eCryptfs: Prevent lower dentry from going negative during unlink
[linux/fpc-iii.git] / net / dsa / mv88e6xxx.c
blobefe661a9def4db3644d0e8402e2b00295a3cd0c6
1 /*
2 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
3 * Copyright (c) 2008 Marvell Semiconductor
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 */
11 #include <linux/list.h>
12 #include <linux/netdevice.h>
13 #include <linux/phy.h>
14 #include "dsa_priv.h"
15 #include "mv88e6xxx.h"
18 * If the switch's ADDR[4:0] strap pins are strapped to zero, it will
19 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
20 * will be directly accessible on some {device address,register address}
21 * pair. If the ADDR[4:0] pins are not strapped to zero, the switch
22 * will only respond to SMI transactions to that specific address, and
23 * an indirect addressing mechanism needs to be used to access its
24 * registers.
26 static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
28 int ret;
29 int i;
31 for (i = 0; i < 16; i++) {
32 ret = mdiobus_read(bus, sw_addr, 0);
33 if (ret < 0)
34 return ret;
36 if ((ret & 0x8000) == 0)
37 return 0;
40 return -ETIMEDOUT;
43 int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
45 int ret;
47 if (sw_addr == 0)
48 return mdiobus_read(bus, addr, reg);
51 * Wait for the bus to become free.
53 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
54 if (ret < 0)
55 return ret;
58 * Transmit the read command.
60 ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
61 if (ret < 0)
62 return ret;
65 * Wait for the read command to complete.
67 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
68 if (ret < 0)
69 return ret;
72 * Read the data.
74 ret = mdiobus_read(bus, sw_addr, 1);
75 if (ret < 0)
76 return ret;
78 return ret & 0xffff;
81 int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
83 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
84 int ret;
86 mutex_lock(&ps->smi_mutex);
87 ret = __mv88e6xxx_reg_read(ds->master_mii_bus,
88 ds->pd->sw_addr, addr, reg);
89 mutex_unlock(&ps->smi_mutex);
91 return ret;
94 int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
95 int reg, u16 val)
97 int ret;
99 if (sw_addr == 0)
100 return mdiobus_write(bus, addr, reg, val);
103 * Wait for the bus to become free.
105 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
106 if (ret < 0)
107 return ret;
110 * Transmit the data to write.
112 ret = mdiobus_write(bus, sw_addr, 1, val);
113 if (ret < 0)
114 return ret;
117 * Transmit the write command.
119 ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
120 if (ret < 0)
121 return ret;
124 * Wait for the write command to complete.
126 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
127 if (ret < 0)
128 return ret;
130 return 0;
133 int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
135 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
136 int ret;
138 mutex_lock(&ps->smi_mutex);
139 ret = __mv88e6xxx_reg_write(ds->master_mii_bus,
140 ds->pd->sw_addr, addr, reg, val);
141 mutex_unlock(&ps->smi_mutex);
143 return ret;
146 int mv88e6xxx_config_prio(struct dsa_switch *ds)
149 * Configure the IP ToS mapping registers.
151 REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
152 REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
153 REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
154 REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
155 REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
156 REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
157 REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
158 REG_WRITE(REG_GLOBAL, 0x17, 0xffff);
161 * Configure the IEEE 802.1p priority mapping register.
163 REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);
165 return 0;
168 int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
170 REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
171 REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
172 REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);
174 return 0;
177 int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
179 int i;
180 int ret;
182 for (i = 0; i < 6; i++) {
183 int j;
186 * Write the MAC address byte.
188 REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);
191 * Wait for the write to complete.
193 for (j = 0; j < 16; j++) {
194 ret = REG_READ(REG_GLOBAL2, 0x0d);
195 if ((ret & 0x8000) == 0)
196 break;
198 if (j == 16)
199 return -ETIMEDOUT;
202 return 0;
205 int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
207 if (addr >= 0)
208 return mv88e6xxx_reg_read(ds, addr, regnum);
209 return 0xffff;
212 int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
214 if (addr >= 0)
215 return mv88e6xxx_reg_write(ds, addr, regnum, val);
216 return 0;
219 #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
220 static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
222 int ret;
223 int i;
225 ret = REG_READ(REG_GLOBAL, 0x04);
226 REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);
228 for (i = 0; i < 1000; i++) {
229 ret = REG_READ(REG_GLOBAL, 0x00);
230 msleep(1);
231 if ((ret & 0xc000) != 0xc000)
232 return 0;
235 return -ETIMEDOUT;
238 static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
240 int ret;
241 int i;
243 ret = REG_READ(REG_GLOBAL, 0x04);
244 REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);
246 for (i = 0; i < 1000; i++) {
247 ret = REG_READ(REG_GLOBAL, 0x00);
248 msleep(1);
249 if ((ret & 0xc000) == 0xc000)
250 return 0;
253 return -ETIMEDOUT;
256 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
258 struct mv88e6xxx_priv_state *ps;
260 ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
261 if (mutex_trylock(&ps->ppu_mutex)) {
262 struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
264 if (mv88e6xxx_ppu_enable(ds) == 0)
265 ps->ppu_disabled = 0;
266 mutex_unlock(&ps->ppu_mutex);
270 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
272 struct mv88e6xxx_priv_state *ps = (void *)_ps;
274 schedule_work(&ps->ppu_work);
277 static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
279 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
280 int ret;
282 mutex_lock(&ps->ppu_mutex);
285 * If the PHY polling unit is enabled, disable it so that
286 * we can access the PHY registers. If it was already
287 * disabled, cancel the timer that is going to re-enable
288 * it.
290 if (!ps->ppu_disabled) {
291 ret = mv88e6xxx_ppu_disable(ds);
292 if (ret < 0) {
293 mutex_unlock(&ps->ppu_mutex);
294 return ret;
296 ps->ppu_disabled = 1;
297 } else {
298 del_timer(&ps->ppu_timer);
299 ret = 0;
302 return ret;
305 static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
307 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
310 * Schedule a timer to re-enable the PHY polling unit.
312 mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
313 mutex_unlock(&ps->ppu_mutex);
316 void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
318 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
320 mutex_init(&ps->ppu_mutex);
321 INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
322 init_timer(&ps->ppu_timer);
323 ps->ppu_timer.data = (unsigned long)ps;
324 ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
327 int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
329 int ret;
331 ret = mv88e6xxx_ppu_access_get(ds);
332 if (ret >= 0) {
333 ret = mv88e6xxx_reg_read(ds, addr, regnum);
334 mv88e6xxx_ppu_access_put(ds);
337 return ret;
340 int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
341 int regnum, u16 val)
343 int ret;
345 ret = mv88e6xxx_ppu_access_get(ds);
346 if (ret >= 0) {
347 ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
348 mv88e6xxx_ppu_access_put(ds);
351 return ret;
353 #endif
355 void mv88e6xxx_poll_link(struct dsa_switch *ds)
357 int i;
359 for (i = 0; i < DSA_MAX_PORTS; i++) {
360 struct net_device *dev;
361 int uninitialized_var(port_status);
362 int link;
363 int speed;
364 int duplex;
365 int fc;
367 dev = ds->ports[i];
368 if (dev == NULL)
369 continue;
371 link = 0;
372 if (dev->flags & IFF_UP) {
373 port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
374 if (port_status < 0)
375 continue;
377 link = !!(port_status & 0x0800);
380 if (!link) {
381 if (netif_carrier_ok(dev)) {
382 printk(KERN_INFO "%s: link down\n", dev->name);
383 netif_carrier_off(dev);
385 continue;
388 switch (port_status & 0x0300) {
389 case 0x0000:
390 speed = 10;
391 break;
392 case 0x0100:
393 speed = 100;
394 break;
395 case 0x0200:
396 speed = 1000;
397 break;
398 default:
399 speed = -1;
400 break;
402 duplex = (port_status & 0x0400) ? 1 : 0;
403 fc = (port_status & 0x8000) ? 1 : 0;
405 if (!netif_carrier_ok(dev)) {
406 printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
407 "flow control %sabled\n", dev->name,
408 speed, duplex ? "full" : "half",
409 fc ? "en" : "dis");
410 netif_carrier_on(dev);
415 static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
417 int ret;
418 int i;
420 for (i = 0; i < 10; i++) {
421 ret = REG_READ(REG_GLOBAL, 0x1d);
422 if ((ret & 0x8000) == 0)
423 return 0;
426 return -ETIMEDOUT;
429 static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
431 int ret;
434 * Snapshot the hardware statistics counters for this port.
436 REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);
439 * Wait for the snapshotting to complete.
441 ret = mv88e6xxx_stats_wait(ds);
442 if (ret < 0)
443 return ret;
445 return 0;
448 static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
450 u32 _val;
451 int ret;
453 *val = 0;
455 ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
456 if (ret < 0)
457 return;
459 ret = mv88e6xxx_stats_wait(ds);
460 if (ret < 0)
461 return;
463 ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
464 if (ret < 0)
465 return;
467 _val = ret << 16;
469 ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
470 if (ret < 0)
471 return;
473 *val = _val | ret;
476 void mv88e6xxx_get_strings(struct dsa_switch *ds,
477 int nr_stats, struct mv88e6xxx_hw_stat *stats,
478 int port, uint8_t *data)
480 int i;
482 for (i = 0; i < nr_stats; i++) {
483 memcpy(data + i * ETH_GSTRING_LEN,
484 stats[i].string, ETH_GSTRING_LEN);
488 void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
489 int nr_stats, struct mv88e6xxx_hw_stat *stats,
490 int port, uint64_t *data)
492 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
493 int ret;
494 int i;
496 mutex_lock(&ps->stats_mutex);
498 ret = mv88e6xxx_stats_snapshot(ds, port);
499 if (ret < 0) {
500 mutex_unlock(&ps->stats_mutex);
501 return;
505 * Read each of the counters.
507 for (i = 0; i < nr_stats; i++) {
508 struct mv88e6xxx_hw_stat *s = stats + i;
509 u32 low;
510 u32 high;
512 mv88e6xxx_stats_read(ds, s->reg, &low);
513 if (s->sizeof_stat == 8)
514 mv88e6xxx_stats_read(ds, s->reg + 1, &high);
515 else
516 high = 0;
518 data[i] = (((u64)high) << 32) | low;
521 mutex_unlock(&ps->stats_mutex);