_ok(pgdat), HZ);
2218 return;
2221 /* Throttle until kswapd wakes the process */
2222 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2223 pfmemalloc_watermark_ok(pgdat));
2226 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2227 gfp_t gfp_mask, nodemask_t *nodemask)
2229 unsigned long nr_reclaimed;
2230 struct scan_control sc = {
2231 .gfp_mask = gfp_mask,
2232 .may_writepage = !laptop_mode,
2233 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2234 .may_unmap = 1,
2235 .may_swap = 1,
2236 .order = order,
2237 .priority = DEF_PRIORITY,
2238 .target_mem_cgroup = NULL,
2239 .nodemask = nodemask,
2241 struct shrink_control shrink = {
2242 .gfp_mask = sc.gfp_mask,
2245 throttle_direct_reclaim(gfp_mask, zonelist, nodemask);
2248 * Do not enter reclaim if fatal signal is pending. 1 is returned so
2249 * that the page allocator does not consider triggering OOM
2251 if (fatal_signal_pending(current))
2252 return 1;
2254 trace_mm_vmscan_direct_reclaim_begin(order,
2255 sc.may_writepage,
2256 gfp_mask);
2258 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2260 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2262 return nr_reclaimed;
2265 #ifdef CONFIG_MEMCG
2267 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2268 gfp_t gfp_mask, bool noswap,
2269 struct zone *zone,
2270 unsigned long *nr_scanned)
2272 struct scan_control sc = {
2273 .nr_scanned = 0,
2274 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2275 .may_writepage = !laptop_mode,
2276 .may_unmap = 1,
2277 .may_swap = !noswap,
2278 .order = 0,
2279 .priority = 0,
2280 .target_mem_cgroup = memcg,
2282 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2284 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2285 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2287 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2288 sc.may_writepage,
2289 sc.gfp_mask);
2292 * NOTE: Although we can get the priority field, using it
2293 * here is not a good idea, since it limits the pages we can scan.
2294 * if we don't reclaim here, the shrink_zone from balance_pgdat
2295 * will pick up pages from other mem cgroup's as well. We hack
2296 * the priority and make it zero.
2298 shrink_lruvec(lruvec, &sc);
2300 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2302 *nr_scanned = sc.nr_scanned;
2303 return sc.nr_reclaimed;
2306 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2307 gfp_t gfp_mask,
2308 bool noswap)
2310 struct zonelist *zonelist;
2311 unsigned long nr_reclaimed;
2312 int nid;
2313 struct scan_control sc = {
2314 .may_writepage = !laptop_mode,
2315 .may_unmap = 1,
2316 .may_swap = !noswap,
2317 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2318 .order = 0,
2319 .priority = DEF_PRIORITY,
2320 .target_mem_cgroup = memcg,
2321 .nodemask = NULL, /* we don't care the placement */
2322 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2323 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2325 struct shrink_control shrink = {
2326 .gfp_mask = sc.gfp_mask,
2330 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2331 * take care of from where we get pages. So the node where we start the
2332 * scan does not need to be the current node.
2334 nid = mem_cgroup_select_victim_node(memcg);
2336 zonelist = NODE_DATA(nid)->node_zonelists;
2338 trace_mm_vmscan_memcg_reclaim_begin(0,
2339 sc.may_writepage,
2340 sc.gfp_mask);
2342 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2344 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2346 return nr_reclaimed;
2348 #endif
2350 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2352 struct mem_cgroup *memcg;
2354 if (!total_swap_pages)
2355 return;
2357 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2358 do {
2359 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2361 if (inactive_anon_is_low(lruvec))
2362 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2363 sc, LRU_ACTIVE_ANON);
2365 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2366 } while (memcg);
2370 * pgdat_balanced is used when checking if a node is balanced for high-order
2371 * allocations. Only zones that meet watermarks and are in a zone allowed
2372 * by the callers classzone_idx are added to balanced_pages. The total of
2373 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2374 * for the node to be considered balanced. Forcing all zones to be balanced
2375 * for high orders can cause excessive reclaim when there are imbalanced zones.
2376 * The choice of 25% is due to
2377 * o a 16M DMA zone that is balanced will not balance a zone on any
2378 * reasonable sized machine
2379 * o On all other machines, the top zone must be at least a reasonable
2380 * percentage of the middle zones. For example, on 32-bit x86, highmem
2381 * would need to be at least 256M for it to be balance a whole node.
2382 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2383 * to balance a node on its own. These seemed like reasonable ratios.
2385 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2386 int classzone_idx)
2388 unsigned long present_pages = 0;
2389 int i;
2391 for (i = 0; i <= classzone_idx; i++)
2392 present_pages += pgdat->node_zones[i].present_pages;
2394 /* A special case here: if zone has no page, we think it's balanced */
2395 return balanced_pages >= (present_pages >> 2);
2399 * Prepare kswapd for sleeping. This verifies that there are no processes
2400 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2402 * Returns true if kswapd is ready to sleep
2404 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2405 int classzone_idx)
2407 int i;
2408 unsigned long balanced = 0;
2409 bool all_zones_ok = true;
2411 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2412 if (remaining)
2413 return false;
2416 * There is a potential race between when kswapd checks its watermarks
2417 * and a process gets throttled. There is also a potential race if
2418 * processes get throttled, kswapd wakes, a large process exits therby
2419 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2420 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2421 * so wake them now if necessary. If necessary, processes will wake
2422 * kswapd and get throttled again
2424 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2425 wake_up(&pgdat->pfmemalloc_wait);
2426 return false;
2429 /* Check the watermark levels */
2430 for (i = 0; i <= classzone_idx; i++) {
2431 struct zone *zone = pgdat->node_zones + i;
2433 if (!populated_zone(zone))
2434 continue;
2437 * balance_pgdat() skips over all_unreclaimable after
2438 * DEF_PRIORITY. Effectively, it considers them balanced so
2439 * they must be considered balanced here as well if kswapd
2440 * is to sleep
2442 if (zone->all_unreclaimable) {
2443 balanced += zone->present_pages;
2444 continue;
2447 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2448 i, 0))
2449 all_zones_ok = false;
2450 else
2451 balanced += zone->present_pages;
2455 * For high-order requests, the balanced zones must contain at least
2456 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2457 * must be balanced
2459 if (order)
2460 return pgdat_balanced(pgdat, balanced, classzone_idx);
2461 else
2462 return all_zones_ok;
2466 * For kswapd, balance_pgdat() will work across all this node's zones until
2467 * they are all at high_wmark_pages(zone).
2469 * Returns the final order kswapd was reclaiming at
2471 * There is special handling here for zones which are full of pinned pages.
2472 * This can happen if the pages are all mlocked, or if they are all used by
2473 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2474 * What we do is to detect the case where all pages in the zone have been
2475 * scanned twice and there has been zero successful reclaim. Mark the zone as
2476 * dead and from now on, only perform a short scan. Basically we're polling
2477 * the zone for when the problem goes away.
2479 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2480 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2481 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2482 * lower zones regardless of the number of free pages in the lower zones. This
2483 * interoperates with the page allocator fallback scheme to ensure that aging
2484 * of pages is balanced across the zones.
2486 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2487 int *classzone_idx)
2489 int all_zones_ok;
2490 unsigned long balanced;
2491 int i;
2492 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2493 unsigned long total_scanned;
2494 struct reclaim_state *reclaim_state = current->reclaim_state;
2495 unsigned long nr_soft_reclaimed;
2496 unsigned long nr_soft_scanned;
2497 struct scan_control sc = {
2498 .gfp_mask = GFP_KERNEL,
2499 .may_unmap = 1,
2500 .may_swap = 1,
2502 * kswapd doesn't want to be bailed out while reclaim. because
2503 * we want to put equal scanning pressure on each zone.
2505 .nr_to_reclaim = ULONG_MAX,
2506 .order = order,
2507 .target_mem_cgroup = NULL,
2509 struct shrink_control shrink = {
2510 .gfp_mask = sc.gfp_mask,
2512 loop_again:
2513 total_scanned = 0;
2514 sc.priority = DEF_PRIORITY;
2515 sc.nr_reclaimed = 0;
2516 sc.may_writepage = !laptop_mode;
2517 count_vm_event(PAGEOUTRUN);
2519 do {
2520 unsigned long lru_pages = 0;
2521 int has_under_min_watermark_zone = 0;
2523 all_zones_ok = 1;
2524 balanced = 0;
2527 * Scan in the highmem->dma direction for the highest
2528 * zone which needs scanning
2530 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2531 struct zone *zone = pgdat->node_zones + i;
2533 if (!populated_zone(zone))
2534 continue;
2536 if (zone->all_unreclaimable &&
2537 sc.priority != DEF_PRIORITY)
2538 continue;
2541 * Do some background aging of the anon list, to give
2542 * pages a chance to be referenced before reclaiming.
2544 age_active_anon(zone, &sc);
2547 * If the number of buffer_heads in the machine
2548 * exceeds the maximum allowed level and this node
2549 * has a highmem zone, force kswapd to reclaim from
2550 * it to relieve lowmem pressure.
2552 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2553 end_zone = i;
2554 break;
2557 if (!zone_watermark_ok_safe(zone, order,
2558 high_wmark_pages(zone), 0, 0)) {
2559 end_zone = i;
2560 break;
2561 } else {
2562 /* If balanced, clear the congested flag */
2563 zone_clear_flag(zone, ZONE_CONGESTED);
2566 if (i < 0)
2567 goto out;
2569 for (i = 0; i <= end_zone; i++) {
2570 struct zone *zone = pgdat->node_zones + i;
2572 lru_pages += zone_reclaimable_pages(zone);
2576 * Now scan the zone in the dma->highmem direction, stopping
2577 * at the last zone which needs scanning.
2579 * We do this because the page allocator works in the opposite
2580 * direction. This prevents the page allocator from allocating
2581 * pages behind kswapd's direction of progress, which would
2582 * cause too much scanning of the lower zones.
2584 for (i = 0; i <= end_zone; i++) {
2585 struct zone *zone = pgdat->node_zones + i;
2586 int nr_slab, testorder;
2587 unsigned long balance_gap;
2589 if (!populated_zone(zone))
2590 continue;
2592 if (zone->all_unreclaimable &&
2593 sc.priority != DEF_PRIORITY)
2594 continue;
2596 sc.nr_scanned = 0;
2598 nr_soft_scanned = 0;
2600 * Call soft limit reclaim before calling shrink_zone.
2602 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2603 order, sc.gfp_mask,
2604 &nr_soft_scanned);
2605 sc.nr_reclaimed += nr_soft_reclaimed;
2606 total_scanned += nr_soft_scanned;
2609 * We put equal pressure on every zone, unless
2610 * one zone has way too many pages free
2611 * already. The "too many pages" is defined
2612 * as the high wmark plus a "gap" where the
2613 * gap is either the low watermark or 1%
2614 * of the zone, whichever is smaller.
2616 balance_gap = min(low_wmark_pages(zone),
2617 (zone->present_pages +
2618 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2619 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2621 * Kswapd reclaims only single pages with compaction
2622 * enabled. Trying too hard to reclaim until contiguous
2623 * free pages have become available can hurt performance
2624 * by evicting too much useful data from memory.
2625 * Do not reclaim more than needed for compaction.
2627 testorder = order;
2628 if (COMPACTION_BUILD && order &&
2629 compaction_suitable(zone, order) !=
2630 COMPACT_SKIPPED)
2631 testorder = 0;
2633 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2634 !zone_watermark_ok_safe(zone, testorder,
2635 high_wmark_pages(zone) + balance_gap,
2636 end_zone, 0)) {
2637 shrink_zone(zone, &sc);
2639 reclaim_state->reclaimed_slab = 0;
2640 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2641 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2642 total_scanned += sc.nr_scanned;
2644 if (nr_slab == 0 && !zone_reclaimable(zone))
2645 zone->all_unreclaimable = 1;
2649 * If we've done a decent amount of scanning and
2650 * the reclaim ratio is low, start doing writepage
2651 * even in laptop mode
2653 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2654 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2655 sc.may_writepage = 1;
2657 if (zone->all_unreclaimable) {
2658 if (end_zone && end_zone == i)
2659 end_zone--;
2660 continue;
2663 if (!zone_watermark_ok_safe(zone, testorder,
2664 high_wmark_pages(zone), end_zone, 0)) {
2665 all_zones_ok = 0;
2667 * We are still under min water mark. This
2668 * means that we have a GFP_ATOMIC allocation
2669 * failure risk. Hurry up!
2671 if (!zone_watermark_ok_safe(zone, order,
2672 min_wmark_pages(zone), end_zone, 0))
2673 has_under_min_watermark_zone = 1;
2674 } else {
2676 * If a zone reaches its high watermark,
2677 * consider it to be no longer congested. It's
2678 * possible there are dirty pages backed by
2679 * congested BDIs but as pressure is relieved,
2680 * speculatively avoid congestion waits
2682 zone_clear_flag(zone, ZONE_CONGESTED);
2683 if (i <= *classzone_idx)
2684 balanced += zone->present_pages;
2690 * If the low watermark is met there is no need for processes
2691 * to be throttled on pfmemalloc_wait as they should not be
2692 * able to safely make forward progress. Wake them
2694 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2695 pfmemalloc_watermark_ok(pgdat))
2696 wake_up(&pgdat->pfmemalloc_wait);
2698 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2699 break; /* kswapd: all done */
2701 * OK, kswapd is getting into trouble. Take a nap, then take
2702 * another pass across the zones.
2704 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2705 if (has_under_min_watermark_zone)
2706 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2707 else
2708 congestion_wait(BLK_RW_ASYNC, HZ/10);
2712 * We do this so kswapd doesn't build up large priorities for
2713 * example when it is freeing in parallel with allocators. It
2714 * matches the direct reclaim path behaviour in terms of impact
2715 * on zone->*_priority.
2717 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2718 break;
2719 } while (--sc.priority >= 0);
2720 out:
2723 * order-0: All zones must meet high watermark for a balanced node
2724 * high-order: Balanced zones must make up at least 25% of the node
2725 * for the node to be balanced
2727 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2728 cond_resched();
2730 try_to_freeze();
2733 * Fragmentation may mean that the system cannot be
2734 * rebalanced for high-order allocations in all zones.
2735 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2736 * it means the zones have been fully scanned and are still
2737 * not balanced. For high-order allocations, there is
2738 * little point trying all over again as kswapd may
2739 * infinite loop.
2741 * Instead, recheck all watermarks at order-0 as they
2742 * are the most important. If watermarks are ok, kswapd will go
2743 * back to sleep. High-order users can still perform direct
2744 * reclaim if they wish.
2746 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2747 order = sc.order = 0;
2749 goto loop_again;
2753 * If kswapd was reclaiming at a higher order, it has the option of
2754 * sleeping without all zones being balanced. Before it does, it must
2755 * ensure that the watermarks for order-0 on *all* zones are met and
2756 * that the congestion flags are cleared. The congestion flag must
2757 * be cleared as kswapd is the only mechanism that clears the flag
2758 * and it is potentially going to sleep here.
2760 if (order) {
2761 int zones_need_compaction = 1;
2763 for (i = 0; i <= end_zone; i++) {
2764 struct zone *zone = pgdat->node_zones + i;
2766 if (!populated_zone(zone))
2767 continue;
2769 if (zone->all_unreclaimable &&
2770 sc.priority != DEF_PRIORITY)
2771 continue;
2773 /* Would compaction fail due to lack of free memory? */
2774 if (COMPACTION_BUILD &&
2775 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2776 goto loop_again;
2778 /* Confirm the zone is balanced for order-0 */
2779 if (!zone_watermark_ok(zone, 0,
2780 high_wmark_pages(zone), 0, 0)) {
2781 order = sc.order = 0;
2782 goto loop_again;
2785 /* Check if the memory needs to be defragmented. */
2786 if (zone_watermark_ok(zone, order,
2787 low_wmark_pages(zone), *classzone_idx, 0))
2788 zones_need_compaction = 0;
2790 /* If balanced, clear the congested flag */
2791 zone_clear_flag(zone, ZONE_CONGESTED);
2794 if (zones_need_compaction)
2795 compact_pgdat(pgdat, order);
2799 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2800 * makes a decision on the order we were last reclaiming at. However,
2801 * if another caller entered the allocator slow path while kswapd
2802 * was awake, order will remain at the higher level
2804 *classzone_idx = end_zone;
2805 return order;
2808 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2810 long remaining = 0;
2811 DEFINE_WAIT(wait);
2813 if (freezing(current) || kthread_should_stop())
2814 return;
2816 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2818 /* Try to sleep for a short interval */
2819 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2820 remaining = schedule_timeout(HZ/10);
2821 finish_wait(&pgdat->kswapd_wait, &wait);
2822 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2826 * After a short sleep, check if it was a premature sleep. If not, then
2827 * go fully to sleep until explicitly woken up.
2829 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2830 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2833 * vmstat counters are not perfectly accurate and the estimated
2834 * value for counters such as NR_FREE_PAGES can deviate from the
2835 * true value by nr_online_cpus * threshold. To avoid the zone
2836 * watermarks being breached while under pressure, we reduce the
2837 * per-cpu vmstat threshold while kswapd is awake and restore
2838 * them before going back to sleep.
2840 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2842 if (!kthread_should_stop())
2843 schedule();
2845 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2846 } else {
2847 if (remaining)
2848 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2849 else
2850 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2852 finish_wait(&pgdat->kswapd_wait, &wait);
2856 * The background pageout daemon, started as a kernel thread
2857 * from the init process.
2859 * This basically trickles out pages so that we have _some_
2860 * free memory available even if there is no other activity
2861 * that frees anything up. This is needed for things like routing
2862 * etc, where we otherwise might have all activity going on in
2863 * asynchronous contexts that cannot page things out.
2865 * If there are applications that are active memory-allocators
2866 * (most normal use), this basically shouldn't matter.
2868 static int kswapd(void *p)
2870 unsigned long order, new_order;
2871 unsigned balanced_order;
2872 int classzone_idx, new_classzone_idx;
2873 int balanced_classzone_idx;
2874 pg_data_t *pgdat = (pg_data_t*)p;
2875 struct task_struct *tsk = current;
2877 struct reclaim_state reclaim_state = {
2878 .reclaimed_slab = 0,
2880 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2882 lockdep_set_current_reclaim_state(GFP_KERNEL);
2884 if (!cpumask_empty(cpumask))
2885 set_cpus_allowed_ptr(tsk, cpumask);
2886 current->reclaim_state = &reclaim_state;
2889 * Tell the memory management that we're a "memory allocator",
2890 * and that if we need more memory we should get access to it
2891 * regardless (see "__alloc_pages()"). "kswapd" should
2892 * never get caught in the normal page freeing logic.
2894 * (Kswapd normally doesn't need memory anyway, but sometimes
2895 * you need a small amount of memory in order to be able to
2896 * page out something else, and this flag essentially protects
2897 * us from recursively trying to free more memory as we're
2898 * trying to free the first piece of memory in the first place).
2900 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2901 set_freezable();
2903 order = new_order = 0;
2904 balanced_order = 0;
2905 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2906 balanced_classzone_idx = classzone_idx;
2907 for ( ; ; ) {
2908 int ret;
2911 * If the last balance_pgdat was unsuccessful it's unlikely a
2912 * new request of a similar or harder type will succeed soon
2913 * so consider going to sleep on the basis we reclaimed at
2915 if (balanced_classzone_idx >= new_classzone_idx &&
2916 balanced_order == new_order) {
2917 new_order = pgdat->kswapd_max_order;
2918 new_classzone_idx = pgdat->classzone_idx;
2919 pgdat->kswapd_max_order = 0;
2920 pgdat->classzone_idx = pgdat->nr_zones - 1;
2923 if (order < new_order || classzone_idx > new_classzone_idx) {
2925 * Don't sleep if someone wants a larger 'order'
2926 * allocation or has tigher zone constraints
2928 order = new_order;
2929 classzone_idx = new_classzone_idx;
2930 } else {
2931 kswapd_try_to_sleep(pgdat, balanced_order,
2932 balanced_classzone_idx);
2933 order = pgdat->kswapd_max_order;
2934 classzone_idx = pgdat->classzone_idx;
2935 new_order = order;
2936 new_classzone_idx = classzone_idx;
2937 pgdat->kswapd_max_order = 0;
2938 pgdat->classzone_idx = pgdat->nr_zones - 1;
2941 ret = try_to_freeze();
2942 if (kthread_should_stop())
2943 break;
2946 * We can speed up thawing tasks if we don't call balance_pgdat
2947 * after returning from the refrigerator
2949 if (!ret) {
2950 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2951 balanced_classzone_idx = classzone_idx;
2952 balanced_order = balance_pgdat(pgdat, order,
2953 &balanced_classzone_idx);
2956 return 0;
2960 * A zone is low on free memory, so wake its kswapd task to service it.
2962 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2964 pg_data_t *pgdat;
2966 if (!populated_zone(zone))
2967 return;
2969 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2970 return;
2971 pgdat = zone->zone_pgdat;
2972 if (pgdat->kswapd_max_order < order) {
2973 pgdat->kswapd_max_order = order;
2974 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2976 if (!waitqueue_active(&pgdat->kswapd_wait))
2977 return;
2978 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2979 return;
2981 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2982 wake_up_interruptible(&pgdat->kswapd_wait);
2986 * The reclaimable count would be mostly accurate.
2987 * The less reclaimable pages may be
2988 * - mlocked pages, which will be moved to unevictable list when encountered
2989 * - mapped pages, which may require several travels to be reclaimed
2990 * - dirty pages, which is not "instantly" reclaimable
2992 unsigned long global_reclaimable_pages(void)
2994 int nr;
2996 nr = global_page_state(NR_ACTIVE_FILE) +
2997 global_page_state(NR_INACTIVE_FILE);
2999 if (nr_swap_pages > 0)
3000 nr += global_page_state(NR_ACTIVE_ANON) +
3001 global_page_state(NR_INACTIVE_ANON);
3003 return nr;
3006 unsigned long zone_reclaimable_pages(struct zone *zone)
3008 int nr;
3010 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3011 zone_page_state(zone, NR_INACTIVE_FILE);
3013 if (nr_swap_pages > 0)
3014 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3015 zone_page_state(zone, NR_INACTIVE_ANON);
3017 return nr;
3020 #ifdef CONFIG_HIBERNATION
3022 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3023 * freed pages.
3025 * Rather than trying to age LRUs the aim is to preserve the overall
3026 * LRU order by reclaiming preferentially
3027 * inactive > active > active referenced > active mapped
3029 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3031 struct reclaim_state reclaim_state;
3032 struct scan_control sc = {
3033 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3034 .may_swap = 1,
3035 .may_unmap = 1,
3036 .may_writepage = 1,
3037 .nr_to_reclaim = nr_to_reclaim,
3038 .hibernation_mode = 1,
3039 .order = 0,
3040 .priority = DEF_PRIORITY,
3042 struct shrink_control shrink = {
3043 .gfp_mask = sc.gfp_mask,
3045 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3046 struct task_struct *p = current;
3047 unsigned long nr_reclaimed;
3049 p->flags |= PF_MEMALLOC;
3050 lockdep_set_current_reclaim_state(sc.gfp_mask);
3051 reclaim_state.reclaimed_slab = 0;
3052 p->reclaim_state = &reclaim_state;
3054 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3056 p->reclaim_state = NULL;
3057 lockdep_clear_current_reclaim_state();
3058 p->flags &= ~PF_MEMALLOC;
3060 return nr_reclaimed;
3062 #endif /* CONFIG_HIBERNATION */
3064 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3065 not required for correctness. So if the last cpu in a node goes
3066 away, we get changed to run anywhere: as the first one comes back,
3067 restore their cpu bindings. */
3068 static int __devinit cpu_callback(struct notifier_block *nfb,
3069 unsigned long action, void *hcpu)
3071 int nid;
3073 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3074 for_each_node_state(nid, N_HIGH_MEMORY) {
3075 pg_data_t *pgdat = NODE_DATA(nid);
3076 const struct cpumask *mask;
3078 mask = cpumask_of_node(pgdat->node_id);
3080 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3081 /* One of our CPUs online: restore mask */
3082 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3085 return NOTIFY_OK;
3089 * This kswapd start function will be called by init and node-hot-add.
3090 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3092 int kswapd_run(int nid)
3094 pg_data_t *pgdat = NODE_DATA(nid);
3095 int ret = 0;
3097 if (pgdat->kswapd)
3098 return 0;
3100 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3101 if (IS_ERR(pgdat->kswapd)) {
3102 /* failure at boot is fatal */
3103 BUG_ON(system_state == SYSTEM_BOOTING);
3104 printk("Failed to start kswapd on node %d\n",nid);
3105 ret = -1;
3107 return ret;
3111 * Called by memory hotplug when all memory in a node is offlined. Caller must
3112 * hold lock_memory_hotplug().
3114 void kswapd_stop(int nid)
3116 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3118 if (kswapd) {
3119 kthread_stop(kswapd);
3120 NODE_DATA(nid)->kswapd = NULL;
3124 static int __init kswapd_init(void)
3126 int nid;
3128 swap_setup();
3129 for_each_node_state(nid, N_HIGH_MEMORY)
3130 kswapd_run(nid);
3131 hotcpu_notifier(cpu_callback, 0);
3132 return 0;
3135 module_init(kswapd_init)
3137 #ifdef CONFIG_NUMA
3139 * Zone reclaim mode
3141 * If non-zero call zone_reclaim when the number of free pages falls below
3142 * the watermarks.
3144 int zone_reclaim_mode __read_mostly;
3146 #define RECLAIM_OFF 0
3147 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3148 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3149 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3152 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3153 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3154 * a zone.
3156 #define ZONE_RECLAIM_PRIORITY 4
3159 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3160 * occur.
3162 int sysctl_min_unmapped_ratio = 1;
3165 * If the number of slab pages in a zone grows beyond this percentage then
3166 * slab reclaim needs to occur.
3168 int sysctl_min_slab_ratio = 5;
3170 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3172 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3173 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3174 zone_page_state(zone, NR_ACTIVE_FILE);
3177 * It's possible for there to be more file mapped pages than
3178 * accounted for by the pages on the file LRU lists because
3179 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3181 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3184 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3185 static long zone_pagecache_reclaimable(struct zone *zone)
3187 long nr_pagecache_reclaimable;
3188 long delta = 0;
3191 * If RECLAIM_SWAP is set, then all file pages are considered
3192 * potentially reclaimable. Otherwise, we have to worry about
3193 * pages like swapcache and zone_unmapped_file_pages() provides
3194 * a better estimate
3196 if (zone_reclaim_mode & RECLAIM_SWAP)
3197 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3198 else
3199 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3201 /* If we can't clean pages, remove dirty pages from consideration */
3202 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3203 delta += zone_page_state(zone, NR_FILE_DIRTY);
3205 /* Watch for any possible underflows due to delta */
3206 if (unlikely(delta > nr_pagecache_reclaimable))
3207 delta = nr_pagecache_reclaimable;
3209 return nr_pagecache_reclaimable - delta;
3213 * Try to free up some pages from this zone through reclaim.
3215 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3217 /* Minimum pages needed in order to stay on node */
3218 const unsigned long nr_pages = 1 << order;
3219 struct task_struct *p = current;
3220 struct reclaim_state reclaim_state;
3221 struct scan_control sc = {
3222 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3223 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3224 .may_swap = 1,
3225 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3226 SWAP_CLUSTER_MAX),
3227 .gfp_mask = gfp_mask,
3228 .order = order,
3229 .priority = ZONE_RECLAIM_PRIORITY,
3231 struct shrink_control shrink = {
3232 .gfp_mask = sc.gfp_mask,
3234 unsigned long nr_slab_pages0, nr_slab_pages1;
3236 cond_resched();
3238 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3239 * and we also need to be able to write out pages for RECLAIM_WRITE
3240 * and RECLAIM_SWAP.
3242 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3243 lockdep_set_current_reclaim_state(gfp_mask);
3244 reclaim_state.reclaimed_slab = 0;
3245 p->reclaim_state = &reclaim_state;
3247 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3249 * Free memory by calling shrink zone with increasing
3250 * priorities until we have enough memory freed.
3252 do {
3253 shrink_zone(zone, &sc);
3254 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3257 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3258 if (nr_slab_pages0 > zone->min_slab_pages) {
3260 * shrink_slab() does not currently allow us to determine how
3261 * many pages were freed in this zone. So we take the current
3262 * number of slab pages and shake the slab until it is reduced
3263 * by the same nr_pages that we used for reclaiming unmapped
3264 * pages.
3266 * Note that shrink_slab will free memory on all zones and may
3267 * take a long time.
3269 for (;;) {
3270 unsigned long lru_pages = zone_reclaimable_pages(zone);
3272 /* No reclaimable slab or very low memory pressure */
3273 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3274 break;
3276 /* Freed enough memory */
3277 nr_slab_pages1 = zone_page_state(zone,
3278 NR_SLAB_RECLAIMABLE);
3279 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3280 break;
3284 * Update nr_reclaimed by the number of slab pages we
3285 * reclaimed from this zone.
3287 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3288 if (nr_slab_pages1 < nr_slab_pages0)
3289 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3292 p->reclaim_state = NULL;
3293 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3294 lockdep_clear_current_reclaim_state();
3295 return sc.nr_reclaimed >= nr_pages;
3298 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3300 int node_id;
3301 int ret;
3304 * Zone reclaim reclaims unmapped file backed pages and
3305 * slab pages if we are over the defined limits.
3307 * A small portion of unmapped file backed pages is needed for
3308 * file I/O otherwise pages read by file I/O will be immediately
3309 * thrown out if the zone is overallocated. So we do not reclaim
3310 * if less than a specified percentage of the zone is used by
3311 * unmapped file backed pages.
3313 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3314 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3315 return ZONE_RECLAIM_FULL;
3317 if (zone->all_unreclaimable)
3318 return ZONE_RECLAIM_FULL;
3321 * Do not scan if the allocation should not be delayed.
3323 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3324 return ZONE_RECLAIM_NOSCAN;
3327 * Only run zone reclaim on the local zone or on zones that do not
3328 * have associated processors. This will favor the local processor
3329 * over remote processors and spread off node memory allocations
3330 * as wide as possible.
3332 node_id = zone_to_nid(zone);
3333 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3334 return ZONE_RECLAIM_NOSCAN;
3336 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3337 return ZONE_RECLAIM_NOSCAN;
3339 ret = __zone_reclaim(zone, gfp_mask, order);
3340 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3342 if (!ret)
3343 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3345 return ret;
3347 #endif
3350 * page_evictable - test whether a page is evictable
3351 * @page: the page to test
3352 * @vma: the VMA in which the page is or will be mapped, may be NULL
3354 * Test whether page is evictable--i.e., should be placed on active/inactive
3355 * lists vs unevictable list. The vma argument is !NULL when called from the
3356 * fault path to determine how to instantate a new page.
3358 * Reasons page might not be evictable:
3359 * (1) page's mapping marked unevictable
3360 * (2) page is part of an mlocked VMA
3363 int page_evictable(struct page *page, struct vm_area_struct *vma)
3366 if (mapping_unevictable(page_mapping(page)))
3367 return 0;
3369 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3370 return 0;
3372 return 1;
3375 #ifdef CONFIG_SHMEM
3377 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3378 * @pages: array of pages to check
3379 * @nr_pages: number of pages to check
3381 * Checks pages for evictability and moves them to the appropriate lru list.
3383 * This function is only used for SysV IPC SHM_UNLOCK.
3385 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3387 struct lruvec *lruvec;
3388 struct zone *zone = NULL;
3389 int pgscanned = 0;
3390 int pgrescued = 0;
3391 int i;
3393 for (i = 0; i < nr_pages; i++) {
3394 struct page *page = pages[i];
3395 struct zone *pagezone;
3397 pgscanned++;
3398 pagezone = page_zone(page);
3399 if (pagezone != zone) {
3400 if (zone)
3401 spin_unlock_irq(&zone->lru_lock);
3402 zone = pagezone;
3403 spin_lock_irq(&zone->lru_lock);
3405 lruvec = mem_cgroup_page_lruvec(page, zone);
3407 if (!PageLRU(page) || !PageUnevictable(page))
3408 continue;
3410 if (page_evictable(page, NULL)) {
3411 enum lru_list lru = page_lru_base_type(page);
3413 VM_BUG_ON(PageActive(page));
3414 ClearPageUnevictable(page);
3415 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3416 add_page_to_lru_list(page, lruvec, lru);
3417 pgrescued++;
3421 if (zone) {
3422 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3423 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3424 spin_unlock_irq(&zone->lru_lock);
3427 #endif /* CONFIG_SHMEM */
3429 static void warn_scan_unevictable_pages(void)
3431 printk_once(KERN_WARNING
3432 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3433 "disabled for lack of a legitimate use case. If you have "
3434 "one, please send an email to linux-mm@kvack.org.\n",
3435 current->comm);
3439 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3440 * all nodes' unevictable lists for evictable pages
3442 unsigned long scan_unevictable_pages;
3444 int scan_unevictable_handler(struct ctl_table *table, int write,
3445 void __user *buffer,
3446 size_t *length, loff_t *ppos)
3448 warn_scan_unevictable_pages();
3449 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3450 scan_unevictable_pages = 0;
3451 return 0;
3454 #ifdef CONFIG_NUMA
3456 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3457 * a specified node's per zone unevictable lists for evictable pages.
3460 static ssize_t read_scan_unevictable_node(struct device *dev,
3461 struct device_attribute *attr,
3462 char *buf)
3464 warn_scan_unevictable_pages();
3465 return sprintf(buf, "0\n"); /* always zero; should fit... */
3468 static ssize_t write_scan_unevictable_node(struct device *dev,
3469 struct device_attribute *attr,
3470 const char *buf, size_t count)
3472 warn_scan_unevictable_pages();
3473 return 1;
3477 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3478 read_scan_unevictable_node,
3479 write_scan_unevictable_node);
3481 int scan_unevictable_register_node(struct node *node)
3483 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3486 void scan_unevictable_unregister_node(struct node *node)
3488 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3490 #endif