jbd: Journal block numbers can ever be only 32-bit use unsigned int for them
[linux/fpc-iii.git] / arch / ia64 / kvm / mmio.c
blob9bf55afd08d0603902ae63877499a91488a6d221
1 /*
2 * mmio.c: MMIO emulation components.
3 * Copyright (c) 2004, Intel Corporation.
4 * Yaozu Dong (Eddie Dong) (Eddie.dong@intel.com)
5 * Kun Tian (Kevin Tian) (Kevin.tian@intel.com)
7 * Copyright (c) 2007 Intel Corporation KVM support.
8 * Xuefei Xu (Anthony Xu) (anthony.xu@intel.com)
9 * Xiantao Zhang (xiantao.zhang@intel.com)
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms and conditions of the GNU General Public License,
13 * version 2, as published by the Free Software Foundation.
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * more details.
20 * You should have received a copy of the GNU General Public License along with
21 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
22 * Place - Suite 330, Boston, MA 02111-1307 USA.
26 #include <linux/kvm_host.h>
28 #include "vcpu.h"
30 static void vlsapic_write_xtp(struct kvm_vcpu *v, uint8_t val)
32 VLSAPIC_XTP(v) = val;
36 * LSAPIC OFFSET
38 #define PIB_LOW_HALF(ofst) !(ofst & (1 << 20))
39 #define PIB_OFST_INTA 0x1E0000
40 #define PIB_OFST_XTP 0x1E0008
43 * execute write IPI op.
45 static void vlsapic_write_ipi(struct kvm_vcpu *vcpu,
46 uint64_t addr, uint64_t data)
48 struct exit_ctl_data *p = &current_vcpu->arch.exit_data;
49 unsigned long psr;
51 local_irq_save(psr);
53 p->exit_reason = EXIT_REASON_IPI;
54 p->u.ipi_data.addr.val = addr;
55 p->u.ipi_data.data.val = data;
56 vmm_transition(current_vcpu);
58 local_irq_restore(psr);
62 void lsapic_write(struct kvm_vcpu *v, unsigned long addr,
63 unsigned long length, unsigned long val)
65 addr &= (PIB_SIZE - 1);
67 switch (addr) {
68 case PIB_OFST_INTA:
69 panic_vm(v, "Undefined write on PIB INTA\n");
70 break;
71 case PIB_OFST_XTP:
72 if (length == 1) {
73 vlsapic_write_xtp(v, val);
74 } else {
75 panic_vm(v, "Undefined write on PIB XTP\n");
77 break;
78 default:
79 if (PIB_LOW_HALF(addr)) {
80 /*Lower half */
81 if (length != 8)
82 panic_vm(v, "Can't LHF write with size %ld!\n",
83 length);
84 else
85 vlsapic_write_ipi(v, addr, val);
86 } else { /*Upper half */
87 panic_vm(v, "IPI-UHF write %lx\n", addr);
89 break;
93 unsigned long lsapic_read(struct kvm_vcpu *v, unsigned long addr,
94 unsigned long length)
96 uint64_t result = 0;
98 addr &= (PIB_SIZE - 1);
100 switch (addr) {
101 case PIB_OFST_INTA:
102 if (length == 1) /* 1 byte load */
103 ; /* There is no i8259, there is no INTA access*/
104 else
105 panic_vm(v, "Undefined read on PIB INTA\n");
107 break;
108 case PIB_OFST_XTP:
109 if (length == 1) {
110 result = VLSAPIC_XTP(v);
111 } else {
112 panic_vm(v, "Undefined read on PIB XTP\n");
114 break;
115 default:
116 panic_vm(v, "Undefined addr access for lsapic!\n");
117 break;
119 return result;
122 static void mmio_access(struct kvm_vcpu *vcpu, u64 src_pa, u64 *dest,
123 u16 s, int ma, int dir)
125 unsigned long iot;
126 struct exit_ctl_data *p = &vcpu->arch.exit_data;
127 unsigned long psr;
129 iot = __gpfn_is_io(src_pa >> PAGE_SHIFT);
131 local_irq_save(psr);
133 /*Intercept the acces for PIB range*/
134 if (iot == GPFN_PIB) {
135 if (!dir)
136 lsapic_write(vcpu, src_pa, s, *dest);
137 else
138 *dest = lsapic_read(vcpu, src_pa, s);
139 goto out;
141 p->exit_reason = EXIT_REASON_MMIO_INSTRUCTION;
142 p->u.ioreq.addr = src_pa;
143 p->u.ioreq.size = s;
144 p->u.ioreq.dir = dir;
145 if (dir == IOREQ_WRITE)
146 p->u.ioreq.data = *dest;
147 p->u.ioreq.state = STATE_IOREQ_READY;
148 vmm_transition(vcpu);
150 if (p->u.ioreq.state == STATE_IORESP_READY) {
151 if (dir == IOREQ_READ)
152 /* it's necessary to ensure zero extending */
153 *dest = p->u.ioreq.data & (~0UL >> (64-(s*8)));
154 } else
155 panic_vm(vcpu, "Unhandled mmio access returned!\n");
156 out:
157 local_irq_restore(psr);
158 return ;
162 dir 1: read 0:write
163 inst_type 0:integer 1:floating point
165 #define SL_INTEGER 0 /* store/load interger*/
166 #define SL_FLOATING 1 /* store/load floating*/
168 void emulate_io_inst(struct kvm_vcpu *vcpu, u64 padr, u64 ma)
170 struct kvm_pt_regs *regs;
171 IA64_BUNDLE bundle;
172 int slot, dir = 0;
173 int inst_type = -1;
174 u16 size = 0;
175 u64 data, slot1a, slot1b, temp, update_reg;
176 s32 imm;
177 INST64 inst;
179 regs = vcpu_regs(vcpu);
181 if (fetch_code(vcpu, regs->cr_iip, &bundle)) {
182 /* if fetch code fail, return and try again */
183 return;
185 slot = ((struct ia64_psr *)&(regs->cr_ipsr))->ri;
186 if (!slot)
187 inst.inst = bundle.slot0;
188 else if (slot == 1) {
189 slot1a = bundle.slot1a;
190 slot1b = bundle.slot1b;
191 inst.inst = slot1a + (slot1b << 18);
192 } else if (slot == 2)
193 inst.inst = bundle.slot2;
195 /* Integer Load/Store */
196 if (inst.M1.major == 4 && inst.M1.m == 0 && inst.M1.x == 0) {
197 inst_type = SL_INTEGER;
198 size = (inst.M1.x6 & 0x3);
199 if ((inst.M1.x6 >> 2) > 0xb) {
200 /*write*/
201 dir = IOREQ_WRITE;
202 data = vcpu_get_gr(vcpu, inst.M4.r2);
203 } else if ((inst.M1.x6 >> 2) < 0xb) {
204 /*read*/
205 dir = IOREQ_READ;
207 } else if (inst.M2.major == 4 && inst.M2.m == 1 && inst.M2.x == 0) {
208 /* Integer Load + Reg update */
209 inst_type = SL_INTEGER;
210 dir = IOREQ_READ;
211 size = (inst.M2.x6 & 0x3);
212 temp = vcpu_get_gr(vcpu, inst.M2.r3);
213 update_reg = vcpu_get_gr(vcpu, inst.M2.r2);
214 temp += update_reg;
215 vcpu_set_gr(vcpu, inst.M2.r3, temp, 0);
216 } else if (inst.M3.major == 5) {
217 /*Integer Load/Store + Imm update*/
218 inst_type = SL_INTEGER;
219 size = (inst.M3.x6&0x3);
220 if ((inst.M5.x6 >> 2) > 0xb) {
221 /*write*/
222 dir = IOREQ_WRITE;
223 data = vcpu_get_gr(vcpu, inst.M5.r2);
224 temp = vcpu_get_gr(vcpu, inst.M5.r3);
225 imm = (inst.M5.s << 31) | (inst.M5.i << 30) |
226 (inst.M5.imm7 << 23);
227 temp += imm >> 23;
228 vcpu_set_gr(vcpu, inst.M5.r3, temp, 0);
230 } else if ((inst.M3.x6 >> 2) < 0xb) {
231 /*read*/
232 dir = IOREQ_READ;
233 temp = vcpu_get_gr(vcpu, inst.M3.r3);
234 imm = (inst.M3.s << 31) | (inst.M3.i << 30) |
235 (inst.M3.imm7 << 23);
236 temp += imm >> 23;
237 vcpu_set_gr(vcpu, inst.M3.r3, temp, 0);
240 } else if (inst.M9.major == 6 && inst.M9.x6 == 0x3B
241 && inst.M9.m == 0 && inst.M9.x == 0) {
242 /* Floating-point spill*/
243 struct ia64_fpreg v;
245 inst_type = SL_FLOATING;
246 dir = IOREQ_WRITE;
247 vcpu_get_fpreg(vcpu, inst.M9.f2, &v);
248 /* Write high word. FIXME: this is a kludge! */
249 v.u.bits[1] &= 0x3ffff;
250 mmio_access(vcpu, padr + 8, (u64 *)&v.u.bits[1], 8,
251 ma, IOREQ_WRITE);
252 data = v.u.bits[0];
253 size = 3;
254 } else if (inst.M10.major == 7 && inst.M10.x6 == 0x3B) {
255 /* Floating-point spill + Imm update */
256 struct ia64_fpreg v;
258 inst_type = SL_FLOATING;
259 dir = IOREQ_WRITE;
260 vcpu_get_fpreg(vcpu, inst.M10.f2, &v);
261 temp = vcpu_get_gr(vcpu, inst.M10.r3);
262 imm = (inst.M10.s << 31) | (inst.M10.i << 30) |
263 (inst.M10.imm7 << 23);
264 temp += imm >> 23;
265 vcpu_set_gr(vcpu, inst.M10.r3, temp, 0);
267 /* Write high word.FIXME: this is a kludge! */
268 v.u.bits[1] &= 0x3ffff;
269 mmio_access(vcpu, padr + 8, (u64 *)&v.u.bits[1],
270 8, ma, IOREQ_WRITE);
271 data = v.u.bits[0];
272 size = 3;
273 } else if (inst.M10.major == 7 && inst.M10.x6 == 0x31) {
274 /* Floating-point stf8 + Imm update */
275 struct ia64_fpreg v;
276 inst_type = SL_FLOATING;
277 dir = IOREQ_WRITE;
278 size = 3;
279 vcpu_get_fpreg(vcpu, inst.M10.f2, &v);
280 data = v.u.bits[0]; /* Significand. */
281 temp = vcpu_get_gr(vcpu, inst.M10.r3);
282 imm = (inst.M10.s << 31) | (inst.M10.i << 30) |
283 (inst.M10.imm7 << 23);
284 temp += imm >> 23;
285 vcpu_set_gr(vcpu, inst.M10.r3, temp, 0);
286 } else if (inst.M15.major == 7 && inst.M15.x6 >= 0x2c
287 && inst.M15.x6 <= 0x2f) {
288 temp = vcpu_get_gr(vcpu, inst.M15.r3);
289 imm = (inst.M15.s << 31) | (inst.M15.i << 30) |
290 (inst.M15.imm7 << 23);
291 temp += imm >> 23;
292 vcpu_set_gr(vcpu, inst.M15.r3, temp, 0);
294 vcpu_increment_iip(vcpu);
295 return;
296 } else if (inst.M12.major == 6 && inst.M12.m == 1
297 && inst.M12.x == 1 && inst.M12.x6 == 1) {
298 /* Floating-point Load Pair + Imm ldfp8 M12*/
299 struct ia64_fpreg v;
301 inst_type = SL_FLOATING;
302 dir = IOREQ_READ;
303 size = 8; /*ldfd*/
304 mmio_access(vcpu, padr, &data, size, ma, dir);
305 v.u.bits[0] = data;
306 v.u.bits[1] = 0x1003E;
307 vcpu_set_fpreg(vcpu, inst.M12.f1, &v);
308 padr += 8;
309 mmio_access(vcpu, padr, &data, size, ma, dir);
310 v.u.bits[0] = data;
311 v.u.bits[1] = 0x1003E;
312 vcpu_set_fpreg(vcpu, inst.M12.f2, &v);
313 padr += 8;
314 vcpu_set_gr(vcpu, inst.M12.r3, padr, 0);
315 vcpu_increment_iip(vcpu);
316 return;
317 } else {
318 inst_type = -1;
319 panic_vm(vcpu, "Unsupported MMIO access instruction! \
320 Bunld[0]=0x%lx, Bundle[1]=0x%lx\n",
321 bundle.i64[0], bundle.i64[1]);
324 size = 1 << size;
325 if (dir == IOREQ_WRITE) {
326 mmio_access(vcpu, padr, &data, size, ma, dir);
327 } else {
328 mmio_access(vcpu, padr, &data, size, ma, dir);
329 if (inst_type == SL_INTEGER)
330 vcpu_set_gr(vcpu, inst.M1.r1, data, 0);
331 else
332 panic_vm(vcpu, "Unsupported instruction type!\n");
335 vcpu_increment_iip(vcpu);